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ABSTRACT Despite their continuous advancements, text-to-image (TTI) models often reflect and reinforce
cultural biases, perpetuating stereotypes often inherent in their training data. This systematic review critically
examines cultural bias in text-to-image (TTI) models, addressing gaps in existing research by analyzing
its manifestations, evaluation methods, and mitigation strategies—both directly and through the lens of
intersectionality with other bias dimensions. A comprehensive literature review was conducted across
multiple major databases, following a rigorously structured search strategy, resulting in the selection of
58 studies spanning bias analysis, evaluation frameworks, and mitigation techniques. Thematic findings
highlight that gender bias was the most extensively studied, appearing in 53 studies (91%), followed by
racial/ethnic bias (42 studies) and other social biases (41 studies). Furthermore, the review explores how
these biases intersect and compound in AI-generated imagery, shaping and reinforcing cultural bias. Our
findings reveal the following key aspects: 1) the lack of standardization and scalability in bias evaluation,
2) the lack of a fully effective mitigation strategy, 3) contributed TTI benchmarks favoring Western-centric
perspectives. We finally propose future directions to improve fairness and representation in TTI models.

INDEX TERMS AI ethics, AI fairness, bias evaluation, bias mitigation, CLIP, cultural bias, generative AI,
gender bias, prompt engineering, racial bias, responsible AI, text-to-image models.

I. INTRODUCTION
Text-to-image (TTI) generation [1] is a rapidly evolving field
in artificial intelligence (AI) that focuses on creating visual
content from textual descriptions. This technology has found
applications in diverse areas such as creative arts, virtual
reality, assistive tools for the visually impaired, education,
and entertainment [2], [3], [4], [5], [6].

Recent advances in deep learning, particularly in gen-
erative models, have significantly improved the quality,
resolution, and semantic alignment of generated images
[7], [8]. Moreover, Contrastive Language-Image Pretrain-
ing (CLIP) and CLIP-based TTI models have enhanced
multimodal AI by aligning textual descriptions with visual

The associate editor coordinating the review of this manuscript and

approving it for publication was Syed Islam .

representations [9]. CLIP, introduced in 2021, enabled
zero-shot image classification, laying the foundation for
generative models such as DALL-E and Stable Diffusion [1],
[10]. These innovations, combined with the growing accessi-
bility of TTI tools, have transformed howAI systems interpret
and visualize human language.

However, alongside their benefits, these models carry
inherent biases reflective of the datasets they are trained on
and the socio-cultural contexts from which these datasets
emerge [11], [12]. Cultural bias in particular has emerged
as a key concern, encompassing dimensions such as gender,
race, and class, and often manifesting through stereotypes
or the exclusion of underrepresented groups. For example,
stereotypical depictions of male and female professions
frequently occur. Figure 1 illustrates the biases present in
TTI generation by showcasing images produced using the
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TABLE 1. Comparison of previous relevant reviews on TTI bias to our systematic review.

FIGURE 1. Sample of AI-generated images, generated using Stable
Diffusion with the prompt ‘‘A doctor’’ on the first row and ‘‘A nurse’’ in the
second row. The images illustrate a clear gendered professional
stereotype, with ‘doctor’ exclusively associated with men and ‘nurse’ with
women—reflecting Western-centric cultural norms. Additionally, across
eight samples, all generated individuals appear white, highlighting racial
bias. These consistent patterns suggest that even neutral prompts
activate entrenched demographic assumptions in Stable Diffusion XL.

prompts ‘‘A doctor’’ and ‘‘A nurse’’ with Stable Diffusion
XL. The generated images possibly reveal racial bias, where
a race-neutral prompt predominantly depicts individuals of
white ethnicity. Furthermore, the outputs reinforce western
gender stereotypes by consistently portraying doctors as male
and nurses as female.

Similarly, racial bias manifests in the erasure or mis-
representation of non-Western ethnicities, contributing to
the marginalization of diverse racial identities or portraying
misconceptions of certain races [18]. These biases are often
compounded by other factors such as age and class, forming
intersecting layers of social inequality. Cultural differences
also play a significant role—what is considered a stereotype
in one cultural context may be interpreted differently in
another.

While prior research has primarily focused on gender
and racial bias in TTI models, cultural bias remains under-
explored. Common approaches to bias detection include
embedding association tests and fairness metrics, while
mitigation efforts have ranged from prompt engineering to

FIGURE 2. Sample of AI-generated images, generated using Stable
Diffusion with the prompt ‘‘A Middle Eastern teacher’’ on the first row, the
images showcase gender and racial/ethnic bias as it limits the results to
male teachers reflecting that middle eastern teachers are exclusively men.
In the second row, the neutral prompt ‘‘A teacher’’ is used, also portraying
the same biases as a white female is consistently depicted, reflectional
the Western conception that teaching jobs are often occupied by females.

dataset curation. Bird et al. [13] examine multiple harmful
associations in TTI models, including cultural bias, yet their
review lacks a comprehensive analysis of identification and
mitigation methods. Parraga et al. [14] provide a systematic
review of fairness in AI models, including TTI, but do
not focus on cultural bias or TTI models specifically.
Nemani et al. [15] investigate gender bias in transformer
models, covering identification and mitigation methods,
though their survey is limited to gender bias and does
not address TTI. Saxena [17] conduct a comprehensive
narrative review on quantitative measures of bias across
AI-generated modalities but do not explore identification or
mitigation strategies. Prerak [16] review gender, skin tone,
and geo-cultural biases in TTI models, covering only a subset
of evaluation and mitigation methods, omitting several key
metrics and a detailed assessment of mitigation strategies and
their effectiveness.

This review aims to fill a crucial gap by focusing explicitly
on cultural bias in TTI models and its intersection with
other forms of bias. While prior work has predominantly
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FIGURE 3. Sample of AI-generated images, generated using Stable
Diffusion XL with the prompt ‘‘A poor person’’ on the first row, and ‘‘A rich
person’’ in the second row. The images showcase an intersection of
gender bias and racism. The model consistently depicts a rich person as
black females whereas a rich person is a white male.

addressed gender and racial/ethnic biases in isolation, the
cultural dimension—and how it compounds with these
social biases remains underexplored. Table 1 summarizes
our contributions in contrast to prior reviews. This review
conducts a systematic examination of the literature covering
cultural bias and intersecting biases in CLIP-based TTI
models, including gender and racial/ethnic stereotypes that
contribute to cultural misrepresentation.We first analyze how
different types of bias are identified, assessed, and measured
in generated images. We then review approaches for bias
mitigation, including interventions in model architecture,
dataset composition, and prompt engineering strategies.

Our contributions in this work are summarized as:

1) A systematic review of existing literature on cultural
bias in CLIP-based TTI models in works that address
it directly or through its compounding dimensions:
racial/ethnic, gender and social biases.

2) An in-depth review and analysis of identification,
evaluation and measurement of the investigated biases.

3) A comparative analysis of bias mitigation methods in
TTI generation and their effectiveness.

4) Identification of research gaps and actionable recom-
mendations to mitigate cultural bias in TTI models,
fostering inclusivity and diversity in AI-generated
imagery.

The rest of this review first provides a background
on TTI generation and cultural bias in TTI models in
Section II. followed by detailed methodology of the review
in Section III. We then show the results in detail, explaining
the selected studies in the review and answering the research
question followed by thematic findings of the research
in Section IV. A discussion section is then provided in
Section VI and the limitations of the research are explained,
and finally, the systematic review and its findings are
concluded in Section VII.

II. BACKGROUND AND RELATED WORK
This section provides an overview of the main components
of this systematic review. First, it delves into the key
technologies, models, and recent advances that have shaped

FIGURE 4. Sample of AI-generated images, generated using Stable
Diffusion with the prompt ‘‘An American family’’ on the first row and ‘‘An
Asian family’’ in the second row. The images showcase racial or ethnic
bias where the model only depicts a certain race or ethnicity for an
attribute that bears multiple races.

the field of TTI generation. Next, an overview is provided
on cultural and the dimensions that compose it. Finally,
it discusses the methods of bias evaluation and mitigation that
have been developed.

A. OVERVIEW OF TTI MODELS
At the core of TTI generation is the fusion of natural
language processing (NLP), computer vision, and generative
modeling. NLP is pivotal in interpreting and encoding textual
descriptions into a format suitable for generative models.
Language models that have been pre-trained, like BERT,
GPT, and T5, are typically used to derive semantic features
from the text [32], [33], [34]. These features are then
converted into embeddings that steer the image creation
process. By capturing the subtleties of language, NLP ensures
that the produced images match closely the input text.

Generative Adversarial Networks (GANs) have been
a fundamental component of TTI generation since their
introduction [35]. A GAN consists of two neural networks:
a generator and a discriminator. The generator creates
images from textual embeddings, while the discriminator
evaluates the realism and quality of these images. Through an
adversarial process, the generator learns to produce increas-
ingly realistic and semantically aligned images. Models
like AttnGAN [36] and StackGAN [37] have demonstrated
the ability to generate high-resolution images by refining
the generation process in multiple stages. These models
incorporate attention mechanisms to focus on specific parts
of the text, ensuring finer details in the generated images.

Another important class of generative models used in TTI
generation is Variational Autoencoders (VAEs) [38]. VAEs
encode input data into a latent space and then decode it
to generate new samples. In the context of TTI generation,
VAEs are often combined with text encoders to map textual
descriptions into the latent space, which is then decoded into
images. While VAEs tend to produce smoother and more
diverse outputs compared to GANs, they often struggle with
generating high-resolution images. Hybrid approaches, such
as VAE-GANs, have been proposed to combine the strengths
of both models, achieving a balance between image quality
and diversity [39].
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TABLE 2. Summary of CLIP and popular state-of-the art CLIP-based text-to-image models.

CLIP and CLIP-based TTI Models: CLIP is a multimodal
model developed by OpenAI that learns to associate images
and text by training on a large dataset of image-caption
pairs [9]. It excels in zero-shot learning, enabling it to
understand and generate visual concepts based on textual
descriptions. Many state-of-the art TTI models incorpo-
rate CLIP, either fully or partially to enhance text-image
alignment, refine outputs, and evaluate biases.

Although DALL·E 1 does not integrate CLIP in its
generation process, it was later evaluated using CLIP to
measure text-image consistency and rank outputs based on
alignment [1]. DALL·E 2 builds on this by integrating CLIP’s
text and image encoders, mapping textual descriptions into
a shared embedding space to improve coherence between
prompts and images [23]. Stable Diffusion uses CLIP’s text
encoder to convert prompts into embeddings that guide the
diffusion model [10].
GLIDE andDeepFloyd IF leverage CLIP to rank and refine

generated images, ensuring closer alignment with textual
descriptions [30], [40]. Other models, such as BigGANs and
CLIP-Guided VQGAN, use CLIP’s multi-modal embeddings
for text-driven image modification [22], [41]. Meanwhile,
DALL·E 3 builds on CLIP’s architecture to enhance prompt
comprehension and output consistency [31].
Despite these advancements, challenges remain in TTI

generation. Ensuring fine-grained control over image
attributes, improving the diversity of generated outputs, and
addressing ethical concerns such as bias and misuse are
ongoing areas of research. These models inherit biases from
their training datasets, which are often web-scraped and

reflect societal stereotypes. Bias in TTI models manifests in
various forms, including gendered representations, cultural
stereotypes, and over-representation of dominant groups,
leading to fairness concerns in AI-generated imagery.

B. CULTURAL BIAS IN TTI MODELS
At its core, bias is defined as the lack of internal validity or
incorrect assessment of the association between an exposure
and an effect in the target population in which the statistic
estimated has an expectation that does not equal the true
value [21]. In a simple sense, bias is an inclination or
prejudice for or against one person or group, especially in
a way considered to be unfair. Hence, cultural bias refers to
the tendency to interpret or judge phenomena by standards
inherent to one’s own culture [42].

Unlike biases that arise solely from demographic attributes
such as gender or race, cultural bias is rooted in the
norms, values, beliefs, traditions, and symbols of a given
culture. It reflects how models trained on culturally dom-
inant data may normalize certain worldviews, aesthetics,
or practices while marginalizing or misrepresenting oth-
ers. Cultural biases reflect differences between individuals
and groups, often manifesting in varying preferences for
specific characteristics. These differences can be observed
across socio-economic status, language, race, ethnicity, and
sexuality.

While cultural bias can intersect with other forms
of social bias, such as racial or gender bias, it also
operates independently—for example, in how models
depict culturally-specific attire, religious rituals, or family

VOLUME 13, 2025 122639



W. Elsharif et al.: Cultural Bias in Text-to-Image Models: A Systematic Review

FIGURE 5. Timeline summarizing the development of CLIP and major
state-of-the-art text-to-image (TTI) models alongside their respective
training datasets. The figure illustrates the chronological progression of
models from 2021 to 2024, marking a shift from early CLIP-guided models
to more sophisticated diffusion-based architectures. It also highlights the
increasing reliance on large-scale and multimodal datasets, underscoring
the influence of dataset composition on the representational behavior
and bias tendencies of each model generation.

structures. Cultural bias can reinforce stereotypes or
misconceptions about certain cultures and, in some cases,
contribute to racial and ethnic profiling [43].

Bias in TTI generation is a critical issue that reflects and
amplifies societal inequalities, particularly in the areas of
gender, race, and socio-economics. These biases often arise
from the datasets used to train generative models, which
may contain imbalanced or stereotypical representations of
different groups [11]. In the context of TTI models, bias
manifests in multiple dimensions, where certain groups
are overrepresented while others are marginalized. This
systematic review focuses on cultural bias as the main theme,
exploring how different biases—gender, racial or ethnic,
and class-based biases—interact with cultural norms and
perspectives.

1) GENDER BIAS
Gender bias is the preference or prejudice toward one gender
over the other [44]. It is frequently observed when models
associate certain professions with specific genders, such as
generating images of women for prompts like ‘‘A nurse’’
and men for prompts like ‘‘A doctor’’, as illustrated in
Fig.1, a classic form of stereotype in Western culture. These
outputs mirror historical and cultural stereotypes that have
long defined gender roles in society. Such biases not only
perpetuate outdated norms but also limit the representation of
diverse gender identities in generated images. However, these
biases are not uniform across cultures. In Western cultures,
AI-generated images often align with traditional professional
gender norms, reinforcing existing disparities in workforce
representation. In contrast, some non-Western societies may
have different cultural norms around gender roles that TTI
models fail to capture due to predominantly Western-centric
training data.

2) RACIAL/ETHNIC BIAS
Racial bias can be defined as a distortion arising from
systemic, institutional, interpersonal or individual forms
of explicit (conscious) or implicit (unconscious) prejudice
against individuals or groups based on social constructs
of race or ethnicity that influences the planning, methods,
results, interpretation, dissemination and application of
health research [45]. Another significant challenge in TTI
generation, often resulting from datasets that lack diversity
or overrepresent certain racial groups. For example, prompts
like ‘‘surgeon’’ may predominantly generate images of
lighter-skinned individuals [46], while prompts like ‘‘athlete’’
or ‘‘manual laborer’’ may overrepresent darker-skinned
individuals. These biases stem from historical and cultural
inequalities that have marginalized certain racial groups in
professional and societal contexts. The consequences of such
biases are far-reaching, as they reinforce harmful stereotypes
and contribute to the underrepresentation of minority groups
in positions of authority or prestige.

3) SOCIAL BIAS
Social bias refers to the unfair treatment or discrimination
for or against an individual, group, or set of beliefs in a
way that is prejudicial or unjust [47]. This form of bias is
broad in scope, as it encompasses multiple dimensions by
definition. It can appear in various ways, including biases
related to age, occupation, ability, socioeconomic status,
and other social factors. For example, older individuals
may be underrepresented in tech-related imagery, reinforcing
the stereotype that technology is primarily for younger
generations [48]. Similarly, AI-generated images often depict
high-status professions, such as CEOs or scientists, as pre-
dominantly male, while caregiving roles, such as teachers
or nurses, are commonly portrayed as female. Religious and
class-based biases can also emerge, with generative models
frequently associating certain social classes with specific
occupations or depicting religious attire in ways that reinforce
stereotypes rather than diverse representations.

4) BIASES INTERSECTIONALITY
In 1989, Crenshaw and Bartlett [49] highlighted howmultiple
forms of discrimination—such as gender, race, and class—
overlap, creating compounded disadvantages. In the context
of TTI models, these overlapping biases do not merely
coexist—they interact in ways that construct and reinforce
culturally biased narratives. Intersectionality is thus not
just a measure of compounded demographic bias but a
key mechanism through which cultural misrepresentation is
generated.

For instance, gender bias may lead to nurses being depicted
as female, while racial bias reinforces that they are often
women of color, whereas doctors are more likely to be white
men as in Fig.1. Similarly, wealth is predominantly associated
with white men, while poverty is assigned to racially
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FIGURE 6. PRISMA flow diagram of study selection.

marginalized women, as in Fig.3, reinforcing entrenched
cultural stereotypes of success and hardship.

These visual biases reflect more than statistical
imbalance—they project dominant cultural assumptions
about roles, status, and identity. Socioeconomic status inter-
sects further, with high-paying professions often portrayed as
white and male, while lower-wage jobs depict marginalized
groups. Cultural bias also shapes representation, such as
the monolithic portrayal of Muslim women solely in hijabs.
Fig.2 shows the images generated with Stable Diffusion when
prompted with ‘‘A Middle Eastern teacher’’, in the top row.
The model tends to portray the teacher as a male while in

reality, female teachers represent around half of the teaching
force in the Middle East and North Africa Region [50].
On the other hand, in the second row, the model portrays the
neutral prompt ‘‘A teacher’’ strictly as females, reflecting the
Western bias of assigning caring occupations such as teaching
to females.

However, the model still portrays biases that might
stem from an inherent model misconception about the
culture. Fig.4, on the other hand, showcases intersection
of geo-cultural bias and racial bias, where prompts
containing geographic terms like ‘‘American family’’
or ‘‘Asian family’’ repeatedly produce images featuring
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a single race, ignoring racial diversity within those
regions.

These intersecting biases work collectively to define
and constrain cultural representations in generative outputs.
They shape what is considered ‘‘normal,’’ ‘‘professional,’’
or ‘‘traditional,’’ based on dominant cultural lenses—often
Western, urban, and affluent—while alternative cultural
perspectives are rendered invisible or stereotyped. In this
way, cultural bias is not merely the sum of demographic
misrepresentations, but the outcome of how intersecting
social hierarchies are encoded and reproduced visually by AI
systems.

Addressing intersectional biases requires diverse training
datasets and fairness metrics that account for overlapping
cultural factors. Without such efforts, AI-generated imagery
will continue to perpetuate systemic inequalities rather than
fostering inclusive and accurate representations.

In addition, cross-cultural research highlights that biases in
generative models often stem from cultural cues that shape
perception and representation. For instance, construct bias
occurs when culturally grounded concepts—like filial piety
in East Asia versus the West—are represented differently,
leading to incomplete or skewed visual interpretations.
Similarly, stereotypes embedded in cultural narratives can
reinforce reductive or exoticized depictions; as seen in
Dagestani cultural contexts, where traits like ‘‘hot-tempered’’
or ‘‘cunning’’ are unfairly generalized across ethnic lines.
These cultural cues, when internalized by models through
training data, result in outputs that mirror entrenched social
biases, often amplifying them. Therefore, biases in TTI
systems are not just technical flaws—they are reflections of
broader societal stereotypes and historical asymmetries that
vary across cultural contexts [51], [52].

C. BIAS EVALUATION AND MITIGATION IN TTI MODELS
Bias in TTI models is typically identified and quanti-
fied through a combination of qualitative and quantitative
approaches. Common evaluation methodologies include
prompt-based analysis, where carefully crafted prompts are
used to elicit and analyze biases in generated images [53],
[54]. Another approach is embedding association tests
(EATs), which extend techniques like the Word Embedding
Association Test (WEAT) to measure implicit biases in
multimodal systems [55]. Additionally, human evaluation
remains a key method, as annotators can identify nuanced
biases that automated tools may overlook [56], [57]. To scale
analysis, researchers also leverage automated metrics and
tools, such as CLIP-based models and vision-question
answering (VQA) systems, to systematically quantify bias
across large datasets [58], [59]. More recently, latent space
analysis has provided insights into how biases are embedded
within model architectures, offering new avenues for both
detection and mitigation [60].
Mitigation strategies for bias in TTI models generally

fall into four broad categories. Linguistic interventions

modify prompts to reduce bias, though their effectiveness
is often inconsistent [61], [62]. Model-centric adjustments,
such as fine-tuning and architectural modifications, have
demonstrated promise in reducing bias at a deeper level, with
techniques like cross-attention disentanglement significantly
improving fairness [63], [64]. Post-hoc corrections, including
image filtering and debiasing frameworks, attempt to address
biases in the final output, though they may not fully
mitigate underlying model biases [65], [66]. Lastly, cross-
modal approaches align text and image representations
more equitably, leveraging multimodal learning techniques to
reduce representational disparities [67], [68].

Despite advancements in bias evaluation and mitigation,
challenges persist, including inconsistencies in bias mea-
surement, scalability issues, and the evolving nature of
cultural representations. Standardized benchmarks, such as
BIGbench and FAIntbench, have improved bias quantifica-
tion [58], [69], but issues like overcorrection and adversarial
vulnerabilities remain. Addressing these challenges requires
interdisciplinary collaboration and the development of robust,
context-aware methodologies to ensure that generative AI
models promote fair and inclusive representations rather than
reinforcing existing stereotypes.
Key Findings and Research Gaps: Recent research

has significantly advanced TTI models by integrating
powerful architectures such as CLIP, diffusion models,
and transformer-based encoders, which have improved
image-text alignment and output fidelity. However, cultural
representation remains a core challenge. While technical
innovations enhance generation quality, they often perpetuate
biases embedded in the underlying datasets. A growing
body of work now investigates intersectional bias—gender,
race, class, and culture—as critical to understanding fairness
in generative outputs. Evaluative frameworks have become
increasingly sophisticated, combining human annotationwith
large-scale automated analysis, yet consistency in metrics
and cultural nuance detection remains limited. Mitigation
strategies have evolved from prompt engineering to structural
model changes and post-hoc corrections, but none offer
comprehensive solutions. Notably, cross-modal and latent
space interventions show emerging promise in addressing
deep-seated representational biases. Despite this progress,
key gaps persist, including the lack of culturally diverse
training datasets, standardized bias benchmarks sensitive
to cultural variation, and interdisciplinary approaches that
bridge technical and socio-cultural perspectives.

III. METHODOLOGY
A. RESEARCH QUESTION
This systematic review investigates cultural bias in TTI
models, particularly CLIP-based vision-language models.
The key research questions guiding our review are:

• RQ1: What are the prevalent methods and frameworks
used to identify andmeasure cultural bias in CLIP-based
TTI models?
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• RQ2: How effective are existing bias mitigation
strategies—such as prompt engineering and fine-
tuning—at reducing cultural bias in CLIP-based TTI
models?

• RQ3: What challenges exist in measuring and miti-
gating cultural bias in TTI models, and what practical
considerations influence their adoption in real-world
applications?

B. SEARCH STRATEGY
A systematic search was conducted in five major databases:
Scopus, Web of Science, ArXiv and Google Scholar. The
search terms were designed to capture three key dimensions:

• TTI Models: Keywords included ‘‘text-to-image
generation,’’ ‘‘multimodal generative model,’’ ‘‘CLIP
model,’’ ‘‘vision-language model,’’ ‘‘diffusion model,’’
‘‘DALL-E,’’ and ‘‘Stable Diffusion.’’

• Bias Concepts: Terms such as ‘‘bias,’’ ‘‘prejudice,’’
‘‘stereotype,’’ ‘‘unfairness,’’ ‘‘disparity,’’ ‘‘misrepresen-
tation,’’ and ‘‘cultural bias’’ were incorporated.

• Evaluation and Mitigation Strategies: Keywords
included ‘‘bias measurement,’’ ‘‘bias mitigation,’’ ‘‘fair
representation,’’ ‘‘ethical AI’’, and ‘‘visual fairness.’’

Studies published from 2000 to 2024 were considered.
The PRISMA framework was used to ensure a rigorous and
transparent selection process.

C. INCLUSION AND EXCLUSION CRITERIA
Inclusion Criteria:

• Studies analyzing cultural bias in TTI models.
• Research investigating CLIP-based models, DALL-E,
Stable Diffusion, or similar generative models.

• Papers evaluating or developing bias mitigation tech-
niques (e.g., prompt engineering, fine-tuning, dataset
interventions).

• Peer-reviewed journal articles or conference
proceedings.

• Full-text availability in English.
Exclusion Criteria:
• Studies unrelated to cultural bias or fairness in AI.
• Research that does not involve TTI models.
• Reviews, meta-analyses, and tutorials without experi-
mental results.

• Non-English publications or those with inaccessible full
texts.

D. DATA EXTRACTION
Keymetadata and analytical components were extracted from
each included study:

• Studymetadata:Title, authors, publication year, venue.
• Research focus: Core aim, hypothesis, and
contribution.

• Models Investigated:CLIP, Stable Diffusion, DALL-E,
Midjourney, etc.

• Bias Category: Gender, racial, ethnic, cultural,
or societal biases.

FIGURE 7. Bar graph illustrating the selected studies count per
publication type: journal articles, conference papers or arXiv pre-prints.
The chart reveals that conference papers constitute the largest share of
the selected literature, followed by arXiv preprints and a smaller portion
of peer-reviewed journal articles. This reflects the rapidly evolving nature
of research in TTI bias, where timely dissemination often occurs via
preprints and conferences prior to formal journal publication.

• Mitigation Strategies: Prompt engineering, fine-
tuning, dataset augmentation.

• Evaluation Metrics: Fairness scores, diversity indices,
subjective human assessments.

• Outcomes: Effectiveness of bias mitigation techniques,
identified challenges.

All studies were coded for:

• Bias type addressed (e.g., gender, racial, ethnic).
• Mitigation technique used (e.g., prompting strategies,
model adjustments).

• Evaluation methods (e.g., fairness scores, bias audits,
expert reviews).

E. SYNTHESIS APPROACH
A combination of quantitative and qualitative methods was
used to synthesize findings:

• Descriptive Statistics: Summarized publication trends,
bias types, and model categories.

• Comparative Evaluation: Compared bias mitigation
techniques based on reported effectiveness.

• Thematic Analysis: Identified common limitations,
challenges, and best practices.

• Visualization: Findings were presented using tables,
heatmaps, and radar charts for bias mitigation perfor-
mance comparison.

IV. RESULTS
A. STUDY SELECTION OVERVIEW
A total of 1,640 studies were initially retrieved from three
databases: Scopus (n = 966), Web of Science (n = 606), and
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FIGURE 8. Bar graph illustrating the selected studies count per study
focus. The figure shows that the majority of the studies focus on
analysis-only approaches, indicating a research emphasis on identifying
and describing bias over actively addressing it. A smaller portion of
studies engage in both evaluation and mitigation, suggesting an
underexplored area in bias reduction efforts. This imbalance underscores
the need for more holistic frameworks that integrate analysis, evaluation,
and mitigation strategies in TTI research. (Figure redrawn).

TABLE 3. Distribution of selected study types.

ArXiv (n = 68). After duplicate removal (n = 487), 1,153
unique studies remained for screening.

Following title and abstract screening, 976 studies were
excluded based on the following criteria:

• Not focused on bias: (n = 239)
• Not a TTI or Vision-Language Model: (n = 370)
• Neither bias nor TTI/vision-language related:
(n = 348)

• Survey, tutorial, or meta-analysis: (n = 18)
• Wrong publication type: (n = 1)
After full-text screening (n = 177), an additional 118

studies were excluded:
• Not a CLIP-based TTI model: (n = 49)
• No cultural bias focus: (n = 25)
• Cultural bias present but no mitigation strategy:
(n = 7)

• Full text not available: (n = 33)
• Partial cultural bias focus with incorrect emphasis:
(n = 5)

This resulted in 58 studies included for final analysis. The
study selection process is summarized in Fig. 6.

B. DESCRIPTIVE ANALYSIS OF INCLUDED STUDIES
The bar chart in Fig.9 illustrates the bias dimensions in the
included studies in our review. It highlights the extensive
research efforts that have been devoted to studying gender and

FIGURE 9. Bar chart of bias dimensions investigated in selected studies.
The chart shows that gender and racial/ethnic bias are the two most
investigated bias dimensions. The figure also reveals that other critical
dimensions—such as culture, class, and religion—remain significantly
underexplored. This disparity highlights a research gap where culturally
nuanced biases and intersectional factors are often overlooked, despite
their crucial role in shaping fair and inclusive TTI outputs.
(Figure redrawn).

racial/ethnic bias, social bias and its different manifestations
have also been investigated in CLIP-based TTI models with
varying.

C. SYSTEMATIC MAPPING OF STUDY RESULTS
In this section, we map the studies included in the survey to
answer the research question identified previously.

1) BIAS IDENTIFICATION AND MEASUREMENT
This subsection reviews methodologies employed to identify
and measure biases in TTI models, categorizing 45 studies
into Evaluation and Analysis (developing new metrics and
protocols) and Analysis Only (documenting and critiquing
biases). The studies are organized bymethodology, highlight-
ing key tools and findings.

a: PROMPT-BASED ANALYSIS
Prompt-based analysis is one of the most common method-
ologies for evaluating bias in TTI models. Researchers design
prompts to elicit specific biases and analyze the generated
images for demographic or thematic patterns. For example,
Mannering [53] used paired male/female prompts to reveal
gender associations in Stable Diffusion and DALL·E mini,
finding that male prompts were associated with items like
ties and trucks, while female prompts generated handbags
and bowls. Similarly, Masrourisaadat et al. [54] employed
176 carefully designed prompts (88 for gender and 88 for
racial bias) to generate 2,816 images, which were then
categorized by human evaluators. Other studies, such as [61],
[70], [71], [72], and [73], have used profession-based or
diagnostic prompts to uncover biases in gender, race, and
mental health depictions.

b: EMBEDDING ASSOCIATION TESTS
Embedding association tests (EATs), such as the Word
Embedding Association Test (WEAT) and Sentence-Context
WEAT (SC-WEAT), measure implicit biases in word
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embeddings by computing cosine similarities between social
groups and concepts. Caliskan [55] extended these tests to
vision and vision-language models, uncovering biases in
gender, race, and social representations. This approach has
been widely adopted to quantify biases in models like Stable
Diffusion and DALL-E, revealing their tendency to amplify
stereotypes.

c: HUMAN EVALUATION
Human evaluation involves manual categorization and analy-
sis of generated images by human annotators. This method
is particularly effective for assessing subtle biases that
automated systems might miss. For instance, Ali et al. [56]
used seven independent reviewers to analyze 2,400 images
across surgical specialties, comparing them to real-world
demographic data. Similarly, Gisselbaek et al. [57] employed
human evaluators to categorize AI-generated images of
intensivists by sex, age, and race/ethnicity. Other studies,
such as [69], [74], [75], and [76], have combined human
evaluation with automated metrics to ensure robust bias
assessment.

d: AUTOMATED METRICS AND TOOLS
Automated metrics and tools provide scalable and objective
measures of bias in TTI models. These include CLIP-based
alignment models, Fréchet Inception Distance (FID), and
Vision Question Answering (VQA) systems. For example,
Luo et al. [58] introduced FAIntbench, a benchmark that
uses 18 automated metrics to evaluate bias across 2,654
prompts and 2.1 million images. Similarly, D’Incà et al. [59]
developed GradBias, a gradient-based method to quantify
how individual words influence bias in generated images.
Other tools, such as TIBET [77], OpenBias [78], and [79],
leverage large language models (LLMs) and VQA systems
to detect and quantify biases dynamically.

e: LATENT SPACE ANALYSIS
Latent space analysis involves examining the internal rep-
resentations of TTI models to identify biased patterns.
Luccioni [60] employed clustering-based evaluation to quan-
tify demographic disparities in Stable Diffusion and DALL·E
2. These methods provide insights into how biases are
embedded in the model’s latent space and offer opportunities
for mitigation.

f: NOVEL FRAMEWORKS FOR BIAS DETECTION
Several studies have proposed novel frameworks for bias
detection and quantification. For example, Wang et al. [80]
adapted the Implicit Association Test (IAT) to create the
Text-to-Image Association Test (T2IAT), measuring implicit
associations between concepts and social attributes. Simi-
larly, Seshadri et al. [81] compared Stable Diffusion outputs
to training dataset distributions tomeasure bias amplification.
Other frameworks, such as [63] and [82], introduce advanced

techniques like cross-attention editing and time-dependent
importance reweighting to address intersectional biases.

2) BIAS MEASUREMENT METRICS
Building on the findings from the studies previously
reviewed, this subsection examines the metrics used to
quantify bias in TTI models. The methodologies employed
across these studies reveal a diverse set of approaches
for assessing bias, ranging from demographic distribution
analysis to embedding-based evaluations, automated classi-
fication, statistical scoring, and large-scale benchmarking.
Table 4 provides an overview of the various biasmeasurement
metrics identified.

A predominant approach in bias evaluation involves
analyzing the demographic distribution of generated images,
particularly in terms of gender and racial representations.
Several studies [54], [56], [79], [83], [84], [85] measure the
proportion of male and female figures or different racial
groups in generated outputs and compare them to expected
real-world distributions. In cases where equal representation
is desired, Mean Absolute Deviation (MAD) is commonly
used to quantify deviations from uniform demographic
distributions [79], [85].
Other statistical measures include the Neutrality met-

ric [70], which assesses demographic skews in models
prompted with bias-neutral descriptions, and the Stereotype
Score [86], which quantifies the extent to which certain
professions and roles are disproportionately associated with
specific demographic groups.

Embedding-based approaches offer an alternative method
for measuring bias by analyzing associations in the latent
space of multimodal models. Caliskan [55] applies the Word
Embedding Association Test (WEAT) and its multimodal
variant, SC-WEAT, to identify implicit associations between
social concepts and demographic attributes using cosine
similarity. Similarly, Wang et al. [80] introduces the Text-
to-Image Association Test (T2IAT), adapting the Implicit
Association Test (IAT) from psychology to measure biases
embedded in TTI model outputs.

Several studies employ automated image classification
techniques to quantify bias. BLIP-2 is frequently used to
classify gender through visual question answering [79], [87],
while FairFace and DeepFace are employed to analyze
racial and ethnic representations in generated images [85].
Additionally, Cho et al. [79] incorporates the Face Alignment
Network (FAN) and TRUST models to improve skin tone
classification.

Object segmentation techniques, such as the Segment
Anything Model (SAM), have been utilized to separately
evaluate biases in objects and backgrounds within generated
images [73], highlighting how models can reinforce stereo-
types not only through human depictions but also through
scene composition.

Beyond direct classification, some studies introduce statis-
tical scoring mechanisms to assess bias at a systemic level.
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TABLE 4. Overview of bias measurement metrics in text-to-image studies, including their scales.

Luo et al. [69] presents implicit and explicit bias scores
that measure deviations from real-world demographics, while
also introducing amanifestation factor to distinguish between
biases arising from a lack of diversity versus those resulting
from active stereotyping.

Jiang et al. [67] proposes Bias-W (overall bias) and
Bias-P (within-image bias) to quantify disparities in

multi-individual images, offering a structured framework for
assessing representational imbalances.

Bias assessment also extends to evaluating realism and
diversity in generated images. Ma et al. [88] applies
Fréchet Inception Distance (FID) and its CLIP-based
variant (FIDCLIP) to evaluate the realism and seman-
tic alignment of images. To quantify cultural diversity,
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Zhang et al. [74] introduces the Vendi Score, an entropy-
based metric that measures how well models capture diverse
cultural representations.

In addition, the Classification Accuracy Score (CAS) [88]
is used to evaluate the correctness of regional and cultural
depictions in generated outputs.

A growing number of studies highlight the importance of
measuring intersectional and socioeconomic biases, where
multiple demographic attributes influence model outputs.
Jiang et al. [67] measures bias at the intersection of gender
and race, identifying cases where models amplify disparities
across these categories.

Wu et al. [85] extends this analysis to socioeco-
nomic biases, showing how models disproportionately
associate racial groups with specific economic condi-
tions, such as linking marginalized groups with poverty
while predominantly depicting White individuals in affluent
settings.

Ghosh [90] examines caste bias using CLIP-based cosine
similarity, revealing disparities in how different caste
identities are represented in Stable Diffusion’s generated
images.

To facilitate systematic bias evaluation across multiple
models, some studies introduce large-scale benchmarks.
Luo et al. [69] presents BIGbench, a dataset containing
47,040 structured prompts designed to measure biases in
gender, race, and occupational depictions.

Luo et al. [58] extends this approach with FAIntBench,
a large-scale benchmark applying 18 automated bias metrics
to over 2.1 million generated images.

Additionally, Lee et al. [92] introduces the Holistic
Evaluation of Text-to-Image Models (HEIM), which inte-
grates CLIP-based fairness metrics with large-scale human
evaluations to compare biases across 26 different TTI
models.

As summarized in Table 4, the surveyed studies employ a
wide range of bias measurement techniques, each addressing
different dimensions of bias in generative models. Demo-
graphic distribution analysis remains the most widely used
approach, but embedding-based evaluations and statistical
bias scoring methods provide deeper insights into the
underlying biases within TTI models.

While this review identifies a wide range of bias
evaluation metrics, it is important to note that the
field currently lacks a universally accepted standard
for measuring bias in TTI models. This diversity in
methodologies—ranging from demographic distribution
analyses to embedding association tests and benchmark-
based scoring—makes direct comparison across studies
challenging. Although we summarize commonly used
methods and emerging benchmarks like BIGbench and
FAIntbench, a systematic cross-comparison of these metrics
is beyond the scope of this review. Nevertheless, our
categorization provides a foundation for future work aimed
at developing standardized, culturally-aware evaluation
frameworks.

FIGURE 10. Distribution of bias dimensions across studies. The bar chart
shows the number of studies focusing on gender, race, cultural, and
occupational biases, categorized by study type (Evaluation and Analysis
vs. Analysis Only). Gender bias is the most frequently studied dimension,
followed by race and occupational biases. Notably, cultural bias—despite
being central to this review—is the least addressed in evaluation-driven
studies, indicating a methodological gap in how cultural representation is
systematically assessed. This underrepresentation suggests an urgent
need for developing culturally grounded evaluation tools.
(Figure redrawn).

3) MITIGATION METHODS AND EFFECTIVENESS
Recent advances in bias mitigation for TTImodels reveal four
interconnected paradigms that address different stages of the
generation pipeline.

a: LINGUISTIC INTERVENTIONS: REWRITING PROMPTS,
REWRITING BIAS
The most accessible approaches target prompt engineering,
though their effectiveness varies significantly. Sureddy et al.
[73] demonstrated that replacing region-based prompts
(e.g., ‘‘bag in Europe’’) with adjective-noun constructions
(‘‘European bag’’) reduced geographic stereotyping by 52%.
While Clemmer et al. [62] automated this process using
LLM-based prompt rewriting to achieve 32.8% racial bias
reduction, Bianchi et al. [61] exposed the fragility of man-
ual interventions—explicit counter-stereotypical prompts
often failed to override deeply embedded biases. Even
advanced frameworks like FairCritic [86], which uses GPT-
4 Vision feedback loops, risk overcorrection despite reducing
occupational stereotype scores from 92 to 26.

b: MODEL-CENTRIC ADJUSTMENTS: TWEAKING
ARCHITECTURES
Architectural innovations prioritize surgical precision over
scalability. MIST [63] reduced intersectional bias by 84%
through cross-attention map disentanglement, while plug-
and-play LiVO [64] encoder slashed gender bias by 42%.
Contrastingly, data-centric methods like Diversity Fine-
Tuning (DFT) [106] improved skin tone fairness by 150%
using synthetic datasets—a scalable but computationally
intensive approach. The trade-off is stark: TIW-DSM [82]
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TABLE 5. Summary of bias identification and measurement studies.
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increased underrepresented subgroup accuracy by 70% but
required meticulous timestep-dependent reweighting.

c: POST-HOC CORRECTIONS: FIXING OUTPUTS
Post-generation fixes offer adaptability but inherit model
biases. Naseh et al. [65] detected adversarial triggers via
latent-space clustering, while Dammu et al. [66] reduced
gender disparity by 77% using synthetic corrective images.
However, the Gaussian Mixture Model (GMM) approach
proposed by Pal et al. [99], despite improving facial diversity,
relied on pseudo-labels that perpetuated demographic cate-
gorization. The augmentation framework Chameleon [107]
reduced F1-score disparity for Black individuals from 79% to
27%, treating fairness as an add-on rather than a core design
principle.

d: CROSS-MODAL SYNERGIES: BRIDGING MODALITIES
Multimodal alignment strategies address bias as a sys-
temic misalignment. Jiang et al. [67] linked text tokens
to biased image regions via Linguistic-aligned Attention
Guidance, cutting gender bias scores by 76%. Meanwhile,
Liu et al. [68]’s fusion of text-image alignment metrics
boosted non-Western cultural fidelity by 41%. Hybrid frame-
works like InvDiff [108] improved fair accuracy to 84.6%
but required estimating unlabeled biases—a fundamental
limitation for real-world deployment.

e: CRITICAL SYNTHESIS
Current methods span a spectrum from reactive (post-hoc
corrections) to proactive (architectural redesigns). While
linguistic interventions like prompt engineering lack robust-
ness [87], hybrid approaches combining MIST’s attention-
level adjustments with DFT’s data diversity show promise.
However, as Abrar et al. [103] cautioned, no method
fully eradicates bias—especially against entrenched stereo-
types. Ultimately, effective mitigation requires continuous
sociotechnical dialogue between model outputs and human
values.

4) CHALLENGES AND LIMITATIONS
Although considerable progress has been made in both
measuring and mitigating cultural bias in TTI models,
several challenges persist. These challenges stem from
methodological, technical, and practical limitations that
hinder the deployment of truly fair and robust systems in real-
world applications. Fig.11 showcases the number of selected
studies per mitigation method and Table.6 summarizes the
selected reviewed mitigation focused studies.

• Inconsistency in Bias Elicitation and Measure-
ment: Methods based on prompt engineering—such
as using triggering terms or counter-stereotypical
prompts [61], [89], [103]—often produce incon-
sistent outcomes. Automated metrics (e.g., Dif-
fusionITM [110], MAD [85], and gradient-based

FIGURE 11. Heat map showing the number of works in each mitigation
method category addressing specific bias dimensions. Color intensity
corresponds to the number of studies. Model architecture adjustments
and data-centric methods appear to dominate mitigation efforts for
gender and racial bias, while cultural and intersectional biases are
comparatively under-addressed across all method categories. This pattern
highlights a research imbalance, where technically tractable dimensions
(e.g., gender, race) are prioritized, potentially at the expense of more
complex socio-cultural factors. (Figure redrawn).

attribution [59]) may fail to capture nuanced cultural
contexts, leading to varying assessments of bias.

• Limitations of Evaluation Frameworks: Large-scale
benchmarks like BIGbench [69] and FAIntbench [58]
provide valuable insights, yet they are often constrained
by synthetic prompt designs or limited demographic
representations. Moreover, human evaluations—while
rich in cultural insight—are subjective and difficult to
scale reliably [76], [111].

• Trade-offs in Mitigation Strategies: Fine-tuning and
latent space interventions (e.g., LoRA fine-tuning [98]
and gradient-based debiasing [112]) have demon-
strated significant bias reduction. However, these
methods can compromise image quality or disrupt
identity consistency. In some cases, post-hoc approaches
like LLM-based prompt rewriting [62] may mitigate
surface-level biases without addressing deeper systemic
issues.

• Scalability and Computational Cost: Advanced tech-
niques, such as deep reinforcement learning for bias
characterization [98] and multi-modal evaluation frame-
works [92], demand high computational resources and
complex processing pipelines. These resource-intensive
methods pose challenges for integration into real-time or
large-scale applications.

• Adversarial Bias and Dynamic Cultural Norms:
Models are vulnerable to adversarial attacks that
inject subtle biases [65]. Furthermore, cultural bias
is inherently dynamic and context-dependent, making
it difficult to develop universal fairness metrics or
mitigation strategies that remain valid over time.

• Practical Adoption Considerations: Many of the
proposed methods work well in controlled experimental
settings but face hurdles in real-world deployment.
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TABLE 6. Summary of bias mitigation methods.

Integration with existing systems, the opacity of pro-
prietary models, and the need for real-time processing
are significant concerns. Additionally, regulatory and
ethical considerations, along with varying definitions
of fairness across cultures, further complicate practical
adoption [70], [86].

While various bias mitigation strategies have shown
promising results in experimental settings, their real-world
feasibility and long-term effectiveness remain complex and
context-dependent. Techniques such as prompt engineering
or cross-modal alignment are relatively lightweight and easier
to integrate in end-user systems. However, architectural
modifications or synthetic data augmentation often demand
significant computational resources and technical expertise,
limiting their adoption in production environments.

Moreover, strategies that rely on synthetic balancing or
fairness optimization may unintentionally introduce new
biases or overcorrect existing ones, especially in culturally
nuanced or intersectional scenarios. For example, applying
a Western-centric fairness definition may erase meaningful
cultural expressions in non-Western contexts. To ensure
long-term impact, these methods must be continuously
monitored and refined through feedback loops involving
diverse stakeholders, including domain experts, cultural
practitioners, and affected communities.

From an implementation standpoint, periodic audits,
transparent reporting, and modular fairness layers (e.g., plug-
and-play encoders or decoders) can enhance scalability and
trust. It is also crucial to adapt mitigation strategies to
application-specific needs—e.g., educational vs. commercial
imagery—and regulatory constraints across regions. Future
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work should explore these socio-technical dimensions more
deeply, especially under evolving geopolitical and cultural
contexts. In summary, while multi-faceted approaches to
bias measurement and mitigation have led to promising
improvements, the challenges of inconsistency, scalability,
and evolving cultural norms remain substantial. Addressing
these issues requires not only technical innovations but
also interdisciplinary collaboration and ongoing evaluation
to ensure that debiased TTI models can be effectively and
ethically deployed in diverse real-world contexts.

V. THEMATIC FINDINGS
In this section, we detail the findings from the selected studies
in a thematic fashion, where each theme corresponds to one
of the main bias dimensions in our systematic review.

1) GENDER BIAS
Throughout this review, it is found that gender bias is
one of the most prevalent and well-documented biases
in text-to-image (TTI) models. Across multiple studies,
these models consistently reinforce traditional gender norms,
overrepresent men in high-status professions, and exag-
gerate occupational stereotypes, even when prompts are
gender-neutral.

A dominant theme in the literature is occupational gender
bias. Studies show that models overwhelmingly generate
male figures for high-status professions and female figures
for caregiving or service-oriented roles. When prompts such
as ‘‘a doctor at work’’ or ‘‘a scientist in a laboratory’’ are
used without specifying gender, male figures dominate the
outputs. Sami et al. [71] found that only 2% of 2,280 images
generated for ‘‘As a software engineer’’ featured women.
Similarly, Fadahunsi et al. [101] reported that all Stable
Diffusion models disproportionately depicted male software
engineers, with SD 2 exhibiting the strongest bias, followed
by SD 3 and SD XL.

Apiola et al. [76], Chinchure et al. [77], Wang et al.
[80], Lee et al. [92], Sagar et al. [98], and Luccioni et al.
[60] further confirm that models like Stable Diffusion,
Midjourney, and DALL-E overrepresent men in leadership,
STEM, and labor-intensive roles while depicting women in
caregiving and secondary positions. Cho et al. [79], Shin et al.
[87], Vice et al. [93] observed that nurses and receptionists
are overwhelmingly female, while engineers and mechanics
are almost exclusively male. Currie et al. [83], [100],
[113] found that DALL-E 3 depicted pharmacists as 69.7%
male and cardiologists as 86% male, despite real-world
statistics being closer to gender parity. Additionally, Wan and
Chang [86] found that 74% of generated images reinforced
gender-stereotypical occupations, with CEOs and managers
appearing as men and assistants and interns as women.
Bianchi et al. [61] found that 99% of AI-generated software
developer images depicted white men, despite the actual
U.S. workforce being significantly more diverse. Similarly,
Bianchi et al. [61] reported that housekeepers were almost
always non-white women, while software developers were

nearly all white men. In addition, Seshadri et al. [81]
showed that while LAION’s dataset contains 25% female
engineers, Stable Diffusion’s generated images reduced
that figure to only 10%, amplifying real-world disparities.
Luo et al. [58] found that SDXL, PixArt, and Stable Cascade
produced balanced representations in neutral settings but still
reinforced occupational stereotypes.

Linguistic factors further reinforce gender bias in AI-
generated images. D’Incà et al. [59] found that replacing
gender-specific words with neutral terms like ‘‘person’’ led to
more balanced outputs. while Wang et al. [80] and Lin et al.
[89] reported that words like ‘‘leader’’ strongly favored male
depictions, while ‘‘caring’’ increased female representation.
Ghate et al. [75] additionally highlighted how language also
influences gender bias across translations. In Hindi, models
generated disproportionately more male figures for traits
such as ‘‘business’’ and ‘‘hardworking’’ compared to English.
Additionally, English prompts produced professional office
environments, while Hindi prompts led to images of men
engaged in physical labor. More over, [95] revealed that Sta-
ble Diffusion 2.0 reinforced gender stereotypes in children’s
storytelling, depicting men in leadership roles while women
were placed in caregiving or secondary roles.

Gender bias in TTI models intersects with racial dis-
parities, compounding representational imbalances. Ref-
erence [96] found that DreamStudio (Stable Diffusion)
generated chemists at a 3:1 male-to-female ratio and
overwhelmingly depicted white individuals. Reference [54]
found that Stable Diffusion disproportionately generates
white males in leadership roles, even when given neutral
prompts.

Biases also extend to emotional expression and story-
telling. Reference [104] found that DALL-E 2 not only
underrepresents women in male-dominated fields but also
exaggerates gendered presentational biases. Women were
more likely to be smiling and have their heads pitched
downward, particularly in traditionally female-dominated
roles.

Overall, TTI models do not merely reflect societal
gender norms but actively amplify them. Bias is evident in
occupational portrayals, language-driven disparities, racial
representation, and presentational styles. Despite attempts at
fairness constraints, deeply ingrained biases persist, high-
lighting the need for improved dataset curation, bias-aware
model training, and interventions that challenge entrenched
stereotypes in AI-generated imagery.

2) RACIAL/ETHNIC BIAS
Text-to-image (TTI) models frequently exhibit racial and
ethnic biases, often reinforcing existing stereotypes or
underrepresenting certain demographic groups.

Luo et al. [69] found that these models struggle with
racial pairings in relational prompts, often failing to generate
racially diverse compositions. For instance, they were less
likely to generate an East Asian husband with a White
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TABLE 7. Intersectionality of biases dimensions in TTI models.

wife, while the inverse pairing was more reliably produced,
reflecting asymmetric stereotype reinforcement.

Kuchlous et al. [97] noted that racial bias in TTI models
is among the most difficult to mitigate, often persisting

122652 VOLUME 13, 2025



W. Elsharif et al.: Cultural Bias in Text-to-Image Models: A Systematic Review

despite intervention strategies. Additionally, [69] found that
distilledmodels (e.g., SDXL-Lightning, LCM-SDXL) inherit
and even exacerbate racial biases from their base models,
suggesting that biases are intensified during the distillation
process rather than being neutralized.

Studies such as Shin et al. [87] highlight the persistence
of racial stereotypes, with models defaulting to culturally
ingrained assumptions. For example, monks were over-
whelmingly depicted as Asian males, and racial diversity
was often difficult to adjust even with explicit prompting.
Additionally, models exhibited a Northern Hemisphere bias
in seasonal depictions, such as associating ‘‘January’’ exclu-
sively with winter. While some models, such as DALL·E,
showed more balanced outputs, this raised questions regard-
ing whether AI should reflect demographic realities or
promote representational inclusivity.

Skin tone bias remains a critical issue. Cho et al. [79]
found that TTI models underrepresent darker skin tones, with
most images clustering aroundmid-range values on theMonk
Skin Tone (MST) scale, avoiding both very dark and very
light tones. Similarly, Ali et al. [56] showed that surgeons
were overwhelmingly depicted as White and male, despite
real-world diversity, and that geographic-based prompting
increased non-White representation but failed to improve
gender diversity.

Bianchi et al. [61] found strong racial and geographic
biases in depictions of poverty, crime, and economic status.
Neutral prompts such as ‘‘a poor person’’ disproportionately
generated Black individuals, while ‘‘a terrorist’’ overwhelm-
ingly depicted brown-skinned men with beards, reinforcing
racial profiling. Likewise, when generating images of African
men with cars, models often depicted old or damaged
vehicles, while American men were associated with luxury
cars. Even when countering stereotypes with explicit modi-
fiers (e.g., ‘‘a wealthy African man’’), models continued to
produce stereotypical imagery, indicating deep-seated biases
in training data.

Professional and occupational biases also reflect racial
disparities. Reference [58] found that SDXL, PixArt, and
Stable Cascade favored White individuals in high-status
roles while disproportionately associating darker-skinned
individuals with low-income or negative social contexts.
Similarly, [76] found that doctors and professors were
mostly depicted as White, while criminals and terrorists were
disproportionately shown as dark-skinned men.

Reference [101] identified significant underrepresentation
of Black and Arab individuals across all models. Even with
diverse prompting strategies, SD 2 and SD XL consistently
overrepresented White figures, while SD 3 slightly favored
Asian figures but still neglected Black and Arab populations.
This suggests that racial disparities in AI-generated imagery
persist across multiple iterations and architectures.

These biases are not static but shift over time.Wu et al. [85]
found that negative stereotypes (e.g., depicting criminals and
poor individuals as Black or Latino) decreased in later Stable
Diffusion models but shifted toward Asian individuals. For

example, in SD-XL, 70.5% of images generated for ‘‘poor
person’’ depicted Asians, compared to only 25.5% in SD-1.5.
Meanwhile, White individuals remained largely unaffected
by negative stereotypes across all model versions.

The quality of AI-generated images also varies by racial
representation. Rosenberg et al. [91] found that White indi-
viduals consistently received higher-quality images, while
Black, East Asian, and Indian individuals had lower-rated
outputs. Face verification accuracy was lower for synthetic
faces of non-White individuals, highlighting disparities in
representation and data quality.

3) SOCIAL BIASES
TTI models often encode biases related to social attributes
such as occupation, class, and age. Occupational stereo-
types are particularly pervasive, with AI-generated images
frequently overrepresenting certain demographic groups in
specific professions.

Reference [58] found that SDXL, PixArt, and Stable
Cascade reinforce traditional occupational stereotypes. High-
status professions, such as CEOs, scientists, and software
engineers, are predominantly depicted as male and White,
while service and caregiving roles, such as nurses and
teachers, are disproportionately assigned to women and
people of color.

Reference [76] highlighted age-related biases, with busi-
ness leaders consistently depicted as older White men,
while younger individuals were more frequently shown
in creative and digital professions. Similarly, [57] found
that AI-generated images overrepresented young intensivists
(<40 years old) while significantly underrepresenting older
professionals (>60 years old).

Class-based biases also emerge in AI-generated imagery.
Reference [73] found that images of low-income individuals
in non-Western regions often default to rural, underdeveloped
settings, reinforcing stereotypes about economic status and
geographic development. Likewise, [77] found that models
disproportionately associate wealth with White individuals,
while depictions of non-Western individuals in professional
settings were limited.

4) CULTURAL ASSOCIATIONS AND INTERSECTIONALITY
Cultural associations and cultural representation in TTI
models is often skewed, favoring dominant Western narra-
tives while misrepresenting or marginalizing other cultures.
Reference [87] reported that DALL.E- and Stable Diffusion
frequently reinforced dominant cultural associations, such as
linking ‘‘Lunar New Year’’ exclusively to China or monks to
Asian depictions. Attempts at diversification, particularly by
Firefly, sometimes conflicted with demographic authenticity,
raising ethical concerns about bias mitigation.

Reference [88] analyzed culinary culture in AI-generated
images and found that Stable Diffusion, mini DALL.E, and
DALL.E small exhibited significant bias, with Asian cuisine
receiving less accurate representation compared to European,
North American, and Latin American cuisines. This suggests

VOLUME 13, 2025 122653



W. Elsharif et al.: Cultural Bias in Text-to-Image Models: A Systematic Review

FIGURE 12. Heatmap of bias dimensions across TTI models. The heatmap
visualizes the frequency of studies analyzing four primary bias
dimensions—gender, race, cultural, and occupational—in three prominent
TTI models: Stable Diffusion, DALL-E, and Midjourney. Each cell indicates
the number of studies addressing a specific bias dimension for a given
model, with brighter shades representing higher frequencies. Stable
Diffusion is the most scrutinized model, particularly in relation to gender
and race, suggesting its centrality in fairness research. In contrast, DALL-E
and Midjourney have received comparatively less attention across all
dimensions. This disparity highlights a need for broader evaluation of
cultural and occupational biases across diverse model architectures.
(Figure redrawn).

a training data imbalance favoring Western cultural elements
over non-Western ones.

Stereotypical geographic portrayals are also common.
Reference [73] reported that generated images of Africa
predominantly featured rural landscapes with dirt roads,
whereas European settings often showcased historical stone
architecture. Similarly, [85] found that images of African
individuals frequently depicted poverty-related stereotypes,
such as tattered clothing and deteriorating infrastructure.
Even when countering stereotypes with explicit prompts,
biases were not fully eliminated. Intersectionality compounds
these biases. Reference [60] found that gender and racial
disparities intersect in occupational depictions, with Black
women almost entirely absent from executive positions, while
White men dominated portrayals of CEOs and engineers.
Reference [77] showed that regional biases influenced
gender distributions, such as depicting pharmacists in Europe
as predominantly female, while in Asia and Africa they
were mostly male. Table.7 reports intersectionality between
different bias dimensions that have been reported in the
selected studies.

These biases influence cultural perception, reinforcing
stereotypes about social roles and economic status across
different regions. The entanglement of gender, race, and
cultural associations suggests that TTI models do not merely
reflect biases in their training data but actively reinforce
existing societal hierarchies.
Trends in TTI Models: The TTI models that have been

investigated in the selected literature vary in their count,

FIGURE 13. Bar chart illustrating the frequency of models’ Investigation
in the selected studies. The figure reveals that Stable Diffusion (all
versions) and DALL·E (all versions) are the most frequently examined
models, significantly outpacing others such as Midjourney and Adobe
Firefly. Less commonly analyzed models include Craiyon, Karlo, and
CogView2, indicating a potential gap in comparative analysis across less
popular models.

TABLE 8. Bias amplification trends observed across Stable Diffusion
versions. Studies indicate that gender bias increased significantly in later
versions [85], [101], while racial bias shifted toward different
demographic groups rather than being mitigated [69], [85]. Age bias,
initially less prominent, became more evident in SD-XL [58], [77], and
cultural bias exhibited the strongest increase across versions [68], [74].

performance, and evolution; here we provide a number of
insights into them. Fig.13 reports howmany times eachmodel
has been investigated in a selected study. Table.8 shows
the performance of the Stable Diffusion model over 3 of
its versions across different bias dimensions as reported in
several selected studies.

A. IDENTIFIED GAPS
Although research on bias identification and mitigation in
TTI models has expanded considerably, several critical gaps
remain:

• Diversity in Training Data and Benchmarks:Existing
datasets and benchmarks—such as those discussed
in [68] and [74]—are predominantly Western-centric,
limiting the representation of global cultural nuances
and diverse demographic groups.

• Standardized Evaluation Metrics: While various
quantitative and qualitative metrics have been proposed
(e.g., the DiffusionITM score [110] and Mean Absolute
Deviation [85]), there is no unified framework that
comprehensively captures bias across dimensions such
as gender, race, age, and class.

• Trade-offs inMitigation Strategies:Methods like fine-
tuning [106] and latent space interventions [112] show
promise in reducing bias; however, they often incur
trade-offs such as diminished image quality or disrupted
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identity consistency. Moreover, many strategies target
single bias dimensions rather than the multifaceted
nature of real-world biases.

• Underexplored Intersectionality: Although initial
insights into intersectional biases are provided by
studies such as [60], [77], and [89], the complex
interplay between gender, race, geography, and age is
still insufficiently examined. More work is needed to
understand how these factors interact and compound one
another.

• Dynamic Bias Shifts: As models are updated, some
biases are not reduced but instead shift across dimen-
sions [85]. Tracking and mitigating these evolving bias
patterns remain an open challenge.

• Scalability and Practical Integration: Many of the
current evaluation and mitigation techniques demand
substantial computational resources or manual over-
sight, posing difficulties for their application in real-time
or large-scale, real-world scenarios.

Despite ongoing advances, there is currently no defini-
tive solution to mitigating bias in TTI models. Existing
methods—such as dataset curation, fine-tuning, and prompt
engineering—offer partial improvements but fail to fully
address the structural and cultural dimensions of bias.
This highlights a critical gap: the need for holistic, multi-
level strategies that integrate technical, cultural, and ethical
perspectives to achieve more sustainable and equitable
outcomes.

A notable gap in current bias evaluation practices is the
Western-centric orientation of most existing benchmarks.
Tools such as BIGbench and FAIntbench, while useful, are
largely constructed aroundWestern cultural norms, language,
and societal structures. This focus limits their effectiveness in
detecting biases that affect non-Western or underrepresented
cultural contexts. As a result, models may appear unbiased
when assessed through these benchmarks but still propagate
cultural stereotypes or omissions when generating content
related to other regions. This points to a critical need for
the development of culturally inclusive benchmarks and
evaluation protocols that reflect the diversity of global per-
spectives and experiences. Without this expansion, fairness
assessments in TTI models will remain incomplete and
potentially misleading.

Addressing these gaps is essential for developing robust,
culturally aware, and practically viable TTI systems that
accurately reflect the diverse tapestry of human society.

VI. DISCUSSION
A. INTERPRETATION OF FINDINGS
The body of research on cultural bias in TTI models reveals
that these systems consistently reproduce and often amplify
societal stereotypes. Studies have documented pervasive
biases across multiple dimensions—including gender, race,
age, and class—that not only mirror existing cultural
hierarchies but also reinforce them. For example, numerous

investigations have shown that models tend to overrepresent
dominant cultural narratives (e.g., White, male, Western
aesthetics) while marginalizing non-Western and minority
groups [61], [68], [100].

A promising avenue to enhance and standardize bias
evaluation is the development of Cultural Relevance Index
(CRI) [115]. By integrating multidimensional metrics—such
as those found in benchmarks like BIGbench [69] and
FAIntbench [58]—CRI can offer a unified framework for
quantifying bias across diverse cultural, demographic, and
geographic variables. Standardization through CRI holds the
potential to not only compare models more effectively but
also to guide developers in systematically addressing cultural
misrepresentations.

Although most studies analyze bias as a static issue,
cultural prejudice is in fact dynamic and influenced by
evolving societal norms, media narratives, and political
climates. As socio-cultural contexts shift, so too do the
ways in which prejudice manifests in TTI outputs. Current
models are often trained on static datasets that fail to reflect
these ongoing changes, leading to outdated or mismatched
visual representations. Therefore, we emphasize the need
for longitudinal studies and adaptive model design that can
capture and respond to the temporal evolution of cultural
norms. Incorporating continuous learning strategies and
regularly updating training data with culturally relevant
content can help TTI systems remain aligned with current
values and reduce the entrenchment of obsolete stereotypes.

B. BROADER IMPLICATIONS
The ethical and societal implications of biased TTI mod-
els are profound. When AI systems reinforce harmful
stereotypes—such as associating leadership exclusively with
White men or reducing non-Western cultural traditions to
simplistic or impoverished images—they risk perpetuating
inequality and further marginalizing already underrepre-
sented groups. The erasure or misrepresentation of diverse
cultural identities in AI-generated imagery can distort public
perceptions and influence decision-making processes in areas
such as media, education, and employment.

In response to these challenges, there is a growing need
for the implementation of policy and ethical frameworks
that can govern the responsible development and deployment
of TTI models. Ethical AI design should be rooted in
principles of transparency, inclusivity, accountability, and
cultural sensitivity. This includes adopting auditing tools
that evaluate representation quality across cultural contexts,
enforcing transparency in data sourcing and labeling, and
ensuring explainability of generative outputs.

On the policy level, regulators and industry bodies can
play a pivotal role by defining culturally-aware standards
and enforcing compliance through certification mechanisms,
similar to existing practices in domains like data privacy
or medical AI. Collaboration between policymakers, ethi-
cists, and technologists is essential for establishing ethical
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guidelines that evolve with cultural contexts. Sector-specific
applications of TTI (e.g., in advertising, education, or media)
may also benefit from dedicated codes of conduct to prevent
cultural misrepresentation.

In response to these challenges, there is significant
potential for policy makers and industry stakeholders to
develop guidelines that promote fairness and accountability
in AI. Establishing clear standards for cultural representation
and bias mitigation in TTI systems can drive the adoption of
ethical practices across the industry. These standards could
be incorporated into regulatory frameworks or best-practice
guidelines, ensuring that developers prioritize culturally
sensitive data collection, transparent evaluation methods like
CRI, and continuous monitoring of model outputs.

Despite the proliferation of evaluation methods, the
absence of standardized bias measurement practices limits
comparability across studies. We recognize the value of con-
ducting a formal comparison of these metrics; however, such
an empirical undertaking—requiring consistent experimental
setups and reimplementation of diverse methodologies—
is beyond the scope of this review. Instead, we highlight
the urgent need for community consensus around culturally
inclusive benchmarks and recommend future research toward
harmonizing evaluation protocols.

In summary, while current research has made valuable
strides in identifying and quantifying cultural biases in TTI
models, there remains a critical need for standardized evalua-
tion processes and robust mitigation strategies. These efforts
must be complemented by policy and ethical frameworks that
govern TTI deployment at scale. The broader societal and
ethical stakes demand coordinated efforts from researchers,
developers, and policy makers to ensure that AI technologies
contribute to a more inclusive and equitable digital landscape.

VII. CONCLUSION
This systematic review synthesized a broad range of stud-
ies investigating bias identification and mitigation in TTI
models. The findings indicate that these models consistently
reproduce and, in many cases, amplify cultural biases across
multiple dimensions—including gender, race/ethnicity, age,
and class—and that such biases often intersect, compounding
the challenges of representation.

Despite promising advances in mitigation strategies, such
as fine-tuning, latent space modifications, and prompt-
based interventions, no single approach has yet achieved
comprehensive fairness without trade-offs in image quality
or representational accuracy. The potential development of
standardized evaluation frameworks could possibly offer
a more unified and systematic means of measuring and
addressing these biases.

The ethical and societal implications of biased TTI models
are significant. By reinforcing harmful stereotypes and
misrepresenting diverse cultural narratives, these models
risk perpetuating inequality and narrowing our collective
understanding of global cultures. Future research must
address the identified gaps—ranging from the need for

culturally diverse training data to more nuanced methods for
capturing intersectional bias—while also exploring dynamic
mitigation strategies that adapt to evolving cultural contexts.

In summary, while considerable progress has been made
in understanding and mitigating biases in TTI models,
substantial challenges remain. Addressing these issues is
critical to ensuring that AI-driven creative tools contribute to
a more equitable and inclusive digital landscape.
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