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Reversible Data Hiding in Encrypted Images with
Secret Sharing and Multivariate Linear Equation

Chunqiang Yu, Xianquan Zhang, Guoqiang Li, Peng Liu, Xinpeng Zhang, Member, IEEE
and Zhenjun Tang, Member, IEEE

Abstract—Reversible data hiding in encrypted images (RDHEI) is an essential data security technique. Most RDHEI methods with
secret sharing cannot perform well on the images with low redundancy, such as the complex texture images. To address this issue, we
propose an RDHEI method with (n, k) threshold-secret sharing (SS), which is universal for the images with diverse content since it is
unrelated with the image content. Specifically, the original image is shared by polynomials over Galois field GF(28) to generate n image
shares. Two kinds of reference matrices are elaborated to guide data embedding and extraction in image shares, one for higher
capacity and the other for less communication overhead. At the decoder stage, the marked pixel shares are viewed as the unknowns to
construct the multivariate linear equation (MLE) and the original image can be recovered by solving MLE. Experiment results show that
the proposed method outperforms some state-of-the-art SS-based RDHEI methods.

Index Terms—Reversible data hiding, encrypted images, secret sharing, high payload, multivariate linear equation.

✦

1 INTRODUCTION

DAta hiding technique [1, 2] imperceptibly embeds the
additional data into a cover image so that the gen-

erated stego-image is similar to the cover image. Due to
its imperceptibility, it can be applied in many security
fields, such as secret transmission, copyright protection,
privacy protection and cloud service. In general, the data
embedding degrades image quality. However, permanent
distortion is not acceptable in some sensitive fields, such
as legal forensics, medical and military imagery. To deal
with this issue, reversible data hiding (RDH) was proposed
to extract the additional data meanwhile recover the cover
image precisely. Due to its unique characteristic, many re-
searchers pay close attention to RDH [3]. Nowadays, the
existing RDH schemes can be mainly classified into five
categories, namely, difference expansion (DE) [4], histogram
shifting (HS) [5], lossless compression [6, 7], Dual-Image [8–
11] and prediction error expansion (PEE) [12–18] . These
techniques pursue an optimal trade-off between embedding
rate and modification distortion.

With the development of cloud storage and cloud com-
puting, more and more users’ files such as images, videos
are uploaded to the cloud for storage service. The uploaded
files are usually encrypted for privacy protection. At the
cloud server, the administrator embeds some additional
data into the encrypted files for management and mainte-
nance. Considering the requirements of the cloud user and
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administrator, reversible data hiding in encrypted images
(RDHEI) was proposed.

Generally, there are three entities, namely, content-
owner, data-hider and receiver in RDHEI. The content-
owner performs image encryption to avoid image content
leakage. The data-hider performs data embedding on the
encrypted image without knowing the original image con-
tent. The receiver can perfectly perform data extraction
and/or image recovery according to his/her authorized
rights. RDHEI methods can be categorized into vacating
room after encryption (VRAE) and reserving room before
encryption (RRBE). Early VRAE methods [19–24] employ-
ing stream ciphers disrupted pixel correlation, resulting
in low embedding capacity. To enhance capacity, recent
VRAE approaches [25–32] use block-based encryption, such
as block permutation and co-XOR,which preserves par-
tial intra-block pixel correlations, enabling higher capacity.
Nevertheless, these block-based techniques are vulnerable
to known-plaintext attacks. In RRBE methods [33–39], the
content owner takes full advantage of the redundancy of the
original image prior to encryption, yielding a high capacity.
These methods typically achieve higher embedding capacity
than VRAE methods. However, RRBE requires the addi-
tional operations and introduces significant computational
overhead.

Although RDHEI can provide both confidentiality for
the image and secret data, most RDHEI methods are fragile
in attacks, such as noise and cropping. To improve the secu-
rity, some (n, k)-threshold secret sharing (SS) based RDHEI
methods were proposed. Specifically, the original image is
divided into several shares using the SS scheme. Each share
can accommodate the additional data. The original image
can be recovered by sufficient shares so that image security
can be improved. SS based RDHEI can be applicable to
various scenarios, such as remote medical consultation, as
illustrated in Fig. 1. A medical image is outsourced to the
cloud for storage and management. To ensure privacy, a
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medical center divides the image into n encrypted shares
and then distribute them to n distinct cloud servers operated
by competitive providers. Each server can embed addi-
tional data, such as timestamps, annotations, or copyright
information into its share for authentication management
and copyright protection. The authorized doctor can then
reconstruct the original medical image by obtaining any k
shares even if some servers are powered down. Further-
more, since the n servers belong to competing providers,
they are inherently disinclined to perform collusion attack
of the k − 1 servers.

Medical image Medical image

Embed data n

Encrypted share n Marked share n

Cloud server n

…

RecoverySharing
Any k Marked 

sharesEmbed data 2

Encrypted share 2 Marked share 2

Cloud server 2

Embed data 1

Encrypted share 1 Marked share 1

Cloud server 1

…

Doctor

Fig. 1. Secure storage of medical image in remote medical consultation

Most SS based RDHEI methods are designed under the
idea of exploiting original image block redundancy so that
they achieve high embedding capacities. However, these
methods have two inadequacies, namely, security concern
and low embedding capacity for the complex textured im-
ages. Rising security concern is because the share blocks pre-
serve pixel correlations within the plaintext blocks [40]. An
attacker can exploit this vulnerability to potentially extract
the content of the original plaintext image. In addition, it is
difficult to vacate the embedding space from the complex
textured image with weak pixel correlations, resulting in
low embedding capacity.

To address the above issues, we propose a high capacity
and secure RDHEI with secret sharing and multivariate lin-
ear equation. The content-owner divides the original image
into several shares using polynomials without the preser-
vation of pixel correlation within the plaintext block. Each
data-hider embeds the additional data into the personal
share by bit replacement according to the reference matrix.
Finally, image recovery can be performed by multivariate
linear equation. The main contributions of the proposed
method are summarized as follows.

(1) We present a high embedding capacity reversible data
hiding in encrypted images. An original image is shared
by the polynomials over Galois field GF(28) to generate n
image shares. Secret data is embedded into each image share
using bit replacement technique. Our method is unrelated
with the image content, which can achieve a high embed-
ding capacity for the complex textured image.

(2) We design two kinds of 0-1 matrices to guide data
embedding in image shares, one contributes to higher ca-
pacity and the other has less communication overhead.
According to the matrices, the pixel shares corresponding

to “1”s accommodate secret data to generate the marked
shares and those corresponding to “0”s are unmodified.

(3) We construct multivariate linear equation to perform
image recovery. For an original pixel, its marked shares are
regarded as the unknowns. A multivariate linear equation is
constructed by mapping the coefficients of the original poly-
nomial and the coefficients of the polynomial reconstructed
by Lagrange interpolation to recover the marked shares. The
original pixel can be recovered by k shares including the
recovered shares and unmodified shares.

(4) Experimental results demonstrate that the proposed
method outperforms the existing state-of-the-art methods
regarding embedding rate. Theoretical analysis and the
experiments demonstrate that the proposed method can
achieve an embedding rate as large as 6 bpp or 6.4 bpp
when the sharing threshold is set to (n = 4, k = 4) or
(n = 5, k = 5), respectively.

The rest of this paper is organized as follows. Section
2 reviews the related RDHEI methods. Section 3 presents
the proposed method. Section 4 illustrates an example of
the proposed method in details. Section 5 discusses the
experimental results. Finally, Section 6 concludes this paper.

2 RELATED WORK

Up to now, many excellent RDHEI methods have been
proposed. RDHEI methods can be categorized into reserv-
ing room before encryption (RRBE), vacating room after
encryption (VRAE) and secret sharing (SS) based methods.

2.1 VRAE based methods

In early RDHEI methods [19–24], the secret data is
embedded into the encrypted image directly generated by
standard image encryption algorithms such as stream cipher
and the advanced encryption standard (AES). In Zhang’s
method [19], the encrypted image is divided into several
blocks and one secret bit is embedded by flipping the three
least significant bits (LSBs) of half pixels in each block.
At the decoder side, a fluctuation function is designed to
extract secret bits after image decryption. However, the
fluctuation function does not work when the block size is
small, which results in errors on data extraction and image
recovery. Since then, the improvements [20, 21] have been
made to improve accuracy. The methods can not perform
data extraction without the encryption key. More flexibly,
some separable methods [22, 23] were proposed so that data
extraction is independent of image recovery. Wu et al. [24]
randomly selected some pixels from the encrypted image
and replaced high bit-planes of the selected pixels with
secret bits. The prediction technique is used to recover the
original image. Although stream cipher can provide good
confidentiality, it disorganizes pixel spatial correlation and
results in low payloads.

Some specific encryption based methods were proposed
to provide redundancy and confidentiality. In [25–28], the
original image is divided into several blocks. Then, block
permutation and block based bit-XOR are used to perform
encryption and each encrypted block has redundancy. As
the redundancy, data hiding can be performed by difference
histogram shifting (DHS) [25], adaptive block encoding
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[26, 27], and difference compression [28]. Liu et al. [29]
adopted bit plane disordering and block permutation to
transfer the redundancy of the original image to the en-
crypted image. Then, the embedding room can be released
from the encrypted image by efficient sparse code. Qin et
al. [30] improved Liu et al.’ method [29] by bit planes disor-
dering with higher security and more efficient sparse code.
In [31], block permutation and block based modulation are
first used for encryption and meanwhile spatial correlations
within image blocks are preserved. Then, the secret data
are embedded into the encrypted image using parametric
binary tree labeling (PBTL). Using the same encryption
as [31], Yu et al. [32] proposed an RDHEI method with
adaptive difference recovery (ADR) to achieve high embed-
ding capacity. In these specific encryption based methods,
the security of the image may be limited, such as known
plaintext attack due to the redundancy within the encrypted
images. Even so, the security of the encrypted image can be
improved by a dynamic key.

2.2 RRBE based methods
To impove the embedding capacity, some RRBE based

methods [33–39] were proposed. These methods have high
payloads. Ma et al. [33] released room before image encryp-
tion by using the traditional RDH method and image self-
embedding. Cao et al. [34] used the patch-level sparse rep-
resentation technique to release the room from the original
image. In [35], a binary-block embedding (BBE) technique is
first proposed and then applied to vacate the room before
encryption. Chen and Chang [36] released the embedding
room by rearranging the most significant bits (MSBs). Yin
et al. [37] first labeled the same successive bit-planes from
high to low bit-planes by comparing an original pixel and
its prediction value and then compressed the generated
labels with Huffman coding to vacate the room. Yu et al.
[38] hierarchically divided the prediction error into three
ranges. The pixel with a small or large range of prediction
error can accommodate a bit in each layer, which achieves
a high payload. Xu et al. [39] proposed an RDHEI with
hierarchical block variable length coding. A bit-plane of
the original image is first divided into some blocks with
different hierarchical levels. Then, the embedded room is
released by a variable length coding scheme.

2.3 SS based methods
In the aforementioned RDHEI methods, an encrypted

image or a marked encrypted image is distributed to a cloud
server. The image security is decided by one party. Once the
cloud server is attacked or it is untrusted. The security of
the image within it will suffer from threat. To improve im-
age security, some secret sharing (SS) based methods were
proposed [41–49]. The content owner divides an original
image into several image shares using SS techniques. The
data-hiders embed the secret data into the image shares.
At the receiver side, the original image can be recovered
by collecting sufficient shares or marked shares even if
the other shares are corrupted or missing. The image is
safeguarded by multiparty. Wu et al. [41] designed a pair-
wise Shamir’s SS to preserve the difference of each pixel
pair. Then, data embedding can be performed on each share

by DE or DHS technique due to difference preservation. In
[42], a pair of pixels is first transformed by DE and then
encrypted by a 3-degree polynomial. The encrypted pixel
pair can accommodate one secret bit. In [41, 42], one data-
hider performs the whole data hiding.

To further improve security, some multiple data-hiders
based methods were proposed [43–47, 49], in which different
data-hiders perform data hiding on personal shares inde-
pendently. In method [43], two SS based RDHEI schemes
over Galois fields GF(p) and GF(28) were proposed. These
two schemes both preserve the pixel correlations for each
share so that the embedding room can be released in each
share. Chen et al. [44] used a specific Shamir’s SS [50] to
generate multiple shares and distribute them to multiple
data-hiders. Secret data is embedded by bit replacement.
The original image can be recovered by solving the polyno-
mial coefficients. In [45], the image shares are generated by
Chinese remainder theorem-based secret sharing (CRTSS)
[51]. According to the additive homomorphism of CRT,
secret data can be embedded in each share using the DE
technique. The embedding rate of this method is close to 0.5
bpp. In [46], a cipher-feedback secret sharing (CFSS) tech-
nique is introduced to perform image sharing. A multi-MSB
prediction method is used to release the embedding room
for each share. In [47], a secure matrix-based SS scheme is
designed to preserve the pixel correlations of the original
image for each share and then block error mixture encoding
is applied to release the embedding room in each share.
Hua et al. [48] first designed a secure preprocessing-free
matrix secret sharing (PFMSS) technique to preserve block
correlations for data embedding. Xiong et al. [49] proposed
an RDH in shared images (RDHSI) based on syndrome
decoding and homomorphism. An original image and secret
data are first both preprocessed with Hamming code and
then data hiding is performed by an addition operation in
GF(28) between the shares of the preprocessed image and
secret data. In the method [45, 49], the image and secret
data are both fault-tolerant. In [52], a CRTSS scheme with
constraints is designed to preserve redundancy for each
share and meanwhile provide high-level security. A hybrid
coding is used to vacate embedding room from each share.

3 PROPOSED METHOD

In this paper, we propose a high payload reversible
data hiding in encrypted images with secret sharing and
multivariate linear equation. Fig. 2 exhibits the framework
of the proposed method, including image sharing, data
embedding, and data exaction and image recovery. The
content owner divides an original image into n image shares
using polynomial over GF(28) and then these n shares are
distributed to n data-hiders. To perform RDH, we elaborate
two kinds of matrices. One can contribute to a higher
capacity and it is essential for image recovery. Whereas the
other is not essential and has less communication overhead.
Each data-hider independently performs data embedding
by bit replacement according to any kind of matrix. After
receiving any k marked shares, the original image can be
recovered losslessly using multivariate linear equation.
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Fig. 2. Framework of the proposed method

3.1 Image sharing
Suppose that the original image I is an 8-bits grayscale

image with H × W size and Ii,j is the pixel value located
at (i, j) of I, where 0 ≤ Ii,j ≤ 255, 1 ≤ i ≤ H and
1 ≤ j ≤ W . In Shamir’s sharing for images, Ii,j > 251 can-
not be shared and needs to be shrunk for lossless recovery
since 251 is the greatest prime within all 8-bits values. To
address this issue, we construct a polynomial over GF(28)
for each pixel to perform sharing. Specifically, I is trans-
formed into a one-dimensional pixel sequence denoted by
P = [p1, p2, · · · , pu], where u = HW in Hilbert scanning
order. The following polynomial is constructed for each
pixel pi as

fi(x) = (pi +

k−1∑
j=1

ai,jx
j) mod g(x)

= (pi + ai,1x+ ai,2x
2+, · · · ,+ai,k−1x

k−1) mod g(x),
(1)

where 1 ≤ i ≤ u, pi is regarded as the constant term which
will be shared, g(x) = x8 +x4 +x3 +x+1 is an irreducible
polynomial, and ai,j ∈ GF (28) is the polynomial coefficient
which is a randomly chosen integer generated by an encryp-
tion key. Note that the polynomial coefficient ai,j is used
to recover the constant term, namely, pi. Then, a non-zero
value xi,t(1 ≤ t ≤ n) is generated for the t-th share of pi
and each value in [xi,1, xi,2, · · · , xi,n] must be distinct from
any other value. The t-th share fi(xi,t) can be derived by
substituting xi,t into Eq.(1). Clearly, fi(xi,t) ∈ GF (28). We
can obtain n shares [fi(xi,1), fi(xi,2), · · · , fi(xi,n)] for pi. Fi-
nally, n image shares {E(1),E(2), · · · ,E(n)} are distributed
to n different data-hiders.

3.2 Data embedding
After receiving the associated image share E(t), the t-th

data-hider can embed the secret data into E(t) by bit re-
placement. The embedding details are illustrated as follows.

First, E(t) is transformed into a one-dimensional pixel
sequence [f1(x1,t), f2(x2,t), · · · , fu(xu,t)], where 1 ≤ t ≤ n.
The one-dimensional pixel sequences of all image shares are

denoted by Y =


f1(x1,1) f2(x2,1) · · · fu(xu,1)
f1(x1,2) f2(x2,2) · · · fu(xu,2)

...
...

. . .
...

f1(x1,n) f2(x2,n) · · · fu(xu,n)

,

where each column denotes n shares of a pixel and each
row denotes u pixels of one image share. Further, the
pixels of each row can be exactly divided into h groups
denoted by [fg,1(x1,t), fg,2(x2,t), · · · , fg,n(xn,t)]

h
g=1 for sim-

plicity and each group contains n pixels, where g denotes
the index of the group. Then, we use the gth groups of n
sequence shares to construct a square matrix with n × n

size as Yg =


fg,1(x1,1) fg,2(x2,1) · · · fg,n(xn,1)
fg,1(x1,2) fg,2(x2,2) · · · fg,n(xn,2)

...
...

. . .
...

fg,1(x1,n) fg,2(x2,n) · · · fg,n(xn,n)

.

Evidently, Y = [Y1,Y2, · · · ,Yh]. For Yg , we construct a
0-1 cyclic square matrix with n×n size to select embedding
positions. The 0-1 cyclic square matrix is constructed as

A(1)
g =


A1 A2 · · · An

An A1 · · · An−1

...
...

. . .
...

A2 A3 · · · A1

 , (2)

where each column of A
(1)
g corresponds to one column

of Yg , namely, n shares of a pixel. In this paper, k − 1
shares of pi can be modified since there are k − 1 known
coefficients as shown in Eq.(1). Thus, we randomly select
k − 1 elements from [A1, A2, · · · , An] according to a key
and let them be “1”. The remaining n− (k− 1) elements are
set to “0”. Note that the selection key is shared among all
data-hiders. According to the properties of the cyclic matrix,
we have that the number of “1”s in each row is k − 1 for
A

(1)
g . According to the property of the cyclic matrix, each

column of A(1)
g also has k − 1 “1”s . For example, set (n =

5, k = 4) and [A1 = 1, A2 = 0, A3 = 1, A4 = 1, A5 = 0]
are randomly generated, in which the number of
“1”s is k − 1 = 3. Then, we have A

(1)
g =

A1 = 1 A2 = 0 A3 = 1 A4 = 1 A5 = 0
A5 = 0 A1 = 1 A2 = 0 A3 = 1 A4 = 1
A4 = 1 A5 = 0 A1 = 1 A2 = 0 A3 = 1
A3 = 1 A4 = 1 A5 = 0 A1 = 1 A2 = 0
A2 = 0 A3 = 1 A4 = 1 A5 = 0 A1 = 1

. It can be

seen that each row or each column both has k − 1 = 3 “1”s.
Then, a reference matrix for all image shares is generated

as A(1) = [A
(1)
1 ,A

(1)
2 , · · · ,A(1)

h ], where each row of A(1)

corresponds to all pixels of an image share and each column
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TABLE 1
Share selections for (5,4) threshold in a matrix

5 shares index
1st share 1, 1 2, 1 3, 1 4, 1 5, 1
2nd share 1, 2 2, 2 3, 2 4, 2 5, 2
3rd share 1, 3 2, 3 3, 3 4, 3 5, 3
4th share 1, 4 2, 4 3, 4 4, 4 5, 4
5th share 1, 5 2, 5 3, 5 4, 5 5, 5

of A(1) corresponds to n shares of an original pixel pi.
Moreover, each row or each column of A(1) has (k − 1)
“1”s.

According to A(1), data hiding can be performed as
follows. If A(1)

i,t = 1, 8 bits of secret data are embedded into
fi(xi,t) by bit replacement technique to generate a marked
pixel share, where 1 ≤ i ≤ u and 1 ≤ t ≤ n. If A(1)

i,t = 0,
fi(xi,t) keeps unchanged. Finally, the n shares of pi are
generated as [f

′

i (xi,1), f
′

i (xi,2), · · · , f
′

i (xi,n)] after data em-
bedding. By the aforementioned selection mechanism, just
k−1 shares of pi accommodate the secret data and there are
unmodified n − (k − 1) shares. In addition, the possibility
of correctly extracting data from each group is 1

( n
k−1)

. Thus,

the possibility of correctly extracting whole data is 1

( n
k−1)

h ,

where h is the number of groups. For example, suppose
that n = 4, k = 3 and the image size is 512× 512. We have
h = 512 × 512/4 = 65536. In this scenario, the possibility
of correctly extracting whole data from each image share is

1

(42)
65536 , which is extremely small.

Next, we take Tab.1 to illustrate the share selection for
(n = 5, k = 4) threshold in a matrix. In Tab. 1, the selected
shares are marked by bold text. It can be seen that k− 1 = 3
shares are used to embed data for each pi.

By the above operation, there are k − 1 marked shares
in n shares of a pixel. Evidently, at least one remains
unchanged in any k shares after data embedding, which
is helpful for image recovery. Meanwhile, each image
share can accommodate the same payload. Finally, the t-
th sequence share [f

′

1(x1,t), f
′

2(x2,t), · · · , f
′

u(xu,t)] is trans-
formed into a marked image share. At the decoder stage, pi
can be recovered losslessly since no more than k − 1 shares
are modified. The recovery will be discussed in Section 3.3.2.
According to the above embedding method, the embedding
rate (ER) can be calculated by

ER(1) =
8× (k − 1)

n
. (3)

As Eq.(10) shows, our ER is only related to n and k, not
related to the original image content. Consequently, our
method can also contribute to the large ERs for the complex
texture images. The ER is larger when k − 1 is closer to n in
the proposed method. Our theoretical maximal ER is close to
8 bpp when k and n are toward positive infinity. However,
n <= 6 is applied in most scenarios. Tab. 2 gives different
theoretical ERs A(1) for different combinations of (n, k). For
example, ER(1) = 8×4

5 = 6.4 bpp when n = 5 and k = 5,
which is a very high embedding capacity.

TABLE 2
Theoretical ERs with A(1)

(n, k) (2, 2) (3, 3) (4, 3) (5, 3) (5, 4) (5, 5)
ER(bpp) 4.00 5.33 4.00 3.20 4.80 6.40

3.3 Data extraction and image recovery
3.3.1 Data extraction

When receiving the t-th marked image share, secret data
can be extracted without errors. First, the marked image
share is transformed into a one-dimensional pixel sequence
[f

′

1(x1,t), f
′

2(x2,t), · · · , f
′

u(xu,t)]. Secret data can be extracted
from the marked share with A

(1)
i,t = 1, where 1 ≤ i ≤ u.

Finally, the complete secret data can be obtained.

3.3.2 Image recovery with reference matrix
When any k marked image shares are collected,

the original image can be recovered losslessly. Next,
we take a pixel pi to illustrate the recovery with
a polynomial, where 1 ≤ i ≤ u. Suppose that
[f

′

i (xi,t1), f
′

i (xi,t2), · · · , f
′

i (xi,tk)] are randomly selected
from n marked shares to recover pi. It is clear that some
values among [fi(xi,t1), fi(xi,t2), · · · , fi(xi,tk)] are changed
during data embedding, but no more than k − 1 according
to the matrix A(1). In addition, at least one share is not
changed. According to the inverse process of Shamir’s secret
sharing, the (k−1)-degree polynomial f using the Lagrange
interpolation can be reconstructed as

fi(x) =

 k∑
β=1

fi(xi,tβ )
∏

1≤α≤k,α ̸=β

x− xi,tα

xi,tα − xi,tβ

mod g(x),

(4)
where tβ , tα ∈ 1, 2, · · · , n. Clearly, Eq.(4) is a function. Then,
we extend Eq.(4) as

fi(x) =

 k∑
β=1

fi(xi,tβ )
∏

1≤α≤k,α ̸=β

x− xi,tα

xi,tα − xi,tβ

mod g(x)

=
(
b1,1fi(xi,t1) + b1,2fi(xi,t2)+, · · · , b1,kfi(xi,tk)︸ ︷︷ ︸

pi

+ (b2,1fi(xi,t1) + b2,2fi(xi,t2)+, · · · , b2,kfi(xi,tk)︸ ︷︷ ︸
ai,1

)x

+, . . . ,+

(bk,1fi(xi,t1) + bk,2fi(xi,t2)+, · · · , bk,kfi(xi,tk)︸ ︷︷ ︸
ai,k−1

)
xk−1

mod g(x),
(5)

where

b1,1 · · · b1,k
...

. . .
...

bk,1 · · · bk,k

 can be obtained by the known

values xi,tβ and xi,tα .
Clearly, Eq.(5) is equivalent to Eq.(1). The constant term

of Eq.(5) is mapped to that of Eq.(1), namely,

pi = b1,1fi(xi,t1) + b1,2fi(xi,t2)+, · · · ,+b1,kfi(xi,tk). (6)

Evidently, some values among
[fi(xi,t1), fi(xi,t2), · · · , fi(xi,tk)] are the marked
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shares according to the reference matrix A(1). Thus,
these marked shares should be recovered prior to
calculating pi. We assume that [A

(1)
i,t1

= 1,A
(1)
i,t2

=

1, · · · ,A(1)
i,tq−1

= 1,A
(1)
i,tq

= 0,A
(1)
i,tq+1

= 1, · · · ,A(1)
i,tk

= 1]
for simplicity. Under this assumption, it is clear that
fi(xi,tq ) = f

′

i (xi,tq ) is not modified due to A
(1)
i,tq

= 0 and
[fi(xi,t1), fi(xi,t2), · · · , fi(xi,tq−1), fi(xi,tq+1), · · · , fi(xi,tk)]
are unknown in Eq. (6) and will be solved as following.
Since Eq.(5) and Eq.(1) are equivalent, a (k − 1)-variable
linear equation can be constructed by mapping the
coefficients between Eq.(5) and Eq.(1), which are described
by Eq. (7).


b2,1fi(xi,t1) + ..+ b2,qfi(xi,tq ) + ..+ b2,kfi(xi,tk) = ai,1
b3,1fi(xi,t1) + ..+ b3,qfi(xi,tq ) + ..+ b3,kfi(xi,tk) = ai,2

...
bk,1fi(xi,t1) + ..+ bk,qfi(xi,tq ) + ..+ bk,kfi(xi,tk) = ai,k−1,

(7)
where ai,1, ai,2, · · · , ai,k−1 and fi(xi,tq ) are known, and
[fi(xi,t1), fi(xi,t2), · · · , fi(xi,tq−1

), fi(xi,tq+1
), · · · , fi(xi,tk)]

are unknown. Thus, Eq.(7) is revised as

∑
1≤j≤k,j ̸=q b2,jfi(xi,tj ) = ai,1 − b2,qfi(xi,tq )∑
1≤j≤k,j ̸=q b3,jfi(xi,tj ) = ai,2 − b3,qfi(xi,tq )

...∑
1≤j≤k,j ̸=q bk,jfi(xi,tj ) = ai,k−1 − bk,qfi(xi,tq ).

(8)

It is clear that there are k − 1 equa-
tions for k − 1 unknowns. Thus,[
fi(xi,t1), fi(xi,t2), · · · , fi(xi,tq−1), fi(xi,tq+1), · · · , fi(xi,tk)

]
can be obtained by solving Eq.(8) and then they are
substituted into Eq.(6) to recover pi.

3.4 Image recovery without reference matrix

Clearly, A(1) indicates the data embedding positions in
each image share and it must be public to the receiver for
image recovery in the above scheme. It may suffer from the
additional communication overhead.

Next, we design a new reference matrix A(2) for data
embedding. Without the knowledge of A(2), the receiver can
also recover the original image. Different from the previous
scheme, ⌈k/2⌉ − 1 elements are randomly chosen to set “1”
in [A1, A2, · · · , An] and the remaining elements are “0”,
where k ≥ 3. Then, [A1, A2, · · · , An] is used to construct
a matrix A

(2)
g assisting data embedding the same as the

previous scheme. For example, there are ⌈k/2⌉− 1 = 2 ”1”s
in [A1, A2, A3, A4, A5] when n = 5 and k = 5. Suppose that
[A1 = 0, A2 = 1, A3 = 1, A4 = 0, A5 = 0], then we have

A
(2)
g =


A1 = 0 A2 = 1 A3 = 1 A4 = 0 A5 = 0
A5 = 0 A1 = 0 A2 = 1 A3 = 1 A4 = 0
A4 = 0 A5 = 0 A1 = 0 A2 = 1 A3 = 1
A3 = 1 A4 = 0 A5 = 0 A1 = 0 A2 = 1
A2 = 1 A3 = 1 A4 = 0 A5 = 0 A1 = 0


Further, a reference matrix for all image shares is generated
as A(2) = [A

(2)
1 ,A

(2)
2 , · · · ,A(2)

h ]. The same as previous
scheme, secret data is embedded into each image share
according to A(2).

In this case, ⌈k/2⌉ − 1 shares of each pixel pi accom-
modate secret data and the remaining n− ⌈k/2⌉ − 1 shares
remain unchanged, where ⌈⌉ denotes a round up function.
Suppose that k1 and k2 are the numbers of the unmodified
shares and marked shares among any k shares of pi, respec-
tively, where k1 + k2 = k. It is clear that

k1 > k2
k1 > ⌈k/2⌉ − 1

k1 + k2 = k

(9)

due to k− (⌈k/2⌉−1) > ⌈k/2⌉−1. In short, the unmodified
shares are more than the marked shares among any k shares.

Based on k1 > k2, the original pixel pi can be
recovered without the knowledge of A(2). The detailed
recovery is illustrated as follows. Although it cannot
determine which share is unmodified without A(2),
the number of the unmodified shares is greater
than that of the marked shares. Then, we assume
that each share fi(xi,tq ) is unmodified in turn and
[fi(xi,t1), fi(xi,t2), · · · , fi(xi,tq−1), fi(xi,tq+1), · · · , fi(xi,tk)]
are the marked shares, where q = 1, 2, · · · , k. Similarly to
the previous scheme, we can construct a polynomial fi(x)(q)

to obtain a recovered value p
(q)
i for an unmodified pixel

fi(xi,tq ) by solving the MLE. Actually, each unmodified
share fi(xi,tq ) can rightly recover pi. While, the marked
share fi(xi,tq ) obtains a wrongly recovered value for pi
once fi(xi,tq ) is modified. Note that the number of the
unmodified shares is greater than that of the marked shares
in this scheme. Thus, the number of the correctly recovered
values is greater than that of the wrongly recovered
values. Among [p

(1)
i , p

(2)
i , · · · , p(k)i ], the same values with

the maximum number are the original value of pi since
k1 unmodified shares generate k1 real values of pi and{
k1 > k2
k1 + k2 = k

.

In this case, the embedding rate (ER) is

ER(2) =
8× (⌈k/2⌉ − 1)

n
< ER(1)

s.t. k ≥ 3.
(10)

Tab. 3 gives different theoretical ERs with A(2) for different
combinations of (n, k).

TABLE 3
Theoretical ERs with A(2)

(n, k) (3, 3) (4, 3) (5, 3) (5, 4) (5, 5)
ER(bpp) 2.67 2.00 1.60 1.60 3.20

Although this scheme has lower embedding capacity
than the previous scheme, it has less communication over-
head since the image recover does require A(2).

4 A DETAILED EXAMPLE OF PROPOSED METHOD

In this section, to better illustrate the proposed method,
an example is given in Fig.3, in which (4, 3)-threshold secret
sharing is used. Section 4.1 illustrates the sharing proce-
dure. Sections 4.2 and 4.3 construct two kinds of matrices,
respectively. The former recovers the original image with
the matrix, whereas the latter does not require the matrix.
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P=[p1, p2, p3, p4]

=[172, 37,168,106]

f1(x)=(172+ 47x+117x2) mod g(x)

f2(x)=(37+ 235x+140x2) mod g(x)

f3(x)=(168+ 15x+ 237x2) mod g(x)

f4(x)=(106+ 152x+ 249x2) mod g(x)

Constructing polynomials Share generation

Data embedding with bit replacement

y1,1

214

y1,4

1, 2, 4

f1 𝑥 = 𝑦1,1
𝑥 − 111

111 − 252

𝑥 − 116

116 − 252
+ 214

𝑥 − 252

252 − 111

𝑥 − 116

116 − 111
+ 𝑦1,4

𝑥 − 252

252 − 116

𝑥 − 111

111 − 116
mod 𝑔(𝑥)

= 39𝑦1,1 + 115𝑦1,4 + 61 𝑥2 + 6y1,1 + 207𝑦1,4 + 30 𝑥 + 13𝑦1,1 + 109𝑦1,4 + 170 mod 𝑔(𝑥)

Constructing multivariate linear equation

ቊ
𝑦1,1 = 99

𝑦1,4 = 136 𝑝1 = 13𝑦1,1 + 109𝑦1,4 + 170 = 172

Sharing

Data embedding

Recovery with reference matrix

99 170 17 149

214 26 74 115

216 107 208 63

136 245 152 100

 
 
 =
 
 
 

Y

(1)

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

 
 
 =
 
 
 

A

99 170 17 149

214 26 74 115

216 107 208 63

136 245 152 100

 
 
 =
 
 
 

Y

'

if  secret bits are 10011100 and 01011000

if  secret bits are 00111000 and 11101001

if  

17 149

214 115

2 secret bits are 00111111and 11001011

if  secret bit are 010

16 107

245 1 2 115

 
 
 =
 
 
 

156 88

56 233
Y

63 203

88 198

   

000 and 11000110

'

17 149

214 115

216 107

245 152

 
 
 =
 
 
 

156 88

56 233
Y

63 203

88 198

Data embedding with bit replacement

99 y1,1 y1,1

y1,2 214 y1,2

y1,4 y1,4 88

1, 2, 4

𝑓1
(1)

𝑥 = 99
𝑥 − 111

111 − 252

𝑥 − 116

116 − 252
+ 𝑦1,2

𝑥 − 252

252 − 111

𝑥 − 116

116 − 111
+ 𝑦1,4

𝑥 − 252

252 − 116

𝑥 − 111

111 − 116
mod 𝑔(𝑥)

= 84𝑦1,2 + 115𝑦1,4 + 200 𝑥2 + 207y1,2 + 201𝑦1,4 + 87 𝑥 + 97𝑦1,2 + 109𝑦1,4 + 205 mod 𝑔(𝑥)

Constructing multivariate linear equation

ቊ
𝑦1,2 = 214

𝑦1,4 = 136 𝑝1
(1)

= 97𝑦1,2 + 109𝑦1,4 + 205 =172

Data embedding

Recovery without reference matrix

(2)

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 
 
 =
 
 
 

A

99 170 17 149

214 26 74 115

216 107 208 63

136 245 152 100

 
 
 =
 
 
 

Y

'

if  secret bits are 01011000

if  secret bits are 11101

99 17 149

214 26 115

216 107 208

245 152

001

if  secret bits are 11001011

if  secret bit are  01011000100

 
 
 =
 
 
 

88

23
Y

 

3

203

88

'

99 88 17 149

214 26 233 115

216 107 208 203

88 245 152 100

 
 
 =
 
 
 

Y

𝑓1
(2)

𝑥 = 𝑦1,1
𝑥 − 111

111 − 252

𝑥 − 116

116 − 252
+ 214

𝑥 − 252

252 − 111

𝑥 − 116

116 − 111
+ 𝑦1,4

𝑥 − 252

252 − 116

𝑥 − 111

111 − 116
mod 𝑔(𝑥)

= 39𝑦1,1 + 115𝑦1,4 + 61 𝑥2 + 6y1,1 + 207𝑦1,4 + 30 𝑥 + 13𝑦1,1 + 109𝑦1,4 + 170 mod 𝑔(𝑥)

Constructing multivariate linear equation

ቊ
𝑦1,1 = 99

𝑦1,4 = 136 𝑝1
(2)

= 13𝑦1,1 + 109𝑦1,4 + 170 =172

𝑓1
(3)

𝑥 = 𝑦1,1
𝑥 − 111

111 − 252

𝑥 − 116

116 − 252
+ 𝑦1,2

𝑥 − 252

252 − 111

𝑥 − 116

116 − 111
+ 88

𝑥 − 252

252 − 116

𝑥 − 111

111 − 116
mod 𝑔(𝑥)

= 39𝑦1,1 + 84𝑦1,2 + 77 𝑥2 + 6y1,1 + 207𝑦1,2 + 58 𝑥 + 13𝑦1,1 + 97𝑦1,2 + 147 mod 𝑔(𝑥)

Constructing multivariate linear equation

ቊ
𝑦1,1 = 179

𝑦1,2 = 6 𝑝1
(3)

= 13𝑦1,1 + 97𝑦1,2 + 147 = 124

ቊ
84𝑦1,2 + 115𝑦1,4 + 200 = 117

207y1,2 + 201𝑦1,4 + 87 = 47

ቊ
39𝑦1,1 + 115𝑦1,4 + 61 = 117

6y1,1 + 201𝑦1,4 + 30 = 47

ቊ
39𝑦1,1 + 84𝑦1,2 + 77 = 117

6y1,1 + 207𝑦1,2 + 58 = 47

ቊ
39𝑦1,1 + 115𝑦1,4 + 61 = 117

6y1,1 + 201𝑦1,4 + 30 = 47

1,1 1,2

2,1 2,2

3,1 3,2

4,1 4,2

47, 117

235, 140

15, 237

152, 249

a a

a a

a a

a a

= =

= =

= =

= =

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

252, 185, 30, 16

111, 34 243 31

226, 187, 140, 241

116, 236, 10, 67

x x x x

x x x x

x x x x

x x x x

= = = =

= = = =

= = = =

= = = =

， ，

Fig. 3. A detailed example
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4.1 Sharing

Suppose that a group of pixels as well as the constant
terms are P = [p1, p2, p3, p4] = [172, 37, 168, 106], which
will be shared. According to the encryption key, the polyno-
mial coefficients for P are randomly generated as

a1 = [a1,1, a1,2] = [47, 117]

a2 = [a2,1, a2,2] = [235, 140]

a3 = [a3,1, a3,2] = [15, 237]

a4 = [a4,1, a4,2] = [152, 249].

(11)

With the constant terms p1, p2, p3, p4 and polynomial co-
efficients a1,a2,a3,a4, four 2-degree polynomials can be
constructed over Galois field GF(28) as

f1(x) = (172 + 47x+ 117x2)mod g(x)

f2(x) = (37 + 235x+ 140x2)mod g(x)

f3(x) = (168 + 15x+ 237x2)mod g(x)

f4(x) = (106 + 152x+ 249x2)mod g(x).

(12)

For each polynomial fi(x), four values are also randomly as


x1 = [x1,1, x1,2, x1,3, x1,4] = [252, 111, 22, 116]

x2 = [x2,1, x2,2, a2,3, x2,4] = [185, 34, 187, 236]

x3 = [x3,1, x3,2, a3,4, x3,4] = [30, 243, 140, 10]

x4 = [x4,1, x4,2, a4,3, x4,5] = [16, 31, 241, 67].

(13)

By substituting xi into fi(x), the shares of the pixels can
be obtained as

Y =



[f1(x1,1), f2(x2,1), f3(x3,1), f4(x4,1)]

= [99, 170, 17, 149]

[f1(x1,2), f2(x2,2), f3(x3,2), f4(x4,2)]

= [214, 26, 74, 115]

[f1(x1,3), f2(x2,3), f3(x3,3), f4(x4,3)]

= [216, 107, 208, 63]

[f1(x1,4), f2(x2,4), f3(x3,4), f4(x4,4)]

= [136, 345, 152, 100].

(14)

where each row denotes one share of R and each column
denotes four shares of one pixel in R.

4.2 Recovery with reference matrix

In this section, we use a 0-1 square cyclic matrix A(1) =1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 as a reference matrix to select embedding

positions for Y, where each row or each column has k−1 =
2 “1”s. And, A(1) is essential for recovery

In the data embedding phase, secret bits can be embed-
ded into a pixel share fi(xi,t) with A

(1)
i,t = 1 by bit replace-

ment. For example, the 1-st data-hider embeds ‘10011100’
and ‘01011000’ into f1(x1,1) and f1(x1,2) to generate the
marked values f

′

1(x1,1) = 156 and f
′

1(x1,2) = 88 with bit

replacement since A
(1)
1,1 = 1 and A

(1)
1,2 = 1. Consequently,

we can obtain all marked shares as

Y
′
=



[f
′

1(x1,1), f
′

2(x2,1), f
′

3(x3,1), f
′

4(x4,1)]

= [156, 88, 17, 149]
[f

′

1(x1,2), f
′

2(x2,2), f
′

3(x3,2), f
′

4(x4,2)]

= [214, 56, 233, 115]
[f

′

1(x1,3), f
′

2(x2,3), f
′

3(x3,3), f
′

4(x4,3)]

= [216, 107, 63, 203]
[f

′

1(x1,4), f
′

2(x2,4), f
′

3(x3,4), f
′

4(x4,4)]

= [88, 345, 152, 198].

(15)

In the data extraction and image recovery phase, we
randomly select the 1st, 2nd and 4th marked shares as

[f
′

1(x1,1), f
′

2(x2,1), f
′

3(x3,1), f
′

4(x4,1)]

= [156, 88, 17, 149]
[f

′

1(x1,2), f
′

2(x2,2), f
′

3(x3,2), f
′

4(x4,2)]

= [214, 56, 233, 115]
[f

′

1(x1,4), f
′

2(x2,4), f
′

3(x3,4), f
′

4(x4,4)]

= [88, 345, 152, 198]

. Then, secret bits

can be directly extracted from the bits of the marked share
with A

(1)
i,t = 1. For example, ‘10011100’ and ‘01011000’ can

be extracted from f
′

1(x1,1) = 156 and f
′

1(x1,2) = 88 due to
A

(1)
1,1 = 1 and A

(1)
1,2 = 1.

Next, we use multivariate linear equation to recover
the original values. Taking p1 as an example, f1(x1,1)
and f1(x1,4) are modified during data embedding since
A

(1)
1,1 = 1 and A

(1)
1,2 = 1 and these two values are regarded

as two unknowns y1,1 and y1,4. The share f1(x1,2) = 214 is
not modified since A

(1)
1,2 = 0. Thus, the 2-degree polynomial

f1 using the Lagrange interpolation can be reconstructed as

f1(x) =(
y1,1

(x− 111)(x− 116)

(111− 252)(116− 252)
+ 214

(x− 252)(x− 116)

(252− 111)(116− 111)

+y1,4
(x− 252)(x− 111)

(252− 116)(111− 116)

)
mod g(x)

=
(
(39y1,1 + 115y1,4 + 61)︸ ︷︷ ︸

117

x2 + (6y1,1 + 201y1,4 + 30)︸ ︷︷ ︸
47

x+

13y1,1 + 109y1,4 + 170︸ ︷︷ ︸
p1

)
mod g(x).

(16)
Clearly, 39y1,1+115y1,4+61 and 6y1,1+201y1,4+30 are

two polynomial coefficients of f1(x), respectively. 13y1,1 +
109y1,4+170 is the constant term of f1(x) as well as original
pixel pi. It can be seen that y1,1 and y1,4 must be calculated
before recovering pi.

Then, y1,1 and y1,4 can be solved by mapping the poly-
nomial coefficients between f1(x) in Eq.(12) and f1(x) in
Eq.(16) and we can construct a multivariate linear equation
as {

39y1,1 + 115y1,4 + 61 = 117

6y1,1 + 201y1,4 + 30 = 47.
(17)
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It can be obtained that

{
y1,1 = 99

y1,4 = 136
by directly solving

Eq.(17). The original value p1 can be obtained by substitut-
ing y1,1 and y4,1 into the following equation.

p1 = 13y1,1 + 109y1,4 + 170 = 172. (18)

Similarly, the remaining pixels can be recovered as p2 =
37, p3 = 168, p4 = 106.

Note A(1) is essential for the recovery of the original
pixels.

4.3 Recovery without reference matrix

In this section, we illustrate pixel recovery without ref-
erence matrix. First, the reference matrix is generated as

A(2) =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

, where each column or each row

has ⌈k/2⌉ − 1 = 1 “1”. The same as the previous scheme,
data embedding and extraction are conducted according to
A(2) as Fig.3.

Next, we also chose the 1st, 2nd and 4th shares

[f
′

1(x1,1), f
′

2(x2,1), f
′

3(x3,1), f
′

4(x4,1)]

= [99, 88, 17, 149]
[f

′

1(x1,2), f
′

2(x2,2), f
′

3(x3,2), f
′

4(x4,2)]

= [214, 26, 233, 115]
[f

′

1(x1,4), f
′

2(x2,4), f
′

3(x3,4), f
′

4(x4,4)]

= [88, 345, 152, 100]

to recover the

original pixels without A(2). We take the recovery of p1 as an
example. For simplicity, the 1st, 2nd and 4th shares of p1 are
denoted as y1,1, y1,2, y1,4. It is evident that the number of the
unmodified shares is greater than that of the marked shares.
But, it cannot identify which one is unmodified. Then, we
assume one of y1,1, y1,2, y1,4 is unmodified in turn and the
remaining ones are the marked shares.

First, assume that y1,1 is unmodified and we have y1,1 =
99. The two shares y1,2 and y1,4 are the unknowns. The
2-degree polynomial f (1)

1 using the Lagrange interpolation
can be reconstructed as

f
(1)
1 (x) =(
99

(x− 111)(x− 116)

(111− 252)(116− 252)
+ y1,2

(x− 252)(x− 116)

(252− 111)(116− 111)

+y1,4
(x− 252)(x− 111)

(252− 116)(111− 116)

)
mod g(x)

=
(
(84y1,2 + 115y1,4 + 200)︸ ︷︷ ︸

117

x2 + (207y1,2 + 201y1,4 + 87)︸ ︷︷ ︸
47

x

+ 97y1,2 + 109y1,4 + 205︸ ︷︷ ︸
p
(1)
1

)
mod g(x).

(19)
Then, it can be derived that{

84y1,2 + 115y1,4 + 200 = 117

207y1,2 + 201y1,4 + 84 = 47
(20)

By solving the above linear equation, we have{
y1,2 = 214

y1,4 = 136
. Under the assumption of y1,1 = 99,

p1 is recovered as

p
(1)
1 = 97y1,2 + 109y1,4 + 205 = 172. (21)

Similarly, under the assumptions of unmodified shares
y1,2 = 214 and y1,4 = 88, we can construct f (2)

1 and f
(3)
1 to

derive p
(2)
1 = 172 and p

(3)
1 = 124 for y1,2 = 214 and y1,4 =

88, respectively. Among these three results, two values are
the same, namely, p(1)1 = p

(2)
1 = 172. Then, we can recover

p1 = 172 without A(2). By the same way, the remaining
pixels can be recovered.

5 EXPERIMENTAL RESULTS

In this section, we conduct some experiments using
the proposed method with the matrix A(1) and compare
it with some existing state-of-the-art methods, where A(1)

can contribute to higher embedding capacity. Six classical
images and two image datasets BOSSBase[53], BOWS2[54]
are used to perform experiments. Six images consists of
Lena, Jetplane, Peppers, Boat, Goldhill and Baboon. BOSS-
base and BOWS2 both contain 10000 images, respectively,
which provide the diverse content and the experiments
conducted on these datasets are persuasive. All test images
have 512× 512 sizes.

5.1 Simulation results

In this part, some simulation experiments are conducted
on Baboon image based on (4, 3)-threshold SS. The experi-
mental results are shown in Fig. 4. Fig. 4(a) is the original
image and its four shares are generated by the proposed
method, which are shown in Figs. 4(b-e) respectively. One
can see that its shares are all noise-like. Then, 4 bpp of
secret data is embedded into each share to generate four
marked shares as shown in Figs. 4(f-i), respectively. Finally,
a recovered image can be obtained with any three of four
marked shares according to MLQ. Figs. 4(j-m) are the four
images recovered by three different marked shares. Com-
pared with the original image, the PSNRs of the recovered
images are all toward positive infinity, which demonstrates
the original image can be recovered losslessly and verifies
that our method is reversible.

5.2 Security analysis

Since the secret data and original image can both be
encrypted by any secure encryption, they can be protected
well and our method can provide higher security than most
existing RDHEI methods by exploiting image redundancy.
Next, we evaluate the security of the shared images from
aspects of information entropy and correlation analysis.

Information entropy is a metric to evaluate encryption
schemes. The ideal information entropy value is 8 for an 8-
bit gray image I. Clearly, the encryption scheme is more
secure when the information entropy is closer to 8. The
following formula illustrates the calculation of information
entropy.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Fig. 4. Simulation experiments with (4,3)-threshold. (a) Original image; (b-e) four shares; (f-i) four marked shares with 4 bpp; (j) Recovered image
(PSNR → +∞) from (f),(g) and (h); (k) Recovered image (PSNR → +∞) from (g),(h) and (i) ; (l) Recovered image (PSNR → +∞) from (f),(g)

and (h) ; (m) Recovered image (PSNR → +∞) from (f),(g) and (i);

H(I) =
1

N

N∑
i=1

p(mi)log
1

p(mi)
(22)

where p(mi) denotes the probability of the gray level mi and
N is the number of gray levels. Tab. 4 shows the information
entropy comparison among different SS based methods for
(4, 3) threshold. In Tab. 4, the second column illustrates the
entropies of original images and the last four columns are
the average entropies of 4 shares generated by the methods
[43, 48] and proposed method, respectively. One can see
that our method achieves the largest entropies, which are
closest to 8. Thus, our method has higher security regarding
information entropy.

TABLE 4
Entropy comparison among different SS based methods for (4,3)

threshold

Image Original entropy Average entropy
Qin et al. [43] Hua et al. [48] Proposed

Lena 7.4474 7.9707 7.9978 7.9994
Baboon 7.1391 7.9708 7.9966 7.9993

Boat 7.1238 7.9709 7.9965 7.9993
Peppers 7.5715 7.9707 7.9981 7.9994

Correlation between any two adjacent pixels is one of
the most important characteristics of image encryption. In
general, adjacent pixels in horizontal (H), vertical (V) and
diagonal (D) direction always have high correlations. To
reduce the risk of image leakage, the correlation between
adjacent original pixels must be disrupted by encryption
and the correlation of an encrypted one should be highly

close to zero. The correlation coefficient of a group of
adjacent pixels can be derived by

R(X,Y ) =
cov(X,Y )

δ(X)δ(Y )
(23)

where X denotes a series of pixels, Y denote a series
of adjacent pixels of X in specific direction, δ(.) is the
standard deviation function, and cov(.) is the covariance
function. 10000 pairs of adjacent pixels in three directions
are randomly selected for the test. Tab. 5 lists the correlation
coefficients of four shares generated by different methods
in three directions. The methods [43] and [48] are both
designed under block correlation preservation, where the
block sizes are set to 2× 2 and 4× 4 in [43] and [48], respec-
tively. Thus, the blocks in each share have high correlations
in [43] and [48]. Compared with these two methods, the
correlation coefficients of our method are smaller in three
directions and close to 0.

In addition, the image is often contaminated by in-
terchannel noise or is lost during image acquisition and
transmission. Since the conventional RDHEI methods are
vulnerable to attacks, the receiver cannot perfectly recover
the original image once the marked image is corrupted.
The proposed method uses the SS technique to generate
n encrypted shares. Image recovery can be performed if
at least k encrypted or marked shares are uncorrupted.
Thus, the proposed method can improve the ability to resist
attacks. The original image cannot be cracked even if the
cracker collects k − 1 shares.
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Fig. 5. ER comparison with different (n, k)-thresholds

TABLE 5
Correlation coefficient comparison among different SS based methods

for (4,3) threshold

Shares Directions Qin et al. [43] Hua et al. [48] Proposed

1st share
V 0.5032 0.7470 −0.0111
H 0.4922 0.7315 −0.0086
D 0.2482 0.5486 0.00590

2nd share
V 0.4871 0.7512 −0.0036
H 0.4782 0.7331 −0.0027
D 0.2258 0.5556 −0.0070

3rd share
V 0.4965 0.7365 −0.0088
H 0.4916 0.7347 −0.0048
D 0.2370 0.5490 0.00930

4th share
V 0.4824 0.7370 −0.0032
H 0.4833 0.7335 −0.0101
D 0.2523 0.5405 −0.0065

5.3 Embedding capacity comparison

To demonstrate the superiority of the proposed method
in terms of embedding performance, the proposed method
is compared with seven state-of-the-art SS based methods
including Qin et al. [43], Chen et al. [44] , Ke et al. [45], Hua
et al. [46] , Hua et al. [48] and Xiong et al. [49]. As for the
methods [43, 49], each of them contains two schemes. For
fair comparison, the scheme with the larger ER is selected
as the competing one in [43, 49]. For example, the Modified
RDHSI in [49] is selected for comparison and its ER can
reach 3 bpp for each share. In [44], the ER is decided by

two parameters,namely, l and n, where l is the number of
replaced bit-planes in each group with n pixels. Thus, each
share can accommodate the maximum secret data with 7

n
bpp when l = 7. If n > 7, the method [44] does not work. In
method [45], the ER is determined by the fidelity parameter
hfid and hfid is set to 64. In [46], the ER is determined
by an optimal level l for l-MSB prediction and different
images have different optimal l values. For example, the
maximal ER of image Lena can reach 2.91 bpp when l = 5.
In [48], the block size is set as 8. The methods [46, 49]
require an amount of preprocessing operations and may
have application limitations.

Fig. 5 shows ERs of different SS based methods under
different thresholds (n, k) on different images and two
datasets, where the measured ER is the average ER of n
shares and (n, k) is set to (3, 3), (4, 3), (5, 3), (4, 4), (5, 4),
(6, 4), (5, 5), (6, 5) or (6, 6). One can see that the proposed
method has better embedding performance than all com-
pared methods under these designated (n, k) thresholds
and our ER can reach 6 bpp or 6.4 bpp when (n = 4,
k = 4) or (n = 5, k = 5). In Hua et al.’ method [46] ,
the redundancy is vacated from the original image before
SS so that each share can accommodate secret data. Qin
et al.’s method [43] and Hua et al.’s method [48] both
designed the specific SS schemes so that each share inherits
the redundancy of the original image. Then, the redundancy
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of each share can be obtained by encoding techniques. In
[43, 46, 48], the ER is related to the content of the original
image and decided by encoding efficiency. Thus, different
images have different ERs for these methods. For these
methods, the image Baboon has the lowest embedding rate
since Baboon has the small redundancy, which demonstrates
these methods cannot perform well on the complex texture
images. While, our method has the stable embedding rates
for different images. As for the method [44], the ER is related
to n and independent of the image content. The ER of each
share is 7

n bpp in [44]. For example, ER=1.75 bpp when
n = 4. The method [45] uses Chinese Remainder Theorem
(CRT) to share the original image and secret data. Due to
the additive homomorphism of CRT, data embedding on
each share can be performed by DE. Thus, the ER of this
method is close to 0.5 bpp. In Modified RDHSI of [49],
the ER is fixed to 3 bpp. However, secret data cannot be
directly extracted from the marked shares in [49]. Compared
with these SS based methods, the proposed method has
outstanding performance in terms of embedding capacity.

6 CONCLUSION

In this paper, we have proposed a novel universal RD-
HEI with secret sharing. Unlike the existing methods, the
proposed method can perform data hiding on the diverse
images, which are more suitable for cloud applications. We
have designed two kinds of matrices. During data embed-
ding, the shares of each pixel can be modified for data
embedding according to the matrix. The marked shares are
regarded as the unknowns. The multivariate linear equation
can be constructed by mapping the coefficients between
the original polynomial and reconstructed polynomial. The
original shares can be recovered by solving multivariate lin-
ear equation. With the recovered shares, the original image
can be recovered losslessly. Experiment results demonstrate
that the proposed method outperforms most state-of-the-art
secret sharing based methods in security and payload.
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