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ABSTRACT This paper addresses the prescribed-time fault-tolerant control (PT-FTC) problem for a class
of uncertain nonlinear systems in the strict-feedback form, which are subject to completely unknown
time-varying virtual control coefficients, uncertain time-varying parameters, and unknown time-varying
multiplicative faults in both sensors and actuators. By combining a descending power time-varying feedback
technique, a bound estimation approach, and the backstepping design framework, along with employing a
Lyapunov function that incorporates lower bounds of the virtual control coefficients, a novel adaptive PT
fault compensation control strategy is proposed. Under the proposed scheme, the system states can converge
to zero within an arbitrarily predefined finite time and remain there thereafter, while the control input remains
continuous and bounded throughout the entire time interval, despite the presence of the time-varying sensor
and actuator faults. Finally, simulation results are provided to validate the effectiveness of the proposed
algorithm.

INDEX TERMS Adaptive control, fault-tolerant control, prescribed-time control, time-varying systems,
sensor faults.

I. INTRODUCTION
It is well-known that the convergence time is one of the
most important performance indicators in control system
evaluation. Over the past few decades, substantial research
efforts have focused on designing finite-time (FT) and fixed-
time (FixT) control schemes to ensure system states converge
to a desired value (e.g., the origin) within a finite time,
see [1], [2], [3], [4], [5], [6], [7], and [8] for example.
Compared to asymptotic control, these FT and FixT control
techniques offer several advantages such as faster response,
higher precision, and improved robustness [4]. However, the
settling time of the resulting systems typically depends on the
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initial state and/or controller parameters. In many practical
applications, such as missile guidance and autonomous
aircraft rendezvous, it is more desirable to complete the task
within a prescribed finite time. To address such a requirement,
the predefined-time (PdT, also refers to prescribed-time)
control approach was exploited in [9] and [10], where the
convergence time can be prescribed in advance regardless of
the initial conditions and controller parameters.

The PT control was systematically proposed by Song et al.
[11] for regulating high-order nonlinear systems in nor-
mal form. Their approach, which utilizes a time-varying
function (that grows infinitely as time approaches a pre-
scribed terminal time) to scale the system state, has a
clear advantage that the convergence time can be preset
a priori, regardless of the initial conditions and controller
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parameters. A thorough study of the differences between
prescribed-time control and traditional finite-time control
was conducted in [12]. Following the seminal work of
Song et al. [11], [12], many important PT control results
have been developed. For instance, [13], [14] and [15]
studied the PT control of linear time-invariant systems by
extending the state-scaling design [11] and using parametric
Lyapunov equations, respectively. References [16] and [17]
investigated the PT stabilization of nonlinear strict-feedback-
like systems using state- and output-feedback, respectively,
by combining a dynamic high-gain technique with a novel
temporal transformation. For the same class of systems, [18]
developed a new prescribed-time regulation algorithm by
scaling both the states and virtual controls, ensuring the
system continues to operate smoothly beyond the settling
time. A time-space deformation approach was developed
in [19] to stabilize feedback-linearized controllable systems
with matched disturbances. Reference [20] addressed PT
mean-square stabilization and inverse optimality control for
stochastic strict-feedback systems through a novel nonscal-
ing backstepping design. For strict-feedback systems with
uncertain parameters, [21] introduced a new PT stability
criterion and solved the adaptive control problem with a new
nonscaling design. In contrast, [22] employed a descending
power coordinate transformation to design a dynamic surface
control (DSC)-based adaptive PT algorithm. Apart from
these, recent studies have also yielded several excellent
results in the adaptive PT control of other complex nonlinear
systems, such as [23], [24], [25], [26], and [27] and so
on. [28] provides a comprehensive review of the latest
developments in PT control. Notably, while earlier works,
such as [11], [16], and [17], considered PT control within a
finite time interval and were inapplicable at or beyond the
terminal time, later studies, including [21], [22], and [23],
have designed bounded, continuous controllers to ensure PT
control over the entire time interval, thus facilitating practical
implementation.

Despite the plentiful advancements, it is important to note
that the vast majority of existing PT control methods rely
on the assumption that the system states can be precisely
measured and the control commands can be perfectly exe-
cuted. However, in modern industrial applications, the system
components such as actuators and sensors may experience
faults—either individually or simultaneously—during long-
term operation, which can degrade system performance or
even lead to instability. In the literature, a variety of effective
adaptive FT and FixT fault-tolerant control (FTC) designs
have been proposed to enhance the reliability, safety, and
performance of the systems [29], [30], [31], [32], [33].
Nevertheless, the convergence time in these designs can only
be conservatively estimated and cannot be specified a priori.
Moreover, it is worth noticing that most of currently available
results on adaptive PT control are obtained for systems
with constant uncertain parameters. Although [25], [26], and
[27] have addressed adaptive prescribed-time (PT) control

for strict-feedback systems with time-varying parameters,
they have not considered the effects of actuator and sensor
faults. Note that when the time-varying multiplicative faults
in sensors and actuators are taken into account, the controlled
plant can be transformed into a new system with unknown
virtual control coefficients. However, in [25], [26], and
[27], these coefficients are generally assumed to be known
constants or to have known lower bounds. As a result, the
existing approaches cannot be directly applied to address the
adaptive prescribed-time fault-tolerant control problem.

Motivated by the above discussions, this paper fur-
ther investigates the PT control problem for a class of
time-varying uncertain strict-feedback systems subject to
both sensor and actuator faults, and proposes a novel adaptive
fault-tolerant stabilizing scheme to address this technically
significant issue. The main contributions and advantages are
reflected in the following aspects.

1) We consider a fairly general class of strict-feedback
systems involving completely unknown time-varying
virtual control coefficients and unknown time-varying
multiplicative faults occurring in the sensors and
actuators, in which their bounds do not need to be
known. This distinguishes our work from most of the
currently available results on this issue, such as [21],
[22], [23], [24], [25], [26], and [27].

2) By combining the descending power time-varying
feedback with a bound estimation approach, and
utilizing a Lyapunov function that incorporates the
lower bounds of the virtual control coefficients,
a new adaptive backstepping-based PT FTC scheme
is developed. In contrast to the finite/fixed-time
FTC schemes [29], [30], [31], [32], [33], our
approach allows the convergence time to be arbitrarily
preassigned.

3) The proposed design ensures that the system states
converge to zero within the prescribed finite time and
stay there thereafter, while the control input remains
continuous and bounded over the entire time interval,
thereby guaranteeing the system operates over an
infinite time horizon, which is different from [11], [16]
and [17].

The remaining parts are organized as follows. Section II
provides the problem formulation and preliminaries.
Section III presents an adaptive prescribed-time fault-tolerant
control scheme. In Section IV, the analysis of resulting
closed-loop system are presented. In Section V, simulations
are conducted to verify the validity of the proposed control
scheme. Section VI gives the conclusions.
Notation: R represents the set of real numbers, Rn denotes

the n-dimensional Euclidean space. The initial time t is set
as t = 0. For a scalar x ∈ R, |x| is the absolute value of x;
For a vector x, xT denotes its transpose, ∥x∥ stands for the
Euclidean vector norm; supt≥0 f (t) stands for the supremum
of f (t) on the interval [0,+∞).
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II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM STATEMENT
Consider the following class of uncertain strict-feedback
systems:{

ẋi = bi(t)xi+1 + θi(t)ϕi(x̄i), i = 1, . . . , n− 1,
ẋn = bn(t)ū+ θn(t)ϕn(x),

(1)

where x = x̄n = [x1, · · · , xn]T ∈ Rn is the state vector and
x̄i = [x1, · · · , xi]T ∈ Ri; ū ∈ R is the control input; For
i = 1, . . . , n, θi(t) ∈ R are unknown time-varying parameters
and bi(t) ∈ R denote the unknown time-varying virtual
control coefficients; ϕi(x̄i) are known smooth functions with
the properties ϕi(0) = 0.
In this study, the commonly encountered unanticipated

sensor and actuator faults are explicitly addressed. These
faults cause the measured states to differ from the true
system states and the actual control inputs to devi-
ate from the designed commands. More specifically, the
following multiplicative sensor and actuator faults are
considered:

x̌i(t) = σsi (t)xi(t), (2)

ū = σa(t)ua, (3)

where x̌i(t) and ū are the outputs of the sensor and actuator,
respectively; xi is the true system state, ua represents
the controller-designed command; the time-varying weights
σsi (t) ∈ (0, 1] and σa(t) ∈ (0, 1] are unknown, representing
health indices that reflect the effectiveness of measurement
and actuation, respectively. Apparently, if σsi (·) = 1, then the
ith sensor is working normally, and the true state xi can be
accurately measured. However, if 0 < σsi (·) < 1, then the
ith sensor experiences a partial loss of effectiveness due to
faults, and only the faulty state x̌i can be obtained and used
for feedback. Similarly, if σa(·) = 1, then the actuator is
operating healthily, and the designed control input ua can be
executed perfectly. Conversely, if 0 < σa(·) < 1, then the
actuator is suffering from partial loss of effectiveness, and its
output ū is no longer the same as the command ua.
The objective of this article is to design an adaptive

controller for the uncertain system (1) subject to sensor and
actuator faults in the form of (2) and (3), respectively, such
that:

1) the system states xi(t), i = 1, 2, · · · , n converge to zero
within a prescribed-time T ;

2) all closed-loop signals are bounded.

To achieve the control objective, the following assumptions
are made.
Assumption 1: The signs of bi(t), i = 1, 2, · · · , n are

known. Without loss of generality, it is assumed that bi(t) >
0. Moreover, there exist unknown constants bi > 0, b̄i >
0 such that 0 < bi ≤ bi(t) ≤ b̄i.
Assumption 2: For the sensor faults, there exist unknown

positive constants σ si , σ̄si and σ̄sd such that 0 < σ si ≤

σsi (t) ≤ σ̄si ≤ 1 and |σ̇si (t)| ≤ σ̄sd , i = 1, 2, · · · , n.

Assumption 3: For the actuator fault, there exist unknown
positive constants σ a and σ̄a such that 0 < σ a ≤ σa(t) ≤

σ̄a ≤ 1.
Consequently, the system (1) under the sensor and actuator

faults (2), (3) can be rewritten as
˙̌xi = λi(t)x̌i + gi(t)x̌i+1 + ρi(t)ϕi(x̄i),

i = 1, 2, · · · , n− 1,
˙̌xn = λn(t)x̌n + gn(t)ua + ρn(t)ϕn(x),

(4)

where λi(t) =
σ̇si (t)
σsi (t)

, gi(t) =
σsi (t)
σsi+1 (t)

bi(t), ρi(t) = σsi (t)θi(t)
and gn(t) = bn(t)σsn (t)σa(t) are unknown time-varying
parameters.

From Assumptions 1-3, it can be inferred that there
exist positive constants g

i
:=

σ si
σ̄si+1

bi, gn := bnσ snσ a,

ḡi :=
σ̄si
σ si+1

b̄i, ḡn := b̄nσ̄sn σ̄a and λ̄i :=
σ̄sd
σ si

such that

0 < g
i

≤ gi(t) ≤ ḡi, 0 < g
n

≤ gn(t) ≤ ḡn and
|λi(t)| ≤ λ̄i.
Remark 1: Assumptions 1–3 are very common in existing

relevant works, see, e.g., [23], [30], and [33]. Assumption 1
is a basic condition to guarantee the controllability of the
system (1). For Assumptions 2–3, all sensors and actuator
are allowed to suffer from partial loss of effectiveness faults
simultaneously, while the knowledge of the bounds are not
required to be known.
Remark 2: System (1) represents an important class of

systems in the field of nonlinear control and has been
extensively studied across various scenarios (see, e.g., [25],
[26], [27]). Moreover, many practical systems, such as the
spacecraft attitude control system, quad rotor control system,
and single-link robotic manipulator system, can be modeled
or transformed into the form of (1). Notably, system (1)
simultaneously involves mismatched unknown time-varying
parameters and virtual control coefficients, along with
potential unknown time-varying sensor and actuator faults,
which make the PT control design problem particularly
challenging.

B. PRELIMINARIES
Definition 1 [25]: If a smooth function µ(t) satisfies

µ(t) > 0, ∀t ∈ [0,T ),

lim
t→T−

(T − t)µ(t) = o, (5)

where o is a positive constant or +∞, then µ(t) is called a
prescribed-time adjustment (Tp-PTA) function.
In this work, µ(t) is designed as

µ(t) =
c

T − t
, (6)

where c is a positive design constant. A straightforward
calculation shows that µ̇(t) = µ2(t)/c. Let v(t) = µ−1(t),
then v(t) : [0,T ) → (0, Tc ] is bounded and satisfies
limt→T v(t) = 0.
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Lemma 1 [22]: Let V (t) be a smooth function defined
on [0,T ) with V (t) ≥ 0. If the following inequality
holds:

V̇ (t) ≤ −kµ(t)V (t) + µ(t)1, 0 ≤ t < T , (7)

where µ(t) is a Tp-PTA function, k and 1 are positive
constants, then V (t) must be bounded on [0,T ).
Lemma 2 [34]: For any continuous function f (x, d) :

Rn
× Rl

7→ R, there exist smooth functions a(x), b(d) ≥ 0,
such that

|f (x, d)| ≤ a(x)b(d). (8)

Lemma 3: For the smooth functions ϕi(x̄i) in (1),
there exist unknown positive constants ϖi and known
positive-valued smooth functions φi( ¯̌xi) such that

|ϕi(x̄i)| ≤ ϖiφi( ¯̌xi)
i∑

j=1

|x̌j|. (9)

Since ϕi(x̄i) are smooth and vanish at x = 0, according
to [35], ϕi(x̄i) can be expressed as

ϕi(x̄i) =

i∑
j=1

ϕ̄ij(x̄i)xj, i = 1, · · · , n, (10)

where ϕ̄ij(x̄i) are continuous functions. From (2), it is obtained
that xi = σ−1

si x̌i. By Lemma 2, there exist smooth functions
βij(·) and aij(·) such that

|ϕ̄ij(x̄i)| = |ϕ̄ij(σ−1
s1 (t)x̌1, · · · , σ−1

si (t)x̌i)|

≤ aij(σ̄−1
si (t))βij( ¯̌xi), (11)

where σ̄−1
si (t) =

[
σ−1
s1 (t), · · · , σ−1

si (t)
]T
. Then, noting the

continuity and boundedness of σ−1
si (t), it follows that there

exist positive constants āij such that aij(σ̄−1
si (t)) ≤ āij.

Therefore

|ϕ̄ij(x̄i)| ≤ āijβij( ¯̌xi). (12)

This, together with (10) and Assumption 2, gives rise to

|ϕi(x̄i)| =

i∑
j=1

|ϕ̄ij(x̄i)||σ−1
sj (t)x̌j|

≤ ϖi

i∑
j=1

βij( ¯̌xi)|x̌j|

≤ ϖiφi( ¯̌xi)
i∑

j=1

|x̌j|, (13)

where ϖi = max
{
āi1/σ s1 , · · · , āii/σ si

}
and φi( ¯̌xi) =∑i

j=1 βij( ¯̌xi). The proof is completed. □

III. ADAPTIVE PRESCRIBED-TIME FAULT-TOLERANT
CONTROL DESIGN
In this section, a PT stabilization control scheme is designed
for the uncertain nonlinear system (1) subject to sensor and

actuator faults. The PT-FTC scheme is developed based on
an n-step adaptive backstepping design procedure and can
ensure the convergence of the states to zero within a given
time T .
To begin with, the following change of coordinates are

introduced

ω1 = x̌1, ωi = x̌i − αi−1, i = 2, · · · , n, (14)

and the state transformation is presented as follows:

zi = µLiωi, i = 1, 2, · · · , n, (15)

where Li = n+m+ 1− i with m > 0 being a positive design
constant, αi−1 is the virtual control at the ith step, which will
be determined later. The actual control ua will be constructed
at the last step. To simplify the notation, some independent
variables are omitted when no confusion is likely to arise,
for example, ψ(x) and χ (x) are denoted by ψ(·) and χ (·),
respectively. Moreover, for ease of description, the following
definitions are provided:

Gi =
ḡi
g
i

, Hi =
ϖi

g
i

sup
0≤t<T

|ρi(t)|, (16)

τi = 2Li − 1, li =
i(i− 1)

2
, i = 1, 2, · · · , n. (17)

Furthermore, denote ϑ̂i as the estimate of the unknown
constant ϑi, which will be specified at the ith step.
Correspondingly, the estimation error is defined as ϑ̃i =

ϑi − ϑ̂i. Then, bearing in mind that only x̌i can be used
for feedback, the detailed design procedure is presented as
follows:
Step 1: From (4), (14) and (15), the derivative of z1 is

ż1 =
L1
c
µz1 + λ1(t)z1 + ρ1(t)µL1ϕ1 + g1(t)µz2

+ g1(t)µL1α1. (18)

Consider the positive definite and radially unbounded
function Vz1 =

1
2g

1
z21, whose time derivative along (18)

is

V̇z1 =
1
g
1

(
L1
c
µz21 + λ1(t)z21 + ρ1(t)µL1z1ϕ1

+ g1(t)µz1z2 + g1(t)µL1z1α1

)
. (19)

By invoking Lemma 3 and Young’s inequality, along
with the definitions of G1 and H1, it is obtained
that

g1(t)
g
1

µz1z2 ≤ G2
1µz

2
1 + µ

1
4
z22, (20)

ρ1(t)
g
1

µL1z1ϕ1 ≤ H1µ
L1 |z1|φ1|x̌1|

≤ H1µ
τ1z21ψ1(·) + µ

H1

4
, (21)

where ψ1(·) = φ21 x̌
2
1 .
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To deal with the unknown but bounded parameters, let

21 =
1
g
1

[
λ̄1,

L1
c

+ g
1
G2
1, g1H1

]T
, (22)

ξ1(t) =

[
x̌1, µω1, µ

L2z1ψ1(·)
]T
, (23)

and define ϑ1 = ∥21∥, then it can be shown that

λ1(t)
g
1

z21 +

(
L1
g
1
c

+ G2
1

)
µz21 + H1µ

τ1z21ψ1(·)

≤ ϑ1µ
L1 |z1| ∥ξ1(t)∥

≤ ϑ1µ
τ1z21ξ

T
1 (t)ξ1(t) + µ

1
4
ϑ1. (24)

Substituting (20), (21) and (24) into (19) yields

V̇z1 ≤ ϑ1µ
τ1z21ξ

T
1 (t)ξ1(t) +

g1(t)
g
1

µL1z1α1

+ µ
1
4
z22 + µ

1
4
(ϑ1 + H1 ). (25)

For 0 ≤ t < T , the virtual control input α1 is designed as

α1 = −k1µx̌1 − ϑ̂1µ
L2z1ξT1 (t)ξ1(t), (26)

where k1 is a positive design constant; ϑ̂1 is updated
according to

˙̂
ϑ1 = γ1µ

τ1z21ξ
T
1 (t)ξ1(t) − η1µϑ̂1, (27)

where γ1 and η1 are positive design constants. ϑ̂1(0) is chosen
to be nonnegative. Note that by doing so, ϑ̂1(t) is rendered
nonnegative for all t ≥ 0.
Next, the following augmented Lyapunov function candi-

date is considered

V1 =
1
2g

1

z21 +
1
2γ1

ϑ̃2
1 . (28)

Taking the time derivative of V1, substituting (25)–(27),
and considering the following facts

η1

γ1
µϑ̃1ϑ̂1 ≤

η1

2γ1
µϑ2

1 −
η1

2γ1
µϑ̃2

1 , (29)

g1(t)
g
1

µL1z1α1 ≤ µL1z1α1, (30)

where the first inequality follows from completing the square,
and the second from the condition g1(t)/g1 ≥ 1, the
derivative of V1 satisfies

V̇1 ≤ −k1µz21 −
η1

2γ1
µϑ̃2

1 +
η1

2γ1
µϑ2

1 +
µ

4
(ϑ1 + H1) +

µ

4
z22

≤ −C1µV1 + µ11 +
µ

4
z22, (31)

where C1 = min
{
2k1g1, η1

}
and11 =

1
4 (ϑ1 +H1)+

η1
2γ1
ϑ2
1

are positive constants.
Step i (i = 2, · · · , n − 1): Note that αi−1 is a smooth

function of (x̌1, · · · , x̌i−1, µ, ϑ̂1, · · · , ϑ̂i−1). In view of (4),

(14) and (15), the dynamics of zi can be expressed as

żi =
Li
c
µzi + λi(t)µLi x̌i + ρi(t)µLiϕi

+ gi(t)µzi+1 + gi(t)µLiαi − µLiFαi−1(·)

− µLi
i−1∑
j=1

∂αi−1

∂ x̌j

(
λj(t)x̌j + gj(t)x̌j+1

)

− µLi
i−1∑
j=1

∂αi−1

∂ x̌j
ρj(t)ϕj, (32)

where Fαi−1(·) =
∑i−1

j=1
∂αi−1

∂ϑ̂i−1

˙̂
ϑi−1 +

∂αi−1
∂µ

µ̇ is computable
and available for controller construction.

Define the ith positive definite and radially unbounded
function Vzi =

1
2g

i
z2i . Differentiating with respect to time and

employing (32), the derivative of Vzi satisfies

V̇zi =
1
g
i

[
Li
c
µz2i + λi(t)µLizix̌i + ρi(t)µLiziϕi

+ gi(t)µzizi+1 + gi(t)µLiziαi − µLiziFαi−1(·)

− µLizi
i−1∑
j=1

∂αi−1

∂ x̌j

(
λj(t)x̌j + gj(t)x̌j+1

)

− µLizi
i−1∑
j=1

∂αi−1

∂ x̌j
ρj(t)ϕj

]
. (33)

From Lemma 2, Young’s inequality and the definitions of
Gi, Hi in (16), one can show that

gi(t)
g
i

µzizi+1 ≤ G2
i µz

2
i + µ

1
4
z2i+1, (34)

ρi(t)
g
i

µLiziϕi ≤ Hiµτiz2i ψi(·) + µ
i
4
Hi, (35)

−
µLizi
g
i

i−1∑
j=1

∂αi−1

∂ x̌j
ρj(t)ϕj ≤ Qiµτiz2i χi(·) + µ

li
4
Qi, (36)

where ψi(·) = φ2i
∑i

j=1 x̌
2
j ,Qi = max

{
qi,1, · · · , qi,i−1

}
with

qi,j :=
ϖj
g
i
sup0≤t<T |ρj(t)|, j = 1, · · · , i − 1 and χi(·) =∑i−1

k=1(
∂αi−1
∂ x̌k

)2φ2k
∑k

j=1 x̌
2
j .

To address the bounded time-varying uncertainties, define
ϑi = ∥2i∥ with

2i =
[
2T
i,1,2

T
i,2,2

T
i,3

]T
, (37)

where

2i,1 =
1
g
i

[
1, λ̄i,

Li
c

+ g
i
G2
i , giHi, giQi

]T
,

2i,2 =
1
g
i

[
λ̄1, · · · , λ̄i−1

]T
,

2i,3 =
1
g
i

[ḡ1, · · · , ḡi−1]T .
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Moreover, let

ξi(t) =

[
ξTi,1(t), ξ

T
i,2(t), ξ

T
i,3(t)

]T
, (38)

where

ξi,1(t) =
[
Fαi−1(·), x̌i, µωi, µ

τiωiψi(·), µτiωiχi(·)
]T
,

ξi,2(t) =

[
∂αi−1

∂ x̌1
x̌1, · · · ,

∂αi−1

∂ x̌i−1
x̌i−1

]T
,

ξi,3(t) =

[
∂αi−1

∂ x̌1
x̌2, · · · ,

∂αi−1

∂ x̌i−1
x̌i

]T
,

then it can be verified that

µLizi
g
i

(
λi(t)x̌i + g

i
G2
i µωi − Fαi−1 (·)

+ g
i
Hiµτiωiψi(·) + g

i
Qiµτiωiχi(·)

+
Li
c
µωi −

i−1∑
j=1

∂αi−1

∂ x̌j

(
λj(t)x̌j + gj(t)x̌j+1

))
≤ ϑiµ

Li |zi| ∥ξi(t)∥

≤ ϑiµ
τiz2i ξ

T
i (t)ξi(t) + µ

1
4
ϑi. (39)

Substituting (34)-(36) and (39) into (33), V̇zi satisfies

V̇zi ≤ ϑiµ
τiz2i ξ

T
i (t)ξi(t) +

gi(t)
g
i

µLiziαi

+ µ
1
4
z2i+1 + µ

1
4
(iHi + liQi + ϑi). (40)

For 0 ≤ t < T , the virtual control input αi and the update
law for ϑ̂i are designed as

αi = −(ki +
1
4
)µωi − ϑ̂iµ

Li+1ziξTi (t)ξi(t), (41)

˙̂
ϑi = γiµ

τiz2i ξ
T
i (t)ξi(t) − ηiµϑ̂i, ϑ̂i(0) ≥ 0, (42)

where ki, γi and ηi are positive design constants. ϑ̂i(0) is
chosen to be nonnegative. Note that by doing so, ϑ̂i(t) is
rendered nonnegative for all t ≥ 0.

To continue, the augmented Lyapunov function candidate
is constructed as

Vi =
1
2g

i

z2i +
1
2γi
ϑ̃2
i . (43)

Similar to (29) and (30), it can be shown that

ηi

γi
µϑ̃iϑ̂i ≤

ηi

2γi
µϑ2

i −
ηi

2γi
µϑ̃2

i , (44)

gi(t)
g
i

µLiziαi ≤ µLiziαi. (45)

Then, upon using (44) and (45), V̇i finally becomes

V̇i ≤ −kiµz2i −
ηi

2γi
µϑ̃2

i +
ηi

2γi
µϑ2

i +
µ

4
z2i+1 −

µ

4
z2i

+
µ

4
(iHi + liQi + ϑi)

FIGURE 1. Block diagram of the proposed scheme.

≤ −CiµVi + µ1i +
µ

4
z2i+1 −

µ

4
z2i , (46)

where Ci = min
{
2kigi, ηi

}
and 1i =

1
4 (iHi + liQi + ϑi) +

ηi
2γi
ϑ2
i are positive constants.
Step n: Following the same line as in Step i, the derivative

of zn is

żn =
Ln
c
µzn + λn(t)µLn x̌n + ρn(t)µLnϕn

+ gn(t)µLnua − µLnFαn−1(·)

− µLn
n−1∑
j=1

∂αn−1

∂ x̌j

(
λj(t)x̌j + gj(t)x̌j+1

)

− µLn
n−1∑
j=1

∂αn−1

∂ x̌j
ρj(t)ϕj, (47)

whereFαn−1(·) =
∑n−1

j=1
∂αn−1

∂ϑ̂n−1

˙̂
ϑn−1+

∂αn−1
∂µ

µ̇ is a computable
function.

Using the similar definitions of2i and ξi(t) in (37) and (38)
for i = n, and define ϑn = ∥2n∥, then

µLnzn2T
n ξn(t) ≤ϑnµ

Ln |zn| ∥ξn(t)∥

≤ϑnµ
τnz2nξ

T
n (t)ξn(t) + µ

1
4
ϑn. (48)

For 0 ≤ t < T , the actual control input ua and the
parameter updating law are designed as

ua = −(kn +
1
4
)µωn − ϑ̂nµ

Ln+1znξTn (t)ξn(t), (49)

˙̂
ϑn = γnµ

τnz2nξ
T
n (t)ξn(t) − ηnµϑ̂n, ϑ̂n(0) ≥ 0, (50)

where kn, γn and ηn are positive design constants.
Choose the nth Lyapunov function as

Vn =
1
2g

n

z2n +
1
2γn

ϑ̃2
n . (51)
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Upon using (47)–(51), it can be derived that

V̇n ≤ −knµz2n −
ηn

2γn
µϑ̃2

n +
ηn

2γn
µϑ2

n −
µ

4
z2n

+
µ

4
(nHn + lnQn + ϑn)

≤ −CnµVn + µ1n −
µ

4
z2n, (52)

where Cn = min
{
2kngn, ηn

}
and 1n =

1
4 (nHn + lnQn +

ϑn) +
ηn
2γn
ϑ2
n are positive constants.

For t ≥ T , the actual control input ua is designed as

ua = 0. (53)

For clarity, the block diagram of the proposed scheme is
shown in Fig. 1.

IV. STABILITY ANALYSIS
Theorem 1: Consider the closed-loop system consisting

of the plant (1) with possible sensor faults (2) and actuator
fault (3), and the adaptive controller (49)–(50) and (53),
together with the virtual adaptive control laws (26)–(27)
and (41)–(42). If Assumptions 1-3 are satisfied, then the
following statements hold:
(i) the system states xi(t), i = 1, 2, · · · , n can converge to
zero within the prescribed time T ;
(ii) the control command ua(t) is continuous and bounded on
[0,+∞);
(iii) all signals of the closed-loop system are bounded.

(i) Define the total Lyapunov candidate function as

V =

n∑
i=1

Vi, (54)

where V1, Vi (i = 2, · · · , n − 1) and Vn are given by (28),
(43) and (51), respectively. It is straightforward from (31),
(46) and (52) that

V̇ ≤ −CµV + µ1, (55)

where C = min {C1, · · · ,Cn} and1 =
∑n

i=11i are positive
constants.

According to Lemma 1, it is known that V (t) is bounded
for 0 ≤ t < T . Thus, zi, ϑ̃i and hence ϑ̂i are all bounded on
[0,T ). Define

czi = sup
0≤t<T

|zi(t)|, cϑi = sup
0≤t<T

|ϑ̂i(t)|. (56)

From (15) and (56), one obtains that |ωi| ≤ cziv
Li . Since

x̌1 = ω1, it holds that

|x̌1| = |ω1| ≤ cx̌1v
L1 , (57)

where cx̌1 = cz1 . Owing to the smoothness of φ1(x̌1), there
exists a constant c1 such that |φ1(x̌1)| ≤ c1. Moreover, φ1(x̌1)
satisfies the local Lipschitz condition that

∥∥∥ ∂φ1(x̌1)∂ x̌1

∥∥∥ ≤ cφ1
with a positive constant cφ1 .

Then, from the definition of ξ1, it is obtained that

|ξT1 (t)ξ1(t)| = x̌21 + µ2ω2
1 + µ2L2z21φ

4
1 x̌

4
1

≤ c2x̌1v
2L1 + c2z1v

2L2 + c6x̌1c
4
1v

2L1+2

≤ d1v2L2 , ∀t ∈ [0,T ), (58)

where d1 = c2x̌1 (
T
c )

2
+ c2z1 + c6x̌1c

4
1(
T
c )

4 is a positive constant.

Based on (56), (57) and (58), it can be easily verified that,
for all t ∈ [0,T ),

|α1| = | − k1µx̌1 − ϑ̂1µ
L2z1ξT1 (t)ξ1(t)|

≤ k1a1vL2 + cϑ1cz1d1v
L2

= cα1v
L2 , (59)

|
˙̂
ϑ1| = |γ1µ

τ1z21ξ
T
1 (t)ξ1(t) − η1µϑ̂1|

≤ γ1c2z1b1µ+ η1cϑ1µ

= κ1µ, (60)

where cα1 = k1cx̌1 + cϑ1cz1d1 and κ1 = γ1c2z1d1 + η1cϑ1 .
Since ω2 = x̌2 − α1, one has

|x̌2| = |ω2 + α1| ≤ cz2v
L2 + cα1v

L2 = cx̌2v
L2 , (61)

where cx̌2 = cz2 + cα1 .
According to (26), one has∣∣∣∣∂α1∂ x̌1

∣∣∣∣ =

∣∣∣−3ϑ̂1µL1+L2 x̌21 − 3ϑ̂1µ1+2L1 x̌21 − k1µ

−4ϑ̂1µ3L1+3L2φ31
∂φ1

∂ x̌1
x̌71 − 7ϑ̂1µ3L1+3L2 x̌61

∣∣∣∣
≤3cϑ1c

2
x̌1
v+ 3cϑ1c

2
x̌1
µ+ 4cϑ1c

7
x̌1
c31cφ1v

3

+ k1µ+ 7cϑ1c
6
x̌1
v3

≤p1µ, (62)∣∣∣∣∂α1
∂ϑ̂1

∣∣∣∣ =

∣∣∣−µL1+L2 x̌1(x̌21 + µ2x̌21 + µ2L1+2L2φ41 x̌
6
1 )
∣∣∣

≤c3x̌1v
1+L1 + c3x̌1v

L2 + c7x̌1c
4
1v

3+L1

≤p2vL2 , (63)∣∣∣∣∂α1∂µ
∣∣∣∣ =

∣∣∣−(L1 + L2)ϑ̂1µ2L2 x̌31 − (1 + 2L1)ϑ̂1µ2L1 x̌31

−(3L1 + 3L2)ϑ̂1µ2L1+4L2φ41 x̌
7
1 − k1x̌1

∣∣∣
≤(L1 + L2)cϑ1c

3
x̌1
v1+L1 + (1 + 2L1)cϑ1c

3
x̌1
vL1

+ (3L1 + 3L2)cϑ1c
7
x̌1
c41v

4+L1 + k1cx̌1v
L1

≤p3vL1 , (64)

where p1, p2 and p3 are positive constants. Upon using these
bounds, the quantitiesFα1 (·),ψ2(·) and χ2(·) in (32), (35) and
(36) can be bounded as

|Fα1 (·)| =

∣∣∣∣∂α1
∂ϑ̂1

˙̂
ϑ1 +

∂α1

∂µ
µ̇

∣∣∣∣
≤p2κ1vL3 +

p3
c
vL3 ≤ p4vL3 , (65)

|ψ2(·)| =|φ22 (x̌
2
1 + x̌22 )|
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≤c22c
2
x̌1
v2L1 + c22c

2
x̌2
v2L2 ≤ p5v2L2 , (66)

|χ2(·)| =

∣∣∣∣∣
(
∂α1

∂ x̌1

)2

φ22 x̌
2
1

∣∣∣∣∣ ≤ p6v2L2 , (67)

where p4, p5 and p6 are positive constants.
Recalling the definition of ξ2 and combining (65)-(67), the

following inequality holds:

|ξT2 (t)ξ2(t)| = x̌22 +

(
∂α1

∂ x̌1

)2

x̌21 +

(
∂α1

∂ x̌1

)2

x̌22 + µ2ω2
2

+ F2
α1
(·) + µ2τ2ω2

2ψ
2
2 (·) + µ2τ2ω2

2χ
2
2 (·)

≤ c2x̌2v
2L2 + p21c

2
x̌1
v2L2 + p21c

2
x̌2
v2L3 + c2z2v

2L3

+ p24v
2L3 + c2z2p

2
5v

2L1 + c2z2p
2
6v

2L1

≤ d2v2L3 , (68)

where d2 is a positive constant. Therefore,

|α2| = | − (k2 +
1
4
)µω2 − ϑ̂2µ

L3z2ξT2 (t)ξ2(t)|

≤ (k2 +
1
4
)cz2v

L3 + cϑ2cz2d2v
L3

= cα2v
L3 , (69)

where cα2 = (k2 +
1
4 )cz2 + cϑ2cz2d2. From ω3 = x̌3 −α2, one

has

|x̌3| = |ω3 + α2| ≤ cz3v
L3 + cα2v

L3 = a3vL3 , (70)

where a3 = cz3 + cα2 .
Following a similar approach as the above, it can be shown

that for t ∈ [0,T ), |αi(t)| ≤ cαiv
Li+1(i = 3, · · · , n − 1),

|x̌i(t)| ≤ cx̌iv
Li (i = 4, · · · , n) and |ua(t)| ≤ cuav

Ln+1

with cαj , cx̌i and cua being positive constants. According to
Assumption 2, |xi(t)| = |σ−1

si (t)x̌i(t)| ≤ cxiv
Li with cxi =

σ−1
si cx̌i . This, together with the property that limt→T v(t) = 0,

implies that xi(T ) = limt→T− xi(t) = 0.
When t ∈ [T ,+∞), ua = 0. The dynamics of system (1)

can be represented as

ẋ = A(x)x, (71)

where

A(x) =


A11 b1(t) · · · 0
...

...
. . .

...

A(n−1)1 A(n−1)2 · · · bn−1(t)
An1 An2 · · · Ann

 ,
in which Aij = θi(t)ϕij(x̄i), i = 1, · · · , n, j = 1, · · · , i.
Solving (71) gives

x(t) = e
∫ t
T A(x(s))dsx(T ) = 0, t ≥ T , (72)

which implies that xi(t) ≡ 0 for t ∈ [T ,+∞). Therefore,
it can be concluded that the system states xi(t), i =

1, 2, · · · , n can converge to zero within the prescribed-
time T .

(ii) From (i), it is known that |ua(t)| ≤ cuav
Ln+1 for

t ∈ [0,T ). Since limt→T v(t) = 0, one can get that

TABLE 1. Comparison between related works and the present work.

limt→T− ua(t) = 0. When t ≥ T , ua = 0. Therefore,

lim
t→T−

ua(t) = 0 = ua(T ) = lim
t→T+

ua(t). (73)

This shows that ua(t) is continuous and bounded on
[0,+∞).
(iii) From (i), it is known that x̌i, αi and xi satisfy |x̌i| ≤

cx̌iv
Li , |αi| ≤ cαiv

Li+1 , |xi(t)| ≤ cxiv
Li , ∀t ∈ [0,T ). Then,

with the boundedness of v, it can be deduced that x̌i, αi and xi
are bounded on [0,T ). Moreover, xi(t), i = 1, 2, · · · , n can
converge to zero within the prescribed-time T and remain at
zero for [T ,+∞). Thus, xi(t), i = 1, 2, · · · , n are bounded
on [0,+∞). Furthermore, since |ua| ≤ cuav

Ln+1 on [0,T )
and ua(t) = 0 on [T ,+∞), the control command ua(t)
remains bounded on [0,+∞). Hence, all closed-loop signals
are bounded. This completes the proof. □
Remark 3: As observed from (28), (43), and (51), the

lower bounds of the virtual control coefficients are incorpo-
rated into the Lyapunov synthesis to facilitate the design of
an effective adaptive controller.
Remark 4: This work differs from existing related studies

in: 1) Unlike previous papers on prescribed-time control of
uncertain strict-feedback systems, such as [21], [22], [23],
[24], [25], [26], and [27], the system under consideration
involves completely unknown time-varying virtual control
coefficients and time-varying multiplicative faults in both
the sensors and actuators. Moreover, the bounds of these
time-varying coefficients and faults are not required to be
known; 2) In contrast to existing finite-time or fixed-time
fault-tolerant control schemes presented in [29], [30], [31],
[32], and [33], the proposed approach ensures that the system
states reach zero within a user-defined finite time, which can
be specified in advance regardless of the initial conditions or
control parameters. An intuitive comparison between related
works and the present work is provided in Table 1.
Remark 5: Like other nonlinear adaptive control methods,

the proposed approach involves multiple design parameters
that should be properly chosen to ensure satisfactory control
performance. Based on the preceding control design, the
following guidelines are given.

• The convergence time T should be predetermined based
on practical needs and system capabilities;
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FIGURE 2. Structure of armature-controlled dc motor.

• The parameters γi, ηi and ki (i = 1, . . . , n) should be
selected to be positive constants, ensuring the theoretical
guarantees of the control scheme;

• The adaptive gains γi should be sufficiently large to
enable adequate parameter adaptation speed, but not
excessively large to avoid undue sensitivity to noise,
while ηi should be selected as a small constant to prevent
parameter drift;

• The control gains ki need to balance the convergence
rate and the control effort, avoiding overly aggressive
control actions that may cause actuator saturation or
excite unmodeled dynamics.

Therefore, a trade-off exists between the control system
performance and practical realizability. In practice, these
parameters should be carefully tuned through simulation or
trial-and-error based on the specific system.

V. SIMULATION RESULTS
A. AN ILLUSTRATIVE EXAMPLE
To illustrate the effectiveness of our proposed method, the
armature-controlled dc motor system shown in Fig. 2 is
considered, whose dynamics are given by{

Raia + La i̇a + Ceω = ū,
J ω̇ + f ω − Cmia = 0,

(74)

where ω and ia are the angular speed and the armature
current, respectively; ū is the input voltage; Ra, La, Ce,
Cm, f and J denote the resistance, the inductance, the back
electromotive force coefficient, the electromagnetic torque
coefficient, the friction coefficient, and the rotational inertia,
respectively. In the simulation, these parameters are set as
Ra(t) = (6 + sin 2t) �, La(t) = (0.1 + 0.02 cos 5t) H , Ce =

0.132 V · s/rad, Cm(t) = 0.2+ 0.1 sin t , f =.15 N ·m · s/rad,
J = 0.06125 kg · m2. Moreover, it is assumed that the system
suffers from simultaneous multiplicative sensor and atuator
faults, where the weights are respectively given by

σs1 (t) =

{
1, t ∈ [0, 0.3),
0.6 + 0.4 sin(t), t ∈ [0.3,+∞),

(75)

σs2 (t) =

{
1, t ∈ [0, 0.3),
0.8 − 0.2 cos(5t), t ∈ [0.3,+∞),

(76)

σa(t) =

{
1, t ∈ [0, 0.5),
0.7 + 0.2 sin(t), t ∈ [0.5,+∞).

(77)

The objective is to make ω and ia converge to zero within the
prescribed time T = 1 s.
Define x1 = ω, x2 = ia, b1(t) =

Cm(t)
J , θ1 = −

f
J , b2(t) =

1
La(t)

, θ2(t) =

[
−

Ce
La(t)

,−
Ra(t)
La(t)

]
, ϕ(x) = [x1, x2]T, then the

system (74) can be converted into{
ẋ1 = b1(t)x2 + θ1x1,
ẋ2 = b2(t)ū+ θ2(t)ϕ(x).

(78)

Following the aforementioned design procedure, the PT
adjustment function µ(t) is chosen as the form of (6) with
T = 1, c = 0.4. The controller parameters are taken as
m = 1, γ1 = γ2 = 10, k1 = k2 = 8 and η1 = η2 = 0.5.
The system initial conditions are given by three different
values (x1(0), x2(0)) = (2,−1), (x1(0), x2(0)) = (−2, 1),
(x1(0), x2(0)) = (1,−0.5), and the initial value of adaptive
parameters are chosen as ϑ̂1(0) = ϑ̂2(0) = 0. The simulation
results under three different system initial conditions are
shown in Fig. 3. It can be seen that the states x1, x̌1, x2 and
x̌2 converge to zero as t tends to T = 1s. Additionally, the
control command ua and ū are continuous and bounded.
To further illustrate the convergence time can be arbitrarily

prescribed, the values T = 1, T = 1.5 and T = 2 are set
for the same initial condition (x1(0), x2(0)) = (1,−0.2). The
trajectories of x1, x2, and ua are plotted in Fig. 4. From Fig. 4,
it is clear that the PT stabilization is also achieved despite the
presence of the sensor and actuator faults. These results are
consistent with the theoretical results.

B. COMPARATIVE STUDY
In order to further demonstrate the effectiveness of the
proposed strategy, a comparative simulation study with
the control methods reported in [31] (based on based
on the backstepping-based finite-time control technique)
and [22] (based on the dynamic surface control (DSC)-based
prescribed-time control approach ) was conducted. More
specifically, following [31], the control algorithm is designed
as: ua = −z2ϑ̂2ξT ξ − k2z

2p−1
2 , α1 = −z1ϑ̂1 − k1z

2p−1
1 ,

˙̂
ϑ1 = γ1z21 − η1ϑ̂1 and ˙̂

ϑ2 = γ2z22ξ
T ξ − η2ϑ̂2, where

z1 = x̌1, z2 = x̌2 − α1 and ξ =

[
z2, x̌1, x̌2,Fx̌1,Fx̌2,

˙̂
ϑ1x̌1

]T
with F = −ϑ̂1 − k1 (2p− 1) x̌2p−2

1 . For the method in
[22], when t ∈ [0, 1), the control algorithm is designed as:
ua = −z2µL3 ϑ̂2ξT2 ξ2−k2µω2,α1 = −z1µL2 ϑ̂1ξT1 ξ1−k1µω1,
˙̂
ϑ1 = γ1z21µ

2L1−1ξT1 ξ1−η1µϑ̂1 and
˙̂
ϑ2 = γ2z22µ

2L2−1ξT2 ξ2−

η2µϑ̂2, where ω1 = x1, ω2 = x2 − α2f , α̇2f = ε2µ(−α2f +

α1), z1 = µL1ω1, z2 = µL2ω2, ξ1 =
[
µz21, z

2
1

]T
and ξ2 =[

µz22, µ
L2x1z2, µL2x2z2, µL1y2z2

]T
, and when t ∈ [1, 5], the

control input is set to zero.
In the comparison simulations, the initial conditions are

fixed at (x1(0), x2(0)) = (2,−1). The control gains in the
three controllers take the same values as γ1 = γ2 = 10, k1 =
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FIGURE 3. Simulation results with different initial conditions.

FIGURE 4. Simulation results with different prescribed settling times.

FIGURE 5. Comparison results.

k2 = 8 and η1 = η2 = 0.5. Besides, we set p = 0.99 and
T = 1s. The simulation results are presented in Fig. 5, which
demonstrate that all these algorithms can achieve satisfactory

performance. However, under the algorithm in [22] and the
proposed scheme, the convergence time can be arbitrarily
preassigned. Moreover, as compared with [22], the proposed
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algorithm is capable of handling both time-varying sensor and
actuator faults.

VI. CONCLUSION
In this paper, an adaptive backstepping-based prescribed-time
fault-tolerant control (PT-FTC) scheme has been proposed for
a class of uncertain strict-feedback systems with unknown
time-varying virtual control coefficients, uncertain time-
varying parameters, and unknown time-varying multiplica-
tive sensor and actuator faults. The key attributes of the result-
ing closed-loop system are as follows: i) both time-varying
multiplicative sensor and actuator faults are tolerated; ii) the
states can converge to zero within an arbitrarily predefined
finite time, regardless of initial conditions and controller
parameters, and remain at zero thereafter; and iii) the control
input remains continuous and bounded throughout the entire
time interval. As a result, PT fault-tolerant stabilization can
be achieved over the entire time span. The effectiveness
of the proposed control scheme has been verified through
simulation studies.

Note that the proposed scheme only focuses on the
prescribed-time stabilization problem for a single system
with multiplicative sensor and actuator faults, which enables
us to achieve our objective successfully. Several impor-
tant prior studies, such as [2] and [3], have investigated
fault-tolerant control for more complex uncrewed aerial
vehicles with a wider range of fault types. Extending
our method to these areas would significantly enhance its
applicability, and we plan to address these challenges in
future work. It is also noted that the proposed control scheme
does not explicitly account for other practical uncertainties
such as time delays, external disturbances, and measurement
noise. These factors are frequently encountered in real-
world applications, and their inclusion would substantially
increase the complexity of prescribed-time control design
and analysis. Extending the proposed framework to explicitly
handle such general uncertainties remains another important
and challenging direction for future research.

REFERENCES
[1] J. Wu, Z. Shen, G. You, J. Su, X. Li, and H. Zhang, ‘‘Adap-

tive fuzzy fast finite-time control of nonlinear pure-feedback systems
with actuator faults,’’ IEEE Access, vol. 12, pp. 158422–158435,
2024.

[2] Z. Yu, Y. Zhang, B. Jiang, and C.-Y. Su, ‘‘Distributed FTCC of multi-UAVs
under actuator fault and input saturation,’’ in Fault-Tolerant Cooperative
Control of Unmanned Aerial Vehicles. Cham, Switzerland: Springer, 2024,
pp. 51–76.

[3] Z. Yu, Z. Liu, Y. Zhang, Y. Qu, and C.-Y. Su, ‘‘Distributed finite-time
fault-tolerant containment control for multiple unmanned aerial vehicles,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 2077–2091,
Jun. 2020.

[4] J. Ma, S. Fei, S. Xu, and G. Cui, ‘‘Adaptive fixed-time control
for high-order nonlinear systems with unknown control coefficients
and quantized input,’’ IEEE Trans. Autom. Control, vol. 69, no. 3,
pp. 1928–1935, Mar. 2024.

[5] Y. Liu, H. Li, R. Lu, Z. Zuo, and X. Li, ‘‘An overview of
finite/fixed-time control and its application in engineering systems,’’
IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120,
Dec. 2022.

[6] X. Zhang, Y. Zhou, C. Feng, and X. Deng, ‘‘Adaptive fixed-time command
filtered tracking control for parametric nonlinear systems with unknown
nonlinear control coefficient and unknown disturbances,’’ IEEE Access,
vol. 13, pp. 37839–37849, 2025.

[7] Z. Han, J.-J. Li, X.-L. Yin, Y. Ma, and S. Ren, ‘‘Fixed-time event-
triggered stabilization of high-order nonlinear systems with asymmet-
ric output constraints,’’ IEEE Access, vol. 12, pp. 191252–191263,
2024.

[8] J. Wu, Z. Shen, G. You, J. Su, X. Li, H. Zhang, and C. Zhang,
‘‘Adaptive fixed-time performance tracking control for unknown
nonlinear pure-feedback systems subject to full-state constraints
and actuator faults,’’ IEEE Access, vol. 12, pp. 137121–137131,
2024.

[9] Y. Zhang, M. Chadli, and Z. Xiang, ‘‘Predefined-time adaptive
fuzzy control for a class of nonlinear systems with output
hysteresis,’’ IEEE Trans. Fuzzy Syst., vol. 31, no. 8, pp. 2522–2531,
Aug. 2023.

[10] Y. Zhang, M. Chadli, and Z. Xiang, ‘‘Prescribed-time formation control
for a class of multiagent systems via fuzzy reinforcement learning,’’ IEEE
Trans. Fuzzy Syst., vol. 31, no. 12, pp. 4195–4204, Dec. 2023.

[11] Y. Song, Y. Wang, J. Holloway, and M. Krstic, ‘‘Time-varying feedback
for regulation of normal-form nonlinear systems in prescribed finite time,’’
Automatica, vol. 83, pp. 243–251, Sep. 2017.

[12] Y. Song, Y.Wang, andM. Krstic, ‘‘Time-varying feedback for stabilization
in prescribed finite time,’’ Int. J. Robust Nonlinear Control, vol. 29, no. 3,
pp. 618–633, 2018.

[13] J. Holloway and M. Krstic, ‘‘Prescribed-time output feedback for linear
systems in controllable canonical form,’’ Automatica, vol. 107, pp. 77–85,
Sep. 2019.

[14] B. Zhou, ‘‘Finite-time stabilization of linear systems by bounded linear
time-varying feedback,’’Automatica, vol. 113,Mar. 2020, Art. no. 108760.

[15] B. Zhou, ‘‘Finite-time stability analysis and stabilization by bounded
linear time-varying feedback,’’ Automatica, vol. 121, Nov. 2020,
Art. no. 109191.

[16] P. Krishnamurthy, F. Khorrami, and M. Krstic, ‘‘A dynamic high-gain
design for prescribed-time regulation of nonlinear systems,’’ Automatica,
vol. 115, May 2020, Art. no. 108860.

[17] P. Krishnamurthy, F. Khorrami, and M. Krstic, ‘‘Robust adaptive
prescribed-time stabilization via output feedback for uncertain nonlin-
ear strict-feedback-like systems,’’ Eur. J. Control, vol. 55, pp. 14–23,
Sep. 2020.

[18] H. Ye and Y. Song, ‘‘Prescribed-time control of uncertain strict-feedback-
like systems,’’ Int. J. Robust Nonlinear Control, vol. 31, no. 11,
pp. 5281–5297, Nov. 2021.

[19] Y. Orlov, ‘‘Time space deformation approach to prescribed-time stabi-
lization: Synergy of time-varying and non-lipschitz feedback designs,’’
Automatica, vol. 144, Oct. 2022, Art. no. 110485.

[20] W. Li and M. Krstic, ‘‘Stochastic nonlinear prescribed-time stabilization
and inverse optimality,’’ IEEE Trans. Autom. Control, vol. 67, no. 3,
pp. 1179–1193, Mar. 2022.

[21] C. Hua, P. Ning, and K. Li, ‘‘Adaptive prescribed-time control for a class of
uncertain nonlinear systems,’’ IEEE Trans. Autom. Control, vol. 67, no. 11,
pp. 6159–6166, Nov. 2022.

[22] G. Zuo and Y. Wang, ‘‘Adaptive prescribed finite time control for
strict-feedback systems,’’ IEEE Trans. Autom. Control, vol. 68, no. 9,
pp. 5729–5736, Sep. 2023.

[23] C.-C. Hua, H. Li, K. Li, and P. Ning, ‘‘Adaptive prescribed-time
stabilization of uncertain nonlinear systems with unknown control
directions,’’ IEEE Trans. Autom. Control, vol. 69, no. 6, pp. 3968–3974,
Jun. 2024.

[24] Z.-Y. Sun, J.-J. Li, C. Wen, and C.-C. Chen, ‘‘Adaptive event-triggered
prescribed-time stabilization of uncertain nonlinear systems with asym-
metric time-varying output constraint,’’ IEEE Trans. Autom. Control,
vol. 69, no. 8, pp. 5454–5461, Aug. 2024.

[25] P.-J. Ning, C.-C. Hua, K. Li, and R. Meng, ‘‘Event-triggered
adaptive prescribed-time control for nonlinear systems with uncertain
time-varying parameters,’’ Automatica, vol. 157, Nov. 2023,
Art. no. 111229.

[26] H. Ye and Y. Song, ‘‘Prescribed-time control for time-varying nonlinear
systems: A temporal scaling based robust adaptive approach,’’ Syst.
Control Lett., vol. 181, Nov. 2023, Art. no. 105602.

VOLUME 13, 2025 118743



C. Wei, D. Zhang: Adaptive PT-FTC for a Class of Uncertain Nonlinear Systems

[27] Y. Ji, B. Niu, Y. Gao, B. Zhang, and X. Zhao, ‘‘Adaptive prescribed-time
control for nonlinear systems with uncertain time-varying parameters and
control gains,’’ Asian J. Control, vol. 27, no. 4, pp. 1774–1783, Jul. 2025.

[28] Y. Song, H. Ye, and F. L. Lewis, ‘‘Prescribed-time control and its latest
developments,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 7,
pp. 4102–4116, Jul. 2023.

[29] Y.-X. Li, ‘‘Finite time command filtered adaptive fault tolerant control for a
class of uncertain nonlinear systems,’’ Automatica, vol. 106, pp. 117–123,
Aug. 2019.

[30] F. Wang and X. Zhang, ‘‘Adaptive finite time control of nonlinear systems
under time-varying actuator failures,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 49, no. 9, pp. 1845–1852, Sep. 2019.

[31] X. Fang, H. Fan, W. Wang, L. Liu, B. Wang, and Z. Cheng, ‘‘Adaptive
finite-time fault-tolerant control of uncertain systems with input satura-
tion,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 1, pp. 165–177,
Jan. 2023.

[32] H. Wang, J. Ma, X. Zhao, B. Niu, M. Chen, and W. Wang, ‘‘Adaptive
fuzzy fixed-time control for high-order nonlinear systems with sensor and
actuator faults,’’ IEEE Trans. Fuzzy Syst., vol. 31, no. 8, pp. 2658–2668,
Aug. 2023.

[33] M.-X. Wang, S.-L. Zhu, S.-M. Liu, Y. Du, and Y.-Q. Han, ‘‘Design
of adaptive finite-time fault-tolerant controller for stochastic nonlinear
systems with multiple faults,’’ IEEE Trans. Autom. Sci. Eng., vol. 20, no. 4,
pp. 2492–2502, Oct. 2023.

[34] Z. Chen and J. Huang, Stabilization and Regulation of Nonlinear Systems.
Cham, Switzerland: Springer, 2015.

[35] H. Nijmeijer and A. van der Schaft,Nonlinear Dynamical Control Systems.
New York, NY, USA: Springer, 1990.

CHUIXI WEI received the B.S. degree in infor-
mation and computational science from Jiangsu
Ocean University, Lianyungang, China, in 2022,
where he is currently pursuing the M.S. degree in
computer technology with the School of Computer
Engineering.

His research interests include nonlinear systems
control, prescribed-time control, and adaptive
control.

DANDAN ZHANG received the Ph.D. degree
in control science and engineering from Harbin
Institute of Technology, Harbin, China, in 2020.

She is currently with the School of Science,
Jiangsu Ocean University, Lianyungang. She is
also a Postdoctoral Fellow with China University
of Mining and Technology, Xuzhou. Her research
interests include nonlinear control, distributed
control of multi-agent systems, and fixed-time
control.

118744 VOLUME 13, 2025


