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Abstract—Implementing advanced Al techniques in industrial
manufacturing requires large volumes of annotated sensor data.
Unfortunately, collecting such data is often impractical due to
extreme environments and the manual burden of expert anno-
tation. Recent advancements in artificial intelligence generated
content (AIGC) have inspired the exploration of industrial time-
series generation to mitigate data shortages. However, existing
AIGC models encounter difficulties in generating industrial time
series due to their complex temporal dynamics, multichannel
intercolumn correlations, and diverse frequency characteris-
tics. To address these challenges, we propose Metalndux-TS, a
frequency-informed AIGC foundation model based on diffusion
model frameworks. This model is designed to generate industrial
time-series data under a variety of working conditions, across
different types of equipment, and with variable lengths. Specif-
ically, Metalndux-TS integrates dual-frequency cross-attention
networks, transforming time series into the frequency domain
to model multivariate dependencies and capture intricate tem-
poral details. In addition, the contrastive synthesis layer is
constructed to generate high-fidelity time series by comparing
periodic and long-term trends with initial noisy sequences. Com-
prehensive experiments show that Metalndux-TS outperforms
state-of-the-art models (SSSD, Dit, and TabDDPM), achieving a
57.5% improvement in fidelity and 20.4% in predictive score.
Metalndux-TS exhibits zero-shot generation -capabilities for
samples under unseen conditions, offering the potential to address
data collection challenges in extreme environments. Codes are
available at: https://github.com/Dolphin-wang/Metalndux

Index Terms—Artificial intelligence generated content (AIGC),
diffusion model, foundation model, generative model, industrial
time series.

I. INTRODUCTION
N RECENT years, artificial intelligence generated content
(AIGC) technologies have made remarkable progress in
various domains [1], [2], including computer vision (CV)
[3], natural language processing (NLP) [4], [5], and audio
[6], [7]. These models leverage generative Al techniques to
simulate the distribution of original data, achieving high-
quality generation results. They have been widely applied,
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such as image enhancement training [8], art design [9], and
the creation of generative world models [10].

In industrial manufacturing, the implementation of advanced
Al techniques [11] requires substantial volumes of annotated
sensor data, but this is often impractical due to challenges,
such as extreme environments, sensor noise, high-frequency
data processing, and the manual burden of expert annotation.
The significant achievements of AIGC foundation models
inspire further exploration of their potential in industrial
manufacturing. Time-series AIGC foundation models have
the potential to generate time-series data, addressing data
shortages and enriching the diversity of industrial signals [12].
This, in turn, enhances the training of industrial deep learning
models.

Despite the significance of foundational generative models,
industrial time series exhibit complex temporal dynamics and
diverse frequency variables that current generative models
struggle to synthesize with high fidelity. Time-series gener-
ative models can be categorized into variational autoencoders
(VAEs) [13], [14], generative adversarial networks (GANSs)
[15], [16], and diffusion models [17], [18]. VAEs utilize an
encoder-decoder architecture to encode the data distribution
into a latent space representation and reconstruct the orig-
inal data via the decoder. However, VAEs often struggle
to capture the intricate structure of high-dimensional data
and exhibit limitations in generating data with rich diversity.
GANs employ adversarial training between a generator and
a discriminator, enabling the generator to produce sequences
increasingly akin to real data distribution. Despite this, GANs
suffer from training instability and are prone to mode collapse.
Recently, diffusion models have achieved significant success
in image and speech generation by progressively adding
and removing noise to generate high-quality data samples.
Although diffusion models have been initially applied in time
series [6], [19], they are constrained to a single frequency
and simple industrial signals, resulting in a limited ability
to capture temporal dynamic patterns. The construction of
the industrial time-series AIGC foundation model faces the
following challenges.

1) Multichannel Intercolumn Correlations: Unlike con-
tinuous pixel values in images, the dimensions in
industrial time-series data represent different variables,
each with unique meanings. The data involve multiple
variables with complex interdependencies, making it
difficult to learn the joint probabilities across these
variables.
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2) Complex Temporal Dynamics Patterns: Industrial time-
series data are collected from physical devices and
reflect the dynamic details of equipment influenced by
real-world environments and performance over time.
These data include long-term degradation processes and
short-term dynamic changes, such as temperature and
pressure fluctuations. The temporal dynamics make it
challenging for diffusion models designed for static
images to synthesize industrial time-series effectively.

3) Diverse Frequency Variables: Fundamental industrial
time-series information is embedded in the frequency
domain, such as the frequencies of vibration sig-
nals. Although recent diffusion models can generate
time series, they primarily focus on temporal domains,
neglecting the rich information in the frequency domain.

To address these challenges, we have constructed a
frequency-informed AIGC foundation model named
Metalndux-TS. This model is specifically designed for
generating industrial time-series data across diverse operating
conditions, with various types of equipment, and at variable
lengths. The core idea is to integrate frequency domain
information to enhance the time-series generation process,
thereby facilitating the learning of complex and diverse
patterns. Specially, Metalndux-TS integrates dual frequency
cross-attention learners into the diffusion framework, which
transforms time series into the frequency domain enabling
the modeling of multivariate dependencies and the capture of
intricate temporal details. Then, considering the periodicity
and long-term trends of time series and comparing them
with initial noisy sequences, a contrastive synthesis layer
is proposed to generate high-fidelity time-series data. Our
contribution can be summarized as follows.

1) A novel AIGC foundation model for industrial time
series is proposed, which integrates dual-frequency
domain information to enhance the generation process.
Through comprehensive experiments, Metalndux-TS
achieves state-of-the-art performance in generating high-
fidelity time series. Furthermore, it demonstrates strong
few-shot and zero-shot generation capabilities, capable
of synthesizing unseen data.

2) Dual-frequency cross learners are proposed to lever-
age the strengths of both frequency domain analysis
and attention mechanisms. Specifically, the frequency
cross-channel learner models multivariate relationships
between channels, while the frequency cross-temporal
learner captures dynamic patterns of time series.

3) The contrastive synthesis layer employs a deep decom-
position model architecture, allowing the generated time
series to synthesize both long-term degradation infor-
mation and short-term detail information, promoting the
precise reproduction of the intrinsic temporal details of
the data during the generation process.

II. RELATED WORKS
A. Generative Foundation Models

The generative foundation models relevant to our work
are mainly based on diffusion probabilistic models, such as
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stable diffusion [20] and Sora [21]. Diffusion probabilistic
models have been widely applied across various domains,
achieving remarkable success. Initially, these models gained
prominence in image synthesis, where methods like denoising
diffusion probabilistic models (DDPMs) [22] progressively
added Gaussian noise and then learned to reverse this pro-
cess for high-fidelity sample generation. Building on this,
advanced models such as DDIM [23] and latent diffusion mod-
els (LDMs) [20] improved efficiency by accelerating reverse
sampling and reducing computational overhead through latent
space diffusion. These advancements extended to video gener-
ation [24], introducing both text-to-video and image-to-video
models, which have significantly advanced video synthesis
technology in academia and industry. Furthermore, diffusion
models have contributed to the design of protein structure
[25] and NLP [26] by generating coherent and contextually
accurate content.

Unlike diffusion models primarily designed for images or
videos with continuous pixel values, Metalndux-TS focuses on
time-series data characterized by complex frequency compo-
nents and intervariable relationships. Metalndux-TS introduces
a frequency-enhanced framework specifically tailored for time-
series generation, enhancing the granularity and detail of
generated sequences.

B. Generative Models for Industrial Time Series

In the realm of industrial time-series generation, several
deep generative models have been explored. VAEs [13], [14]
use an encoder-decoder structure to encode data distributions
into a latent space and reconstruct the original data. However,
VAEs often struggle with capturing the intricate structures of
high-dimensional data and generating diverse samples. GANs
[15], [16] leverage adversarial training between a generator
and a discriminator to produce sequences that closely resemble
the real data distribution. Despite their capabilities, GANs face
issues with training instability and mode collapse. Diffusion
models, with their success in other domains, also show poten-
tial in industrial applications. A diffusion model combined
with a U-Net is proposed for extracting features to enhance
fault diagnosis [17]. A novel adaptive dynamic neighbor
mask (ADNM) mechanism, the Transformer and denoising
diffusion model are combined to effectively identify anomalies
by mitigating reconstruction challenges, achieving state-of-
the-art performance [18]. However, they are constrained to
single frequency and simple industrial signals, resulting in
limited frequency perception and temporal dynamics patterns
capturing capabilities.

Our method considers the temporal dynamics, multivari-
ate dependencies, and frequency characteristics inherent in
industrial time series to address these limitations. We pro-
pose a channel-frequency attention mechanism to enhance
feature representation for frequency-rich data and a temporal-
frequency attention mechanism to capture both long-term
degradation patterns and short-term variations.

III. METHODOLOGY

A. Problem Description and Model Advantages

This section briefly revisits the challenges introduced in
Section I and presents the advantages of Metalndux-TS in
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Fig. 1. Metalndux-TS framework for industrial time-series generation. The model utilizes both a frequency temporal learner and a frequency channel learner
to model the signals in the frequency domain. The right side describes potential industrial applications of the model, such as predictive maintenance (limited
sample augmentation of complex equipment), or industrial metaverse and digital twin systems.

addressing these challenges. Currently, industrial time-series
generation faces the following three major challenges.

1) Multichannel Intercolumn Correlations: Industrial time-

2)

3)

series data exhibit complex intervariable correlations,
making it challenging to model their joint distributions.
Complex Temporal Dynamics Patterns: The data contain
intricate temporal dynamics, including both long-term
degradation and short-term fluctuations, which compli-
cate effective sequence generation.

Diverse Frequency Variables: Essential information
reside in the frequency domain, but existing diffusion
models mainly focus on the temporal domain and over-
look frequency features.

To address these challenges, we propose Metalndux-TS,
which offers the following key advantages.

1y

2)

3)

Modeling Multichannel Dependencies: For time-series
generation, it is essential to account for multichannel
dependencies, as they enable the model to capture
interactions and correlations between different vari-
ables. Metalndux-TS addresses this requirement through
its frequency cross-channel learner, which performs
cross-channel attention after transforming data into the
frequency domain at each timestamp, thereby modeling
the multichannel intercolumn correlations in industrial
time-series data.

Capturing Temporal Dynamic Details: Industrial time-
series data are inherently rich in the frequency-domain
information. The frequency cross-temporal learner in
Metalndux-TS is designed to capture both dynamic
details and long-term temporal patterns. In addition, the
model adaptively attenuates high frequencies to reduce
noise and enhance signal clarity, thus enhancing the high
fidelity of the generated data.

Synthetic Layer for Trend and Seasonality: After
learning the temporal patterns and cross-channel
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Fig. 2. Workflow of the Metalndux-TS.

dependencies, the contrastive synthesis layer recon-
structs the generated time series by explicitly modeling
trend and seasonality components in the frequency
domain. This results in improved fidelity and a more
accurate representation of the industrial time series.

B. Framework of Metalndux-TS

Metalndux-TS is an AIGC foundation model based on
the diffusion probabilistic architecture, as shown in Fig. 1,
specifically designed for industrial time-series generation.

1) Workflow: The workflow is depicted in Fig. 2,
Metalndux-TS generates realistic synthetic time series by iter-
atively denoising random Gaussian noise, effectively capturing
the temporal dependencies of the original data. The workflow
steps involved in each phase are detailed below.

In the training phase, real-world aircraft engine sensor data
are first collected and preprocessed through normalization,
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cleaning, and handling of missing values to ensure consis-
tency. The preprocessed data then undergo a forward diffusion
process, where Gaussian noise is progressively added over
multiple steps, gradually transforming the data into a standard
Gaussian distribution, with the noise intensity controlled by «;.
Finally, Metalndux-TS model is trained to reverse the noise
effects by learning to predict and remove the added noise,
thereby recovering the original time-series data.

In the sampling phase, the process begins with a random
Gaussian noise sample, which serves as the starting point for
generating synthetic data. Using the pretrained Metalndux-TS
model, the reverse diffusion process is performed iteratively to
gradually remove noise and reconstruct synthetic time-series
data that closely resembles the original sensor data. At each
reverse step ¢, the denoised data sample x,_; is computed based
on the distribution

Do (x-11x) = N (o1 pg (x4, 1), Zg (x4, 1))

where gy and X, denote the mean and variance estimates
predicted by the Metalndux-TS model for step ¢, respectivley.

2) Overall Network Architecture: Following the work [22],
our proposed model also employs a U-Net-like structure to
generate time-series data. We modify the convolutional block
to fit for time-series signals instead of images. The key
innovation lies in proposing the frequency temporal learner,
frequency channel learner, and synthetic block to capture char-
acteristics of industrial time series. The overall architecture is
described below, as shown in Fig. 1.

a) Input/Step/Condition Embedding: The embedding
module processes the latent variable, condition, and timestep
t to preserve temporal relationships and condition informa-
tion. The latent variable is encoded using 1-D convolution,
while the timestep information are represented through sinu-
soidal positional embeddings, which provide a structured way
to encode temporal dependencies. By leveraging sinusoidal
functions, this embedding method captures relative positional
information across different timesteps, making it particularly
suitable for modeling periodic patterns in time series. The
embedded timestep representations are then processed through
fully connected (FC) layers to enhance their expressiveness
before being integrated into the model. The condition informa-
tion is encoded using an FC network with masking to ensure
selective conditioning.

b) U-Net-Based Architecture: The primary architecture
consists of encoders, decoders, and a contrastive synthesis
layer, aimed at capturing and reconstructing time-series data.
Specifically, each encoder includes two convolutional layers
and a 1/2 downsampling block, integrating a frequency channel
learner to encode the entire time series and model multivariate
correlations. For the convolutional layers, embedded time steps
and condition vectors are inputted into each layer to retain
diffusion steps and condition information. The middle Conv
block serves as a bridge, refining abstract features between the
encoder and decoder stages. Each decoder corresponds to an
encoder, containing convolutional blocks, frequency learners,
and a 2x upsampling block to enhance details and restore
signals to their original dimensions. Finally, the contrastive
synthesis layer reconstructs the time series by synthesizing
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trend and seasonal information, denoising against the initial
input, and ultimately generating high-fidelity time-series data.

C. Frequency Cross-Channel Learner

Considering channel dependencies for time-series genera-
tion is crucial as it allows the model to capture interactions
and correlations between different variables. The frequency
cross-channel learner is proposed to facilitate communication
between different channels by employing frequency cross-
channel attention at each timestamp, thus enabling the learning
of multichannel intercolumn correlation. This approach aims
to leverage the strengths of both frequency-domain analysis
and attention mechanisms.

Let X, € RT*C be the input of the ith encoder layer, where
T is the number of timesteps for each time series and C is the
channel numbers. The channel dependencies learner takes X,
as input and consists of three stages.

1) Frequency Conversion: This stage converts the input
time series X’ along the timestep dimension to the fre-
quency domain to capture global frequency information.
This converts the input from the time domain to the
frequency domain

Xerr = FFT (X1)) (1

where Xppp € CE*T/2+D_ The FFT allows the model to
analyze periodic patterns and frequency components.

2) Frequency Cross-Channel Attention: Xppr serves as the
initial query Q, while K = FFT(WxX.) and V =
FFT(WvXén), where Wi and Wy are learnable weight
matrices. The direct conversion of @ to frequency is
for obtaining the original frequency features, while the
linear transformation of K,V is for more flexible fea-
ture representations. After converting to the frequency
domain, the Q, K, and V matrices are transposed to focus
on the channel dimension. Then, frequency channel
attention mechanisms are employed to capture depen-
dencies across different channels. This process can be
formulated as follows:

K. =K'

Q.K! )
2ty
Vdj
()

where d; is the dimensionality of the K. vectors.
Softmaxcpan(-) means applying the softmax function
along the channel dimension to normalize the atten-
tion weights, allowing the network to emphasize the
influence of different channels and learn multichannel
correlations in the frequency feature domain.

3) Frequency Inversion: The frequency attention vector X',
obtained from the attention mechanism is mapped back
to the original time-series domain for further downsam-
ple processing. This process can be expressed as follows:

than = IFFT (X;m)

chan

Xt = DownSample (XY, ) - 3)

0.=0",
V.=V"

FreqAtten,, (Q.. K., V) = SoftmaXxchan (



18066

D. Frequency Cross-Temporal Learner

The frequency temporal learner utilizes the Fourier domain
and cross-temporal attention mechanisms to capture long-
range dependencies and intricate patterns that are challenging
to identify in the time domain. In addition, high-frequency
components often represent rapid fluctuations that deviate
from the underlying trend, making them appear more random.
Therefore, we propose an adaptive high frequency mask that
allows the model to dynamically adjust the level of filtering
and remove these high-frequency noisy components.

1) Frequency Conversion and Frequency Cross-Temporal
Attention: To adaptively select important information across
the temporal dimension, we propose the frequency cross-
temporal attention mechanism. This approach, similar to
frequency cross-channel attention, employs FFT and linear
transformations for query, key, and value matrices. The dif-
ference is that the frequency cross-temporal attention focuses
on the temporal dimension without transposing the attention
matrix. The process is described as follows:

0, = FFT (X},)
K, = FFT (WxX},)
V, = FFT (Wy X))

_ (K]
FregAtteng,, (Q,. K;, V;) = Softmaxme [ —= |V,  (4)

Vdy

where X, € R7XC denotes the input of the ith decoder
layer. Q,, K;, and V, represent the attention matrices in
the frequency domain across the temporal dimension. Unlike
frequency cross-channel attention emphasizing dependencies
across channels, the frequency cross-temporal attention mech-
anism applies softmax along the temporal dimension using
Softmaxime(+). This attention mechanism operates over dif-
ferent timesteps, enabling the model to capture long-range
dependencies and dynamic patterns across various time steps.

2) Adaptive High-Frequency Mask: To further enhance the
model’s ability to focus on significant frequency components
while reducing noise, we propose an adaptive filtering mech-
anism inspired by the work [27]. First, we compute the power
spectrum of Xggr, representing the strength of each time-series
frequency

Xsp = | Xgrrl* . @)

The spectrum is then normalized and compared to a learn-
able threshold 6, which is automatically optimized during
training by backpropagation (dLoss/d0). This comparison
generates a binary mask, where each element is either O or
1. Frequencies with a spectrum below the threshold 6 are
filtered out to reduce noise interference. The filtered frequency
components are then enhanced using an adaptive learnable
weight. This process is formulated as follows:

Xiitterea = Xrrr © Mask (Xsp < 6)
Xenhanced = Xiittered © Wada (6)
where © denotes elementwise multiplication. W4, denotes an

adaptive learnable weight enhancing the significant frequency
components selectively.
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3) Frequency Inversion: The enhanced frequency compo-
nents Xenhanced along with the frequency attention vector X},
obtained from the frequency cross-temporal attention mech-
anism, are then transformed back to the time domain using
IFFT

Xime = IFFT (X;,)
Xt = UpSample (X/;,..) . (7)

time

E. Contrastive Synthesis Layer

After learning from the previous frequency learners, the
temporal dynamic details and cross-channel dependencies of
the time series have been well modeled. To generate diverse
industrial time series, we proposed a contrastive synthesis
layer, consisting of three components: the trend synthesis
block, the seasonality synthesis block, and the contrast pre-
diction block, as shown in Fig. 3. The trend block utilized
polynomial curve fitting to synthesize slow-changing long-
term trend information, such as performance degradation over
the device’s life cycle. The seasonality block uses Fourier
series expansion to synthesize short-term seasonal trends, such
as changes in environmental factors such as pressure, temper-
ature, and altitude. Finally, we develop a contrast prediction
block, which connects with the residuals of the original noise
signal. By modeling the differences between the synthesized
and original sequences, this block generates a more diverse
time series.

1) Trend Synthesis Block: In industrial time-series model-
ing, the trend synthesis is essential for capturing long-term,
smooth variations that occur due to gradual changes in system
behavior, such as equipment aging or evolving operational
conditions. If these trends are not effectively modeled, the
generated time series may lack structural coherence, leading
to unrealistic fluctuations or inaccurate long-term predictions.
To address this, we adopt a polynomial regression-based
approach, which provides a structured yet flexible represen-
tation of long-term trends. Unlike linear models that assume
a constant rate of change, polynomial regression can capture
nonlinear but smooth variations without overfitting to short-
term fluctuations. This makes it particularly effective for trend
modeling, where the objective is to extract gradual and persis-
tent patterns rather than transient variations. Mathematically,
the trend synthesis block follows a polynomial regression
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framework, where the input feature x is expanded into a
polynomial basis matrix P, and a learned feature representation
Z is used instead of fixed regression coefficients to weight the
polynomial bases

y=Z-P+e€ (3)

where

oL . 2. H | ©)
i = H+11,H+ll,...,H+1l
(10)

Z = GELU (Convld (X)).

Here, the convolutional operation extracts localized features
from the input sequence, while the polynomial basis matrix
ensures that the learned representation maintains a smooth
and structured temporal progression. The normalization of
time steps prevents numerical instability and ensures consistent
trend modeling across different scales. By explicitly modeling
trends in this manner, the trend synthesis block enhances
the overall time-series generation process. It ensures that
long-term variations are effectively separated from short-term
fluctuations, allowing the model to better capture seasonal
patterns and noise components in subsequent layers. Moreover,
by incorporating a learned feature representation Z, the model
dynamically adjusts to different trend structures, improving
its ability to generalize across diverse industrial time-series
datasets.

2) Seasonality Synthesis Block: In time-series analysis,
seasonality refers to recurring periodic patterns in the data.
To model these seasonal patterns, we use a Fourier series
modeling approach to decompose a complex time series into
a series of simple sine and cosine functions. The seasonality
synthesis block models in time-series data through Fourier
series. Its basic structure consists of a convolutional layer and
a Fourier transform layer.

The convolutional layer extracts the feature matrix S from
the input time-series data by performing a 1-D convolutional
operation on the input data X. In order to transform the output
S of the convolutional layer as weighting coefficients into the
Fourier space, we define the Fourier basis functions as follows:

S = Conv1d(X) (11)

Foos = |:cos (M—pt) pe [1,P1]] (12)
out dim

Fon = [Sm (Z’T—pt) pe [1,P2]] (13)
out dim

F = [FCOSa Fsin] (14)

Veeas =S - F (15)

where P; and P, denote the number of sine and cosine basis
functions. The Fourier basis matrix F is obtained by combin-
ing the sine basis function F, and cosine basis function Fs.
Here, F.,s and F§, serve as the fundamental components for
constructing periodic functions in Fourier space. They provide
a complete basis for representing periodic variations in the
time series, allowing the model to capture both symmetric and
asymmetric seasonal patterns. By projecting the feature matrix
S onto these basis functions, the model learns how differ-
ent frequency components contribute to the overall seasonal
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structure of the data. The feature matrix S output from the
convolutional layer is multiplied with the Fourier basis matrix
F as the weighting coefficients of different sine and cosine
basis functions to obtain the periodic function Ve, which
is similar to Y °,(a,cos(2ant/T) + b, sin(2ant/T)). This
achieves the following modeling of the seasonal component
in the time-series data. The model calculates the loss and
propagates it backward by comparing the predicted seasonal
component with the true seasonal component, and the feature
matrix S gradually refines the periodicity of the input data by
continuously adjusting the convolutional kernel weights and
bias terms, optimizing the modeling of seasonal components.

3) Contrast Prediction Block: In the original diffusion
model, the primary task is to reconstruct the original time
series by predicting the added noise. However, the trend syn-
thesis block and seasonality synthesis block do not explicitly
capture the noise characteristics inherent in the original signal.
To address this limitation, we introduce a contrast prediction
block to enhance the model’s ability to predict noise more
effectively. Our approach begins by aggregating the trend
block features Z and the seasonality synthesis block features
Vieas- These synthesized features are then concatenated with
the original input signal r, forming a composite feature rep-
resentation that allows the model to directly compare the
synthesized time series with the original series

Xeat = concat (Z + Vieas, 7) (16)

where concat(-) represents the concatenation of tensors along
a specific dimension. This spliced feature representation is
subsequently processed through a residual block that consists
of multilayer convolutional operations and nonlinear activation
functions, facilitating deep feature extraction and transforma-
tion. Specifically, the noise component is extracted as follows:

€noise = ReLU (W - xcat) (17)

where W represents the learnable parameters of the convolu-
tional layers and rectified linear unit (ReLU) is the activation
function that introduces nonlinearity into the transformation.
By zeroing out negative values, ReLU prevents the model from
interpreting weak or canceling-out fluctuations as significant
noise, allowing it to focus on dominant positive deviations
that contribute to overall noise patterns. This ensures that only
the most relevant noise features are retained while filtering
out minor perturbations. The convolutional processing ensures
that the extracted features are effectively transformed into
accurate noise predictions while maintaining the dimensional
consistency between the input and output data. This contrast-
based mechanism enables the model to discern fine-grained
differences between the synthesized and original time series,
thereby improving its noise estimation capability and overall
reconstruction performance.

IV. EXPERIMENTS
A. Experimental Setup

1) Dataset: In order to generate industrial time series for
different operating conditions and components, we collected
a large dataset of over ten million sampling points, including
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TABLE I

COMPARISON RESULTS OF THE PROPOSED METHOD WITH OTHER METHODS IN TERMS OF DISCRIMINATION SCORES AND PREDICTION SCORES ON THE
CMAPSS DATASET. THE BEST RESULTS ARE INDICATED IN BOLD, WHILE THE SECOND BEST OUTCOMES ARE DENOTED BY UNDERLINING

Methods TTS-GAN [30] TimeGAN [31] Tabddpm [32] SSSD [19] DiffWave [6] Dit [33] Metalndux-TS
Discriminative Score (Fidelity)
FD001-24 0.498 0.464 0.305 0.368 0.328 0.188 0.137
FD001-48 0.495 0.419 0.389 0.411 0.414 0.358 0.102
FD001-96 0.487 0.435 0.311 0.450 0.404 0.402 0.140
FD002-24 0.494 0.457 0.302 0.343 0.357 0.065 0.280
FD002-48 0.491 0.436 0.296 0.231 0.176 0.268 0.109
FD002-96 0.498 0.441 0.313 0.285 0.301 0.449 0.008
FD003-24 0.498 0.420 0.292 0.305 0.341 0.168 0.112
FD003-48 0.498 0.483 0.398 0.417 0.431 0.333 0.114
FD003-96 0.483 0.451 0.305 0.470 0.425 0.379 0.094
FD004-24 0.489 0.417 0.307 0.362 0.343 0.060 0.085
FD004-48 0.491 0.465 0.309 0.219 0.284 0.358 0.239
FD004-96 0.498 0.446 0.300 0.318 0.329 0.345 0.112
Average 0.494 0.444 0.319 0.358 0.374 0.301 0.128(57.5%1)
Predictive Score
FDO001-24 85.581 70.536 28.539 19.864 20.431 21.062 14.697
FD001-48 94.107 41.497 30.636 23.100 18.085 23.777 13.949
FD001-96 85.291 37.933 36.088 17.364 21.774 27.323 15.191
FD002-24 87.154 41.230 30.922 27.724 26.950 23.360 25.822
FD002-48 95.273 46.780 29.837 25431 27.184 26.740 24.565
FD002-96 87.211 41.132 32.956 27.628 30.122 27.194 22.860
FD003-24 72.454 85.800 25.165 21.208 21.552 23.511 21.420
FD003-48 86.811 53.928 26.274 25.959 23.749 40.200 16.206
FD003-96 72.354 85.170 28.994 22.946 28.433 24.719 16.138
FD004-24 86.216 51.086 34.557 43.531 34.382 29.665 27.333
FD004-48 94.756 86.609 33.604 39.764 32.793 30.654 26.577
FD004-96 84.803 50.805 42.764 41.186 32.515 30.106 23.776
Average 85.732 53.439 32.907 29.464 27.736 26.029 20.711(20.4%.)

turbofan engines and bearings in different degradation states.
The turbofan engine dataset (CMAPSS) [28] is widely used for
aeroengine remaining useful life (RUL) prediction and health
management studies. The dataset consists of four subsets:
FDO0O1-FDO004, each of which covers different failure modes
and operating conditions. The dataset records operational
settings, sensor readings, and unit settings, where operational
settings relate to flight altitude and speed. Sensor readings
provide time-series data from 21 sensors, reflecting engine
performance and health. In addition, the FEMTO dataset
[29] uses multiple sensors to collect bearing wear data with
different sampling frequencies. The sampling frequency is
25.6 kHz. The dataset reflects the actual condition of the bear-
ings that degrade at an accelerated rate under three different
conditions.

2) Implementation Details: In this study, we set the number
of time steps for sampling during training to 1000. The
noise schedule follows a linear design. Specifically, the noise
intensity increases linearly from a minimum value of 0.0001
to a maximum value of 0.02. This is achieved by scaling the
base range (0.0001 and 0.02) according to the ratio of the
actual number of time steps to the default 1000 steps. During
sampling, the model employs a reverse sampling strategy
based on DDPM, and the number of sampling steps matches
that used during training.

We implemented the proposed model using the PyTorch
deep learning framework and trained it with the Adam opti-
mizer, setting the initial learning rate to 2e~>. All experiments
were repeated five times, with the average values computed

for the final results. All the models were trained for a total of
70 epochs.

Following the original DDPM [22], we designed the encoder
and decoder architecture similar to the 1-D U-Net model. This
multiscale convolutional network architecture captures various
frequency components in time-series data and leverages condi-
tional information to enhance the generated quality. Both the
encoder and decoder consist of two submodules for feature
extraction, a residual connection module, and a sampling
operation module. Each submodule contains a convolutional
layer with the SiLU activation function. The downsampling
operation in the encoder utilizes a 4 x 4 convolutional kernel
with a stride of 2 to extract high-level feature information,
while the upsampling operation in the decoder employs trans-
posed convolution to restore the input data shape.

3) Evaluation Metrics:

1) Discriminative Score (Fidelity): This score is based on
the accuracy of an RNN classifier distinguishing real
from generated data. The classifier’s accuracy reflects
its ability to differentiate the two, with an accuracy near
0.5 suggesting poor distinction. The discriminative score
is the absolute difference between the accuracy and 0.5.
The lower the discriminative score, the more similar the
generated data is to the real data, with a score closer to
0 indicating higher similarity.

2) Predictive Score: To evaluate the usability of the gener-
ated data, we train an LSTM model using 70% of the
synthetic data for training and 30% for validation, with
real data as the test set. The performance is assessed
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TABLE I

EVALUATION OF METAINDUX-TS AGAINST OTHER
METHODS ON FEMTO DATASETS

FEMTO-Predictive. FEMTO-Discriminative.
320 80 160 320

Dataset—Metric
Seq length 80 160

TTS-GAN [30] 0.862 0975 0.442 0500 0489  0.491
TimeGAN [31] 0.802 0.882 0389 0490 0479 0482
GAN-LSTM [15] 0.728 0.829 0427 0486 0.498 0.483
DiffWave [6] 0213 0.204 0239 0364 0.241 0.241
Metalndux-TS 0.115 0.201 0.094 0.115 0.183 0.155

using the root mean square error (RMSE) between
predicted and true values. A lower RMSE indicates
better data quality and usability for downstream tasks.

B. Comparison With the State-of-the-Art Methods

To demonstrate the significant advantages of our pro-
posed method, we conduct experiments on industrial datasets
and compare it with several state-of-the-art models. These
compared models include several GAN-based methods (GAN-
LSTM [15], TTS-GAN [30], and TimeGAN [31]) as well as
several diffusion model-based methods (Dit [33], SSSD [19],
DiffWave [6], and Tabddpm [32]). During the experiments,
we evaluate the performance of each model under different
generation conditions by adjusting the length of the input data
and the corresponding length of the generated samples. We set
three length combinations of 24, 48, and 96. From the results,
it can be seen that the Metalndux-TS model outperforms
several current state-of-the-art models in most of the evaluated
metrics in datasets of specific lengths.

As shown in Table I, Metalndux-TS’s discriminative scores
outperform other diffusion and GAN models on most datasets.
In FDOO1, Metalndux-TS’s discriminative score is 0.102,
which is a 71.5% improvement over the best discriminative
score of 0.358 of the remaining models. In FD0O3, the dis-
criminative score of Metalndux-TS is 0.094, which is 69.2%
higher than the optimal result of 0.305 in the rest of the
models. These results indicate that Metalndux-TS is able to
more accurately model the real data distribution and generate
samples that are more similar. It is worth noting that most of
the discriminative scores of the GAN-based generative models
in the experiments of generating time-series data are higher
than 0.4. This is due to the fact that GAN models are subject
to pattern crashes and training instability, which lead to large
differences between the generated samples and the real data. In
contrast, the Metalndux-TS model stably captures the complex
dynamic features of the time series through a step-by-step
denoising process. It overcomes the shortcomings of the GAN
model and generates time series that are more accurate and
more consistent with the real data.

From the perspective of the predictive score, Metalndux-
TS also shows significant advantages in Table I. Compared
with the optimal results of the rest of the models under
the same conditions, Metalndux-TS’s predictive score in the
FDO0O1 dataset decreases from 17.364 to 15.191, a decrease of
12.5%; in FD0O02, the predictive score decreases from 27.194
to 22.860, a decrease of 15.9%; in FDO0O03, it decreases from
22.946 to 16.138, a decrease of 29.0%; and in FDO0O04, the

18069

TABLE III
ABLATION STUDY OF CONTRASTIVE SYNTHESIS LAYER

Metalndux-TS

Dataset  Length  (w/o contrastive ~ Metalndux-TS
synthesis layer)
Predictive Score
24 26.714 14.697
FDOO1 48 29.333 13.949
96 22.751 15.191
24 27.526 25.822
FD002 48 23.155 24.565
96 37.044 22.860
24 25.214 21.420
FDO003 48 27.861 16.206
96 32.186 16.138
24 36.867 27.333
FD004 48 34.144 26.577
96 32.231 23.776

predictive score decreases from 30.106 to 23.776, a decrease
of 21.0%. This indicates that Metalndux-TS is not only able
to generate samples that are more similar to real data, but
also provides more reliable and practical synthetic data in the
prediction task.

In addition, we conduct experiments on the FEMTO dataset
in Table II. This dataset is divided into different lengths to test
the quality of data generated by different generative models.
From the experimental results, it is concluded that the quality
of data generated by Metalndux-TS under any length of the
dataset is better than other models. This further proves the
superiority of Metalndux-TS in data generation.

In summary, Metalndux-TS demonstrates more desirable
results in both classification scores and prediction scores, prov-
ing its higher similarity and utility in generating time series
that can better meet the needs of industrial data generation
and analysis.

C. Ablation Study

1) Ablation Study of the Contrastive Synthesis Layer: The
key module of the Metalndux-TS model is the contrastive
synthesis layer for predictive noise. In order to verify its
validity and contribution to the overall model, we modify the
Metalndux-TS model by using Metalndux-TS (w/o contrastive
synthesis layer) to denote the model with the contrastive
synthesis layer removed to perform ablation experiments and
derive the discriminative and predictive scores. From the
histograms of discriminative scores in Fig. 4, the quality of
the data generated by the original model is significantly higher
than that of the model with the contrastive synthesis layer
removed for any length of any dataset. In addition, predictive
scores are listed in Table III.

For the same dataset and sequence length, the discrimina-
tive score of the Metalndux-TS model improves by 66.1%
(0.301 — 0.102) relative to the Metalndux-TS without con-
trastive synthesis layer. The predictive score improves 52.4%
(29.333 — 13.949) relative to Metalndux-TS without con-
trastive synthesis layer. This indicates that the contrastive
synthesis layer contributes significantly to the Metalndux-TS
model. The data generated with the inclusion of the contrastive
synthesis layer are more similar and usable.
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Fig. 4. Impact of the contrastive synthesis layer on turbofan engine datasets from FDOO1 to FD004.
TABLE IV
ABLATION STUDY OF FREQUENCY CROSS-CHANNEL LEARNER AND FREQUENCY CROSS-TEMPORAL LEARNER
Dataset FDO0O01 FD002 FD003 FD004 Average
Length 24 48 96 24 48 96 24 48 96 24 48 96 e
Discriminative Score (Fidelity)
MetalndwTS 6 111 9086 0086 0099 0216 0078 0016 0367 0374 0073 0348 0396  0.188
(w/o frequency learners)

Metalndux-TS e 0.103 0.091 0.077 0.196 0.116 0.382 0.089 0.115 0.115 0.069 0.275 0.291 0.160

Metalndux-TSchan 0.100 0.112 0.410 0.161 0.147 0.108 0.101 0.082 0.075 0.055 0.347 0.462 0.180

Metalndux-TS 0.137 0.102 0.140 0.280 0.109 0.008 0.112 0.114 0.094 0.085 0.239 0.112 0.128

Predictive Score
Metalndux-TS 16077 13470 16,191 21.885 28.629 23.604 21759 37721 32260 27589 33328 43686 26350
(w/o frequency learners)
Metalndux-TS e 15.594 14.079 15386  28.553  24.224 24705 21.783 16.616 17.094 27.338  28.191 28.005  21.797
Metalndux-TSchan 16.148  13.640 26.556 25.794 28919 24231 22470 15912 15.878 27.801 33.956 38.389 24.141
Metalndux-TS 14.697 13949 15.191 25822 24565 22.860 21420 16206 16.138 27.333  26.577 23.776  20.711
TABLE V t-SNE plot t-SNE plot

PERFORMANCE ON ZERO-SHOT LEARNING TASKS OF
DIFFERENT DIFFUSION MODELS

Methods  DiffWave DiT Tabddpm  Metalndux-TS
RMSE
FDO001 20.545 58.284 33.943 6.353
FD002 30.683 32.555 23.200 22.574
FD003 70.927 67.121 14.901 11.289
FD004 47.995 57.097 38.562 35.062
Average 42.538 53.764 27.652 18.820
TABLE VI

PERFORMANCE ON FEW-SHOT LEARNING TASKS OF
DIFFERENT DIFFUSION MODELS

Methods  DiffWave DiT Tabddpm  Metalndux-TS
RMSE
FDO0O01 15.960 53.224 22.533 5.219
FD002 40.891 29.938 27.095 24.758
FD003 69.854 28.766 13.568 9.244
FD004 49.339 44.747 42.809 24.816
Average 44.011 39.169 26.501 16.009

2) Ablation Study of the Dual Frequency Learners:
Another feature of the Metalndux-TS model is the intro-
duction of the cross-channel attention mechanism and the
cross-temporal attention mechanism, for which we conduct
a second type of ablation experiments, respectively, for the
model Metalndux-TS (w/o contrastive synthesis layer) without
all frequency learners, the model Metalndux-TS¢pa, With only
the frequency cross-temporal attention mechanism removed,
the model Metalndux-TSy,. With only the frequency cross-
channel attention mechanism removed, and the proposed
model Metalndux-TS are evaluated on the generated data
of the four models. The discriminative scores and predictive
scores of the four models are reported. From Table IV,
it is seen that the introduction of both types of attention

Sg0

ao

Full lifecycle
Syn. Normal
Syn. Fatigue

Full lifecycle
+ Syn. Normal

o Full lifecycle
s Syn. Normal s,
o Syn. Fatigue < THE"

«  Full lifecycle o
« Syn.Normal &8

Fig. 5. t-SNE visualization of zero-shot generation results of Metalndux-TS.
The red points represent the original full lifecycle samples, while the blue
and green points correspond to the generated normal and fatigue-condition
samples, respectively.

mechanisms improves the quality of synthetic data generated
by the models. In datasets with complex temporal logic such
as FD0O04, the discriminative scores of Metalndux-TS,. and
Metalndux-TSchan are improved by 20.9% (0.348 — 0.275)
and 0.3% (0.348 — 0.347), respectively, in comparison with
Metalndux-TS without all frequency learners. The predictive
scores improved by 35.9% (43.686 — 28.005) and 12.1%
(43.686 — 38.389). The improvement in the discriminative
and predictive scores is due to the fact that the frequency cross-
channel attention mechanism is able to effectively identify
and capture the correlation between high-frequency and low-
frequency components. Also, the frequency cross-temporal
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Turbofan engine in health state
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Turbofan engine in fatigued state

Condition1 == = — ==
(FD001)
VAN |
Condition2 i 24 _ z
(FD002) - WP{W “
Condition3 M
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Fig. 6. Metalndux-TS generates some turbofan engine signals under different conditions and states. The left column represents the engine signals in a healthy
state (blue), while the right column represents the engine signals in a fatigued state (green).
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Fig. 7. Visualizations of the generated samples are presented using PCA (first row) and t-SNE (second row) techniques. Each column displays the comparative
visualizations for the four methods. Original samples are denoted in blue, while synthetic samples are indicated in brown. The degree of overlap between
the two types of points is indicative of their similarity, with greater overlap signifying a higher degree of resemblance. (a) Diff-MTS. (b) DiffWave. (c) DiT.

(d) TimeGAN.

attention mechanism can capture the dynamic changes of
frequency components at different time points. Both of them
can make the generated data closer to the frequency charac-
teristics of the real data.

D. Zero-Shot and Few-Shot Generation

To assess the adaptability of Metalndux-TS with unseen
samples, we conduct zero-shot and few-shot experiments. In
the C-MAPSS dataset, samples with an RUL greater than
30 are categorized as normal conditions, while those less
than 30 fall under fatigue conditions. Generative models are
trained in two settings: zero-shot, using only normal condition
data, and few-shot, incorporating 10% fatigue condition data
alongside normal data. For evaluation, the generated datasets
from these models are used to train a two-layer LSTM model,
which is then tested exclusively on real fatigue condition
data.

The results are shown in Tables V and VI, which show
that Metalndux-TS consistently outperforms other models in
both zero-shot and few-shot settings. When using Metalndux-
TS-generated data under the zero-shot setting, the predicted
RMSE is reduced by an average of 31.9% (27.652 — 18.820)
compared to the best-performing alternative models across the
FDO0O01-FD004 datasets. In the few-shot setting, the reduction
reaches 39.6% (26.501 — 16.009). In Fig. 5, we present the
t-SNE visualization of the zero-shot data generation results.
Notably, although the model is never exposed to fatigue
condition samples during training, Metalndux-TS successfully
generates realistic fatigue condition data that aligns with the
overall data distribution. This demonstrates Metalndux-TS’s
ability to generalize the underlying distribution of unseen data,
making it a promising solution for enhancing predictive accu-
racy in real-world industrial scenarios where data collection
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Fig. 8. Multiple visualizations of prediction results. The original time-series data are depicted by black curves. The synthetic time series are illustrated by
distinct colors: gold for Diff-MTS, blue for DiffWave, and green for TimeGAN. (a) Original data. (b) Metalndux-TS. (c) DiffWave. (d) TimeGAN.

under extreme conditions (high pressure, low temperature, or
elevated heat) is challenging.

E. Visualization Analysis

Metalndux-TS is capable of generating a variety of indus-
trial time series for different operating conditions and health
states of industrial equipment. Fig. 6 shows the synthesized
data for various operating conditions and different health
states. In Fig. 6, the blue plots represent signals from turbofan
engines in a healthy state, while the green plots depict signals
from fatigued engines. Each row corresponds to a different
condition (FDO01-FDO004), capturing diverse operational sce-
narios. Furthermore, this figure demonstrates the capability of
the Metalndux-TS model to generate realistic industrial time
series.

To further qualitatively analyze the degree of similarity
between the generated data and the original data, we plot PCA
and t-SNE plots of the generated data and the original data
under different models. The blue dots on each plot represent

the real data, while the brown dots represent the synthetic
data. By looking at the distribution of the dots in the two
colors, we can intuitively determine the degree of similarity
between the synthetic data and the real data. As shown in
Fig. 7, the data generated by DiT and TimeGAN models
have less overlap with the real data distribution. The similarity
between the generated data and the real data is not high. The
generated data of the DiffWave model are slightly different
from the real data on the right side of the PCA plot and the
lower side of the t-SNE plot, where the distribution of the real
data does not account for a high proportion. In contrast, the
distribution of the generated data of the Metalndux-TS model
has a higher overlap with the real data in both the PCA plot
and the t-SNE plot, indicating that the generated data are more
similar. In addition, in order to observe the generated data
and the original real data more intuitively, we select all the
data in one of the time steps. The generated data and original
data are plotted for each dimension. From Fig. 8, it is seen
that in the signal of sensor s13, the data generated by the
TimeGAN model does not generate the data in the lower part
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TABLE VII
SAMPLING TIME COMPARISON ACROSS DIFFERENT METHODS

Architecture Sampling FDO001 FD002 FDO003 FD004
Original UNet (o0 3303706 10949815 557.183s  1465.010s
+attention
Metalndux-TS ~ DDPM 1925235  808.291s 5141925 14163255
Metalndux-TS v o0 1105 49071s 25141 592925
(proposed)
Speedup — 16.42x  22.22x  22.16x  24.71x

of the image. In the signal of sensor s14, the data generated
by the DiffWave model oscillates much less than the real data.
Also, the generated data of the Metalndux-TS model all well
reproduces the timing pattern of the real data with much higher
similarity.

F. Efficiency Analysis

To evaluate the sampling efficiency of different archi-
tectures, we conducted comprehensive experiments under
multiple settings. Specifically, we compared three structures
as shown in Table VII: 1) “Original U-Net + attention,”
which represents a baseline diffusion model using DDPM
sampling; 2) “Metalndux-TS,” which also employs DDPM
sampling but with the proposed frequency architecture for
time series; and 3) “Metalndux-TS (proposed),” which utilizes
DDIM sampling [23] with + = 100 steps for acceleration.
Here, DDPM and DDIM refer to different diffusion sampling
strategies, where DDIM typically enables faster generation
with fewer steps. The experiments are performed across four
different datasets to validate the generality of the proposed
improvements.

As shown in Table VII, the proposed Metalndux-TS with
DDIM achieves significant acceleration compared to both the
Original U-Net + attention and the Metalndux-TS with DDPM
sampling. Specifically, on the FDO0Ol dataset, our method
reduces the sampling time from 330.372 to 20.119 s, achieving
a 16.42x speedup. Similar improvements are observed across
other datasets, with speedups of 22.22x, 22.16x, and 24.71x
on FD002-FD004, respectively. Moreover, even under the
same DDPM sampling strategy, Metalndux-TS outperforms
the Original U-Net due to its compression of redundant
high- and low-frequency components, effectively concentrating
useful information and reducing redundancy in time-series
features. These results demonstrate that our method substan-
tially improves sampling efficiency while maintaining strong
generative performance.

V. CONCLUSION

This article introduces Metalndux-TS, a frequency-informed
AIGC foundation model specifically designed for industrial
time-series generation. Addressing the challenges posed by
complex temporal dynamics, multichannel intercolumn cor-
relations, and diverse frequency variables in industrial time
series, Metalndux-TS effectively incorporates a frequency
cross-channel learner to model multichannel dependencies and
a frequency cross-temporal learner to capture detailed temporal
dynamics.
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However, Metalndux-TS has limitations in generating time
series that strictly adhere to the physical laws governing
industrial equipment. In the future, we plan to explore methods
for integrating physical constraints into generative models.
This approach aims to ensure that the generated time series
align with the physical laws of industrial equipment, making
them more applicable to real-world physical scenarios.
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