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Abstract—Multilayered continuous-flow microfluidic biochips
are rapidly advancing platforms for delicate bio-applications. The
high complexity of biochip structures and application protocols
drives the growing demand for design automation solutions.
Current research enables the automatic synthesis of the physical
layout and the scheduling and binding protocols of biochips,
showcasing the significant potential of microfluidic design au-
tomation for improved resource utilization and reduced bioassay
completion time. However, state-of-the-art synthesis methods
primarily focus on device and operation levels, assuming flow
paths are always available and neglecting interactions of flow
and control channels. This creates a critical gap in the synthesis
process, causing performance degradation, resource redundancy,
or even infeasible designs. This work bridges this gap with a
two-stage approach. Firstly, we perform a mathematical model
to synthesize a high-level protocol that specifies the paths and
execution orders of fluid transportation operations. Specifically,
we construct flow paths based on the fluidic architecture of a
given biochip design and optimize scheduling schemes to mini-
mize the completion time of a given bioassay. Next, we perform
a simulation-based synthesis of control channel pressurization
sequences to realize the high-level protocol. Experimental results
confirm that the proposed approach efficiently validates flow
paths for feasible designs, identifies conflicting design features in
infeasible designs, and improves the design efficiency and quality:
compared to the original designs, it reduces the average number
of control channels by 49%, and compared to the preliminary
work, it reduces the average fluid transportation time by 19%
and the average program run time by 38%.

Index Terms—Multilayered Continuous-Flow Microfluidic
Biochip, Integer Linear Programming, Validation, Scheduling,
Control Sequence Synthesis.

I. INTRODUCTION

Multilayered continuous-flow microfluidic biochips [1]
(mCFMB) are a promising lab-on-a-chip platform for high-
throughput biological applications. On these microscale plat-
forms, complex bioassays such as DNA purification [2],
COVID-19 serology testing [3], adipose tissue-on-chip analy-
sis [4], and highly parallelized cell culture [5] can be executed
automatically.
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Fig. 1. Illustration of the structure of a push-up valve.

The typical configuration of mCFMBs features a flow layer
and a control layer. Soft lithography technique is applied to
bond these patterned elastomer layers, each with dedicated
channels that allow gas or fluids to pass through. This multi-
layered structure enables the construction of valves, which are
composite functional units formed by channel segments from
different layers with a flexible membrane at the layer interface.
Fig. 1 shows a two-layer polydimethylsiloxane (PDMS) push-
up valve [6] with a flow layer above a control layer. When
gas or oil from the pressure source infuses the bottom control
channel, the control channel becomes pressurized, pushing the
membrane upwards. Since the flow channel segment of the
valve has a rounded profile that perfectly fits the expanded
membrane, the channel will be sealed, and the fluid movement
will be blocked [7].

The integration of channels and valves allows bioengineers
to create delicate microfluidic systems on coin-sized chips.
However, as application protocols become more complex and
the integration scale of mCFMBs grows, manual chip design
becomes increasingly time-consuming and error-prone, which
results in a strong demand for automated synthesis tools.
Microfluidic design automation research works on analyzing
and addressing this challenge. The ultimate goal is to develop
a fully automated synthesis flow, which can transform a high-
level abstraction of a given application into a feasible and
optimized chip design with an explicit protocol for executing
the application.

Over the past decade, researchers have achieved significant
progress in high-level synthesis and physical design. Li et al.
[8]-[10] proposed high-level modeling methods to optimize
resource utilization according to specified application proto-
cols. Tseng et al. [11]-[13] proposed place-and-route tools
capable of generating manufacturing-ready physical designs
that support applications of varying scales. Minhass et al. [14],
[15] proposed scheduling and fluid routing approaches that
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map operations to given physical topologies. There have also
been works that focus on specific optimization criteria, such
as reliability [16]-[18], fluid storage [19]-[21], control pin
reduction [22]-[25], channel intersection minimization [26],
[27], and testing [28]-[30].

Despite these advances, gaps remain between existing meth-
ods and a fully automated synthesis flow that seamlessly
connects chip designs with application protocols.

Firstly, state-of-the-art high-level synthesis methods primar-
ily focus on operation and device levels, assuming flow paths
are always available and neglecting the interaction between the
control and flow channels. Although existing approaches can
synthesize the device-level scheduling and binding protocols,
they fail to generate channel-level protocols that specify how
to pressurize the control channels to construct the required
flow path for each fluid transportation operation. The lack of
a channel-level protocol not only makes it difficult to operate
the chip but may also result in redundant or even incorrect
physical design that fails to support the target application.

Secondly, state-of-the-art high-level synthesis methods often
fail to correctly identify and optimally schedule fluid trans-
portation operations that can be executed in parallel. It is
typical, e.g., as outlined in [14], to consider different fluid
transportation operations as “suffering cross-contamination
when being executed in parallel” if their fluids pass through
the same on-chip components and as “safe to be executed
in parallel” otherwise. However, shared components do not
necessarily cause cross-contamination, nor does their absence
always guarantee safe parallel execution.

This work bridges the gap between high-level and physical
synthesis methods with an approach named ParaVOM, which
operates in two stages: In the first stage, ParaVOM adopts
an integer linear programming (ILP) model to synthesize the
high-level protocol, which specifies a conflict-free execution
sequence and flow paths of fluid transportation operations,
such that the bioassay completion time is minimized. In the
second stage, ParaVOM adopts a simulation-based approach
to synthesize the corresponding channel-level protocol under
adjustable optimization criteria. The key contributions of Par-
aVOM are summarized as follows:

o It mathematically models the construction of flow paths
for reaction products and unintended residues of reac-
tants, as well as the identification of parallel-executable
fluid transportation operations.

o It proposes an execution model that minimizes bioassay
completion time by grouping parallel-executable opera-
tions into the same batch for parallel execution.

o It proposes an event-driven mechanism to automatically
update the protocols to support parallel-executed fluid
transportation operations that asynchronously reach their
destinations.

The rest of this paper is organized as follows: Section II
details the limitations of the state-of-the-art approaches and
the motivation of this work. Section III presents an overview
of ParaVOM. Sections IV and V describe the two stages
of ParaVOM. Experimental results are shown in Section VI,
followed by our conclusion in Section VII.
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Fig. 2. (a) A manually derived valve actuation protocol from [22] to realize
a flow path from inlet 1 along valve v; to valve va. (b) An mCFMB from
[12], where valves A and B share a pressure source.

II. BACKGROUND

A. Flow Path Validation

The construction of flow paths in mCFMBs is a dynamic
process that requires more than just static physical connections
of flow channels: as pointed out in [15], a valid flow path for
transporting fluids from location a to location b must contain
an upstream sub-path from inlets to a, a midstream sub-path
from a to b, and a downstream sub-path from b to outlets. As
mentioned in Section I, existing approaches omit flow path
validation, which is an essential step for two key reasons:

o Current high-level protocols of mCFMBs focus on the
midstream sub-path but usually neglect the up- and down-
stream sub-paths, which results in incorrect prediction
of the pressure states of valves that may hinder the
feasibility of the flow paths. An example from [22] is
shown in Fig. 2(a), which intends to transport fluids from
an inlet 1 to the bottom half-ring between valves v; and
vy but mistakenly sets valves right to the dash-line to
“do not care” status. However, if valves v3 and v, are
pressurized, no downstream sub-path remains from vs to
an outlet. Due to the initial presence of air in the channel,
forming the intended flow path is nearly impossible!.

o Current physical designs of mCFMBs usually allow mul-
tiple valves to be connected by the same control channel
to the same pressure source, referred to as “pressure-
sharing valves”, to reduce the chip-to-world interface. In
this context, pressurizing one control channel will pres-
surize all valves along it, potentially causing unexpected
blockages in the flow paths. For example, Fig. 2(b) shows
a chip design [12] with two ring-shaped mixers and two
reaction chambers. The blue line represents a flow path
from an inlet to the upper mixer. To prevent contam-
inating the bottom mixer during fluid transportation, it
is intuitive to pressurize (close) valve A. However, since
valves A and B are pressure-sharing valves connected by
the same control channel, pressurizing the control channel
will close both valves A and B, blocking the downstream
sub-path from the target ring to an outlet.

'PDMS is gas-permeable [31], so applying sufficient pressure from inlet 1
may gradually expel the air, but this significantly prolongs transportation time
and risks fluid mixing with air bubbles.
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Fig. 3. A partial mCFMB synthesized by Columba S [13] using the netlist
description for a ChIP 4-IP application [32]. The design supports fluid-
multiplexing from dj to d2, d3, d4, and ds. Upon completing transportation
to the nearest mixer dg, the protocol dynamically adjusts to block flow in
d3 while continuing transport to the remaining mixers. The illustration also
showcases control redundancy: the valve (red) at the channel branch overlaps
in functionality with the right separation valve (brown).

B. Channel-Level Protocol Update

When parallel-executed fluid transportation operations reach
their destinations asynchronously, the completion of one oper-
ation may alter the (sub-) flow paths of others, requiring corre-
sponding updates to the channel-level protocols. For example,
Fig. 3 shows a partial design of an mCFMB synthesized by a
state-of-the-art physical design tool [13] containing five ring-
shaped mixers supporting fluid-multiplexing from d; to ds,
ds, dy, and ds. When the transportation from d; to its nearest
mixer, ds, is completed, the transportation to other mixers is
still in progress. Therefore, the control channel pressurization
sequence must be updated to block fluid movement in d3
without disrupting ongoing flows in other sub-paths. Another
example is to consider that f; and f5 in Fig. 4 are executed
in parallel. After the completion of fi, i.e., sufficient fluid
is collected at outlet 4, the control channel pressurization
protocol must be updated to block the path between branch
s1 and outlet 4 such that f; can be ensured, i.e., enough fluid
can be collected at outlet 3.

C. Design Redundancy

The lack of channel-level protocols results in inaccurate
estimation of control resource usage and, consequently, design
redundancies. For example, in the partial mCFMB shown in
Fig. 3, a valve is placed at every branch of flow channels to
control fluid direction. However, the valve (red) at the channel
branch overlaps in functionality with the right separation valve
(brown) of mixer d; and can be removed without affecting chip
performance. Removing redundant control components, in-
cluding valves, channels, and pins, results in a cleaner control-
layer structure, reduced chip size, and improved robustness, as
control channels are much thinner than flow channels [33] and
more prone to damage [34].

D. Identification of Parallel-Executable Operations

Fluid transportation operations are often considered to suffer
cross-contamination and thus not parallel-executable if their
midstream sub-paths share components and are considered

upstream
= midstream

branch

Fig. 4. Three fluid transportation operations f1, f2, and f3 on an mCFMB
design synthesized by Columba 2.0 [12]. f; and fo are operations to collect
the reaction products in device d; at two different outlets: 3 and 4. f3 is
an operation to collect the reaction products in device da at outlet 2. The
upstream sub-paths of all three operations start at inlet 1.

parallel-executable otherwise. However, neither criterion al-
ways holds. We illustrate this with an example in Fig. 4,
which shows three flow paths: f1, fo, and fs5. Although the
midstream sub-paths of f; and fo share the same on-chip
components, including device d; and branches s, there is no
risk of cross-contamination as they carry the same fluid. Thus,
f1 and fo can be grouped into the same batch, where we refer
to a batch as a set of operations that can be safely executed
in parallel. On the other hand, fluids within f; and f3 are
transported along distinct midstream sub-paths: dy — s7 — 4
and do — 2, respectively. Executing f1 requires blocking the
channel between sy and ds to prevent the fluid in f; from
mistakenly flowing to ds to mix with the fluid in f35. This
manipulation, however, would disconnect the upstream sub-
path of f3 from the inlet. Thus, f; and f35 must be assigned
to different batches for separate execution.

III. OVERVIEW OF PARAVOM

We illustrate the overall flow of ParaVOM in Fig. 5.
Input. ParaVOM requires the following inputs: a chip
design and a bioassay with a device-level binding function.

o The chip design specifies the physical features of a given
mCFMB. The flow-layer structure is interpreted as a
weighted undirected graph G(V, E). Here, the vertex set
V includes a set P of flow ports, a set .S of flow channel
branches, and a set IV of valves. The edge set E consists
of flow channel segments between vertices in V, with
weight coefficients describing channel dimensions. We
further introduce a set D of devices, where a ring-shaped
mixer is defined by the pair of branch vertices at its
both ends, and a chamber is defined by the pair of valve
vertices at its both ends. The control-layer structure is
interpreted as a set C' of control channels, each consisting
of a set of valves addressed by the control channel.

o The bioassay is modeled using a sequencing graph [35]
A(X, F) and a device-level binding function b : X — V.
Here, the vertex set X includes a set P, of inlets
for importing reaction products, a set P, of outlets
for exporting reaction products and waste, and a set O
of bio-operations. The edge set F' is the set of fluid
transportation operations, where each f; in F' starts from
a source vertex x; to a destination vertex z;. The binding
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Fig. 5. The overall flow of ParaVOM.

function b maps operations in O to devices in D, and
inlets/outlets in P;,/FPy,y to flow ports in P.

High-Level Synthesis. Using the flow-layer structure, we
mathematically model the flow path construction and the
identification of parallel-executable operations. ParaVOM as-
signs conflicting fluid transportation operations to different
batches for separate execution and minimizes the bioassay
completion time by minimizing the number of batches required
for conflict-free execution. The output is a high-level protocol
specifying a sequence of execution batches and the target flow
paths for fluid transportation operations.

Channel-Level Synthesis. After high-level synthesis, Para-
VOM first performs a flow-layer compatibility check to verify
whether the physical connection of flow channels supports
the target flow paths with a flow path validation method,
which identifies available flow channel segments based on
the flow-layer structure and the execution restrictions of a
fluid transportation operation. If the check fails, a warning
indicates an incompatibility between the flow-layer structure
and the high-level protocol; otherwise, ParaVOM proceeds
to control-layer compatibility check, which models channel-
level protocols as execution restrictions and employs the flow
path validation method to collect all channel-level protocols
capable of constructing the target flow paths. If the construc-
tion fails, ParaVOM warns that the control-layer structure
is incompatible with the high-level protocol. Otherwise, Par-
aVOM finalizes a channel-level protocol based on user-defined
optimization criteria. Finally, ParaVOM conducts an event-
driven simulation to predict the demand for protocol updates
triggered by asynchronous completion of parallel-executed
fluid transportation operations. If such demand is detected,

ParaVOM updates the high-level protocol and synthesizes a
new channel-level protocol.

Output. If the chip design is compatible with the de-
sired bioassay execution, ParaVOM produces three outputs:
a channel-level protocol, a fluid transportation schedule, and
a report detailing the resource usage, including an analysis of
design redundancy.

IV. HIGH-LEVEL SYNTHESIS: EXECUTION MODEL

Given a flow-layer structure and a sequencing graph with
a binding function, we avoid conflicts and minimize bioassay
completion time by optimally assigning fluid transportation
operations to different execution batches.

A. Flow Direction Determination

Given a flow-layer structure G(V, E), we omit valves and
represent each device as a single vertex, resulting in a simpli-
fied undirected graph with edges adjusted accordingly. We then
transform the simplified graph into a mixed graph G(Vg, Eq),
where Fg = E, U E4, with E,, and E; denoting the sets of
undirected and directed edges, respectively. In particular, the
directions of edges represent the directions of flow paths and
are determined as follows:

1) If an undirected edge e is incident to an inlet v;, or an
outlet vy, we transform e into a directed edge eq € Ey
that starts from vy, i.e., e = (Vin, -) Or ends at voy, i.e.,
ed = (, Uou), respectively.

2) If a vertex v is incident to exactly two undirected edges
ey and ey, we consider two direction assumptions: 1) e
is an incoming edge of v and ey is an outgoing edge of
v; 2) e; is an outgoing edge of v and ey is an incoming
edge of v. We then calculate the shortest path lengths
from every inlet to v and from v to every outlet under
these assumptions. If one assumption consistently results
in shorter paths than the other for either all inlets or
all outlets, we take that assumption to determine the
directions of e; and es. If neither assumption meets this
condition, e; and ey remain undirected.

3) If only one incident edge of a vertex v is undirected,
and the other incident edges of v are all incoming (or
outgoing) edges of v, then we transform the undirected
edge to an outgoing (or incoming) edge of v.

Example. Fig. 6 illustrates how the fluid directions are deter-
mined for the flow-layer structure in Fig. 6(a), where vertices
1 and 4 are inlets, and vertices 2 and 3 are outlets. The
flow-layer structure is initially represented as an undirected
weighted graph in Fig. 6(b), with edge weights in parentheses
indicating flow channel lengths.

The first criterion states that fluid always flows out of inlets
and into outlets, which can be used to determine the directions
of edges (1,5), (6,2), (7,3), and (4, 8), as shown in Fig. 6(c).

The second criterion is based on the principle that fluid
naturally follows paths of lower hydraulic resistance?, often
corresponding to shorter channel lengths. For example, under
the assumption that the edge between vertices 5 and d; is an
incoming edge of dj, the length of the shortest path from inlet
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Fig. 6. TIllustration of the graph transformation. (a) An exemplary flow-layer
structure with (b) its representation as an undirected graph. (c¢)—(f) Criteria for
determining edge directions. (g) The transformation from the mixed graph into
two fully directed graphs using 71 and 72.

1 to d; is 38; and under the assumption that the edge between
vertices 6 and d; is an incoming edge of d;, the length of
the shortest path from inlet 1 to d; is 86, as shown in Fig.
6(d). Similarly, we calculate the shortest paths for other inlets
and outlets under both assumptions. With (5,d;)/(6,d;) as
the incoming edge of d;, the shortest path lengths from inlet
4 to dy, dy to outlet 2, and d; to outlet 3 is 83/55, 28/96,
and 42/82, respectively. Since the paths from d; to outlet 2
(28 vs. 96) and to outlet 3 (42 vs. 82) are shorter under the
first assumption, we set (5,d;) as an incoming edge of d.
Following the same procedure, we determine the directions of
edges (dy,6), (5,dz), and (dz,8), as shown in Fig. 6(e).

The third criterion ensures that each vertex has at least one
incoming flow and one outgoing flow. Since edges (d2, 8) and
(4,8) flow into vertex 8, the remaining incident edge (8,7)
must flow outward, as shown in Fig. 6(f).

After applying the three criteria, the only undirected edge
is between vertices 6 and 7, i.e., E, = {(6,7)}.

Further, to represent the possible directions of edges in
E,, we assign each edge a boolean value using a function
7 : E, — {0,1}. Without loss of generality, zero indicates
the direction from the endpoint with the smaller index to the
larger one and vice versa. For the undirected edge set £,
TE, = 7IPul(E,) represents a specific combination of boolean
values assigned to the edges in F,, where |E,| denotes the
cardinality of F,,. The set of all direction assignment functions

2The analogy between hydraulic and electric circuits underpins the use of
circuit methods in microfluidics. A more detailed discussion will be introduced
in Section V-D2

is denoted as T with |T'| = 2/¥«|. Given an arbitrary 7 € T,
the mixed graph can be transformed into a fully directed graph,
with each undirected edge e in F, assigned a direction based
on 7(e). For example, by assigning a direction to the edge
between vertices 6 and 7, the mixed graph in Fig. 6(f) can be
transformed into either of the directed graphs in Fig. 6(g).
We introduce the following notations to clarify the graph
components. We define E, as the set of incident edges of
a vertex v € V. Meanwhile, we define G as the directed
graph obtained by applying 7 to G. In this directed graph, we
define A7 and D] as the sets of ancestors and descendants
of v € V. Specifically, an ancestor of v is any vertex from
which fluid can flow to v, and a descendant of v is any vertex
to which fluid can flow from v. Further, we define I, and O]
as the sets of incoming and outgoing edges of v, respectively.
Based on the directions assigned by 7, the flow path
for a fluid transportation operation f;, denoted by p;, can
only include vertices and edges connected to its source or
destination vertices, either directly or via a directed path. We
introduce U], M/, and W as the sets of candidate vertices
that can form the upstream, midstream, and downstream
sub-paths of p; in G7, respectively, which are defined as:
U = Ab(g3 ) M) = Db(z OAb(I ) Wi =Dy b(3:)" Similarly,
we introduce U7, M T and W as the sets of candidate edges
corresponding to the upstream, midstream, and downstream
sub-paths of p; in G7, respectively, which are defined as:
Ul =Useag, I7. M] = (Uvepy, | OF) N (Uvesy,  I7),

_ DY b(@;)
and W] = Uyepr _ O7.

b(z;)

b(z;)

B. Flow Path Construction

For a given fluid transportation operation, the following
constraints must be satisfied to construct its flow path based
on the flow-layer structure.

Each flow path starts from inlets connected to an external
pressure source and ends with outlets that release air to create
the necessary pressure drop for fluid movement, which can be

formulated as:
) )

b—(v)EP, b=1(v)€Pou

g =1, g =1,

fieF (1)
where binary variable ¢ indicates whether vertex v € Vg is
part of p,. Meanwhile, the source and destination vertices of
fi must be included within p;, which can be formulated as:

q; 4 2

fieF ’

To identify whether an edge is part of p;, we introduce a

binary variable ¢; for each edge e € E¢. Then, the following

constraints ensure that e is part of p; if and only if both its
endpoints are part of p;.

Ve Ve

f’i\gF, e Dgf < g, 4 < g, @ > a0 gt -1 (3)

where v, and v, denote the endpoints of e, with v, having the

smaller index and v, the larger index. Further, if the direction

of e is undetermined, i.e., e € E,, we introduce two binary

variables q(ve’”e) and q(”e’ve) to represent the two possible
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directions of e. Then, the following constraints ensure that
every edge must have exactly one direction:

Voo s gt 4 e < q
fer cep, i T4 =< 4)

To determine which directed graph f; is constructed on, we
define a binary variable ¢ to indicate whether the undirected
edges in p; follow the directions assigned by a given 7 € T":

A S N E D DL RS
eckE,
where X7 (E,,) counts the number of undirected edges in F,
that follow 7 with

SH(E) = > (1=7(e) -al" ™ +7(e) - g (g
ecEy,

Specifically, if all undirected edges in F, that are part of
pi follow 7, ie., XT(Ey) = Y cp. ¢, (5) limits ¢f = 1.
Using the big M method [36], the flow continuity can then be
constrained as:
v Vv \4 v :
T€T, fi€F, vEDUS, b=1(v)€ Poy
dDa>1—-2-q —q) M,

ecly

(7a)
W v \4 .
TET, f;€F, vEDUS, b=1(v)€ Py,

g =1-2-q —q)M,
ecO7

(7b)

where M is an extremely large auxiliary constant. In other
words, (7) ensures that each vertex in the flow path must have
at least one incoming flow (except at inlets) and one outgoing
flow (except at outlets). Specifically, if v is part of p; in G7,
ie., g7 = qg; = 1, the right-hand sides of (7a) and (7b) become
1, ensuring the continuity of flow at v. Otherwise, the left-hand
sides remain unconstrained.

Moreover, for every fluid transportation operation f;, any
device d that can receive fluids from b(z;) but does not
have a directed path to b(Z;) must be excluded from p; to
prevent contamination. We define the set of such devices as
the exclusion set Z] = D N (DbT(Ii)\AZ(:fi)\{b(ji)}) and
introduce the following constraint to ensure the exclusion:

gl < (1—qgT)M.
TEVT, f’LZ/F, dEVZ[ & = (1 4 )M (8)

C. Residual Fluid Detection

Residual fluid refers to reaction products that inadvertently
enter flow channels outside the midstream sub-path during
a target operation, potentially contaminating subsequent op-
erations. As introduced in Section II, valves control fluid
movement by blocking flow along specific flow channels.
Howeyver, valve-free flow channels outside the midstream sub-
path are prone to residual fluid accumulation as they cannot
be blocked by closing valves to prevent the ingress of reaction
products. Consider the directed graph on the left in Fig. 6(g) as
an example. When transporting fluid from mixer d; to outlet
2, the fluid traverses vertex 6, which also branches to vertex
7. As a result, a portion of fluid may flow toward 7; however,

the unintended flow cannot be blocked by closing the valves.
To address this issue, we introduce the following constraints
to detect residual fluid and transport it to an outlet as waste.

In G7, an edge may retain residual fluid after f; if it
originates from a vertex capable of receiving reaction products
and is neither part of the midstream sub-path nor equipped
with a valve. Specifically, this occurs for valve-free edges
connecting a vertex in M to another vertex outside M. We
denote the set of such edges as R and introduce the following
constraint to formulate the residual fluid detection:

v V. V¥

: € > ¢ T_1
TET, fi€F, eER] T 24 T4 , )

where binary variable r{ indicates whether e contains residual
fluid after f;. For the operation mentioned above, M.* is
{d1,6,2}. Since edge (6,7) is not equipped with a valve and,
under 7, ie., ¢/' = 1, its source vertex 6 belongs to M,
while its endpoint 7 does not, we conclude that (6,7) € R".
As a result, if (6,7) is part of p;, i.e., qi(ﬁ’?) =1, (9) limits
r§6’7) to be 1, indicating the presence of residual fluid.

To export residual fluid, we construct flow path p;.y for
transporting the residual fluid accumulated in edge e after f;,
denoted as f,»<e>, using constraints (1) and (3)—(7). Since the
destination (an outlet) of f; ) is not specified in A, we define
a binary variable g;(.)|, for every outlet o to indicate whether
it is selected to export the residual fluid. Then, the following
constraint ensures that at least one outlet is selected:

>

b=1(0)€ Pou

v 4 v

e
: qi >y,
fi€F, e€RT, b=1(0)€Po Hello =T

(10)

Meanwhile, instead of applying (2), we introduce the following
constraint to ensure that e and the selected outlet o are in p;(c):
Gy =1, Gley = Qige)o- (11)

A Y v :
fi€F, €€RT, b=1(0)€ Py

Moreover, the exclusion set in (8) for preventing devices from
contamination is modified as ZZT<6>|O =DnN (D;(Ii)\Ag).

D. Contflict Identification

As introduced in Section II, parallel-executed fluid trans-
portation operations may suffer two types of conflicts: cross-
contamination and sub-path blockage. For any two operations
fi and f; that are independent in the sequencing graph A, we
define a binary variable c; ; to indicate whether f; conflicts
with f;. We then constrain the conditions under which c¢; ;
is set to 1, indicating the existence of cross-contamination or
sub-path blockage conflicts.

A cross-contamination conflict occurs when different fluids
unintentionally mix at common vertices. In G”, since the fluid
carried by each operation flows through its midstream sub-
path, for any two operations f; and f;, the set of vertices at
which their fluids may meet is M N M. Thus, the constraints
for identifying cross-contamination conflicts can be formulated
as:

teij 2 a4 a5 +aq; =3,
(12)

vV VY \
€T, fi€F, fj€FE, vEM]NM]
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where F is the set of operations that are independent from f;
according to A, excluding the cases that f; and f; transport
to-be-mixed fluids.

Besides, we introduce the following constraints to identify
cross-contamination conflicts between an operation f; € F
and a residual fluid transportation operation f;.y € Fy.

TE€T, fi i €F, e€RT, fie) €FF, b=H(0)€ Py vEMIOM ), (1)

Cijle) =4 T4 + ey + ey T Ligeyo — 4

It is noteworthy that for two operations both transporting
residual fluids, mixing their carried fluids does not lead to
cross-contamination.

A sub-path blockage conflict occurs when the execution of
one fluid transportation operation blocks the up- or down-
stream sub-paths of another operation, isolating it from the
inlets or outlets. Specifically, a sub-path blockage conflict
occurs when the flow paths of two parallel-executed operations
share at least one common vertex in one operation’s midstream
sub-path and the other operation’s up- or downstream sub-
paths. To identify whether the execution of an operation f;
blocks the up- or downstream sub-paths of another operation
fj» we modify (12) by changing the vertex set to:

{ve My Uyuw) | B n (MOT\WT) # 0}

Note that the midstream sub-path of a residual fluid trans-
portation operation f; ) terminates at an outlet, leaving f;.)
with no downstream sub-path. Thus, another fluid transporta-
tion operation can block only the upstream sub-path of f; ).
Thus, the disruption caused by executing f; € F to the
execution of fj<e>, or vice versa, can be characterized using
(13) with the vertex set adjusted to:

{ve (Mrnu,y,

) U (M ey, N (U7 UW])) |
Ey 0 (MU 10 U M 10y \UT\WT) # @}~

As previously mentioned, mixing residual fluids does not
result in cross-contamination. Thus, when the midstream sub-
path of one residual fluid transportation operation overlaps
with the upstream sub-path of another, blocking the latter to
prevent residual fluid from entering the other’s midstream sub-
path is unnecessary. Consequently, sub-path blockage conflicts
do not arise between operations transporting residual fluids.

E. Bioassay Completion Time Minimization

Our execution model minimizes the completion time of
a given bioassay by optimally assigning fluid transportation
operations into batches, enabling non-conflicting operations to
be executed in parallel.

To determine the batch indices of operations, we define
binary variables g; ; to indicate whether an operation f; is
assigned to the k™ batch. The following constraints guarantee
that every operation is executed exactly once:

ST oain=1 > Gigr=1%

1<k<ug 1<k<ug
(14)

v V. V

T€T, fi€F, e€R]

where u, denotes the upper bound of the batch indices with
ue = |F|+ 3 cr j,er |R]|- Then, we introduce an integer
variable /y, to represent the batch index of f; with:

Ef%: Z k'gi,k-

1<k<ug

15)

Without loss of generality, we let batches be executed in
ascending order of their indices. Then, to match the execution
order with the sequencing graph, we introduce the following
constraints to ensure that the batch index of f; must be smaller
than any of its successors in the sequencing graph:

: ) <
fQZF, vaFf by, +1 < ly, (16)

where F; is the set of successors of f;. Meanwhile, if an
edge e contains residual fluid after f;, i.e., rf =1, fie) will
be executed in the batch immediately following f;:
v V V by, </ 1+ (1 —=7r5)M,

TET, fiqu EERZ fz(e) —_ f1+ +( 7"1) (17)
gfi(e) > éfi +1- (1 _rie)M'
As discussed in Section I'V-D, conflicting operations must be
executed in different batches, the constraints for which can be
formulated as:

g <1 1—c¢ ;) M.
figf, fjevF;., 1§kv§ug Gik + i < 1+ (1= ciy) (18)

Finally, to minimize the completion time of a given bioas-
say, the objective function is set to minimize the total number
of batches. To this end, we introduce an integer variable ny
and the following constraints for all operations to ensure that
ny represents the largest batch index:

v V V¥

Uy < { < ]
TET, f;€F, e€R] fi SNy Lf ST (19)

Thus, the overall optimization problem is modeled as
Minimize
subject to  (1)-(19).

After optimization, ParaVOM outputs a high-level proto-
col specifying a sequence of execution batches, denoted by
(€n)1<n<n, With ng fixed to its minimum value. Each batch
consists of parallel-executable operations, with flow paths
specified. Within a batch ¢,,, the vertices in the midstream sub-
paths of the operations, as well as any valves on the edges in
these sub-paths, are added to a target set T,, C V. To prevent
contamination, we define an exclusion set

Zi, = |J 2/ uN",
fi€ln
where 7, is the direction assignment function governing the
operations in ¢,,. Here, NiT f» C N denotes the set of valves on
the edges incident to the vertices in the midstream sub-paths
of the operations in /,,.

Ty,

V. CHANNEL-LEVEL SYNTHESIS

Using the high-level protocol, ParaVOM synthesizes and
optimizes channel-level protocols to dynamically open and
close valves to execute the operations. To support parallel-
executed operations that asynchronously reach their desti-
nations, ParaVOM performs an event-driven simulation to
automatically update the high- and channel-level protocols.
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Fig. 7. Illustration of the recursive algorithm to modify the availability of
the vertices and edges.

A. Flow Path Validation

The following introduces our flow path validation method,
which is used for flow- and control-layer compatibility checks.
In general, given a flow-layer structure G(V, E'), we interpret
the execution restrictions® for each fluid transportation oper-
ation as a set of initially unavailable vertices U C V, which
are supposed to be blocked during the operation. We further
develop a recursive algorithm to model the consequences of
the blockage on the availability of other vertices and edges of
the graph, and check whether the edges along the flow path
required by the operation can be formed at the steady state.
Specifically, our algorithm modifies the availability based on
the following criteria:

1) An edge becomes unavailable if it contains an unavail-

able vertex.

2) A vertex becomes unavailable if it belongs to an un-

available edge and is not a flow channel branch.

3) A vertex becomes unavailable if it is connected to only

one available edge and is neither an inlet nor an outlet.

4) A vertex becomes unavailable if it cannot be reached

from any inlet or cannot reach any outlet.
Fig. 7 illustrates our algorithm using the flow-layer structure in
Fig. 6(a), where vertices 17 and 20 are initially unavailable, as
shown in Fig. 7(a). The first criterion states that a blocked flow
channel segment cannot initiate or receive fluid flow due to ei-
ther blocked endpoints or a valve closure. Consequently, edges
(12,17), (17,8), (20, 8), and (4, 20) are specified unavailable,
as shown in Fig. 7(b). The second criterion indicates that
any chip component lacking a valid flow channel connection
becomes unavailable. Thus, vertex 4, as an endpoint of the
unavailable edge (4, 20), is specified as unavailable, as shown
in Fig. 7(c). The third criterion requires chip components to be
connected to at least two available channels, except at inlets
and outlets. Since vertex 8 has only one available neighbor,

3The restrictions are derived from the input sequencing graph A and the
high-level protocol synthesized in the first stage, as detailed in Section V-B
and Section V-C.

neither an inlet nor an outlet, it is unavailable, as shown in
Fig. 7(d). The fourth criterion ensures that a valid flow path
includes at least one inlet and one outlet to maintain a proper
pressure difference. As a result, vertices 11, 12, 15, and 25-28
are unavailable, as shown in Fig. 7(e). By recursively applying
these criteria until no further vertices or edges can be specified
as unavailable, we find all vertices and edges available for
forming the required flow path in Fig. 7(f).

Complexity Analysis. The method initializes all vertices
and edges in O(|V|+ |E|) time. The first three criteria propa-
gate unavailability based on local connectivity, each requiring
at most O(|E|) per iteration. The fourth criterion conducts
two depth-first searches per available vertex to determine
reachability from inlets and to outlets, yielding a worst-case
cost of O(|[V|2 - (|[V| + |E|)) per iteration. As the process
may iterate up to O(|V|) times before convergence, the overall
worst-case time complexity is O(|[V > - (|V| + | E])).

B. Flow-Layer Compatibility Check

For each execution batch ¢,,, we first check whether the
flow-layer structure can support the target flow paths with the
flow path validation method introduced in Section V-A by set-
ting the initially unavaible vertices set Uy, = Z¢, UT}, . _,,
where Z, denotes the exclusion set as introduced in Section
IV-E and Tl<1 ‘‘‘‘‘ 1) denotes the set of destination vertices
of fluid transportation operations from previous batches if the
fluids in the associated devices are not transported during ¢,,.
Without loss of generality, when filling a mixer, the upper/left
half-ring is filled first, followed by the lower/right half-ring.
Consider the flow-layer structure in Fig. 7(a) as an example.
Suppose that in batch ¢,, we want to transport fluid from
inlet 1 to the lower half-ring of d; without contaminating
ds; besides, the upper half ring of d; has been filled in a
previous batch and the fluids in it will not be transported in this
batch, we have Z,, = {11,12,15} and T}, . _, = {22},
and thus U, = {11,12,15,22}. Using G(V, E) and Uy, ,
ParaVOM performs flow path validation to identify available
vertices and edges. If every vertex in 7y, remains available
after validation, the flow-layer structure is concluded to be
capable of supporting the target operations, and ParaVOM
proceeds. Otherwise, ParaVOM outputs a warning message.

Complexity Analysis. Since each check involves a single
invocation of the flow path validation method, its complexity
is equivalent to that of the validation method.

C. Control-Layer Compatibility Check

Upon passing the flow-layer compatibility check, ParaVOM
constructs a search tree to collect all channel-level protocols
supporting the target flow paths, inspired by the branch and
cut [37] approach commonly used in solving ILP problems.

Apart from a virtual root (level-0), each node in the search
tree represents a pressurization option, where a level-1 node
represents a single pressurized control channel, a level-2 node
represents a pair of pressurized control channels formed by
combining two level-1 nodes, and so forth. We then perform
a depth-first search [38] to traverse the tree. Each node ¢ C C
undergoes flow path validation, where the initially unavailable
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Fig. 8. Illustration of synthesizing valid channel-level protocols.

vertex set Uy, contains all valves actuated by the control
channels in c. Namely, all channels in ¢ are assumed to be
pressurized, and the corresponding valves are treated as closed.
Based on validation outcomes, nodes are classified into three
categories:
« If any vertex in the target set 7}  is unavailable, classify
the node as a failure.
o If all vertices in T}, are available and all vertices in Zy,
are unavailable, classify the node as a success.
o If all vertices in T, and at least one vertex in Z,, are
available, classify the node as a candidate.
After processing nodes at a given level, we prune the search
tree by removing descendants of nodes classified as failures or
successes. Specifically, a failure node indicates an unexpected
blockage, implying its descendants will also lead to the same
blockage and are thus eliminated. On the other hand, a success
node is sufficient to support the target flow paths, so additional
control channels are unnecessary, and its descendants are also
pruned. Once all nodes are traversed, the success nodes are
collected as potential channel-level protocols.

Example. Fig. 8 illustrates our synthesis method for a chip
design with four control channels. Firstly, a search tree is
constructed, followed by flow path validation for each level-1
node. Based on validation results, the set {c;} is classified
as a success and {co} as a failure. Thus, we eliminate all
descendants of {c; } and {c2} from the tree, leaving {cs3, c4} as
the only remaining level-2 node. After subsequent validation,
{cs3, ¢4} is also classified as a success. Finally, we collect {c¢; }
and {cs,c4} as potential channel-level protocols.

Complexity Analysis. Each node requires a flow path
validation, incurring a per-call cost of O(|[V'|?-(|[V|+|E])). To
explore all nodes up to level-d, the algorithm considers at most
O(|C|?) combinations of control channels, each corresponding
to a distinct validation call. Consequently, the worst-case time
complexity is O(|C|¢ - |[V]3- (V] + |E|)).

D. Channel-Level Optimization

ParaVOM provides two optimization criteria for selecting a
channel-level protocol. Users can choose one of these criteria
based on specific application demands.

1) Resource-Oriented Optimization: The first criterion aims
to minimize the number of pressurized control channels. Con-
trol channels never pressurized during execution are consid-
ered redundant. Eliminating a control channel also removes all
associated valves and the control pin, thus effectively reducing
redundancy in the control layer. The following describes our
ILP method to solve this optimization problem.

Considering a batch ¢,,, we define Cy, as the set of potential
channel-level protocols to execute operations within /,,. We

then introduce the following constraints to ensure that exactly
one option must be selected to execute £,,:

Z Qe =1,

ceCly,,

1<nn, (20)
where binary variable ¢, . indicates whether channel-level
protocol ¢ is selected to execute ¢,. Further, all control
channels within a selected channel-level protocol ¢ must be
pressurized.

v W v

ey, 2 41,
1<n<ng, c€Cy,,, cKEC k n,©?

2y

where binary variable ¢, indicates whether control channel
ci, 1s pressurized. Finally, to minimize the control-layer redun-
dancy, the objective function is set to minimize the number of
pressurized control channels.

Z qu

crelC
subject to  (20), (21).

2) Time-Oriented Optimization: The second criterion aims
to minimize the fluid transportation time. In micro- and
nano-scale environments, fluid flows are generally viscous,
incompressible, and laminar [39], allowing the fluid motion
to be predicted using straightforward calculations. Specifically,
the hydraulic behavior of pressure-driven flow follows Hagen-
Poiseuille’s law, analogous to Ohm’s law in electric circuits,
where pressure drop corresponds to voltage, volumetric flow
rate to current, and hydraulic resistance to electrical resistance
[40]. To minimize transportation time, the flow rate should
be maximized by minimizing hydraulic resistance under a
constant input pressure.

Given an input pressure Ap and the a fluid resistor with
hydraulic resistance r, the volumetric flow rate Q [m>s™!]
can be calculated as:

Ap

Q==L

r
In microfluidic networks, where most channels are rectangular,
the hydraulic resistance r can be approximated as:
12ul
s
where p is the viscosity of the fluid, and [, h, and w are the
length, height, and width of the channel. For fluidic resistors
connected in serial, the effective hydraulic resistance is the
sum of the resistance of each resistor. For fluidic resistors
connected in parallel, the effective hydraulic resistance equals
the reciprocal of the sum of the reciprocals of the resistance
of each resistor.

Further, a microfluidic network forms a bridge configuration
[41] when a cross-connection or “bridge” is placed between
resistors, as shown in Fig. 9(a). In such cases, YA and AY
conversions [42], which convert between Y and A configura-
tions, are used to calculate resistance.

Y A conversion: In Fig. 9(b), vertex 2 has neighbors 1, 3,
and 4. The YA conversion removes 2 and adds edges between
vertices 1, 3, and 4, forming a triangle, as shown in Fig. 9(c).
The resistances in the newly formed triangle are calculated as:

Tp T D T D

Ta=—5 Th= "5 Tc= )
T3 ™ T2

Minimize

(22)

(23)

(24)
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Fig. 9. (a) A microfluidic network connected in a bridge configuration. (b)(c)
Y A and AY conversions used for simplifying network analysis.

where 7, = ri7ro + 1173 + o138,

AY conversion: In Fig. 9(c), vertices 1, 3, and 4 form a
triangle A. The AY conversion removes the original edges
and adds a new vertex 2 connected to vertices 1, 3, and 4.
The resistances at vertex 2 are calculated as:

TaTec TaTh TpTe

= , T2 = , T3 = )
Ts Ts Ts

(25)

where s =1, +1p + 7.

Using YA and AY conversions, the microfluidic network
can be simplified to a structure involving only series and
parallel configurations, enabling easy resistance calculation.
Finally, the potential channel-level protocol with the lowest
hydraulic resistance is selected.

E. Simulation: Event-driven Protocol Update

ParaVOM simulates and updates the high-level and channel-
level protocols for parallel-executed transportation operations
that asynchronously reach their destinations.

As fluid velocity varies across different flow channels,
we determine the flow rate distribution to accurately predict
transportation delays. To this end, we build a hierarchical
model of the flow paths with the validated graph. For ex-
ample, Fig. 10 shows a flow path 1 — 6 consisting of
three sequentially connected sub-paths 1 — 2, 2 — 5, and
5 — 6, among which the sub-path 2 — 5 again consists
of two parallel sub-paths. Using Hagen-Poiseuille’s law, we
calculate the hydraulic resistance of the sub-paths based on
the resistance of the underlying edges and thus derive the flow
rate distribution among the sub-paths. Specifically, the upper
sub-path 2 —+ 3 — 4 — 5 has a lower resistance than the
bottom sub-path 2 — 5. As a result, the upper sub-path will
inherit 60% of the volumetric flow rate from its predecessor
path, while the bottom sub-path will only inherit 40%. And
since 2 — 3 — 4 — 5 contains a pair of parallel edges (3,4)
with balanced resistance, the volumetric flow rate is further
evenly divided. Thus, for an input flow rate of 100um?/s,
the volumetric flow rate at each parallel edges (3,4) will be
calculated as 100 um?®/s - 60% - 50% = 30 um? /s.

After computing the flow rate distribution, we perform a
modified list-scheduling algorithm [43] to simulate the fluid
status over time by processing edges sequentially, such that an
edge is processed only if at least one of its predecessor edges
is filled with fluids. After processing each edge, the simulation
pauses and generates an event signal indicating the vertex v,
that has just been reached by fluids. We then determine the
next steps based on three different scenarios:

1) If v, is not a destination, the simulation continues

without changing any configuration.

2) If v, is a destination and all destination vertices are

reached, the simulation stops.

10

50% 60 30pm? /s

60% (4 4 100 /S|, P | 100
1()1)4 }‘”‘ s 5 pm 6
—> 50% —> —> 30pm° /s —>

10pm®
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Fig. 10. An example of the flow rate distribution model.

3) If v, is a destination and at least one other destination
has not been reached by fluids, the simulation pauses
to update the high-level protocol for ¢,, by moving v,
from T}, to Uy, and removing the exclusion set of the
completed operation from Uy, . The updated protocol is
then fed into the channel-level synthesis.

The fluid status from the previous process is inherited when-
ever a new simulation starts, and the event-driven protocol
update mechanism is repeated.

Complexity Analysis. The simulation processes each edge
at most once, leading to a time complexity of O(|E|) per
simulation phase. As the number of destination vertices is
typically small, the number of event-driven protocol updates is
bounded by a constant in practice. Hence, the total complexity
is dominated by the control-layer compatibility check.

VI. EXPERIMENTAL RESULTS

We investigate the performance of ParaVOM using four
chip designs synthesized by a state-of-the-art physical design
tool Columba 2.0 [12]. The features of the test cases are
summarized in Table I.

Our work was implemented using C++, and optimizations
were performed on a computer with an Apple M1 8-core CPU.
The ILP model is solved with the Gurobi Optimizer [44]. In
our experimental setup, the input pressure Ap was set to 10 Pa,
the fluid viscosity 1 was 0.000 89 Pa - s, and the flow channel
dimensions were 50 um in height and 100 ym in width.

A. Test Cases

The first chip design is shown in Fig. 11(a). Two binding
functions were applied, denoted by cases 1¢ and 1°, resulting
in different numbers of undirected edges. This chip design
was tested using a sequencing graph involving five fluid
transportation operations, two of which can be combined as a
fluid-multiplexing operation.

TABLE I
TEST CASES USED IN THE EXPERIMENTS

PITIDITISTICT [ INT [ IE[ [ [EJ[ [ OQVE - (VI+IED) ]
g T .
M ERRRES v
2 5 [ 3 ]9[22 ]34[51] 0 ] 107 |
15 .
’_,7_H ‘ ‘ 13 45 38 ‘ 60 ‘ 1 ‘ 10 ‘
4 3] 21 [43]31 145222 0 ] 109 |

|P|: number of flow ports; |D|: number of devices; |S|: number of flow
channel branches; |C|: number of control channels; |/N|: number of valves;
|E|: number of edges; |Ey|: number of undirected edges; O(|V'|® - (|V| +
|E|)): worst-case time complexity of flow path validation; shown values are
estimated magnitudes.
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Fig. 11. Synthesis results using ParaVOM for cases (a) 1%, (b) 2, and (c)
4, where flow channels are shown in black, control channels in green, and
redundant control channels in red.

The second chip design is shown in Fig. 11(b). This chip
design was tested using a sequencing graph with nine fluid
transportation operations. In particular, six of these operations,
which involve fluid flows from two inlets to the half-ring-
shaped channels in the three mixers, can be combined as two
fluid-multiplexing operations.

The third chip design, case 3%, is shown in Fig. 2(b).
This application-specific design, proposed in [12], uses an
aggressive pressure-sharing strategy to minimize the number
of control pins, resulting in a relatively larger number of
sequentially connected valves. A modified version, case 3b,
was created by adding two additional control channels to
independently pressurize the conflicting valves identified using
the preliminary method VOM [45]. This design was tested
with two sequencing graphs: the first, denoted by cases 3¢
and 3%, contains four fluid transportation operations, none of
which can be combined, while the second, denoted by cases
3¢ and 35, contains eight operations, two of which can be
combined as a fluid-multiplexing operation.

The fourth chip design is shown in Fig. 11(c). This de-
sign was tested with a sequencing graph involving 42 fluid
transportation operations. In particular, 20 operations involving
fluid flows from the lower mixer and an inlet to the ten upper
mixers can be combined as three fluid-multiplexing operations.

B. Performance Comparison

The preliminary work [45] VOM does not support the paral-
lel execution of non-conflicting operations. Besides, VOM ne-
glects the bridge configuration when calculating the hydraulic

resistance. For comparison, we incorporate the new resistance
calculation model into VOM. Table II presents the synthesis
results comparing VOM and ParaVOM.

Feasibility Check. VOM successfully validates flow paths
for cases 1, 2, and 3°. For case 3%, VOM fails to validate the
flow path for transporting fluid from an inlet to the half-ring-
shaped channels in one of the mixers. For case 4, VOM does
not identify any feasible channel-level protocol within a 24-
hour runtime. ParaVOM successfully validates flow paths for
all cases. For case 3%, ParaVOM avoids the incompatibility en-
countered by VOM by identifying that operations transporting
different fluids to the same mixer for mixing are conflict-free
and can thus be grouped into the same batch.

Channel-Level Optimization. As shown in Table II, com-
pared to VOM, ParaVOM requires fewer control channels
to execute the same fluid transportation operations, resulting
in a cleaner control layer, reduced chip size, and improved
robustness. In particular, compared to the original designs,
ParaVOM reduces the average number of control channels
by 49%; and compared to VOM, ParaVOM identifies one
more redundant control channel for test cases 1* and 35. We
illustrate the synthesis results of ParaVOM using the resource-
oriented criterion for cases 1¢, 2, 3¢, and 4 in Figs. 11(a),
11(b), 12(a), and 11(c), respectively.

Parallel execution of non-conflicting operations also sig-
nificantly reduces transportation time. On average, ParaVOM
achieves a 19% reduction compared to VOM, and the benefit
becomes more pronounced as the number of fluid-multiplexing
operations decreases, with a maximum improvement of 39%.

Moreover, we assess the trade-off between resource usage
and transportation time by comparing synthesis outcomes
under different optimization criteria. When resource minimiza-
tion is prioritized, compared to the time-oriented setting, VOM
incurs an average transportation time increase of 13%, whereas
ParaVOM limits this overhead to 1%. On the other hand, when
transportation time minimization is prioritized, compared to

TABLE 11
SYNTHESIS RESULT BASED ON DIFFERENT OPTIMIZATION CRITERIA
VOM
Case | Farl N Resource-Oriented \ Time-Oriented
ICpl T (s) |Cp| T (s)
1% ) ) 8 1.2 8 1.1
1° 7 1.6 7 1.1
2 2 4 7 3.1 7 2.9
3’{ 1 1 8 2657.4 9 2624.6
SZZ’ 1 1 9 4717.1 13 4557.8
ParaVOM
Case |7l N Resource-Oriented \ Time-Oriented
) [Cpl T (s) [Cpl T (s) rr (%)
1% 2.1 5 7 1.0 7 1.0 11.29
1° 7 0.9 7 0.9 14.59
2 3-3-3 6 7 2.7 7 2.5 13.63
3¢ 2-1-2 3 8 1592.3 8 1592.3 39.33
35 2-1-3-1-1 3 8 3802.3 11 3798.0 15.96
4 12-10-10-10 2 11 1588.01 11 1587.37 -

| Faz|: number of fluid-multiplexing transportation operations; n.,,: number of
event-driven protocol updates; |Cp|: number of pressurized control channels
during the execution of the bioassay; T": transportation time in seconds; |Fp|:
number of fluid transportation operations in a batch, listed in execution order.;
r: percentage reduction in the transportation time as compared to VOM.
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Fig. 12. Synthesis results using ParaVOM for case 3{. Flow channels are
shown in black, control channels in light green, redundant control channels
in red, blocked flow channels in grey, pressurized control channels in dark
green, and fluids in blue. (a) A chip design from [12] with seven redundant
control channels. (b)—(d) Event-driven updates of the channel-level protocol
during the third batch. The numbers represent the percentage of the volume
of the corresponding flow channel segment that fluids have occupied.

the resource-oriented setting, the number of pressurized con-
trol channels increases by 11% in VOM and 6% in ParaVOM.
These results highlight the ability of ParaVOM to balance
conflicting objectives, achieving substantial improvement in
one aspect with minimal compromise in the other.

Residual Fluid Transportation and Event-driven Proto-
col Update. In case 3§, ParaVOM detected residual fluids
on an edge, highlighted in blue in Fig. 12(a). Specifically,
transporting fluids from d; to ds caused residual fluids to
accumulate on that edge. In the next batch, the accumulated
fluids are exported to outlets 4 and 5, along with the operation
from d3 to outlet 6. The event-driven protocol updates are
shown in Figs. 12(b)-12(d). At the start of execution, control
channel c3 is pressurized to establish the flow paths while
preventing contamination of non-target device d4, as shown in
Fig. 12(b). When the residual fluids reach outlet 5, ParaVOM
detects two remaining sub-paths still in progress. Thus, it
pressurizes control channel cs5, stopping fluid transportation
in the completed sub-path without disturbing the others, as
shown in Fig. 12(c). Similarly, after the residual fluids reach
outlet 4, ParaVOM pressurizes control channel c4, as shown
in Fig. 12(d). Meanwhile, as the remaining operation poses no
contamination risk to d4, ParaVOM depressurizes c3, allowing
d3 to remain connected to an inlet 3.

VOM cannot detect the residual fluid accumulation in flow
channels. Thus, when using VOM to synthesize the channel-
level protocol for case 3%, we first attempted to add the start
point of the residual-fluid-accumulated edge to the exclusive
set for transporting fluids from d; to d3 to prevent the
accumulation. However, this led to no feasible channel-level
protocol. To resolve this, we added a new operation into the

high-level protocol (before the operation from ds to outlet 6)
to transport the residual fluid to outlets 4 and 5. Since VOM
does not support parallel execution, the total transportation
time significantly increases compared to ParaVOM.

C. Runtime Analysis

Table III summarizes the runtime. The dominant contribu-
tors are flow- and control-layer compatibility checks, both re-
lying on the flow path validation method as a core subroutine;
their invocation counts are listed in parentheses. In general,
designs with more control channels result in deeper search
trees and, thus, more validation calls during the control-layer
compatibility check. It is worth mentioning that although the
ILP optimization problems are NP-hard, both ILP models in
our high- and channel-level synthesis methods can be solved
within a few seconds for all test cases. Table III also presents
the average runtime per validation under different design
complexities. As discussed in Section V-A, the worst-case time
complexity of flow path validation is O(|V |2+ (|V|+|E])), as
summarized in Table 1. The two tables reveal a clear positive
correlation between the flow-layer complexity and the runtime.

ParaVOM completes all test cases in under 90 seconds,
except for case 4, where the high structural complexity of
the flow layer results in a longer runtime per validation. On
average, ParaVOM achieves a 38% reduction in runtime com-
pared to VOM for the first three designs. This improvement is

TABLE III
RUNTIME COMPARISON
| Case [ = [T " [ 2 [38%ny 3835 4
VOM: Channel-level Synthesis
2 | runtime (s) 6.22 6.69 46.20 | 568.57 | 207.89 -
g FLCC (s) 0.26 0.22 1.64 324 373 -
'sO: (#FPV) (13) (12) (26) (14) (16) -
o> | CLCC (s) 4.69 490 | 41.71 | 562.76 | 201.32 -
g (#FPV) (301) | (282) | (705) | (5285) | (1522) -
2 ILP (s) 0.01 0.00 0.01 0.01 0.00 -
~ others (s) 1.26 1.57 2.84 2.56 2.83 -
3 runtime (s) 4.20 428 | 21.41 | 283.45 | 204.09 —
< FLCC (s) 0.08 0.09 0.67 1.43 1.91 -
& (#FPV) ) (5) () (6) (®) -
Q [TCLCC (5 3.10 3.13 18.82 | 279.63 | 197.56 -
£ (#FPV) (220) | (208) | (328) | (2507) | (1522) -

& | others (5) 103 | 1.06 | 192 | 239 4.62 -
Avg. (s) 0.02 0.06 0.11 0.13 -
ParaVOM: High-Level Synthesis

ILP (s) [[ 016 ] 003 [ 052 [ 0.61 [ 534 | 68829

ParaVOM: Channel-Level Synthesis

3 | runtime (s) 5.35 542 | 51.70 | 48.08 75.34 8791.80
‘E FLCC (s) 0.19 0.20 1.94 2.69 3776 185.87
g (#FPV) a3 | a4 | 3o 12) a7n (14)
5 | CLCC (s) 3.96 395 | 4794 | 4454 69.04 8354.22
§ (#FPV) (308) | (301) | (802) (351) (532) (501)
2 ILP (s) 0.01 0.01 0.01 0.01 0.01 0.02
~ other (s) 1.19 1.26 1.81 0.84 2.52 251.70
= | runtime (s) 3.25 3.04 | 2089 | 47.01 62.80 | 6404.23
2 FLCC (s) 0.12 0.10 0.78 1.35 1.88 78.93
8 (#FPV) (5) (5) 9) (6) (3) (6)
Q [T CLCC (5 2.40 2.46 18.75 44.82 59.00 | 6087.59
lé (#FPV) (220) | (208) | (328) (351) (472) (353)
= other (s) 0.72 0.49 1.36 0.84 2.10 237.72

Avg. (s) 0.01 0.06 0.13 16.83

FLCC: runtime of flow-layer compatibility check; #FPV: number of flow path
validation method invocations; CLCC: runtime of control-layer compatibility
check; ILP: runtime for solving the ILP model; other: remaining runtime
excluding key algorithms; Avg.: average runtime of each validation.
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primarily due to the reduced number of channel-level synthesis
invocations enabled by parallel execution. Whereas VOM
conducts channel-level synthesis individually for each fluid
transportation operation, ParaVOM performs it once per batch;
since the number of batches is substantially smaller, the overall
runtime is significantly reduced. However, for chip designs
with highly complex flow-layer structures and sequencing
graphs, ParaVOM may exhibit noticeably increased runtime,
which, while acceptable in practice, suggests potential for
future improvements in scalability and efficiency.

VII. CONCLUSION

This work proposes ParaVOM, a two-stage synthesis
method, to bridge the gap between state-of-the-art high-level
synthesis and physical design approaches based on different
optimization criteria. In general, ParaVOM identifies parallel-
executable fluid transportation operations and allows them
to be executed in batches to improve fluid transportation
efficiency; synthesizes channel-level protocols to construct the
flow paths; and detects mismatches and redundancy usage in
the input design. Experimental results confirm that, compared
with the preliminary work, ParaVOM enables the execution
of given bioassays that were previously unachievable on given
chip designs, significantly reduces fluid transportation times,
lowers the number of required pressurized control channels,
and requires much less runtime.

REFERENCES

[11 M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R.
Quake, “Monolithic microfabricated valves and pumps by multilayer
soft lithography,” Science, vol. 288, no. 5463, pp. 113-116, 2000.
[Online]. Available: https://www.science.org/doi/abs/10.1126/science.
288.5463.113

[2] J. W. Hong, V. Studer, G. Hang, W. F. Anderson, and S. R. Quake,
“A nanoliter-scale nucleic acid processor with parallel architecture,”
Nature Biotechnology, vol. 22, no. 4, pp. 435-439, 2004. [Online].
Available: https://doi.org/10.1038/nbt951

[3] N. Compera, S. Atwell, J. Wirth, C. von Torne, S. M. Hauck, and
M. Meier, “Adipose microtissue-on-chip: a 3d cell culture platform
for differentiation, stimulation, and proteomic analysis of human
adipocytes,” Lab Chip, vol. 22, pp. 3172-3186, 2022. [Online].
Available: http://dx.doi.org/10.1039/D2LC00245K

[4] R. Rodriguez-Moncayo, D. F. Cedillo-Alcantar, P. E. Guevara-
Pantoja, O. G. Chavez-Pineda, J. A. Hernandez-Ortiz, J. U.
Amador-Hernandez, G. Rojas-Velasco, F. Sanchez-Muiioz, D. Manzur-
Sandoval, L. D. Patino-Lopez, D. A. May-Arrioja, R. Posadas-
Sanchez, G. Vargas-Alarcon, and J. L. Garcia-Cordero, “A high-
throughput multiplexed microfluidic device for covid-19 serology
assays,” Lab Chip, vol. 21, pp. 93-104, 2021. [Online]. Available:
http://dx.doi.org/10.1039/DOLCO1068E

[51 A. R. Vollertsen, D. de Boer, S. Dekker, B. A. M. Wesselink,
R. Haverkate, H. S. Rho, R. J. Boom, M. Skolimowski, M. Blom,
R. Passier, A. van den Berg, A. D. van der Meer, and M. Odijk,
“Modular operation of microfluidic chips for highly parallelized cell
culture and liquid dosing via a fluidic circuit board,” Microsystems
& Nanoengineering, vol. 6, no. 1, p. 107, 2020. [Online]. Available:
https://doi.org/10.1038/s41378-020-00216-z

[6] J. Melin and S. R. Quake, “Microfluidic large-scale integration: the
evolution of design rules for biological automation.” Annu Rev Biophys
Biomol Struct, vol. 36, pp. 213-231, 2007.

[71 C.-C. Lee, G. Sui, A. Elizarov, C. J. Shu, Y.-S. Shin, A. N. Dooley,
J. Huang, A. Daridon, P. Wyatt, D. Stout, H. C. Kolb, O. N. Witte,
N. Satyamurthy, J. R. Heath, M. E. Phelps, S. R. Quake, and H.-
R. Tseng, “Multistep synthesis of a radiolabeled imaging probe using
integrated microfluidics.” Science, vol. 310, no. 5755, pp. 1793-1796,
Dec 2005.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

13

M. Li, T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “Sieve-valve-
aware synthesis of flow-based microfluidic biochips considering specific
biological execution limitations,” in 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2016, pp. 624—629.

——, “Component-oriented high-level synthesis for continuous-flow
microfluidics considering hybrid-scheduling,” in Proceedings of the
54th Annual Design Automation Conference, ser. DAC ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3061639.3062213

F. Zuo, M. Li, T.-M. Tseng, T.-Y. Ho, and U. Schlichtmann,
“Relative-scheduling-based high-level synthesis for flow-based microflu-
idic biochips,” in 2021 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD), 2021, pp. 1-9.

T.-M. Tseng, M. Li, B. Li, T.-Y. Ho, and U. Schlichtmann, “Columba:
co-layout synthesis for continuous-flow microfluidic biochips,” in
Proceedings of the 53rd Annual Design Automation Conference, ser.
DAC ’16. New York, NY, USA: Association for Computing Machinery,
2016. [Online]. Available: https://doi.org/10.1145/2897937.2897997
T.-M. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T.-Y. Ho,
I. E. Araci, and U. Schlichtmann, “Columba 2.0: A co-layout synthesis
tool for continuous-flow microfluidic biochips,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 8, pp. 1588-1601, 2018.

T.-M. Tseng, M. Li, D. N. Freitas, A. Mongersun, I. E. Araci, T.-Y.
Ho, and U. Schlichtmann, “Columba s: A scalable co-layout design
automation tool for microfluidic large-scale integration,” in Proceedings
of the 55th Annual Design Automation Conference, 2018, pp. 1-6.

W. H. Minhass, P. Pop, and J. Madsen, “System-level modeling and
synthesis of flow-based microfluidic biochips,” in 2011 Proceedings
of the 14th International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES), 2011, pp. 225-233.

W. H. Minhass, J. McDaniel, M. Raagaard, P. Brisk, P. Pop, and
J. Madsen, “Scheduling and fluid routing for flow-based microfluidic
laboratories-on-a-chip,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 3, pp. 615-628, 2018.
T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-aware
synthesis for flow-based microfluidic biochips by dynamic-device map-
ping,” in Proceedings of the 52th Annual Design Automation Conference,
2015, pp. 1-6.

T.-M. Tseng, B. Li, M. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-
aware synthesis with dynamic device mapping and fluid routing for flow-
based microfluidic biochips,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 12, pp. 1981—
1994, 2016.

S. Liang, M. Lian, M. Li, T.-M. Tseng, U. Schlichtmann, and T.-Y. Ho,
“Armm: Adaptive reliability quantification model of microfluidic designs
and its graph-transformer-based implementation,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), 2023,
pp- 1-9.

T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho, “Storage and
caching: Synthesis of flow-based microfluidic biochips,” IEEE Design
& Test, vol. 32, no. 6, pp. 69-75, 2015.

C. Liu, B. Li, H. Yao, P. Pop, T.-Y. Ho, and U. Schlichtmann, “Transport
or store? synthesizing flow-based microfluidic biochips using distributed
channel storage,” in Proceedings of the 54th Annual Design Automation
Conference, 2017, pp. 1-6.

X. Huang, W. Guo, Z. Chen, B. Li, T.-Y. Ho, and U. Schlichtmann,
“Flow-based microfluidic biochips with distributed channel storage:
Synthesis, physical design, and wash optimization,” IEEE Transactions
on Computers, vol. 71, no. 2, pp. 464-478, 2022.

K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty, “Control-layer routing
and control-pin minimization for flow-based microfluidic biochips,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 36, no. 1, pp. 55-68, 2017.

Y. Zhu, B. Li, T.-Y. Ho, Q. Wang, H. Yao, R. Wille, and U. Schlicht-
mann, “Multi-channel and fault-tolerant control multiplexing for flow-
based microfluidic biochips,” in 2018 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2018, pp. 1-8.

X. Huang, T.-Y. Ho, W. Guo, B. Li, and U. Schlichtmann,
“Minicontrol: Synthesis of continuous-flow microfluidics with strictly
constrained control ports,” in Proceedings of the 56th Annual Design
Automation Conference 2019, ser. DAC '19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3316781.3317864

X. Huang, T.-Y. Ho, Z. Li, G. Liu, L. Wang, Q. Li, W. Guo, B. Li, and
U. Schlichtmann, “Minicontrol 2.0: Co-synthesis of flow and control
layers for microfluidic biochips with strictly constrained control ports,”

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

[43]
[44]

[45]

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3586892

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 12, pp. 5449-5463, 2022.

X. Huang, Y. Pan, G. L. Zhang, B. Li, W. Guo, T.-Y. Ho, and
U. Schlichtmann, “Pathdriver: a path-driven architectural synthesis
flow for continuous-flow microfluidic biochips,” in 2020 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), ser.
ICCAD °’20. New York, NY, USA: Association for Computing
Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3400302.
3415725

——, “Pathdriver+: Enhanced path-driven architecture design for flow-
based microfluidic biochips,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 7, pp. 2185—
2198, 2022.

K. Hu, F. Yu, T.-Y. Ho, and K. Chakrabarty, “Testing of flow-based
microfluidic biochips: Fault modeling, test generation, and experimen-
tal demonstration,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 33, no. 10, pp. 1463-1475, 2014.
M. Li, Y. Zhang, J. Y. Lee, H. Gasvoda, I. E. Araci, T.-M. Tseng,
and U. Schlichtmann, “Integrated test module design for microfluidic
large-scale integration,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 42, no. 6, pp. 1939-1950, 2023.
M. Li, H. Gu, Y. Zhang, S. Liang, H. Gasvoda, R. Altay,
I. E. Araci, T.-M. Tseng, T.-Y. Ho, and U. Schlichtmann, “Late
breaking results: Efficient built-in self-test for microfluidic large-scale
integration (mlsi),” in Proceedings of the 61st ACM/IEEE Design
Automation Conference, ser. DAC ’24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3649329.3663489

G. Firpo, E. Angeli, L. Repetto, and U. Valbusa, “Permeability thickness
dependence of polydimethylsiloxane (pdms) membranes,” Journal of
Membrane Science, vol. 481, pp. 1-8, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0376738814009466
A.R. Wu, J. B. Hiatt, R. Lu, J. L. Attema, N. A. Lobo, I. L. Weissman,
M. F. Clarke, and S. R. Quake, “Automated microfluidic chromatin
immunoprecipitation from 2,000 cells.” Lab Chip, vol. 9, no. 10, pp.
1365-1370, May 2009.

Stanford Microfluidics Foundry. Basic design tips. [Online]. Available:
https://www.stanfordmicrofluidics.com/design-basics

K. Hu, F. Yu, T.-Y. Ho, and K. Chakrabarty, “Testing of flow-based
microfluidic biochips: Fault modeling, test generation, and experimen-
tal demonstration,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 33, no. 10, pp. 1463-1475, 2014.
K. Chakrabarty and J. Zeng, “Design automation for microfluidics-based
biochips,” J. Emerg. Technol. Comput. Syst., vol. 1, no. 3, pp. 186-223,
oct 2005. [Online]. Available: https://doi.org/10.1145/1116696.1116698
I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization:
Second Edition. Society for Industrial and Applied Mathematics (SIAM,
3600 Market Street, Floor 6, Philadelphia, PA 19104), 2009.

M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems,”
SIAM Review, vol. 33, no. 1, pp. 60-100, 1991. [Online]. Available:
http://www.jstor.org/stable/2030652

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. The MIT Press, 2009, ch. 22.3 Depth-first search,
pp. 603-612.

H. A. Stone, Introduction to Fluid Dynamics for Microfluidic Flows.
Boston, MA: Springer US, 2007, pp. 5-30. [Online]. Available:
https://doi.org/10.1007/978-0-387-68913-5_2

K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, “Design of
pressure-driven microfluidic networks using electric circuit analogy,”
Lab Chip, vol. 12, pp. 515-545, 2012. [Online]. Available: http:
//dx.doi.org/10.1039/C2LC20799K

C. W. De Silva, Vibration monitoring, testing, and instrumentation.
CRC Press, 2007.

A. E. Kennelly, “The equivalence of triangles and three-pointed stars in
conducting networks,” Electrical World and Engineer, vol. 34, no. 12,
pp. 413-414, 1899.

R. L. Graham, “Bounds for certain multiprocessing anomalies,” The Bell
System Technical Journal, vol. 45, no. 9, pp. 1563-1581, 1966.
Gurobi Optimization LLC, Gurobi Optimizer Reference Manual, 2022.
[Online]. Available: https://www.gurobi.com

M. Li, T.-M. Tseng, Y. Ma, T.-Y. Ho, and U. Schlichtmann, “Vom:
Flow-path validation and control-sequence optimization for multilayered
continuous-flow microfluidic biochips,” in 2019 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2019, pp. 1-8.

Meng Lian received a bachelor’s degree in business
mathematics and a master’s degree in mathemat-
ics from Ludwig Maximilian University of Munich
(LMU), Munich, Germany, in 2017 and 2020, re-
spectively. She is currently a doctoral researcher
with the Chair of Electronic Design Automation
at Technical University of Munich (TUM). Her
research interests cover design automation for elec-
tronic circuits and emerging technologies, including
inkjet-printed electronics and continuous-flow mi-
crofluidics.

&

Shucheng Yang received his B.Sc. degree in Com-
puter Science (Informatics) from the Technical Uni-
versity of Munich (TUM), Germany, in 2022. He
is currently pursuing a Master’s degree at the Chair
of Data Engineering and Analytics within TUM’s
School of Computation, Information and Technol-
ogy, where he previously served as a Research
Assistant (Hiwi) at the Chair of Electronic Design
Automation. His research interests include design
automation for continuous-flow microfluidics, gener-
ative Al, multimodal reasoning, and language agents.

Mengchu Li received a B.A. degree in German
Studies from Tongji University in China. She then
came to Germany and received the B.Sc. and M.Sc.
degrees in Computer Science from Ludwig Maxi-
milian University of Munich, and the Dr.-Ing. de-
gree from Technical University of Munich. She
is currently a postdoctoral researcher in the Chair
of Electronic Design Automation at the Technical
University of Munich. Her research interests include
design automation for continuous-flow microfluidics
and optical networks-on-chips.

Tsun-Ming Tseng received a bachelor’s degree in
electronics engineering from National Chiao Tung
University (NCTU), Hsinchu, Taiwan, in 2010, the
M.Sc. and the Dr.-Ing. degrees from Technical Uni-
versity of Munich (TUM), Munich, Germany, in
2013 and 2017, respectively. He currently leads
the Emerging Technology Group in the Chair of
Electronic Design Automation, TUM. His research
interests focus on design automation for emerging
technologies, such as microfluidic biochips and op-
tical networks-on-chips.

Ulf Schlichtmann received the Dipl.-Ing. and Dr.-
Ing. degrees in electrical engineering and infor-
mation technology from Technical University of
Munich (TUM), Munich, Germany, in 1990 and
1995, respectively. He was with Siemens AG, Mu-
nich, and Infineon Technologies AG, Munich, from
1994 to 2003, where he held various technical and
management positions in design automation, design
libraries, IP reuse, and product development. He
has been a Professor and the Head of the Chair of
Electronic Design Automation, TUM, since 2003,
where he also served as Dean of the Department of Electrical and Computer
Engineering, from 2008 to 2011, and as Associate Dean of Studies of
International Studies from 2013 to 2022. Since 2022, he serves as vice-
chairman of TUM’s Academic Senate. He is a member of the German National
Academy of Science and Engineering and also serves on a number of advisory
boards. Ulf’s current research interests include computer-aided design of
electronic circuits and systems, with an emphasis on designing reliable and
robust systems. In recent years, he has increasingly worked on emerging
technologies, such as microfluidic biochips and optical interconnects.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



