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ABSTRACT Current network analysis algorithms often rely on search methods or centrality measures
but face challenges such as 1) The solution space is large, resulting in high computational complexity.
2) Algorithms may be instance-dependent, relying considerably on network structure and characteristics,
which may result in varying performance across different networks. 3) Most existing centrality measures are
inherently static, which fail to capture the dynamic nature inherent in network analysis problems. To address
these issues, this paper introduces a dynamic adaptive parametric (DAP) approach using reinforcement
learning. As a case study, the method has been applied to the topic-aware influence maximization (TIM)
problem, where the objective is to identify k influential nodes that maximize influence spread under a
given topic vector and diffusion model. The paper introduces two dynamic centrality measures that capture
the evolving importance of nodes during topic propagation in the network. To avoid instance-dependence,
an adaptive reinforcement learning technique is used to adjust the significance of each measure based on
the current network structure, tailoring solutions to the specific network. The parametric approach further
reduces the search space by transforming TIM into a parametric optimization task, where the goal is to
determine the optimal importance of each centrality measure. The proposed algorithm is evaluated on both
real-world and synthetic networks. Experimental results show that the method outperforms conventional
centrality-based greedy algorithms and other existing approaches in terms of solution quality, running time,
and scalability. Also, as a part of our research, we propose a topic-aware benchmark dataset by augmenting
the Deezer music-based social network with labeled nodes and edges, providing a valuable resource for
evaluating future research.

INDEX TERMS Topic-aware influence maximization, reinforcement learning, parametric optimization,
adaptive analysis, dynamic centrality measure.

I. INTRODUCTION
Influence Maximization (IM) involves selecting a small

in IM. The independent cascade model is a probabilistic
model where influence spreads through a network based on

group of individuals in a network to maximize the spread
of influence, with key applications in viral marketing. The
problem is NP-hard, and ongoing research focuses on reduc-
ing its computational complexity while improving practical
efficiency [1]. The independent cascade model and the
linear threshold model [2] are two common diffusion models
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a series of independent events, while the linear threshold
model is a deterministic model where nodes in a network
have a threshold of activation and become influenced once
the cumulative influence from their neighbors exceeds this
threshold.

In most IM literature, topics are treated as identical,
ignoring the varying levels of user interest and authority
across different topics [3]. Despite the clear correlation
between users’ authority, expertise, trust, and their influence
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FIGURE 1. An instance of a topic-aware problem [5].

on specific topics, research on social influence has notably
neglected this dimension until a decade later [4]. Traditional
IM problems assume that the probability of propagating a
content in a network is independent of the content itself.
However, in real-world scenarios, propagation probability
can vary depending on the topic (class and type of content
being propagated). This is known as topic-aware influence
maximization problem (TIM) in social networks [5].

In general, topic-aware problems in social networks can
be formulated as Eq. (1), which specifies the relevance of
each topic for query Q (item) to be propagated through
network, along with the number of initial influencers. For
example, in Fig. 1, the relevance of query Q to three different
topics is 20%, 80%, and 0%, respectively, with two initial
influencers. The influence of each user u on user v is denoted
as a labeled three-dimensional vector on the directed edge
(u, v), indicating the extent of «’s influence on v across each
topic.

Q = (topic=importance, [number of influencers]) (1)

TIM is formally defined on a directed graph, where
edges represent topic-specific user-to-user social influence
strengths, and budget & is given. The goal is to identify a set of
k nodes to maximize the spread of influence for a query (given
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as a vector denoting the distribution over topics) [3]. TIM
has wide applications including viral marketing and targeted
advertising [6], and feed ranking [7].

Various algorithms have been developed for IM including
greedy algorithms [8], metaheuristics [9], and approximation
algorithms [10]. On one hand, metaheuristics search the
solution space for optimal solutions, which can be time-
consuming, especially for large networks. On the other
hand, other methods try to find optimal solution by using
measures that indicate the importance of nodes, including
centrality metrics [11]. Centrality is a quantitative measure
aimed at revealing the importance of nodes. Since the
concept of importance can have broad and varied definitions,
there are multiple centrality measures as well (including
degree, closeness, betweenness, eigenvector, etc.). The
problem associated with these methods is that they are
instance-dependent approaches which considerably depend
on network structure and topic being propagated. Also,
most existing centrality measures are inherently static which
do not consider the dynamic nature of network analysis
problems.

This paper proposes a dynamic adaptive parametric
approach using reinforcement learning (RL) to address
these issues. RL-based approaches are independent of the
environment (in this case, the network instance) and adapt to
the environment’s characteristics during execution. First, two
novel dynamic centrality measures are introduced to assess
the importance of nodes by monitoring the propagation of
topics within the network. Unlike static measures, which
remain unchanged during propagation, dynamic measures
adjust over time, enhancing solution accuracy and relevance
in real-world dynamic networks. Second, to avoid depen-
dency on specific network instances, an adaptive RL-based is
employed, which updates the significance of each centrality
measure during algorithm execution based on the current
network structure. This enables the generation of network-
specific solutions. Third, the parametric approach narrows
the search space by converting TIM into a parametric
optimization problem, where the goal is to determine the
significance of each centrality measure (both static and
dynamic) in the optimal solution. The contributions of the
paper can be stated as follows:

o The problem of identifying topic-aware influential
nodes using static and dynamic centrality measures is
modeled as an RL problem.

« Two novel dynamic centrality measures are introduced
to evaluate node importance based on the current state
of algorithm execution.

o A parametric approach reduces the solution space by
determining the significance of centrality measures
in optimal solutions rather than directly identifying
influential nodes.

o An RL-based approach dynamically adjusts the sig-
nificance of centrality measures during the algorithm
execution, tailored to the network structure.
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o A topic-aware benchmark dataset is proposed by
augmenting the Deezer music-based social network with
labeled nodes and edges.

The paper is organized as follows. Section II reviews
related work, Section III presents the proposed method,
Section IV evaluates the proposed method against conven-
tional approaches, and Section V concludes with suggestions
for further.

Il. RELATED WORK

IM has been extensively studied using four main algo-
rithmic categories: greedy algorithms, such as those by
Kempe et al. [12] which are effective but computationally
intensive due to the need for repeated influence spread
calculations; metaheuristics, like genetic algorithms [13]
and simulated annealing [14] enabling exploration beyond
local optima for near-optimal solutions in larger networks;
approximation algorithms, which utilize sub-modularity to
provide computationally feasible solutions with performance
guarantees [10] and machine learning-based approaches,
which integrate techniques like deep learning to enhance
accuracy and efficiency in real-time applications for dynamic
social networks [15].

Recent research on using RL in IM has highlighted
innovative methods to optimize influence spread in social
networks. Li et al. [16] proposed a deep RL (DRL)-based
approach that formulates IM as an RL task, with the network
configuration as the state and node selection as the actions.
Also, Chen et al. [17] addressed challenges in complex
contagion, where influence probability increases with the
number of influenced neighbors, by developing an RL
algorithm to overcome reward sparsity, achieving state-of-
the-art results on real-world networks.

Preliminary studies in TIM have introduced new diffusion
models to capture dynamic probabilities across different
topics, improving the understanding of information propaga-
tion in topic-aware settings [4], [18]. These models address
real-world complexities, where individuals have varying
probabilities of being activated in different topics, and the
influence between individuals changes with topics.

In comparison to the IM problem, much less research
has been conducted on the TIM problem. Li et al. [6]
addressed the problem of keyword-based targeted IM, focus-
ing on identifying a seed set that maximizes the expected
influence over users relevant to a specific advertisement.
They proposed a sampling technique based on weighted
reverse influence set, achieving an approximation ratio of
1 —1/e — €. Nguyen et al. [19] addressed the challenge of
targeting influential users in TIM under budget constraints,
introducing algorithms that balance influence spread and
marketing costs in large-scale networks.

Tian et al. [18] presented a novel framework for TIM using
a learning-based approach, called DIEM. They introduced
a meta-learning framework that captures the topic-specific
nature of information propagation in networks, aiming
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to maximize influence under a new diffusion model.
They also proposed a deep influence evaluation model
to assess user influence under different circumstances,
enabling the efficient construction of solutions based on these
evaluations.

Compared to our work, DIEM has the following differ-
ences. DIEM formulates TIM problem for RL by having the
agent learn a function to directly estimate the influence of
adding a candidate node to the current partial solution, where
the RL state represents the partial solution itself, and actions
are selecting nodes. In contrast, DAP-TIM models TIM as a
parametric optimization problem, where the RL agent learns
the optimal significance weights for a predefined set of
centrality measures, and the RL state is a vector representing
these weights. Regarding dynamic aspects and adaptability,
DIEM incorporates dynamic probabilities into node features
via embeddings (Diffusion2Vec) and aims for generalization
to different graph instances after training, while DAP-TIM
explicitly introduces novel dynamic centrality measures that
change during solution generation and uses RL to adaptively
adjust the weights of all centrality measures based on the
current network structure during execution. Finally, DIEM
utilizes DDQN with prioritized experience replay, while
DAP-TIM employs the A2C algorithm.

Huang et al. [20] introduced the Comparative Independent
Cascade model in TIM, which captures both competitive and
complementary interactions among users. Wang et al. [21]
tackled IM in online social networks from an opinion-
aware perspective, integrating opinion dynamics into the
IM framework. Their approach focuses on identifying seed
users that maximize influence spread while considering the
opinions and sentiments expressed within the network. Teng
and Wang [22] focuses on identifying influential nodes
within specific topics, employing preprocessing techniques
to enhance the efficiency of influence maximization across
diverse topic-based communities.

Our paper advances TIM by modeling the identification of
influential nodes as an RL problem, diverging from previous
studies that primarily relied on static centrality measures.
Two dynamic centrality measures are introduced that assess
node importance based on the algorithm’s current state,
enabling real-time adaptability. Additionally, we employ
a parametric approach to focus on the significance of
various centrality measures, allowing the framework to adjust
according to the network’s structure.

llIl. PROPOSED METHOD

In this section, we introduce DAP-TIM, an RL-based
algorithm that uses six centrality measures to calculate the
node importance (score). The algorithm starts by initializing
a vector of size six, representing the significance of each
measure in determining the score of each node. These
measures are:

o Degree Centrality: Measures the number of direct
connections a node has.
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o Closeness Centrality: Reflects how quickly a node can
access all other nodes in the network by calculating the
average shortest path from that node to all others.

o Betweenness Centrality: Quantifies a node’s role as
a bridge in the network by measuring the number of
shortest paths that pass through it.

« Eigenvector Centrality: Assesses a node’s influence
based on the importance of its connections, assigning
higher scores to nodes linked to other well-connected
nodes.

« Reachability Factor (RF): An approximate measure
calculated by summing the probability of influence
spread from each node to its #-hop neighbors (1 < t < 6).

o Crowded Factor (CF): An approximate measure indi-
cating the number of nodes within one and two hops in
the neighborhood of a given node that have already been
selected in the current partial solution.

A key module within this algorithm, known as the Solution
Generator (SG), takes this vector as input, and computes the
total scores for all nodes based on their centrality scores
and the significance of each measures. It then provides
the top k nodes as an output solution. Two of these six
measures (RF and CF) are new and introduced in this
paper, and, due to their dynamic nature, SG selects nodes
one by one and adds them to the current partial solution.
By altering the significance values of centrality measures,
the output of SG will also change. By calculating the
influence levels of the outputs of SG and adjusting the
significance values of centrality measures using the RL
algorithm, an optimized vector is achieved to generate the
best solutions by SG. The details of DAP-TIM are provided
below.

A. TOPIC-AWARE DIFFUSION MODELING

Each node v is represented as a binary vector Ujpserest(V),
where each element (0 or 1) indicates the individual’s interest
in the topics. The vector is defined as in Eq. (2), where Z
denotes the total number of topics.

Uinterest(v) = [Vql, Vgrr = s qu]v Vg € 0,1}, 1<i<Z

@

The weight w,, represents the degree of connection
between nodes u# and v. The probability of influence
propagation from u to v on query ¢ is a function of the
topic vector during propagation (Topic, in Eq. (3)), wuy, and
the interest vector of u. The query being propagated is a
vector of values between O and 1, indicating the relevance
of the content being propagated to different topics, and
is given as a part of the problem input. The diffusion
probability for each edge is modeled as in Eq. (4), indicating
the propagation probability depends on the direction of
propagation. Users with interest vectors more similar to the
topic vector disseminate the content more effectively.

Topics=Iq1,92, -+ .9z, € R,0<gi<1(1 <i<Z)
(3)
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V4 . . .
pu, v, @) = wyy X I}'l_af((Toplcq[l] X Uinterest w)[i]) “4)

B. PROBLEM FORMULATION

In most RL-based search algorithms for combinatorial
optimization problems like TIM, states represent solutions,
and actions correspond to altering these solutions, often
resulting in large state and action spaces that increase
computational complexity. To address this, we formulate
the problem to enable the model to learn the characteristics
of influential nodes rather than the nodes themselves,
significantly reducing the search space. Instead of identifying
influential nodes from the entire network, we focus on
determining the significance weights of a few centrality
measures for selecting influential nodes in the final solution.
TIM can thus be modeled as an RL problem as follows:

o State space S: The state s = [fi,---,f¢] com-
prises the weights of six centrality measures (Degree,
Closeness, Betweenness, Eigenvector, Reachability Fac-
tor, Crowded Factor), where each weight f; (ranging
from 0 to 100) represents the significance of the
corresponding centrality measure in selecting influen-
tial nodes. These weights are normalized to ensure
E?Zlf,- = 100, and they evolve during the learning
process to capture the optimal balance of centrality
measures needed for effective influence maximization.
These weights contribute directly to selecting influential
nodes by guiding the ranking process in the proposed
algorithm.

o Action space A: Consists of actions defined as an
ordered pair of integers (a, b), where a (1 < a < 6)
specifies the centrality measure we are trying to improve
its weight, and » (0 < b < 3) indicates the extent of
increased applied to that weight. Other weights decrease
proportionally to maintain a fixed total.

« Transition function 7: Describes transition from state s
to s” based on the action (a, b). For state s = [f{, - - - , fg],
T is defined as in Eq. (5) where § = max(6 x b — 9, 0),
determined empirically.

) min(f; + 8, 100) i=a
! = by 5
i max(f,-—g,O) i#a ©)

« Reward function R: Evaluates the quality of an action
by measuring the difference in influence propagation
between two consecutive steps. At step i, after applying
an action and modifying the weights of the centrality
measures, SG generates a k-set of nodes. The reward
is calculated as the difference in the number of
influenced nodes between steps i — 1 and i, reflecting
the effectiveness of the action in enhancing influence
spread.

C. SOLUTION GENERATOR

As can be inferred from Fig. 2, static centrality measures
(degree, closeness, betweenness, and eigenvector) are calcu-
lated once in the start of the algorithm. However, to capture
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FIGURE 3. Framework of DAP-TIM.

the impact of selecting each node on the propagation, and
to dynamically adapt the solution based on this impact, two
other measures including CF and RF are updating during
generating solutions by SG.

Solution Generator (SG) is introduced as an important
part of DAP-TIM to simplify solution space. Given the
current state, and the centrality scores of dynamic and static
measures for all nodes, SG generates a solution (seed set).
SG can be tuned by changing weights of centrality measures
V1./2: 3, fa: 55 fel.

Alongside four mentioned well-known centrality mea-
sures, two dynamic measures have been introduced in
this paper, capturing the dynamic evolution of the search
algorithm. Reachability Factor (RF) approximates the influ-
ence spread from a node to its #-hop neighbors (1 <t < 6.
Based on the principle that the average path length in
real-world social networks is six, RF provides a network-wide
estimate of a node’s influence extent. For each node u, RF;(u)
calculates the probability of the spread of influence from u to
t-hop neighbors, which is defined as in Eq. (6):

RE =

veneighbors(u)

RF[—I(V).p(ua v, Q)» 1 S 1 S 6

(6)

where RFq(,) is considered 1 for all nodes. This equation
is calculated six times for each node; Thus, 2,6:1RFt(14)
provides an approximation of the potential number of nodes
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Algorithm 1 : A2C-TIM Algorithm

1: for episodes =0,1,2,...,T do

2: Get state s and calculate 7 (s) to get action (a, b)

3 if the episode is not finished then

4: Calculate new state s” using Eq. (5)

5: Generate seed set using SG

6 Calculate reward (influencey — influencey)

7 Estimate the Q value by Critics

8 Update actor’s policy m(s) using Critic’s feed-

back
9: Update the Critic to reduce the loss
10: s=s
11: end if
12: end for

TABLE 1. Dataset characteristics.

Data Set #Nodes | #Edges | #Topics
Deezer_HR 54573 498202 84
Deezer HU 47538 222887 84
Deezer_RO 41773 125826 84
Random_Small 20000 59991 84
Random_Medium 54573 491076 84
Random_Large 90000 | 1079856 84

influenced by u in the network, assuming only node u is
active.

Crowded Factor (CF) for node u, defined in Eq. (7), is also
an approximate measure indicating the number of nodes
within one-hop and two-hop neighborhoods of a given node
u that have already been selected in the partial solution in SG.

CF(u) = > —1

veselected-neighbors(u | d=1)

1
B3 O
veselected-neighbors(u | d=2)

where selected-neighbors(u|d = i) represents the neighbor-
ing nodes of u at a distance i, which are already in the solution.
Thus, CF indicates a node’s proximity to selected nodes,
with higher proximity reducing its contribution to influence
improvement due to redundancy.

The calculated values for six centrality measures are
normalized to [0, 1]. The score of a node u in the ranking
process is calculated using Eq. (8):

6
score(u) = Z fi x centrality-score; ®)
i=1
Thus, SG ranks network nodes by using the weighted average
based on its six input parameters and return the top k£ nodes
as arecommended solution. The flowchart in Fig. 2 illustrates
how SG convert an input to a solution.

D. RL ALGORITHM

By transforming the problem into an RL problem in
a six-dimensional space, conventional RL methods can
be employed to solve it. In this paper, the Advantage
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FIGURE 4. Comparison of the quality of algorithms.

Actor-Critic (A2C) algorithm has been utilized, which was
introduced by Mnih et al. [23]. A2C is a powerful RL
technique that combines the benefits of both actor-critic and
asynchronous methods, improving the stability and efficiency
of training reinforcement learning models.

A2C consists of two main components: the actor and
the critic. The actor selects actions based on the cur-
rent policy, while the critic evaluates these actions and
provides feedback to the actor. This integration allows
for simultaneous policy optimization and value function
estimation, leading to more stable and faster convergence.
A2C’s advantages lie in its simplicity, reduced variance, and
improved sample efficiency compared to other reinforcement
learning algorithms. Additionally, its modular structure and
straightforward implementation make it a popular choice
for solving complex problems across various domains. The
DAP-TIM framework based on A2C is illustrated in Fig. 3.

The steps of the algorithm can be stated as follows.
Initially, the actor selects an action based on its current
policy m. (s) is approximated using a deep neural network,
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which takes state s as an input and generates different
probabilities for each combination of (a, b), where a indicates
the centrality measure whose weight is to be improved, and
b indicates the extent of increased applied to that weight.
A combination with a higher probability is more likely to be
selected. This network is updated according to the changes
in influence. The selected action is sent to the coordinator.
The coordinator applies this action to the current state s;,
generates a new state s,41, and delivers it to the SG module.
The SG module, according to the Fig. 2, calculates the
solution and returns it to the coordinator. The coordinator,
based on the reward function defined in section III-B, returns
the reward r;+1 and new state s, to the actor and critic. The
critic, based on the received reward, provides feedback to the
actor, and the actor updates its policy based on that feedback.
Based on the calculated rewards at each step, the algorithm
tries to adjust the weights of measures to ultimately achieve
the best influence.

Note that each training episode concludes when the
reward stabilizes, defined as the absolute difference between
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consecutive rewards being less than 30 for 10 consecutive
steps, indicating convergence. The overall training process
is limited to a maximum of 7 (100 in our case) episodes.
The pseudo-code of DAP-TIM algorithm based on A2C is
illustrated in Algorithm 1: A2C-TIM.

IV. RESULTS AND DISCUSSION

This section evaluates the proposed method on various
networks. It begins by introducing the datasets and explaining
the preprocessing steps applied to them. Subsequently, the
section presents the results and analysis obtained from the
algorithm’s execution and compares them with baselines.
The parameters of the proposed method were set as follows:
a learning rate of 0.003, a discount factor of 0.9, and
100 episodes. To validate these settings, hyperparameter
testing was conducted using a grid search over ranges such
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as learning rate {0.001, 0.003, 0.005, 0.01}, discount factor
{0.7, 0.8, 0.9, 0.95}, and episodes {50, 100, 150, 200}.
Results demonstrated that the selected parameters consis-
tently achieved competitive performance across datasets,
with negligible differences compared to other configurations.

A. DATASET

One challenge in evaluating the proposed algorithm is
the lack of a public dataset for TIM. While several
social networks datasets exist, they are not weighted by
topics. Therefore, we conducted this task ourselves. To do
this, six datasets have been utilized, half of which are
artificially generated to mimic the structure of real-world
social networks. The distribution of user interests in
these network is designed to be similar to that of three
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other real-world networks. Following introduces the six
datasets:

« Real-world Datasets (Deezer Social Network): Deezer
is a music-based social network where users share
their favorite genre playlists. The dataset [24] contains
nodes and edges from Deezer social network in three
European countries: Hungary, Romania, and Croatia.
For each individual, their favorite music genres are
stored as an array of genre names. In total, there are
84 different music genres in all three datasets. The
reason for choosing this network is the availability
of sufficient data to construct an appropriate graph
for TIM.

« Synthetic Datasets: To further investigate the behav-
ior of the proposed method, three synthetic graph
with different sizes are randomly generated using the
algorithm introduced by Barabdsi and Albert [25]. This
algorithm allows the creation of a graph with a specified
number of nodes and edges, possessing a normal degree
distribution, resembling real-world social networks.
User interest vectors were sampled from the Deezer
Hungarian network to match the interest distributions of
other datasets.

Table 1 provides a summary of the characteristics of the
networks. The datasets related to these six networks are
publicly available at [26].

B. DATA PREPARATION

To implement the proposed method, two key parameters need
to be calculated from the information available in the Deezer
dataset: the interest vector of each individual (Ujpzeress (1)) and
the weight of each edge (wy,).

« User Interest: Since the number of topics in the network
is 84, the interest of each individual in various music
genres is defined as an 84-dimensional vector of Os and
Is (as in Eq. (2)). For each user, i-th index is set to
1 if topic i is in the user’s list of favorite topics, and
0 otherwise.

« Edge Weight: The similarity between two users u#; and
uy is calculated as the dot product of their interest vectors
as in Eq. (9):

Similarity(ui, u2) = Uinterest (1) * Uinterest(u2) — (9)

The edge weight wy,,,, is calculated by normalizing the
similarity score using the total number of unique genres
that either u; or up is interested in. That is, wy,,, is
defined as the similarity between u; and u; divided by
the total number of unique topics interested by two users,
and is calculated as in Eq. (10):

Similarity(uy, uz)

Z,'Zzl (Uinterest il V Uinterest (u2)[i]) ’
7 =84 (10)

Wuiuy =

where V denotes the logical OR operation. For instance,
if u; is interested in rock and hip-hop, and uy is
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interested in pop and rock, the edge weight would be
%, representing the overlap of one genre (rock) between
the two users. If uy is only interested in rock, the edge
weight would be % indicating a higher correlation due to
the shared interest in rock. To determine the probability
of influencing a neighbor, Eq. (4) is used. Thus, due to
the differences in the interests of each individual and the
attractiveness of a song for each person, the probability
of diffusion from u to v and v to u will be different,
aligning more closely with real-world scenarios.

C. EVALUATION DETAILS
The proposed method was evaluated on a system running
Windows with a 12-core processor and 20 GB of RAM, with
all implementations carried out in Python. The source code is
publicly available in [26].

In each network, different music tracks with different
topic vectors were propagated (generated randomly), and the
results, in the form of average influence, are presented. For
a more comprehensive evaluation of the proposed method,
it has been compared with the following methods:

o Degree-based Greedy (Degree): Nodes are ranked by
degree centrality, prioritizing those with the highest
number of direct connections. The top k nodes with the
highest degree are selected.

o Closeness-based Greedy (Closeness): Nodes are
ranked by closeness centrality, which measures the
average shortest path from a node to all others. The top &
nodes with the lowest average path lengths are selected.

« Betweenness-based Greedy (Betweenness): Nodes are
ranked by betweenness centrality, which quantifies the
number of shortest paths passing through a node. The
top k nodes with the highest betweenness scores are
selected.

« Eigenvector-based Greedy (Eigenvector): Nodes are
ranked by eigenvector centrality, which measures a
node’s influence based on the importance of its neigh-
bors. The top k nodes with the highest eigenvector scores
are selected.

+« Random Selection Method (Random): In this method,
k random nodes are selected.

o Genetic Algorithm (GA): Inspired by the research of
Bucur and lacca [27], where genetic algorithm was
employed to solve IM.

o DAP-TIM: The proposed method which employs SG,
reinforcement learning, and six centrality measures.

The selected algorithms are compared to highlight the
advantages of DAP-TIM’s dynamic, adaptive, and parametric
features in reducing search time and enhancing solution
quality, particularly compared to search-based methods (e.g.,
genetic algorithms) and static centrality-based algorithms.

For a more comprehensive evaluation, topics in each net-
work are sorted by popularity, and the following conditions
are used to select a propagating topic:
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TABLE 2. Statistical measures (standard deviation and p-value) on Deezer_RO dataset with k = 50.

DAP-TIM vs. Mean + Std Dev | p-value
DAP-TIM 604.2 £+ 36.2 -
Degree 3763 £ 7.5 2.87E-11
Closeness 346.2 £ 6.9 2.34E-12
Betweenness 339.8 £ 6.7 2.93E-11
Eigenvector 236.0 £4.7 3.21E-10
Random 1532 +£229 2.17E-13
GA 488.2+ 6.9 1.83E-10
Modularity Vitality 508.1 £37.5 4.01E-10
Map Equation 493.9 4+ 39.5 7.03E-11
Overlapping Modular | 493.2 4 34.5 7.27E-11
DIEM 540.5 £324 1.42E-7
TopicSample 5283 +364 3.66E-10
=—DAP-TIM DAP-TIM (w/o preprocess) -m-Betweenness =#=GA
—-DAP-TIM -=-Betweenness =-+«GA 120
20
100
15 = 80
< S
o v 60
g 10 g
2 = 40
£ 20
0 0
20000 54573 90000 20000 54573 90000
Network Size (# of Nodes) Network Size (# of Nodes)
(a) k=20 (b)k=20
—-DAP-TIM -=-Betweenness —+GA
20 =—DAP-TIM DAP-TIM (w/o preprocess) -m-Betweenness =#=GA
120
= 15
3 100
g 10
g = 80
= 60
£ 5 g
= 40
0
20000 54573 90000 20
Network Size (# of Nodes) 0
(bY k=50 20000 54573 90000
FIGURE 6. Comparison of the scalability of algorithms w.r.t. output Network Size (# of Nodes)
quality (a) k=20, (b) k=50. (a) k=50

o 10% of the topic is related to the most popular topic in
the network.

e 30% of the topic is related to the median topic in the
network.

o 60% of the topic is related to the least popular topic in
the network.

The final results of each algorithm are averaged over
30 independent runs and analyzed on three metrics: output
quality, running time, and scalability.

D. OUTPUT QUALITY

The results for influence metric for different sizes of k, are
depicted in Fig. 4. As observed, DAP-TIM has significantly
outperformed the baseline methods. The results indicate
that two dynamic centrality measures, RF and CF, along
with adaptively adjusting the weights of centrality measures
during the course of algorithm significantly improve the
exploration capability of the algorithm, and impact the quality
of the final result.

129380

FIGURE 7. Comparison of the scalability of algorithms w.r.t. running time
(a) k=20, (b) k=50.

Note that the quality of the output of greedy methods
compared to each other does not show a significant differ-
ence. By analyzing the output of these algorithms, it was
determined that this arises from the fact that the use of
different static centrality measures in ranking nodes often
leads to the selection of the same set of k nodes, although
the order of nodes may differ. However, by incorporating the
two dynamic measures along with static centrality measures,
into the node selection process during the generation of
the solution set, the order of node selection becomes
important. Since SG selects nodes one by one, the output
solution generated by SG will differ significantly from greedy
algorithms.

E. RUNNING TIME

The results for running time metric for all algorithms on all
networks are depicted in Fig. 5.
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After analyzing the running time results, it was observed
that RL algorithms require less time compared to the GA.
This is due to smaller search space of the RL algorithm, with
SG guiding it towards better solutions, allowing it to converge
with fewer trials and errors than GA.

It is evident that the time complexity of greedy algorithms
is independent of the size of k, as nodes are sorted based
on their centrality score only once. In contrast, the running
time of DAP-TIM and GA methods depends on the size of
k, as they primarily rely on calculating influence of k-node
solutions, which increases with k. GA, compared to other
methods, requires more influence calculations for potential
solutions, leading to a faster increase in running time with
respect to k.

In Fig. 5, DAP-TIM (w/o preprocess) refers to the running
time for DAP-TIM excluding the time spent on calculating
the four static centrality measures. In a static network, these
centrality measures are only calculated once, and for changes
in k, only retraining the RL model is necessary. The results
show that the proposed method is significantly more efficient
when excluding pre-processing time. This also indicates
that the two dynamic measures and the RL approach have
significantly lower computational complexity compared to
static measures, making them suitable for use in complex
networks.

F. SCALABILITY

To assess the impact of network size on the output quality
and running time of algorithms, the results for k=20 and k=50
on the three random networks are presented. The scalability
analysis results for output quality and running time are shown
in Fig. 6 and Fig. 7, respectively. For simplicity, and since all
greedy algorithms had the same behaviors, only the results
of the Betweenness algorithm have been illustrated as a
representative example.

As results show, the proposed algorithm maintains its
performance in larger network sizes. It even achieves a higher
quality of results compared to other methods, as the network
size increases. It suggests that DAP-TIM may be a highly
suitable option for analyzing large and complex networks.

Regarding running time, as the network size increases,
the running time of the greedy algorithm also increases.
Furthermore, since SG in DAP-TIM utilizes centrality scores,
the running time of DAP-TIM also increases. According to
the scalability analysis results, the overhead of using RL
in DAP-TIM is negligible. Therefore, the complexity of
DAP-TIM mostly depends on calculating centrality scores.
Thus, by employing less computationally intensive measures,
DAP-TIM would be more scalable in terms of running time.

G. COMPARISON WITH OTHER METHODS

Although the primary aim of this paper is to illustrate
how dynamically adjusting the importance of various
centrality measures can enhance the effectiveness of tra-
ditional approaches, we extend our analysis by comparing
DAP-TIM with three community-aware centrality measures
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and two TIM-based methods for a more comprehensive
evaluation. Community-aware centrality methods emphasize
the influence of nodes within specific communities or
clusters, offering insights into local network structures.
Since community-aware centrality measures have gained
much attention recently [28], [29], [30], this comparison is
useful for illustrating the strengths of proposed approach in
identifying influential nodes, while also positioning it within
the broader landscape of centrality measures. Furthermore,
comparing with TIM-based methods allows us to evaluate
the performance of proposed method more fairly. Thus,
for comparison, we selected five recent and well-known
methods: the first three are community-based, and the last two
are TIM-specific methods.

o Modularity Vitality [31]

o Map Equation [32]

o Overlapping Modular [33]
o DIEM [18]

o TopicSample [5]

The results for output quality and running time for all
algorithms on all networks are depicted in Fig. 8 and Fig. 9,
respectively.

As can be seen in Fig. 8, TIM-specific methods outperform
the community-aware algorithms on influence since they
dynamically adapts parameters based on topic relevance,
potentially allowing it to target more influential nodes
within topic clusters. Also, DAP-TIM outperforms other
TIM-specific methods because it dynamically change the
importance of centrality measures according to the current
state of the propagation.

Also, according to Fig. 9, DAP-TIM has a longer runtime
compared to other methods. However, excluding the prepro-
cessing phase and centrality measure calculations, makes its
runtime comparable to the others. Therefore, it appears that
using alternative centrality measures instead of the four static
measures applied in this paper could significantly improve
the runtime of the proposed algorithm.

H. STATISTICAL ANALYSIS
As stated before, the final results of each algorithm are
averaged over 30 independent runs and analyzed. To ensure
the reliability and validity of our experimental findings,
we report detailed statistical measures for all evaluated
algorithms. The statistical results for all algorithms on
Deezer_ RO dataset with & = 50 has been shown in
Table 2. Similar trends were observed across other networks
and different seed sizes, highlighting the generality of the
findings. The variance of influence across these runs is
quantified using standard deviation, which was less than 5.8%
for DAP-TIM (for all datasets and different values of k). This
low variance reflects the inherent randomness in propagation
models but remains within an acceptable range for reliable
comparisons.

Greedy algorithms that rely on centrality measures have
the lowest variance, with a maximum standard deviation of
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FIGURE 8. Comparison of influence of algorithms.

5%. This minimal variability is due to their deterministic
selection process, which ensures consistent results regardless
of random factors in the propagation model. In contrast,
the random algorithm shows the highest variance at 23.1%
(for k 10), stemming from its purely stochastic node
selection.

To evaluate the statistical significance of performance
differences, we conducted a two-tailed t-test to calculate
the p-value between DAP-TIM and each of the competing
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algorithms. The results, presented in Table 2, show that
all p-values are below the commonly accepted threshold
of 0.05 (p < 0.05). This indicates that the observed
differences in influence spread between DAP-TIM and other
algorithms are statistically significant. The consistently low
p-values validate the superiority of DAP-TIM in achieving
higher influence spread compared to alternative methods.
These results provide strong statistical evidence supporting
the robustness and effectiveness of the proposed algorithm,
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emphasizing its ability to outperform other state-of-the-art
approaches across various metrics and datasets.

V. CONCLUSION AND FUTURE WORK

We introduced a dynamic adaptive parametric network analy-
sis approach based on reinforcement learning. The parametric
strategy reduces the exploration space by converting TIM
into a parametric optimization problem, with the goal of
determining the significance of each centrality measure
for optimal results. We introduced two dynamic centrality
measures that dynamically capture the significance of nodes
during the topic propagation in the network. Furthermore,
to ensure that the method is instance-independent, we’ve
employed an adaptive technique utilizing reinforcement
learning, which adjusts the significance of each measure
throughout algorithm execution, considering the current

VOLUME 13, 2025

Random_Small

— —‘___._,_-0—"_"
— = & = =T
5 10 15 20 25 30 40 50

Seed Size (# of Nodes)

Deezer_Medium

S s s s v =

-
-——
-

e — O — —e = —
e o= - /___-

e
e -—=—g
‘_0—"—’-—
- ———————— = — g
5 10 15 20 25 30 40 50
Seed Size (# of Nodes)
Deezer_Large
100
90
80
70
L]
60 g = T
. —— - e = -
= g g L — o ——
@ S0
£ e
= a0 e -
30 et - ——
"__—""
20 e — —
- -

30

Seed Size (# of Nodes)

network structure, and generates solutions tailored to the
specific network.

Due to lack of dataset availability for topic-aware IM, the
social network data from Deezer has been created and is
publicly available in [26], making it ready for use in future
research and similar studies.

The results of the DAP-TIM algorithm indicate its
effectiveness in large and complex networks. This conclu-
sion is drawn from the algorithm’s performance, which
demonstrates promising results in terms of both output
quality and running time. Despite the challenges posed
by the computational complexity of calculating centrality
scores, the algorithm is scalable, especially when using
less computationally intensive measures or their approxi-
mations. Overall, the findings suggest that DAP-TIM holds
promise for addressing the challenges of network analysis
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in real-world scenarios, particularly in large and complex
networks.

Future research can explore several directions, such as
investigating alternative centrality metrics or approximations
to reduce computational complexity, enhancing performance
for real-time and online scenarios. Another avenue is study-
ing TIM in scenarios where topic propagation significance
changes over time—like how news relevance spikes closer
to an event or how interest in movie campaigns wanes
after release. Additionally, due to the lack of large datasets,
evaluating DAP-TIM on larger networks is a key priority
for future work. Comparative studies between DAP-TIM
and other contemporary algorithms could further clarify its
advantages and performance.
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