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Neural Architecture Search Generated Phase
Retrieval Net for Real-Time Off-Axis

Quantitative Phase Imaging
Xin Shu , Mengxuan Niu, Yi Zhang, Wei Luo , and Renjie Zhou

Abstract—In off-axis Quantitative Phase Imaging (QPI), arti-
ficial neural networks have been recently applied for phase
retrieval with aberration compensation and phase unwrap-
ping. However, the involved neural network architectures are
largely unoptimized and inefficient with low inference speed,
which hinders the realization of real-time imaging. Here, we
propose a Neural Architecture Search (NAS) generated Phase
Retrieval Net (NAS-PRNet) for accurate and fast phase retrieval.
NAS-PRNet is an encoder-decoder style neural network, auto-
matically found from a large neural network architecture
search space through NAS. By modifying the differentiable
NAS scheme from SparseMask, we learn the optimized skip
connections through gradient descent. Specifically, we implement
MobileNet-v2 as the encoder and define a synthesized loss that
incorporates phase reconstruction loss and network sparsity
loss. NAS-PRNet has achieved high-fidelity phase retrieval by
achieving a peak Signal-to-Noise Ratio (PSNR) of 36.7 dB
and a Structural SIMilarity (SSIM) of 86.6% as tested on
interferograms of biological cells. Notably, NAS-PRNet achieves
phase retrieval in only 31 ms, representing 15× speedup over
the most recent Mamba-UNet with only a slightly lower phase
retrieval accuracy.

Index Terms—Phase retrieval, neural architecture search,
quantitative phase imaging, real-time reconstruction.

I. INTRODUCTION

QUANTITATIVE Phase Imaging (QPI) has been widely
applied to biomedical imaging and material metrol-

ogy. Among all approaches off-axis interferometry-based QPI
methods (off-axis QPI) can offer high speed phase imaging
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due to their single-shot image acquisition feature [1], [2], [3].
However, retrieving the phase map from a recorded fringe
pattern or interferogram requires several image processing
steps, which means the specimens are usually not observed
in real-time. In conventional approaches, the steps include
(i) retrieving the wrapped phase (valued between −π to π)
from the object interferogram (e.g., the Fourier transform-
based method [4]); (ii) calibrating the phase or compensating
the phase aberration by using an additional interferogram
captured in a sample-free region [5]; and (iii) unwrapping
the phase (e.g., the Goldstein algorithm [6]). Among these
steps, phase unwrapping is the most time-consuming. To
expedite phase retrieval for real-time phase imaging, parallel
computation using sophisticated Graphics Processing Units
(GPUs) or Field Programmable Gate Arrays (FPGAs) has
been implemented to accelerate phase unwrapping [7], [8].
However, specialized programming is required that hinders its
generalization. Furthermore, obtaining the calibration inter-
ferogram for aberration compensation becomes particularly
challenging when imaging dense samples, as a sample-free
region may not be readily available.

In recent years, artificial neural networks (ANNs), including
the widely used, U-Net have achieved simultaneous phase
retrieval and elimination of the need for aberration compen-
sation [9], [10], [11], [12]. Despite simplifying the imaging
operation in off-axis QPI, further applying these ANNs for
real-time phase imaging is potentially limited by the relatively
large computational latency. It is known that the network
inference accuracy and latency heavily depend on the net-
work’s architecture. Therefore, we need a strategy to identify
an optimal network architecture that minimizes computational
latency and maintains high accuracy for phase retrieval.

Neural architecture search (NAS) [13] is a technique to
automatically find an optimal network architecture from a
large architecture search space. NAS-generated networks have
outperformed manually designed networks in many tasks,
including classification [14], semantic segmentation [15], etc.
SparseMask [16] is an end-to-end semantic segmentation
NAS scheme. SparseMask has a network architecture search
space that covers different skip connection strategies from
the encoder to the decoder, which enables searching for
optimal ways to fuse low-level features rich in spatial details
and high-level features containing semantic information. In
SparseMask, a differentiable NAS search strategy is used to
relax the architecture search space from discrete to continuous,
and the gradient descent is used to efficiently search for
optimal skip connections. Taking both segmentation accuracy
and connectivity sparsity into account, SparseMask attains
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Fig. 1. Illustration of searching NAS-PRNet from a neural architecture
search space through constructing the super-PRNet. Blue circles represent
the encoder and decoder stages, lines with arrows represent the connections
from head stages to tail stages.

a similar mean Intersection-over-Union (mIoU) but executes
over three times faster, when compared with the widely-used
Pyramid Scene Parsing Network (PSPNet) on the semantic
segmentation PASCAL VOC 2012 test dataset.

To attain high-fidelity real-time phase imaging in
off-axis QPI, we propose NAS-generated Phase Retrieval Net
(NAS-PRNet) as illustrated in Fig. 1. The architecture of
NAS-PRNet is derived through a customized adaptation of the
SparseMask NAS algorithm. We then evaluate NAS-PRNet’s
performance in phase retrieval and compare it with the classic
U-Net [17], the most recent Mamba-UNet [18] and EMCAD
[19], and the original SparseMask to demonstrate its high
accuracy and efficiency. Source code will be available at
https://github.com/shuxin626/NAS-Phase-Retrieval-Net.

II. METHODOLOGY

To obtain the architecture of NAS-PRNet, an intermediate
super-network for phase retrieval (super-PRNet), containing all
possible encoder and decoder connections, is first constructed.
Each connection in super-PRNet has an uniformly initialized
weight of 0.5. Then, the super-PRNet is trained, and its
encoder and decoder connections are pruned, according to
the trained connection weights. After that, the architecture of
NAS-PRNet is obtained. Finally, the NAS-PRNet is trained,
and its performance is evaluated for phase retrieval. Both
super-PRNet and NAS-PRNet are trained and tested with the
same interferogram dataset. Here, we use biological cells to
construct a dataset with diverse features and sizes for general-
ization. To enlarge the search space to include more possible
network architectures, we modified the original SparseMask by
loosening its constraints in two aspects: (1) allowing encoder
features to propagate into all stages of the decoder, instead
of only the corresponding lower-level decoder stages; and (2)
applying a global sparsity loss to minimize the total number of
connections, instead of a sparsity restriction for each decoder
stage on a fixed quantity of connections. Furthermore, to fit
SparseMask to the phase retrieval task, we modify its output
layer (i.e., adopting a regression head), feature fusing style,
kernel size in convolution, and feature depth strategy.

A. Structure of Super-PRNet
The structure of super-PRNet is illustrated in Fig. 2, where

MobileNet-v2 is implemented as the encoder to efficiently

Fig. 2. Feature concatenation in super-PRNet. (a) Formation of D2. Ei: ith
encoder feature; D j: jth decoder feature. (b) Processing of input features with
spatial sizes larger than h2. (c) Processing of input features with spatial sizes
smaller than h2.

extract multi-level features from an input interferogram. In
Fig. 2(a), the encoder features at multiple levels are denoted
as El, where l is the stage index ranging from 1 to L = 8 (i.e.,
8 encoder features are input into the decoder). In addition,
a ground encoder feature G is obtained by applying an
average pool with a target size of 3 × 3, and then input into
the decoder. The decoder integrates all possible connections
between encoder and decoder stages, as well as different stages
inside the decoder. Being symmetric with the encoder, the
number of stages in the decoder is also L. Dl denotes the
lth decoder stage feature that has the same feature spatial size
of hl as El. The feature depth of Dl is set as min(256, 8l). For
the lth encoder stage, its input features are {Ei|1 ≤ i ≤ L},
G, and {D j|l < j ≤ L}. As these input features differ in
size and depth, we will efficiently fuse them in the following
way: (i) for features m ∈ M+

l = {Ei|1 ≤ i < l} with
spatial size larger than hl, a bilinear down-sampling with a
target spatial size of hl is first applied before a convolution
operation with a target feature depth of dl; (ii) for features
m ∈ M−l = {Ei|l ≤ i ≤ L}

S
G

S
{D j|l < j ≤ L} with spatial size

smaller than hl, a convolution operation with a target feature
depth of dl is first applied before a bilinear up-sampling with
a target spatial size of hl; (iii) we fuse the processed input
features of the same depth and size as a fused feature Tl by a
weighted sum:

Tl =
X

m∈M+
l

wm,lbn(conv( f↓(m)))+
X

m∈M−l

wm,lbn( f↑(conv(m))) (1)

where f↓() and f↑() denote the bilinear down-sampling and
bilinear up-sampling, respectively; conv() is the 2D convolu-
tion with 3×3 kernel size; wm,l is the weight of the connection
from input feature m to decoder stage feature Dl; and bn()
represents the batch normalization. wm,l = 0 indicates the
connection does not exist, while wm,l = 1 indicates the con-
nection exists. bn() ensures the output value of conv( f↓()) or
f↑(conv()) not affecting the connection importance represented
by the summation weight wm,l. Finally, decoder stage feature
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Dl is obtained as Dl = ReLU6(bn(conv(ReLU6(Tl)))) where
ReLu6() is the nonlinear activation function.

To output a phase map with continuous phase values and the
same image size as the input interferogram in a single channel,
a regression head is added to D1, i.e., the end feature of the
decoder. The regression head is comprised of three consecutive
functions: (i) 2D convolution to compress the feature depth of
D1 from 8 to 1; (ii) interpolation to make the feature spatial
size of D1 identical to the input interferogram (originally h1
is only half the size of the input interferogram); (iii) ReLu6
nonlinear activation and dividing the obtained value by 6 to
make the output have pixel value ranging from 0 to 1 for
training.

B. Deriving NAS-PRNet From Super-PRNet
The search for the optimal encoder and decoder connections

for NAS-PRNet is formulated as a problem of finding the
optimal binary subset of the weight set W = {wm,l|m ∈

M+
l

S
M−l , 1 ≤ l ≤ L}. Considering the tradeoff between

efficiency and accuracy, the optimization objectives include:
(i) making the connectivity as sparse as possible to reduce
the computation latency of this network; and (ii) decreasing
the phase retrieval loss as much as possible. As it is compu-
tationally inefficient to search W in a discrete search space,
we relax all weights w ∈ W to be continuous, ranging from 0
to 1, to allow for gradient descent to optimize the connection
weights and conduct the architecture search. The synthesized
loss function Loss∗ used in the training process is formulated
as:

Loss∗ = Losst + αLossb + βLosss, (2)

where Losst is the phase reconstruction loss which is cal-
culated as the Mixed Gradient Error (MixGE) between the
ground truth and the network output as defined in [20]; Lossb
and Losss are the binary loss and the network sparsity loss,
respectively; and α and β are the coefficients for Lossb and
Losss. Lossb and Losss are defined as:

Lossb =

P
w∗∈W(−w∗log(w∗)−(1−w∗)log(1−w∗))

len(W)
, (3a)

Losss =
X
w∗∈T

w∗ (3b)

In Eq. 3a, the loss term −wlog(w) − (1 − w)log(1 − w) in
binary loss will push the weight w close to 0 or 1 during
the network training process [16], and len() takes the length
of W. The mean of all weights w ∈ W serves as the sparse loss
as described in Eq. 3b. A smaller Losss indicates that more
weight w values are closer to 0, namely the connectivity in
super-PRNet will be sparser. After tuning, we set α = 5×10−3

and β = 5 × 10−5.
We first trained the super-PRNet on an NIH/3T3 cell

dataset (for dataset and training details, refer to Supplementary
Material). The training process took 4 hours on a Supermicro
GPU server (Intel Xeon Silver 4210R CPU [×2], Nvidia
RTX A6000 48GB [×1]). Then, to prune super-PRNet to
get NAS-PRNet (Fig. 3), we selected the connection weight
set W in the checkpoint with the best validation PSNR
and SSIM. The pruning rules are as follows: (i) drop all
the connections with weights w < 0.001; and (ii) drop
all decoder stages without any input features, as well as
decoder stages whose features are not used by any decoder
stages. After pruning, the number of connections in super-
PRNet (Fig. 3(a)) has been significantly reduced from 100

Fig. 3. (a) Connections in super-PRNet. (b) Connections in NAS-PRNet.
Orange, blue, and purple rectangles represent encoder stages (E), decoder
stages (D), and the ground stage (G), respectively.

to 42, i.e., reducing the connections by 58%, to achieve
NAS-PRNet that has a sparse connectivity (Fig. 3(b)). In
NAS-PRNet, as both low-level and high-level features take
part in the formation of each decoder, an optimal fusion of
these features can ensure accurate phase retrieval.

In addition to applying the found connection scheme,
NAS-PRNet is modified from super-PRNet in producing the
fused features by removing w and bn() in Eq. 1. Therefore,
the fused features T ′l of NAS-PRNet are:

Tl =
X

m∈M+
l

wm,lconv( f↓(m))+
X

m∈M−l

wm,l f↑(conv(m)) (4)

C. Evaluation of NAS-PRNet
To evaluate the phase retrieval accuracy, we trained

NAS-PRNet following the same protocol as super-PRNet but
only used the phase reconstruction loss Losst. We tested
the phase retrieval time on a mid-range Lenovo laptop
(Intel i7-9750H CPU [×1], Nvidia GeForce RTX 2060 6GB
[×1]) using full NIH/3T3 cell images with size of 1024×1024
pixels.

III. RESULTS

We compare the performance of super-PRNet and
NAS-PRNet against several baseline methods, including the
classic U-Net [17], the recent Mamba-UNet and EMCAD
based on popular Mamba and attention mechanisms from
natural language processing, respectively [18], [19], as well
as SparseMask (implementation details can be found in Sup-
plementary Material). We present the testing results using the
NIH/3T3 cell dataset on a mid-range laptop in Tab. I and
Fig. 4. To analyze the results, we divide the baseline methods
into heavy-weight (U-Net and Mamba-UNet) and light-weight
(EMCAD and SparseMask) groups. The heavy-weight group
achieves higher accuracies (36.8 − 37.8 dB PSNR) but sig-
nificantly slower inference speed (373 − 481 ms), while the
light-weight group offers faster inference speed (21 − 88 ms)
with lower accuracy (30.1 − 31.8 dB PSNR). Note that the
longer inference time of Mamba-UNet with lower FLOPs is
likely due to less optimized GPU implementations compared
to U-Net’s well-established convolution operators. In contrast,
NAS-PRNet achieves an optimal balance between accuracy
(36.7 dB PSNR) and efficiency (31 ms latency), thus demon-
strating comparable performance with 12× speedup over
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Fig. 4. Comparison of super-PRNet and NAS-PRNet with baseline methods
on the NIH/3T3 cell dataset. (a) Input interferogram. (b) Ground truth. (c)
U-Net. (d) Mamba-UNet. (e) EMCAD. (f) SparseMask. (g) super-PRNet. (h)
NAS-PRNet.

TABLE I
PHASE RETRIEVAL PERFORMANCE COMPARISON

U-Net and slightly lower performance with 15× speedup over
Mamba-UNet. Moreover, the comparable accuracy between
NAS-PRNet and super-PRNet demonstrates that our searching
strategy is effective, as it has selectively pruned redundant
connections and preserved critical connections to maintain
a high phase retrieval accuracy. To test the robustness of
NAS-PRNet, we used a white blood cell dataset [21] acquired
from a different off-axis QPI system and achieved a high phase
retrieval accuracy (PSNR 44.0 dB and SSIM 93.4%) that is
comparable to U-Net (refer to Supplementary Material for
details).

Note that when using the traditional Fourier transform-based
phase retrieval method (i.e., the ground truth map), phase
unwrapping is required after obtaining the calibrated phase
map. Using the Goldstein algorithm, phase unwrapping takes
528 ms for an image size of 1024×1024 when executed on the
CPU of the laptop. In contrast, our NAS-PRNet outputs the
unwrapped phase in just 31 ms on the same laptop using GPU,
which is over 17 times faster. The phase unwrapping range
of NAS-PRNet is currently limited to 0 - 12 rad (the phase
range in the dataset). However, this range can be extended
by training the network with datasets containing larger phase
values. Moreover, NAS-PRNet can automatically correct sys-
tem aberration without using a calibration phase map, which
significantly simplifies the phase imaging experiments.

IV. CONCLUSION

In conclusion, we have developed NAS-PRNet for phase
retrieval and optimized its architecture to balance the output
accuracy and inference speed. Compared with the recent
Mamba-UNet, NAS-PRNet reduces inference time by 15×
with only slightly lower phase retrieval accuracy. With the
high phase retrieval speed offered by NAS-PRNet and the
single-shot capability of off-axis QPI, one may demonstrate

many real-time imaging applications, such as profiling the
morphology of living cells and quantifying their dynamics.
The current search space of NAS-PRNet is only limited to the
connection scheme, but it could be further expanded to cover
layer depth, layer manipulation, and so on, which may lead to
the discovery of a more efficient network architecture.
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