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ABSTRACT This paper addresses the prescribed-time fault-tolerant control (PT-FTC) problem for a class
of uncertain nonlinear systems in the strict-feedback form, which are subject to completely unknown
time-varying virtual control coefficients, uncertain time-varying parameters, and unknown time-varying
multiplicative faults in both sensors and actuators. By combining a descending power time-varying feedback
technique, a bound estimation approach, and the backstepping design framework, along with employing a
Lyapunov function that incorporates lower bounds of the virtual control coefficients, a novel adaptive PT
fault compensation control strategy is proposed. Under the proposed scheme, the system states can converge
to zero within an arbitrarily predefined finite time and remain there thereafter, while the control input remains
continuous and bounded throughout the entire time interval, despite the presence of the time-varying sensor
and actuator faults. Finally, simulation results are provided to validate the effectiveness of the proposed

algorithm.

INDEX TERMS Adaptive control, fault-tolerant control, prescribed-time control, time-varying systems,

sensor faults.

I. INTRODUCTION

It is well-known that the convergence time is one of the
most important performance indicators in control system
evaluation. Over the past few decades, substantial research
efforts have focused on designing finite-time (FT) and fixed-
time (FixT) control schemes to ensure system states converge
to a desired value (e.g., the origin) within a finite time,
see [1], [2], [3], [4], [5], [6], [7], and [8] for example.
Compared to asymptotic control, these FT and FixT control
techniques offer several advantages such as faster response,
higher precision, and improved robustness [4]. However, the
settling time of the resulting systems typically depends on the
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initial state and/or controller parameters. In many practical
applications, such as missile guidance and autonomous
aircraft rendezvous, it is more desirable to complete the task
within a prescribed finite time. To address such a requirement,
the predefined-time (PdT, also refers to prescribed-time)
control approach was exploited in [9] and [10], where the
convergence time can be prescribed in advance regardless of
the initial conditions and controller parameters.

The PT control was systematically proposed by Song et al.
[11] for regulating high-order nonlinear systems in nor-
mal form. Their approach, which utilizes a time-varying
function (that grows infinitely as time approaches a pre-
scribed terminal time) to scale the system state, has a
clear advantage that the convergence time can be preset
a priori, regardless of the initial conditions and controller
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parameters. A thorough study of the differences between
prescribed-time control and traditional finite-time control
was conducted in [12]. Following the seminal work of
Song et al. [11], [12], many important PT control results
have been developed. For instance, [13], [14] and [15]
studied the PT control of linear time-invariant systems by
extending the state-scaling design [11] and using parametric
Lyapunov equations, respectively. References [16] and [17]
investigated the PT stabilization of nonlinear strict-feedback-
like systems using state- and output-feedback, respectively,
by combining a dynamic high-gain technique with a novel
temporal transformation. For the same class of systems, [18]
developed a new prescribed-time regulation algorithm by
scaling both the states and virtual controls, ensuring the
system continues to operate smoothly beyond the settling
time. A time-space deformation approach was developed
in [19] to stabilize feedback-linearized controllable systems
with matched disturbances. Reference [20] addressed PT
mean-square stabilization and inverse optimality control for
stochastic strict-feedback systems through a novel nonscal-
ing backstepping design. For strict-feedback systems with
uncertain parameters, [21] introduced a new PT stability
criterion and solved the adaptive control problem with a new
nonscaling design. In contrast, [22] employed a descending
power coordinate transformation to design a dynamic surface
control (DSC)-based adaptive PT algorithm. Apart from
these, recent studies have also yielded several excellent
results in the adaptive PT control of other complex nonlinear
systems, such as [23], [24], [25], [26], and [27] and so
on. [28] provides a comprehensive review of the latest
developments in PT control. Notably, while earlier works,
such as [11], [16], and [17], considered PT control within a
finite time interval and were inapplicable at or beyond the
terminal time, later studies, including [21], [22], and [23],
have designed bounded, continuous controllers to ensure PT
control over the entire time interval, thus facilitating practical
implementation.

Despite the plentiful advancements, it is important to note
that the vast majority of existing PT control methods rely
on the assumption that the system states can be precisely
measured and the control commands can be perfectly exe-
cuted. However, in modern industrial applications, the system
components such as actuators and sensors may experience
faults—either individually or simultaneously—during long-
term operation, which can degrade system performance or
even lead to instability. In the literature, a variety of effective
adaptive FT and FixT fault-tolerant control (FTC) designs
have been proposed to enhance the reliability, safety, and
performance of the systems [29], [30], [31], [32], [33].
Nevertheless, the convergence time in these designs can only
be conservatively estimated and cannot be specified a priori.
Moreover, it is worth noticing that most of currently available
results on adaptive PT control are obtained for systems
with constant uncertain parameters. Although [25], [26], and
[27] have addressed adaptive prescribed-time (PT) control
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for strict-feedback systems with time-varying parameters,
they have not considered the effects of actuator and sensor
faults. Note that when the time-varying multiplicative faults
in sensors and actuators are taken into account, the controlled
plant can be transformed into a new system with unknown
virtual control coefficients. However, in [25], [26], and
[27], these coefficients are generally assumed to be known
constants or to have known lower bounds. As a result, the
existing approaches cannot be directly applied to address the
adaptive prescribed-time fault-tolerant control problem.

Motivated by the above discussions, this paper fur-
ther investigates the PT control problem for a class of
time-varying uncertain strict-feedback systems subject to
both sensor and actuator faults, and proposes a novel adaptive
fault-tolerant stabilizing scheme to address this technically
significant issue. The main contributions and advantages are
reflected in the following aspects.

1) We consider a fairly general class of strict-feedback
systems involving completely unknown time-varying
virtual control coefficients and unknown time-varying
multiplicative faults occurring in the sensors and
actuators, in which their bounds do not need to be
known. This distinguishes our work from most of the
currently available results on this issue, such as [21],
[22], [23], [24], [25], [26], and [27].

2) By combining the descending power time-varying
feedback with a bound estimation approach, and
utilizing a Lyapunov function that incorporates the
lower bounds of the virtual control coefficients,
a new adaptive backstepping-based PT FTC scheme
is developed. In contrast to the finite/fixed-time
FTC schemes [29], [30], [31], [32], [33], our
approach allows the convergence time to be arbitrarily
preassigned.

3) The proposed design ensures that the system states
converge to zero within the prescribed finite time and
stay there thereafter, while the control input remains
continuous and bounded over the entire time interval,
thereby guaranteeing the system operates over an
infinite time horizon, which is different from [11], [16]
and [17].

The remaining parts are organized as follows. Section II
provides the problem formulation and preliminaries.
Section III presents an adaptive prescribed-time fault-tolerant
control scheme. In Section IV, the analysis of resulting
closed-loop system are presented. In Section V, simulations
are conducted to verify the validity of the proposed control
scheme. Section VI gives the conclusions.

Notation: R represents the set of real numbers, R” denotes
the n-dimensional Euclidean space. The initial time ¢ is set
as t = 0. For a scalar x € R, |x| is the absolute value of x;
For a vector x, xT denotes its transpose, ||x|| stands for the
Euclidean vector norm; sup,~ f (¢) stands for the supremum
of f(¢) on the interval [0, +00).
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Il. PROBLEM FORMULATION AND PRELIMINARIES

A. PROBLEM STATEMENT

Consider the following class of uncertain strict-feedback
systems:

[xl- = b1 + OO, i=1,....n—1,

. _ ()
X = bu(D)u + 0, () (x),

where x = %, = [x1, -+ ,x,]T € R" is the state vector and
% = [x1,---,x]’ € R;u e R is the control input; For
i=1,...,n,0;i(t) € R are unknown time-varying parameters
and b;i(t) € R denote the unknown time-varying virtual
control coefficients; ¢;(x;) are known smooth functions with
the properties ¢;(0) = 0.

In this study, the commonly encountered unanticipated
sensor and actuator faults are explicitly addressed. These
faults cause the measured states to differ from the true
system states and the actual control inputs to devi-
ate from the designed commands. More specifically, the
following multiplicative sensor and actuator faults are
considered:

Xi(1) = og(t)xi(1), 2
u=o,(t)ug, 3)

where X;(¢) and i are the outputs of the sensor and actuator,
respectively; x; is the true system state, u, represents
the controller-designed command; the time-varying weights
o5, (1) € (0, 1] and o,(¢) € (0, 1] are unknown, representing
health indices that reflect the effectiveness of measurement
and actuation, respectively. Apparently, if oy,(-) = 1, then the
ith sensor is working normally, and the true state x; can be
accurately measured. However, if 0 < oy,(-) < 1, then the
ith sensor experiences a partial loss of effectiveness due to
faults, and only the faulty state X; can be obtained and used
for feedback. Similarly, if o,(-) = 1, then the actuator is
operating healthily, and the designed control input u, can be
executed perfectly. Conversely, if 0 < o,(-) < 1, then the
actuator is suffering from partial loss of effectiveness, and its
output u is no longer the same as the command u,,.

The objective of this article is to design an adaptive
controller for the uncertain system (1) subject to sensor and
actuator faults in the form of (2) and (3), respectively, such
that:

1) the system states x;(¢),i = 1, 2, - - - , n converge to zero
within a prescribed-time T';
2) all closed-loop signals are bounded.

To achieve the control objective, the following assumptions
are made.

Assumption 1: The signs of bi(t), i = 1,2,---,n are
known. Without loss of generality, it is assumed that b;(¢) >
0. Moreover, there exist unknown constants b; > 0, l_al- >
0 such that 0 < b; < bi(t) < b;.

Assumption 2: For the sensor faults, there exist unknown
positive constants o, 05, and oy, such that 0 < o, <
o5(t) <05, < land|o(t)| <05, i=1,2,--,n.
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Assumption 3: For the actuator fault, there exist unknown
positive constants o, and 6, such that 0 < o, < o,(f) <
o, < 1.

Consequently, the system (1) under the sensor and actuator
faults (2), (3) can be rewritten as

Xi = M(OF; + gi(DF i1 + piDei(E),
i=1,2,---,n—1, @
Xn = An()Xy + gn(Dug + pp(B)@n(x),

where 2(1) = 2405, gi(t) = Z250sbi(0), pilt) = o3 (DOK()
and g,(t) = b;(t)axn(t)oa(t)ware unknown time-varying
parameters.

From Assumptions 1-3, it can be inferred that there

. .. o
Lp— ] Pp—
exist positive constants g, = F b, g = bo,0,

&y,

g = T b;, gn = l_),,&gn&a and A; = % such that
0 <g =& =20 <g < &b = g and
()] < A

Remark 1: Assumptions 1-3 are very common in existing
relevant works, see, e.g., [23], [30], and [33]. Assumption 1
is a basic condition to guarantee the controllability of the
system (1). For Assumptions 2-3, all sensors and actuator
are allowed to suffer from partial loss of effectiveness faults
simultaneously, while the knowledge of the bounds are not
required to be known.

Remark 2: System (1) represents an important class of
systems in the field of nonlinear control and has been
extensively studied across various scenarios (see, e.g., [25],
[26], [27]). Moreover, many practical systems, such as the
spacecraft attitude control system, quad rotor control system,
and single-link robotic manipulator system, can be modeled
or transformed into the form of (1). Notably, system (1)
simultaneously involves mismatched unknown time-varying
parameters and virtual control coefficients, along with
potential unknown time-varying sensor and actuator faults,
which make the PT control design problem particularly
challenging.

B. PRELIMINARIES
Definition 1 [25]: Tf a smooth function w(¢) satisfies

w@) >0, Vtel0,T),
lil’;} (T —tyu(t) = o, (5)
t—>T-

where o is a positive constant or +o00, then wu(?) is called a
prescribed-time adjustment (7),-PTA) function.
In this work, w(7) is designed as

J— ¢ 6
o = —. (6

where ¢ is a positive design constant. A straightforward
calculation shows that fu(f) = u?(t)/c. Let v(t) = pn~'(1),
then v(r) [0, T) — (O, %] is bounded and satisfies
lim; 7 v(t) = 0.
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Lemma 1 [22]: Let V(t) be a smooth function defined
on [0,7) with V() > 0. If the following inequality
holds:

V() < —ku(OV(t) + phA,

where wu(t) is a T,-PTA function, k and A are positive
constants, then V (¢) must be bounded on [0, T).

Lemma 2 [34]: For any continuous function f(x, d)
R" x R! > R, there exist smooth functions a(x), b(d) = 0,
such that

0<t<T, ()

If (x, )| = a(x)b(d). ®)

Lemma 3: For the smooth functions ¢;(x;) in (1),
there exist unknown positive constants w; and known
positive-valued smooth functions ¢;(%;) such that

i
lpiGE)| < wigi(%) D 1%;1. )
j=1
Since ¢;(x;) are smooth and vanish at x = 0, according
to [35], ¢i(x;) can be expressed as

i
Qi(%) =D @y, i=1,-n, (10)
=1
where ¢;;(x;) are continuous functions. From (2), itis obtained

that x; = Gslflfci. By Lemma 2, there exist smooth functions
Bij(-) and a;;(-) such that

15| = |@i(og  (OF1, -+, oy (OF)]
< a5, () By(H). (11)
where 5.'(t) = [o,]'(0), - ,a;l(t)]T. Then, noting the

continuity and boundedness of crslfl(t), it follows that there
exist positive constants a; such that aij(6sjl(t)) < a.
Therefore

@55 < ayBij(%s). (12)

This, together with (10) and Assumption 2, gives rise to

i@l = > I@y@E@llog 0%

j=1
i -
< @i ) Bi(l|
j=1

i
< wii(i) D 1%, (13)

j=1
where @w; = max {Em/gsl,n- ,a,-l-/gsi} and ¢,-()Cci) =
Z]’-=1 Bij(%;). The proof is completed. O

lIl. ADAPTIVE PRESCRIBED-TIME FAULT-TOLERANT
CONTROL DESIGN

In this section, a PT stabilization control scheme is designed
for the uncertain nonlinear system (1) subject to sensor and
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actuator faults. The PT-FTC scheme is developed based on
an n-step adaptive backstepping design procedure and can
ensure the convergence of the states to zero within a given
time 7.

To begin with, the following change of coordinates are
introduced

a)1=56]a a)l=i‘l_a171’l=27"'vn’ (14)
and the state transformation is presented as follows:

w=pliw, i=1,2--n, (15)

where L; = n+m+ 1 —i with m > 0 being a positive design
constant, ;1 is the virtual control at the ith step, which will
be determined later. The actual control u, will be constructed
at the last step. To simplify the notation, some independent
variables are omitted when no confusion is likely to arise,
for example, ¥ (x) and x(x) are denoted by v(-) and x(-),
respectively. Moreover, for ease of description, the following
definitions are provided:

, o

Gi=%, H="" sup |pi0)l, (16)
&; 8; 0=<t<T
1

T, =2L; — 1, li:l(lz ),i=1,2»"'7”- a7

Furthermore, denote 19,- as the estimate of the unknown
constant ?¥;, which will be specified at the ith step.
Correspondingly, the estimation error is defined as ¥; =
Y — 19,: Then, bearing in mind that only X; can be used
for feedback, the detailed design procedure is presented as
follows:

Step I: From (4), (14) and (15), the derivative of z1 is

) L
a=_pa + 1Mz + e o1 + g1(Hrz

+ g1 (18)

Consider the positive definite and radially unbounded

function V;, = ﬁz%, whose time derivative along (18)
21

is

. 1 (L
v, = g_(7,uz% + Xl(l)Z% + pl(t)l/‘LlZl‘Pl
21

+ g1(nziza + gl(r)u“mal). (19)

By invoking Lemma 3 and Young’s inequality, along
with the definitions of G; and Hj, it is obtained
that

81(1)

2.2 1 2
—uuz2 < Giuzy + n—2, (20)
8 4

p1(t) v
g—,lLLlZlfpl < HipH |zy |1 131
&

T1 2 Hl
< Hp O +ugh @D
where Y1(-) = ¢f5cf

VOLUME 13, 2025
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To deal with the unknown but bounded parameters, let

1[- L 5 T
O = s )»1,—+§]G1,§]H1 , (22)
21
v L T
£10) = [F1, por, 1220 0] 23)

and define ¢ = ||®1]|, then it can be shown that

A1(1) L1
24 + G? \u + Hin" 291
8 8¢

< Bz | 1E )]
< T ZEL (0OE(0) + 1 4191 (24)
Substituting (20), (21) and (24) into (19) yields

V., < i 2ET 08 () + £ sit )uL'zm

8
1, 1
+ MZZ2+MZ(191 +H,)). (25)
For 0 <t < T, the virtual control input o1 is designed as
o = —kpxy — D122 E (OE10), (26)

where ki is a positive design constant; s updated
according to

91 = Y ZEL(OE (1) — mud, 27)

where y1 and 71 are positive design constants. $1(0) is chosen
to be nonnegative. Note that by doing so, #(¢) is rendered
nonnegative for all r > 0.

Next, the following augmented Lyapunov function candi-
date is considered

1 1 .
Vi=—2z +—0b% 28
1 2& ] + 2)/1 1 (28)

Taking the time derivative of Vi, substituting (25)—(27),

and considering the following facts

m = » M m =«
—uth By < 5—-pdf — S—udi, (29)
Y1 2y 2y

t
g1t )MLIZWI < uhzia, (30

8
where the first inequality follows from completing the square,
and the second from the condition gl(t)/gl > 1, the
derivative of V; satisfies

. n o - M L)
Vi < —kiuz? O + 5t + @O+ H) + 5
1 < —kipzi — 2)/“ 1+2)/M 1 4( 1+ 1)+4Zz
< =CiuVi +uA + ZZQ, GD
where C; = min {2k1§1, m} and A = }1(191 +Hy)+ 2’77/1l 192

are positive constants.
Step i (i = 2,---
function of (xq, - - -

,n — 1): Note that «;_| is a smooth
) )\éi—l’ M, 1917 R ﬁl‘—l)' In view of (4)’
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(14) and (15), the dynamics of z; can be expressed as
. _Li Liy 1
4= + iD= xi + piH)u™ ¢

+ giOpzirr + giptia; — phi Fy ()
i1 o 1
it = (0% + 50541 )
=t

i—1
L;

Lo, 32)

-

o
d%;
=t

where Fo, () = 3 }ggl 1, 4 2
and available for controller constructlon
Define the zth positive definite and radially unbounded

function V; = 2 z Differentiating with respect to time and

==L is computable

employing (32) qhe derivative of V, satisfies

' 1 Li 2 Li_ .~ L;
V, = c. ~ + MO zixi + (DU Zip;
&
+ giOpzizivr + giOplizia; —
=1 b
L,‘ 11— v v
—u Zij_zl a—)\éj()»j(l)x]' +gj(l)x]'+1)
! Sy
L;,. =, .
RGP pjam}. (33)

j=1

MLiZl'fC(,'_1 ()

From Lemma 2, Young’s inequality and the definitions of
G, H; in (16), one can show that

) 1,

g;’_MZzZzH < Giuzl + u4z,+1, (34)
=1

pi(t) . i
—— bz < Hi"iz2 () + n~H,  (35)

4

2i

L i—1
Wiz dai—1
——2 " — i)y < Q7 x,()+u '0i, (36)

& o 0%j
where yi(- ) = ¢7 X)) X7, 0; = max {q,-,l, -+, gii—1} with
qij = 3 SUPo<i<T lp,(t)l j=1--,i—1land () =

i—1 "al 142 k ¥2
Zkzl( FrA )¢k ZJ 14

To address the bounded time-varying uncertainties, define
¥ = [|10;] with

®i:[ i1 12’ 3] (37
where
1 T
®i,l = g_ [1 )‘417 _+glengngti| s
S
I - - 4T
©i2 = — [A1, ric1]
§;
1 - T
O3 =— [g1,- <, 8i-1] -

1o
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Moreover, let

T
s,-<r>=[s,ﬂ(t>,s,?2(r), s,%m] , (38)
where
E1(1) = [Fup, (O, Eiy oy, 1B i), pozi)]"
o1, doti—1 T
Ezz(l)—[ X1, PE: xi—1i| ,
Xi—1

a1, daioy "
1 1) = Tav P R ] 9
51,3() [ 3)VC1 X2 P Xi
then it can be verified that
L.
nzi v
—Z(Ai(t)xi + glGlz,ua)l - ]:01,',1(')
=¥}
+ gHin" wivi() + 8. Qin" wixi(-)
i—1

L; ooj_1 . .
+ ?luwi - Z #%(Kj(f)xj + gj(t)xj+1))
j=1
< Uik |z 11E@)|
7,.2T 1
< " E OEWD) + 1 r (39)

Substituting (34)-(36) and (39) into (33), Vzi satisfies
()
Ve < 0" 2ET (O&() + g’g ubizie
S
1, 1 .
+ M7 + MZ(’Hi +LOi+79). (40)
For OA§ t < T, the virtual control input «; and the update
law for ¥; are designed as

! 5. Livt T
o = —(ki + Z)Nwi — Dip i€ (&), (41)

Bi = ik & &) — mpdi, D0) =0,  (42)
where k;, y; and n; are positive design constants. 19,-(0) is
chosen to be nonnegative. Note that by doing so, 9;(¢) is
rendered nonnegative for all r > 0.
To continue, the augmented Lyapunov function candidate
is constructed as
1 1
2 +

Vi =
2g 2y

92, (43)
Similar to (29) and (30), it can be shown that

055 < —,wz — —,uz?2 (44)
Yi 2y 2y,
t

gzg( )MLIZ o = H« iziot;. (45)

=1

Then, upon using (44) and (45), Vi finally becomes

Ni 52 2 K2
LY 07 + = _=
274’“ ; +2 uo; + Zl 1 Z;

+ %(iHi +1L0i + )

Vi < —kiuz? —
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Faults

Fault u
Actuator System (1)

Uq

i
Transformed system (4) —

li,,i:1 ..... n

Backstepping design procedure

Step 1: Introduce g in (6), define w; in (14) 1
and z, in (15), design @, in (26) and 9, in — 5
(37). E

l 3,

Step (2 = i = n — 1): Introduce i in (6), 1
define w; in (14) and z; in (15), design a; <
in (41) and 9; in (42). 9;

| b |

Step n: Introduce g in (6), define @, in (14)
and 7, in (15), design 3, in (50) and u, in
(49), (53).

I

,

FIGURE 1. Block diagram of the proposed scheme.

=

I

n
Zziz, (46)
where C; = min [2ki§i’ 771'} and A; = ;lt(iHi + ;0 + ;) +
”’ 192 are positive constants.
Step n: Following the same line as in Step i, the derivative
of z,, is

"
= —CGiuVi+ pnAi+ ZZ,ZH -

L L, L
= _/'LZn + An(Hp "Xn + "¢

+gn(t)ﬂ Ug — H ]:ozn,l(')

n—1
00t,—
L)l
- K v
- ij
j=1
n—1

00,1
=l Y == p0;, (47)
Xj

j=1

(0% + 8041

where F, (1) = z’?_l 9oy ‘z?n 1+ 3 =L /1 is a computable

J=1 8D,
function.
Using the similar definitions of ®; and &;(¢) in (37) and (38)
for i = n, and define ©,, = ||®,]|, then

1z, @ e, (1) <O |2,] 11E4(D]
1
<O a6 (&) + ugtn @48)

For 0 < t < T, the actual control input u, and the
parameter updating law are designed as

e = — Gk + %)uwn BT e, (49)

29n = an/‘rnziéy:r([)én(t) - nnlugm 511(0) >0, (50)

where k,, ¥, and 7, are positive design constants.
Choose the nth Lyapunov function as

1 1 -,
V, = z + —9,. (51)
2§n 2y, "

VOLUME 13, 2025
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Upon using (47)—(51), it can be derived that

. 2 M <2 n )
Vi < _kn//LZn - 2_%1/1“19;1 + 2;; /“9" - Zzn
+ %(”Hn + 1,0n + By)
< —CuptVi + uly — %ler (52)

where C,, = min {2kn§7n, 77,,} and A, = 4—1‘(an + 1,0, +

O, + 2"—;’”19,% are positive constants.

For t > T, the actual control input u, is designed as
u, =0. (53)

For clarity, the block diagram of the proposed scheme is
shown in Fig. 1.

IV. STABILITY ANALYSIS

Theorem 1: Consider the closed-loop system consisting
of the plant (1) with possible sensor faults (2) and actuator
fault (3), and the adaptive controller (49)—(50) and (53),
together with the virtual adaptive control laws (26)—(27)
and (41)—(42). If Assumptions 1-3 are satisfied, then the
following statements hold:
(i) the system states x;(t),i = 1,2,---,n can converge to
zero within the prescribed time T';
(ii) the control command u,(¢) is continuous and bounded on
[0, 4+00);
(iii) all signals of the closed-loop system are bounded.

(i) Define the total Lyapunov candidate function as

V=>"V, (54)
i=1

where Vi, V; (i = 2,--- ,n — 1) and V,, are given by (28),
(43) and (51), respectively. It is straightforward from (31),
(46) and (52) that

V < —CuV + uA, (55)

where C = min{Cy,---, C,}and A = Y| A; are positive
constants.

According to Lemma 1, it is known that V(¢) is bounded
forO0 <t < T. Thus, z;, 5,- and hence 13‘,- are all bounded on
[0, T). Define

e, = sup |Di(0)].  (56)
0<t<T

¢z = sup |zi(0)l,
0<t<T

From (15) and (56), one obtains that |w;| < czivL" . Since
X1 = w1, it holds that

v L

[X1] = |o1] < cg v, (57)
where ¢y, = ¢;;. Owing to the smoothness of ¢1(x1), there
exists a constant ¢ such that |¢;(X1)| < c¢1. Moreover, ¢1(X1)

satisfies the local Lipschitz condition that % ”

with a positive constant ¢, .

= Cgy
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Then, from the definition of &;, it is obtained that

EFDE(0)] = 3T + 10t + Pl gl

< c}%] v cfl vHe 4 C?q c‘ltVZL"|r2

<dp*2, viel0,T), (58)
where d; = C)gq Ey+ cfl + cgl cf(£)* is a positive constant.

Based on (56), (57) and (58), it can be easily verified that,
forallz € [0, T),

lat| = | — ki — P2z £ (0)E1(0)]
< klale2 + CﬁICZIdIVLZ
= cq V2, (59)

91| = " & (OE1() — niud |
= mcflbw + nico
=KL, (60)
where ¢y, = kicy, + cp, ¢z d1 and k) = ylcfldl + nicy,.
Since wy = X» — «, one has

M L L
%ol = |o2 + a1] < eV + e V2 = cpvf2, (61)

where ¢z, = ¢z, + ¢q-
According to (26), one has

da A . A .
avl _ ‘_3ﬂ1ML1+L2x12 _ 3191M1+2L1x12 ki
X1
s 30430, 43001 7 3. ,,3L1+3Ly ¥6
—49 ! 2¢1 —X| — Tt 1 2951
3X1
<3cy, c)%l v+ 3cy, c%l w+4ey, c;q ciep v’
+ ki + Tey, cgl Vv
<piu, (62)
3051 v v v v
1) _ ‘_MLlJrszl(le 2 2l 6
at
56?:1 pi+h c?q vie 4 C;I C?V3+L1
<pav*?, (63)
do - . . .
wl= ‘_(L1 + Ly)d i — (1 + 2L)d Pl

—(GL1 +3L)d RG] — ki
<(Ly + Ly)cy, c;lvl"'l‘1 + (1 +2Ly)cy, C?CIVLI
+ (BL; + 3L2)Cz91€;1 c‘ltvzprLl + kicy, vl
<p3v™, (64)

where p1, p> and p3 are positive constants. Upon using these
bounds, the quantities Fy, (), ¥2(-) and x2(-) in (32), (35) and
(36) can be bounded as

aOll A 30[1 .
| F (-)|=‘ = ?91+—M‘
“ ath I

<pakiv? + ’?v“ < pavl3, (65)
Y20 =I93GF + 33|
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22 2L 22 2L 2L
=cycg, v ‘+czc}2v 2 < psvl, (66)

dar\? 5.,
(3361) P4

where p4, ps5 and pg are positive constants.
Recalling the definition of & and combining (65)-(67), the

following inequality holds:
2 2
Ja do

T v2 1y » 1)y v 2.2

t P =x5 + — X7 + —_— x5 + W

&5 (1)52(1)] = X5 (8x1) i (axl) 7+ uw;
+ Fa () + 1P o33 () + 1P ws x5 ()
< A4 PR I 4

A

< dy?s, (68)

Ix2() = < pevle, (67)

where d» is a positive constant. Therefore,
1 s Ly T
lez| = | — (k2 + Z)sz — tauB228, (1)52(1)|

1 I3 I3
=< (kZ + Z)szv 7+ C192Csz2V )
= cava3, (69)

where ¢y, = (k2 + %)sz + ¢y, Cz,da. From w3 = X3 — ap, one
has

%3] = |03 + 2] < c;VP + eV = azv’e, (70)

where a3 = ¢;; + cq,.

Following a similar approach as the above, it can be shown
that for t € [0, T), |ai(t)] < cgvi#1(i = 3,---,n— 1),
GOl = eyl = 4o ) and Jug()] = v
with cq;, ¢z, and ¢, being positive constants. According to
Assumption 2, [x;(1)] = |og '(DXi(1)] < cxvh with ¢ =
oy Ie .- This, together with the property that lim, , 7 v(¢) = 0,
implies that x;(T) = lim,_, 7— x;(¢) = 0.

When ¢ € [T, +00), u, = 0. The dynamics of system (1)
can be represented as

% = A(0)x, (71)

where
Ay bty --- 0

AQx) = : : " :
Ap—11 Ap—12 - bu1(®)
Anl AnZ e Ann

in which A;; = 0;(t)p;(x),i=1,--- ,n,j=1,--- i
Solving (71) gives

X(1) = elrACOMs Ty — 0 > T, (72)

which implies that x;(t) = O for ¢+ € [T, +00). Therefore,
it can be concluded that the system states x;(¢), i =
1,2,---,n can converge to zero within the prescribed-
time 7.

(i) From (i), it is known that |u,(t)] < ¢, VP! for
t € [0,7). Since lim;—,7v(t) = 0, one can get that
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TABLE 1. Comparison between related works and the present work.

Refs. Control Design Sensor Faults Actuator Faults Convergence
i Add d Add d Time Can Be
Preset
[11-[31, FT x v x
[29]-[31],
[33]
[4], [6], [7] FixT X X X
[8] FixT X v X
[32] FixT v v X
[11]-[27] PT X X v
Our work PT v v v
lim; _,7- us(t) = 0. When ¢t > T, u, = 0. Therefore,
lim u,(t) =0 =us(T) = lim wu,(t). (73)
t—>T~ t—>T+

This shows that u,(t) is continuous and bounded on
[0, +00).

(iii) From (i), it is known that X;, o; and x; satisfy |X;| <
eVl il < VB, ()] < eyvli, ¥t € [0, T). Then,
with the boundedness of v, it can be deduced that X;, o;; and x;
are bounded on [0, T'). Moreover, x;(t),i = 1,2,---,n can
converge to zero within the prescribed-time 7 and remain at
zero for [T, +00). Thus, x;(t),i = 1,2, --- , n are bounded
on [0, +00). Furthermore, since |u,| < c,,avL"*l on [0,T)
and u,(t) = 0 on [T, +00), the control command u,(t)
remains bounded on [0, +-00). Hence, all closed-loop signals
are bounded. This completes the proof. (|

Remark 3: As observed from (28), (43), and (51), the
lower bounds of the virtual control coefficients are incorpo-
rated into the Lyapunov synthesis to facilitate the design of
an effective adaptive controller.

Remark 4: This work differs from existing related studies
in: 1) Unlike previous papers on prescribed-time control of
uncertain strict-feedback systems, such as [21], [22], [23],
[24], [25], [26], and [27], the system under consideration
involves completely unknown time-varying virtual control
coefficients and time-varying multiplicative faults in both
the sensors and actuators. Moreover, the bounds of these
time-varying coefficients and faults are not required to be
known; 2) In contrast to existing finite-time or fixed-time
fault-tolerant control schemes presented in [29], [30], [31],
[32], and [33], the proposed approach ensures that the system
states reach zero within a user-defined finite time, which can
be specified in advance regardless of the initial conditions or
control parameters. An intuitive comparison between related
works and the present work is provided in Table 1.

Remark 5: Like other nonlinear adaptive control methods,
the proposed approach involves multiple design parameters
that should be properly chosen to ensure satisfactory control
performance. Based on the preceding control design, the
following guidelines are given.

o The convergence time T should be predetermined based
on practical needs and system capabilities;
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FIGURE 2. Structure of armature-controlled dc motor.

o The parameters y;, n; and k; (i = 1, ..., n) should be
selected to be positive constants, ensuring the theoretical
guarantees of the control scheme;

o The adaptive gains y; should be sufficiently large to
enable adequate parameter adaptation speed, but not
excessively large to avoid undue sensitivity to noise,
while 7n; should be selected as a small constant to prevent
parameter drift;

« The control gains k; need to balance the convergence
rate and the control effort, avoiding overly aggressive
control actions that may cause actuator saturation or
excite unmodeled dynamics.

Therefore, a trade-off exists between the control system
performance and practical realizability. In practice, these
parameters should be carefully tuned through simulation or
trial-and-error based on the specific system.

V. SIMULATION RESULTS

A. AN ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of our proposed method, the
armature-controlled dc motor system shown in Fig. 2 is
considered, whose dynamics are given by

; S, (74)
Jo 4+ fw — Cpig 0,

[ Ryiy + Lyiy + Cow

where @ and i, are the angular speed and the armature
current, respectively; u is the input voltage; R,, L,, Ce.,
Cnm, f and J denote the resistance, the inductance, the back
electromotive force coefficient, the electromagnetic torque
coefficient, the friction coefficient, and the rotational inertia,
respectively. In the simulation, these parameters are set as
R,(t) = (6 +sin2t) Q, L,(t) = (0.1 +0.02cos5t) H, C, =
0.132 V-s/rad, C,(t) = 0.2+0.1sint,f =.15N -m-s/rad,
J = 0.06125 kg - m?. Moreover, it is assumed that the system
suffers from simultaneous multiplicative sensor and atuator
faults, where the weights are respectively given by

o (1 = { 1, | t €10,0.3), %)
0.6 + 0.4sin(r), t € [0.3, +00),
o) = { b 1 €10,0.3), 6)
- cos(5t), t €[0.3, +00),

VOLUME 13, 2025

t €[0,0.5),

t € [0.5, +00). 7

oq(t) = [
0.7 4+ 0.2 sin(?),

The objective is to make w and i, converge to zero within the
prescribed time T = 1 s.

Define X1 =, X2 = ia’ bl(t) = Cm([)’ 91 = _§9 bZ(I) =
ﬁ(r)’ 0a(1) = [_Lacfz)v 'Z”Eii] @(x) = [x1,x,]7, then the
system (74) can be converted into

v =bi(¢ O1x1,
Jf] 1( )J_Cz + 01x a8)
Xy = ba(t)u + 02(1)p(x).

Following the aforementioned design procedure, the PT
adjustment function w(¢) is chosen as the form of (6) with
T = 1, c = 0.4. The controller parameters are taken as
m = 1,)/1 = YV = 10,k1 =k2 = 8andm = = 0.5.
The system initial conditions are given by three different
values (x1(0), x2(0)) = (2, —1), (x1(0), x2(0)) = (=2, 1),
(x1(0), x2(0)) = (1, —0. 5) and the initial value of adaptive
parameters are chosen as 191 0) = 192(0) 0. The simulation
results under three different system initial conditions are
shown in Fig. 3. It can be seen that the states xj, Xi, x» and
Xy converge to zero as ¢ tends to T = 1s. Additionally, the
control command u, and u are continuous and bounded.

To further illustrate the convergence time can be arbitrarily
prescribed, the values T = 1, T = 1.5and T = 2 are set
for the same initial condition (x1(0), x(0)) = (1, —0.2). The
trajectories of x1, xp, and u, are plotted in Fig. 4. From Fig. 4,
it is clear that the PT stabilization is also achieved despite the
presence of the sensor and actuator faults. These results are
consistent with the theoretical results.

B. COMPARATIVE STUDY
In order to further demonstrate the effectiveness of the
proposed strategy, a comparative simulation study with
the control methods reported in [31] (based on based
on the backstepping-based finite-time control technique)
and [22] (based on the dynamic surface control (DSC)-based
prescribed-time control approach ) was conducted. More
specifically, followmg [31], the control algorlthm is demgned
as: ug = —Zzz?zf & — kzzi Lo = —710 — klzl )
B = nz —md and D2 = yETE — M, wherg
71 =X,2=X—arand £ = I:Zz,)vcl X2, FX1, FXp, 1§1)V61]
with F = —9 — ki (2p — 1) %’ ">, For the method in
[22], when ¢t € [0, 1), the control algorlthm is designed as:
Ug = = —ub$El E—kopwr, o) = —ZluLzl‘/‘lngfl —kipor,
By = n2uwh el e — gy udy and 9y = pZuPe1ETE, -
77211792’ where w] = X1, W2 = X2 — 0f, dzf = 82,LL( Qof +
a), 71 = phorn, = plwy, & = [u2, 2] and & =
(123, nP2xi 20, pl2xozs, /LLlyzzz]T, and when ¢ € [1, 5], the
control input is set to zero.

In the comparison simulations, the initial conditions are
fixed at (x1(0), x2(0)) = (2, —1). The control gains in the
three controllers take the same values as y; = y» = 10, k; =
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FIGURE 5. Comparison results.

ko = 8 and n; = ny = 0.5. Besides, we set p = 0.99 and
T = 1s. The simulation results are presented in Fig. 5, which
demonstrate that all these algorithms can achieve satisfactory
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performance. However, under the algorithm in [22] and the
proposed scheme, the convergence time can be arbitrarily
preassigned. Moreover, as compared with [22], the proposed
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algorithm is capable of handling both time-varying sensor and
actuator faults.

VI. CONCLUSION

In this paper, an adaptive backstepping-based prescribed-time
fault-tolerant control (PT-FTC) scheme has been proposed for
a class of uncertain strict-feedback systems with unknown
time-varying virtual control coefficients, uncertain time-
varying parameters, and unknown time-varying multiplica-
tive sensor and actuator faults. The key attributes of the result-
ing closed-loop system are as follows: i) both time-varying
multiplicative sensor and actuator faults are tolerated; ii) the
states can converge to zero within an arbitrarily predefined
finite time, regardless of initial conditions and controller
parameters, and remain at zero thereafter; and iii) the control
input remains continuous and bounded throughout the entire
time interval. As a result, PT fault-tolerant stabilization can
be achieved over the entire time span. The effectiveness
of the proposed control scheme has been verified through
simulation studies.

Note that the proposed scheme only focuses on the
prescribed-time stabilization problem for a single system
with multiplicative sensor and actuator faults, which enables
us to achieve our objective successfully. Several impor-
tant prior studies, such as [2] and [3], have investigated
fault-tolerant control for more complex uncrewed aerial
vehicles with a wider range of fault types. Extending
our method to these areas would significantly enhance its
applicability, and we plan to address these challenges in
future work. It is also noted that the proposed control scheme
does not explicitly account for other practical uncertainties
such as time delays, external disturbances, and measurement
noise. These factors are frequently encountered in real-
world applications, and their inclusion would substantially
increase the complexity of prescribed-time control design
and analysis. Extending the proposed framework to explicitly
handle such general uncertainties remains another important
and challenging direction for future research.
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