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Abstract—Cloud cover significantly decreases the quality of opti-
cal remote sensing (ORS) images, adversely impacting its effective-
ness in geographic monitoring, disaster prevention, and advanced
visual applications. This phenomenon has made cloud removal a
critical preprocessing step in ORS image processing. This article
comprehensively reviews cloud removal techniques and classifies
them based on the type of auxiliary data used: single-image, mul-
timodal, and multitemporal. The discussed methods include phys-
ical modeling, deep learning, multispectral analysis, and synthetic
aperture radar (SAR) fusion strategies. This article analyzes the
core concepts and fundamental processes of these techniques and
addresses the challenges encountered in actual scenarios. The ar-
ticle also includes future research directions. Moreover, the article
outlines the benchmark datasets and evaluation metrics commonly
used in cloud removal, thereby establishing a standardized ref-
erence for algorithm development and performance evaluation.
A thorough comparative analysis was performed to assess their
performance variations using visualization outcomes from the most
recent and representative methodologies.

Index Terms—Cloud removal, multimodal, multitemporal,
optical remote sensing (ORS), single-image.

I. INTRODUCTION

PTICAL remote sensing (ORS) images are a vital Earth
O observation data source that can capture a wealth of
information from the Earth’s surface. The data can contribute
significantly to diverse fields, including environmental mon-
itoring, resource investigation, and disaster assessment [1].
However, ORS images are frequently impeded by cloud cover,
which results in the distortion or absence of surface information.
Consequently, the use of cloud removal techniques to retrieve
surface information holds substantial theoretical significance
and practical necessity [2]. ORS image cloud removal aims to
mitigate or eliminate cloud influence, thereby revealing more
accurate and complete surface details [3]. Nevertheless, the ex-
tensive coverage, strong occlusion, uneven distribution, and high
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similarity to certain ground objects of clouds pose multifaceted
challenges for cloud removal techniques: (1) Reconstruction
of damaged details, (2) recovery of missing information, (3)
generalization performance of methods, and (4) data pairing and
registration.

Constrained by the limited acquisition capabilities of early
remote sensing data, some single-image cloud removal methods
were initially proposed, drawing on the techniques of natural
image dehazing. These methods leverage the OSR image alone,
eschewing additional auxiliary data. It employs sophisticated
image processing techniques, including spatial filtering, contrast
enhancement, and image restoration [4], [5], [6]. More complex
algorithms are also employed, such as prior knowledge and
deep learning [7]. This method excels in scenarios with light
cloud cover or clouds that are evenly distributed but performs
poorly when faced with thick or irregularly distributed cloud
cover [8]. To better capture and restore detailed ground informa-
tion underneath thick clouds, several multimodal cloud removal
methods have been developed [9], [10]. For instance, combining
high-resolution, multispectral remote sensing data can more
comprehensively capture the ground information [11]. Fusing
SAR [12] data takes advantage of its cloud-penetrating capabil-
ities to improve the recovery of detailed texture features [13].
Multimodal cloud removal is effective for both thin and thick
clouds, particularly adept at managing complex cloud coverage
scenarios [14], [15]. However, its implementation is more intri-
cate and may introduce additional noise. As advancements in
image processing and remote sensing have accelerated, several
multitemporal cloud removal methods that utilize multitemporal
images as auxiliary data have been proposed to more accurately
remove thick clouds [16], [17]. By fusing images from the
same location during distinct temporal intervals, it can discern
the dynamic changes in clouds and the stable features of the
ground [18], [19]. For example, when an image at a specific
time is obscured by clouds, clear images from other times can
be utilized to assist in restoration. This method excels in areas
with extensive or thick cloud coverage but faces challenges with
positional alignment and is not suitable for areas with significant
ground feature changes [20]. The illustrative example images
of single-image, multimodal, and multitemporal methods are
shown in Fig. 1.

An exhaustive search was conducted for ORS image cloud
removal within various academic literature databases, followed
by a detailed analysis and organization of the findings to illus-
trate the research trends across the three methods. The number
of documents spanning a nearly decade-long period from 2015

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-8551-7038
https://orcid.org/0009-0005-1747-731X
https://orcid.org/0000-0002-8223-1173
mailto:ningjin@cdut.edu.cn
mailto:xielianbin@stu.cdut.edu.cn
mailto:xielianbin@stu.cdut.edu.cn
mailto:yinjie13@stu.cdut.edu.cn
mailto:liuyg@scu.edu.cn

NING et al.: CLOUD REMOVAL ADVANCES: A COMPREHENSIVE REVIEW AND ANALYSIS FOR OPTICAL REMOTE SENSING IMAGES

Multimodal
method

Single-image
method

Cloud-free

Multitemporal
method

X - :
Cloud-free SAR Cloud-free

Cloudy

Fig. 1. Illustration of three types of ORS image cloud removal methods.
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Fig. 2. Development trends of three types of ORS image cloud removal
methods from 2015 to 2024.

to 2024 was tallied for each category, and these statistics were
depicted as a histogram in Fig. 2. Multimodal methods have gar-
nered growing interest over time, and this surge in attention can
be attributed to the ability to furnish richer information, which
enables higher precision and robustness. The single-image ap-
proaches have reached a plateau following an upward trend in
advancement. This trend shows that these approaches continue
to be effective in specific scenarios. Furthermore, although mul-
titemporal methods offer distinctive advantages in addressing
thick cloud issues, their complex data processing requirements
have resulted in substantial potential for growth. In recent years,
despite the thriving advancements in cloud removal techniques
for ORS images, comprehensive review articles on the subject
have been scarce. Xiong et al. [21] reviewed cloud removal in
ORS images utilizing SAR fusion, yet their focus was primarily
on GAN-based methods. Lee et al. [22] offered a more holis-
tic overview of ORS image dehazing, encompassing remotely
piloted aerial vehicle-based ORS image dehazing as well. Dis-
tinguished from these studies, this article initiates an exhaustive
exploration of high-caliber research papers on ORS image cloud
removal spanning the last decade, with particular emphasis on
the most recent three years. By meticulously examining and
analyzing these works, the approaches were categorized into
three categories: single-image, multimodal, and multitemporal.
Then, the foundational concepts, evolutionary trajectories, ap-
plicable contexts, and prospective avenues of these methods
were outlined. The review encompasses the research status and
the strengths and weaknesses of the subtechnologies within each
category. Special emphasis is placed on key technologies such
as physical modeling, deep learning, multispectral analysis, and

15915

SAR fusion. Finally, through comparative experimental analy-
sis, further discussions were made on the current challenges and
research analysis of each method. The main contributions of this
article are as follows:

1) This article meticulously categorizes the existing meth-
ods into three categories: single-image, multimodal, and
multitemporal, elucidating the foundational concepts and
underlying principles of each approach. By summarizing
the current challenges and future outlook for these three
approaches, the article contributes to a systematic under-
standing of ORS image cloud removal.

2) This review delves into key technologies including phys-
ical modeling, deep learning, multispectral analysis, and
SAR fusion, highlighting the advantages and constraints
inherent to each. Furthermore, it discusses the emerging
trends of cross-integration among these technologies, of-
fering a theoretical foundation for the development of
hybrid and sophisticated cloud removal models.

3) Through quantitative and qualitative comparative experi-
ments on representative datasets, a visual cloud removal
effect analysis was conducted for the three types of
methods. The article presents and discusses the current
state of cloud removal technology, the challenges en-
countered, and the trends in research, thereby providing
researchers with more profound theoretical and practical
insights.

The rest of this article is organized as follows. Section II
systematically reviews three categories of cloud removal meth-
ods: single-image based, multimodal-based, and multitemporal-
based. Section III presents the commonly used datasets and
evaluation metrics, provides experimental comparisons of rep-
resentative methods, and discusses potential future directions.
Finally, Section IV concludes this article.

II. CLOUD REMOVAL ADVANCES IN ORS IMAGES

This section provides a comprehensive review of cloud re-
moval methods, focusing on three distinct categories: single-
image, multimodal-based, and multitemporal-based. Single-
image methods encompass statistical and physical model-based
techniques, and deep learning-based methods. Multimodal-
based approaches cover multispectral-based methods and SAR
fusion-based techniques. Multitemporal-based methods include
multitemporal nonblind and blind techniques. Each section con-
cludes with a comprehensive summary of the current issues and
future prospects pertinent to the respective methods.

A. Single-Image Cloud Removal

Single-image cloud removal leverages the available informa-
tion from cloud-free regions to guide detail recovery in cloudy
regions. This technique can suppress cloud components and
enhance surface features, thereby improving image clarity. In
addition, it is cost-effective and time-efficient, as it requires no
additional data collection or processing. Based on the techniques
used, existing methods can be broadly categorized into statistical
and physical model-based methods, and deep learning-based
methods [23], as shown in Table I.
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TABLE I

SUMMARY OF TYPICAL SINGLE-IMAGE METHODS

Class Sub-Class Authors and Year Advantages Limitations
Zhang et al. [24], Constructing a clear line of demarcation be- Requirement for manual sample selection.
Physical 2002 tween cloud and surface pixels.
Model- He et al. [25], 2010 Avoiding dependence on training samples. Darker than the real truth and often over-
based saturated.
Hu et al. [26], 2015 Accurate processing in each frequency band by ~ Unnatural color shifts exist.
domain adaptation regression.
Wan et al. [27], 2016 Strong singularity capture ability. Sensitivity to parameter selection.
Statisti Zhao et al. [28], 2016  Ability to automatically recognize, remove and  Significant spliced seam marks.
tatistical .
and fill in cloudy areas. o '
Physical Xu et al. [29], 2019 Robust on Thin clouds. Unsuitability for bright scenes.
Model- Shi et al. [30], 2021 Solving the color oversaturation problem. Influenced by reference sample time interval.
ode T .
based Zhang et al. [31], Improved accuracy in distinguishing between  Noise in the declouded results.
2023 thin clouds and land surfaces.
Yang et al. [32], 2020  Outstanding detailed texture. Ignoring geometric structure information.
Deep
Learning- Wen et al. [33], 2022  Significant high-frequency detail on ground Challenges in eliminating thick clouds.
based scenes.
Zi et al. [34], 2023 Feeling wild with less loss of detail. Computational expense of the model.
Guo et al. [35], 2023 Ability to remove thin and small-scale thick  Poor performance on real clouds.
clouds.
Ning et al. [36], 2024 ~ Well-characterized local details. Difficulty in recovering features under thick
clouds.
Yan et al. [37], 2024 Better performance in ship detection tasks. Poor performance when cloud coverage is too
large.
Jiang et al. [38], 2024  No cloud detection or cloud masking is re-  The visual performance of the cloud removal
quired. results is relatively poor.
Li et al. [39], 2025 Chromatic aberration elimination. Failure to recover extensive cloud coverage.
Toizumi et al. [40], Thin cloud removal results in no artifacts. Complex model training and requiring cloud
GAN- 2919 o o ' masks. ) -
based Li, et al. [41], 2020 Mammlzatlon' of original background informa-  Declouded results with whitish color.
tion preservation.
Pan et al. [42], 2020 Well structure of the restored image. Unrealistic feature textures or artifacts.
Wen, et al. [43], 2021 Recovering images with more natural and re-  Poor generalization ability.
alistic colors.
Zhao et al. [44], 2021  Accurate learning of different ground informa-  Artifacts in thick cloud output.
tion.
E::gling— Zhou et al. [45], 2022  Effectiveness for uniform thin clouds. Inapplicability to non-uniform thin cloud situ-
ations.
based Liu et al. [46], 2022 Reconstructing partially thick cloud-obscured  Color mismatch of different land types in im-
features. ages.
Ma et al. [47], 2023 Strong anti-interference performance when  Need for accurate cloud segmentation.
thick and thin clouds coexist.
Singh et al. [48], 2018  Generates images with fewer artifacts and im-  Severe color shift.
CycleGAN- ) proved realism. _ ) - _
based Zi et al. [49], 2021 Excellent performance in thin cloud removal Inability to remove extensive cloud coverage.

Mo, et al. [50], 2022
Jaisurya, et al. [51],
2023

Ye et al. [52], 2024

and color fidelity.

Specializing in dense haze.

Effective uniform thin and thick haze treat-
ment.

Strong adaptive repair capability.

Color distortion in the sky area.

Severe color disorder in handling bright ob-
jects.

Difficulty in meeting physical consistency re-
quirements in actual situations.

1) Statistical and Physical Model-Based Methods: Statisti-
cal and physical model-based methods posit that there are inher-
ent statistical patterns or physical property differences between
missing and valid data in a cloudy image, which can be used
to efficiently separate cloud layer and repair damaged regions.
Consequently, the spatial correlations and frequency differences
between cloudy and cloud-free areas, as well as physical imaging
models, can be employed to reconstruct clear regions.

Spatial-based methods [29], [53], [54] assume that the missing
and valid data exhibit similar statistical characteristics or textural
information, and this similarity helps estimate missing data to
produce a visually consistent cloud-free image. Nonetheless,
spatial-based methods are limited in removing only speckled
clouds, and the semantic information restored under extensive
cloud cover often deviates significantly from the original data.

Frequency-based methods [26], [27], [28], [55], [56] leverage
the low-frequency attributes of thin clouds to design low-pass
filters. These filters are employed to separate the thin cloud layer,
which is subsequently utilized to suppress the target thin cloud.
However, determining the optimal cutoff frequency for these
frequency-based methods is typically challenging and can lead
to the loss of original low-frequency information in cloud-free
regions. Physical-based methods adhere to the principles of
atmospheric imaging and are meticulously designed to account
for atmospheric scattering and absorption effects. By accurately
estimating and adjusting atmospheric parameters, these methods
can effectively remove thin clouds. For instance, prior-based
approaches estimate the transmission map ¢(z) and the global
atmospheric light A based on prior assumptions to restore
the cloud-free image J(x) within the atmospheric scattering
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model defined by I(z) = J(z)t(z) + A(1 — t(x)) [57]. Zhang
et al. [24] proposed an atmospheric correction technique that
treats all pixels equally. He et al. [25] introduced the dark
channel prior (DCP) that proves effective for thin cloud removal
tasks [30], [31]. However, inaccurate estimations of atmospheric
parameters can significantly impact the cloud removal effect,
potentially resulting in residual clouds or artifacts.

Statistical and physical model-based methods boast high the-
oretical clarity and are effective for processing uniform thin
clouds. These approaches involve either identifying statistical
patterns across various dimensions from cloudy images to cloud-
free images or estimating model-related parameters. Nonethe-
less, under complex and variable meteorological conditions, the
pattern assumptions may not be entirely satisfied, resulting in
suboptimal cloud removal results.

2) Deep Learning-Based Methods: With the relentless
progress in deep learning, single-image cloud removal based
on it have gained broad prospects [58]. These methods con-
struct deep neural networks to learn the complex relationships
between cloudy and clear images, thereby removing clouds
more accurately. Deep learning-based cloud removal methods
can effectively eliminate cloud obstructions and enhance image
quality, marking a breakthrough in cloud removal for single ORS
images.

Convolutional neural network (CNN), leveraging its robust
data fitting capabilities, is increasingly being utilized for cloud
removal and have achieved impressive performance in elim-
inating thin clouds. CNN-based single-image cloud removal
methods reconstruct clear images by learning the nonlinear
mapping between cloudy and cloud-free images. To enhance
visual quality, various techniques have been implemented for
superior restoration effects. For instance, residual blocks [59]
can alleviate the damage induced by additive noise, multiscale
convolutions [32], [60] are adept at capturing fine-grained detail
features, and attention mechanisms [33] direct the network to
concentrate on key features. However, the fixed kernel size in
CNNs restricts the engagement between the overall and detailed
elements of the image, causing artifacts or residual clouds in the
cloud removal outcomes.

Some methods [37], [61] leverage a U-shaped encoder-
decoder structure to reconstruct cloud-free images, integrating
features from encoding stages directly to their respective de-
coding stages through skip connections. Nevertheless, directly
learning the mapping from cloudy to cloud-free images lacks
interpretability. To address this challenge, some methods [34],
[35], [36], [38] attempt to integrate CNNs with the frequency
domain properties. The commonly used U-Net architecture as
shown in Fig. 3. However, these U-Net-based methods struggle
to effectively incorporate both low-level and high-level features,
resulting in many detailed features being ignored. Furthermore,
the end-to-end learning network demands a substantial col-
lection of artificially synthesized paired images for training,
resulting in suboptimal generalization capabilities of the model
when applied to real-world scenarios. Adversarial learning has
emerged as one of the most promising unsupervised methods
for studying complex distributions in recent years. Generative
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Fig. 3. U-Net architecture for single-image cloud removal methods is char-
acterized by convolutional blocks with invariant feature sizes and residual
connections [36].

adversarial network (GAN), typically consists of two compo-
nents: a generator and a discriminator. Through adversarial
training with the discriminator, the generator can learn cloudy
features from unlabeled data, reducing the dependency on high-
quality annotated datasets [40], [41], [42], [43], [44], [45],
[46], [47]. Despite the strong generalization performance of
unidirectional GANs on real cloudy images, their cloud re-
moval effect still needs to be improved due to the lack of
cloud-free labels. Recently, CycleGAN [48], [49], [50], [51],
[52] has been widely applied in image restoration. It endeavors
to establish bidirectional mappings between different domains,
utilizing cycle consistency loss and identity loss to preserve
color compositions and textures effectively. The CycleGAN
design principle constrains the transformation between two
domains through cyclic consistency. However, the CycleGAN-
based methods have limitations in globally capturing the in-
tegrated data distribution [62], resulting in asymmetric do-
main knowledge from the source to the target and poor visu-
alization when reconstructing texture details in cloud-covered
areas.

Deep learning-based single-image cloud removal exhibit ro-
bust feature extraction capabilities, allowing them to learn
the mapping between cloudy and clear images. Despite these
strengths, they also have limitations such as data dependency and
computational consumption [63], [64]. In addition, within the
constraint of single-image cloud removal, features completely
obscured by thick clouds are difficult to be learned.

3) Current Issues and Future Prospects: Single-image cloud
removal techniques are advantageous due to their minimal re-
liance on additional auxiliary data, which significantly reduces
both the cost and complexity associated with data acquisition.
They excel at removing thin clouds. Nonetheless, these tech-
niques face challenges in eliminating dense clouds and cloud
shadows, leading to the introduction of artifacts or color distor-
tion. For complex cloud scenes, the accuracy and robustness of
these methods are often found to be suboptimal [49].

As remote sensing and computer vision technologies continue
to advance, single-image cloud removal techniques are poised
to make significant strides and breakthroughs in the future.
On the one hand, it is possible to better learn the differences
between clouds and ground objects by developing more ad-
vanced neural network models, thereby removing clouds more
accurately. On the other hand, the model’s generalization ability
can be enhanced by leveraging GAN-based unpaired learn-
ing mechanisms. In addition, a more comprehensive pipeline
for processing ORS images can be established by integrating
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TABLE II

SUMMARY OF TYPICAL MULTIMODAL-BASED METHODS

Class Sub-Class Authors and Year Advantages Limitations
Czerkawski et al. [72],  Good seasonal adaptability. Reliance on high-quality masks.
2019
Cheng et al. [73], Well-defined outlines in cloud removal results.  Inapplicability to non-uniform cloud coverage.
Conventional 2021
Algorithms ~ Wang et al. [74], 2022 Computational efficiency. Incomplete utilization of information from
each spectral band.
Guo et al. [35], 2023 Good visual quality. Poor generalization capability for cloud re-
moval.
Arp et al. [75], 2024 Capable of restoring small ground textures. Poor pixel-level recovery performance.
Multispectral- Zhang et al. [77], Compatible with various satellite data. Relies on the accuracy of cloud detection.
based 2024
Guo et al. [77], 2020  Performs well in vegetated scenarios. Diminished effectiveness under high cloud
cover.
Zi et al. [78], 2021 Good color fidelity. Texture inconsistency in restoration results.
Deep Ghozatlou et al. [13],  Capable of removing cloud shadows. Performance is poor with substantial cloud
Learning 2021 coverage.
Li et al. [79], 2022 Performs well in vegetated scenarios. Performance is suboptimal under thick cloud
conditions.
Lyu et al. [4], 2023 Capable of removing cirrus clouds. Inapplicability to moderate to heavy cloud
cover scenarios.
Zhao et al. [80], 2024  Good generalization in thin cloud removal. Poor cloud removal performance in complex
scenes.
Gao et al. [81], 2020 Capable of eliminating imaging artifacts. Scenario-specific pre-training requirements.
Li et al. [82], 2022 Cloud suppression in maritime scenarios. Requirement for high-quality auxiliary annota-
tions.
GAN Zhou et al. [45], 2022  Consistency of cloud-free region texture with  Inability to generate spectral information for
real areas. thick cloud-obscured features.
Hao et al. [83], 2023 Effective reduction of noise and redundant in-  Suboptimal restoration of fine textures in land-
formation. scapes.
Li et al. [84], 2023 Optimized visual output quality. High parameter count of the model.
SAR Wang et al. [85], 2025  Mitigated spot noise. Spectral distortion.
Fusion- Chen et al. [68], 2022 Superior visual perception performance. Degraded performance in complex texture sce-
narios.
based Xu et al. [86], 2022 Mitigation speckle noise-induced performance ~ Compromised efficacy in high-cloud-cover sce-
Non-GAN degradation. narios.

Han et al. [70], 2023
Wen et al. [87], 2023
Duan et al. [88], 2024

Yu et al. [89], 2024
Zou et al. [90], 2024

Enhanced chromatic fidelity.
Enhanced edge delineation capability.
Accelerated cloud removal throughput.

Enhanced cross-domain adaptability.
Superior image fidelity compliance.

Dimensionality constraints in multi-channel
image processing.

Constrained recovery of textural minutiae un-
der high-frequency components.

Suboptimal visual output quality under full-
spectrum rendering.

Blurry reconstruction results.

Poor visual effects in complex scenes.

multitask learning mechanisms with other cutting-edge com-
puter vision technologies.

B. Multimodal-Based Cloud Removal

To tackle the challenges associated with thick cloud removal
from single ORS image, researchers employ multimodal data
as supplementary information to enhance the removal qual-
ity. These multimodal data are gathered from various sensors,
each exhibiting unique imaging properties [65], [66], [67].
Multimodal-based approaches reconstruct thick cloud areas by
integrating complementary information from different modal-
ity images, effectively overcoming the constraints inherent in
single-modal data [68], [69], [70]. These approaches are ca-
pable of more accurately removing different types of clouds
and adapting to various land cover types, demonstrating high
adaptability and reliability. Depending on the varying types
of auxiliary modal data, these approaches can generally be
categorized into two major groups: multispectral-based methods
and SAR fusion-based methods [71], as shown in Table II.

1) Multispectral-Based Methods: Different spectral bands
exhibit varying sensitivities to cloud features, thus they can
provide distinct information regarding both cloud and surface
characteristics. Multispectral-based cloud removal leverages
these abundant information from diverse spectral bands to iden-
tify and reconstruct the cloudy areas, significantly enhancing the
quality in thin and semitransparent clouds [91], [92].

Multispectral-based cloud removal techniques primarily rely
on spectral features, physical attributes, and statistical analysis to
discern the spectral and textural signatures of clouds, as well as
their spatial distribution. They utilize conventional algorithms
including filtering, interpolation, and substitution to eliminate
cloud cover [93], [94], [95], [96], [97]. The aforementioned
methods demand a deep comprehension of ORS images and
cloud characteristics, coupled with substantial experience in
image processing. They are adept at accurately restoring the
radiative properties while exerting a negligible influence on
cloud-free areas. However, these methods require accurate es-
timation of physical parameters, which inherently increases the
complexity of their application. In addition, they necessitate pro-
fessional expertise, which limits their effectiveness in addressing
complex scenarios, resulting in a relatively weak capacity for
generalization [98].

With the continuous advancement of algorithms and hard-
ware, deep learning shows broad application prospects in the
field of multispectral cloud removal [99]. Through the training
on extensive annotated datasets, deep learning techniques can
automatically extract features of land objects and eliminate
cloud obstructions [100], [101]. The frequently utilized deep
learning framework as shown in Fig. 4. Hao et al. [83] and Guo
et al. [77] leveraged channel attention mechanisms to capture
significant information across different channels. Zhao et al. [80]
integrated spatial attention, channel attention, and multiscale
convolutional networks to bolster the capability of detecting thin
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Cloud-free

Multispectral
cloudy

Fig. 4. Frequently utilized deep learning framework for multispectral-based
cloud removal methods [80]. This framework combines cross-channel feature
enhancement modules with sigmoid-activated residual pathways, enabling adap-
tive spectral feature recalibration.

Real / Fake?

Generated
Cloud-free

AR Cloud-free

Fig. 5. Commonly used GAN framework for cloud removal based on SAR
fusion [84]: G aims to generate cloud-free images, and D aims to determine the
authenticity of the images generated by G.

cloud distributions. However, deep learning methods frequently
depend on sizable labeled datasets and advanced hardware
infrastructure. Moreover, these models tend to have limited
interpretability and can introduce noise postcloud removal [102].

Multispectral cloud removal techniques capitalize on the
inherent strengths of satellite ORS, boasting considerable advan-
tages in the quality and precision of cloud removal. Nevertheless,
the spectral bands are highly vulnerable to interference from
dense cloud cover, which exacerbates the challenge of retrieving
surface information.

2) SAR Fusion-Based Methods: SAR is a proactive mi-
crowave imaging approach that is capable of acquiring infor-
mation about ground objects under a wide range of weather
conditions [103]. This attribute enables it to penetrate through
clouds to acquire surface information, providing a significant
advantage for cloud removal [68]. SAR fusion-based methods
utilize this unique advantage as auxiliary data to guide the texture
recovery of ORS images.

In the early research stages, academics utilized GANS to fuse
SAR with ORS images for cloud removal [104]. The commonly
used GAN framework as shown in Fig. 5. Hao et al. [83] used
GAN to selectively fuse information features to achieve cloud
removal, and channel attention to improve feature recovery in
cloud coverage areas. Li et al. [84] developed a Transformer-
based GAN with a generator that adopts a hierarchical struc-
ture to capitalize on both the deep and shallow features of
images, as well as the global-local geographical proximity. SAR
fusion-based GANs can generate realistic images and show
particular strength in handling complex cloudy structures and
textures. Nonetheless, the training process of GAN models tends
to be intricate, and the model’s performance can be inconsistent,
which may fall short of the desired cloud removal outcomes.

In recent years, several nonGAN approaches have demon-
strated promising results in the effective removal of clouds. Xu
et al. [86] proposed a fusion technique that integrates SAR
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and ORS images globally and locally. Li et al. [69] intro-
duced a structurally consistent fusion network that employs a
channel attention mechanism to alleviate the pseudoartificial
features induced by speckle noise. Zou et al. [90] utilized a
conditional and denoising encoder to mitigate the impact of
speckle noise. NonGAN models necessitate parameter adjust-
ments specific to particular scenarios when processing ORS im-
ages that encompass diverse scenes and varying degrees of cloud
coverage.

The integration of SAR images allows for more precise and
comprehensive cloud removal [105]. However, effectively merg-
ing these distinct types of images continues to pose a significant
challenge [106]. Current fusion methods often do not take full
advantage of the complementary information between SAR
and OSR images, which results in suboptimal cloud removal
outcomes. In addition, SAR image quality plays a pivotal role
in the efficacy of cloud removal techniques [107]. Noise or
distortion present in the SAR images can be magnified during the
cloud removal process, thereby compromising the final results.

3) Current Issues and Future Prospects: Multimodal-based
methods have demonstrated significant promise due to their
superior dependability, yet they encounter several challenges in
real-world applications, including dataset inconsistency and lack
of clear connections. The former issue arises from the necessity
to manage extensive heterogeneous data, which complicates the
design and implementation of algorithms. The latter issue is
due to the absence of overt connections between disparate data
sources, necessitating more sophisticated strategies to recognize
and leverage complementary information. In the data fusion
process, the disparities in information across different modalities
can result in the loss of certain image details, thereby impacting
the quality of the final declouded image. SAR fusion-based
methods demand substantial effort during the stages of data
registration and preprocessing, and the presence of speckle noise
can introduce artifacts.

In the future, there is an urgent need to further explore more
effective multimodal data fusion strategies to generate more
accurate and comprehensive cloud-free images. This entails
leveraging the complementary information between different
modalities to enhance integration. For example, global-local
fusion algorithms can improve the utilization of SAR data, con-
ditional GANs can bolster SAR-assisted cloud removal efforts,
adaptive weight allocation can focus on key obscured areas, and
multiscale feature extraction can adapt to varying resolutions
and complexities.

C. Multitemporal-Based Cloud Removal

Remote sensing systems with periodic revisits are capable
of acquiring multitemporal images of the same location [97],
thus providing an additional auxiliary dataset for ORS image
cloud removal. Typically, data collected over the same location
at various time intervals are termed as multitemporal images.
Given that the distribution of clouds may evolve over time,
the cloud cover conditions differ across these multitemporal
images [108]. Multitemporal cloud removal techniques leverage
the complementary information present within multitemporal
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TABLE III

SUMMARY OF TYPICAL MULTITEMPORAL-BASED METHODS

Class SubClass Authors and Year Advantages Limitations
Bertoluzza et al. [95], Recovers semi-transparent data missing infor-  Performance degrades with older data collec-
2019 mation. tion dates.
Similarity-  Shen et al. [96], 2019 Capable of processing scenarios with notable  Insufficient accuracy in feature detail recon-
based land cover variations. struction.
Zhou et al. [98],  Operates across seasonal variations. Poor reconstruction performance with similar
2023 atmospheric conditions at multiple time points.
Lin et al. [108], 2022 Ability to adapt to inaccurate mask conditions.  Dependency of cloud removal result on mask
quality.
Model- Xia et al. [109], 2022 Significant improvement in reconstruction ac-  Requirement for at least one cloud-free phase
Non-blind Based curacy of cloud-covered areas. across all time phases.
Technique Zheng et al. [110], Reduction of color error in cloud removal  Poor performance in texture details.
2023 results.
Li et al. [111], 2023 Capability to restore fine edges and texture  Poor performance on large-scale thick clouds.
information.
Ji et al. [112], 2020 Elimination of need for manual labeling. Poor performance in pixel-level reconstruction
results.
Deep Zhang et al. [113],  Capability to remove extensively covered Inability to reconstruct cloud-covered areas
Learning 2020 clouds. without complementary temporal information.
Long et al. [114],  The visualization of the restored area is excel-  Poorer performance with significant land cover
2021 lent. changes.
Stucker et al. [115],  Capable of restoring cloud-covered areas in  Relies on high-quality cloud and cloud shadow
2023 continuous time phases. masks.
Lin et al. [116], 2021 Capable of restoring textures in different Poor performance for complex structure tex-
scenes. tures.
Model- Ji et al. [117], 2022 Production of smoother restoration results. Poor shadow removal effect.
driven Tu et al. [118], 2023 Effective restoration of detailed textures. Poor performance with heavy cloud cover.
Jiang et al. [119], Capable of restoring complex texture struc-  Poor visual effect of cloud removal result.
2023 tures.
Wang et al. [120],  Detail preservation in restoration results. Poor restoration effect in complex texture
2023 scenes.
Chen et al. [121],  Minimization of visual artifacts. Limited generalization capability.
Blind 2024
Technique Jiang et al. [122], Capable of simultaneously processing three- Limited reconstruction capability for different
2022 phase cloud cover images. seasons.
Data- Ebel et al. [123], 2023  Excellent color representation in detail restora-  Poor performance in visual effect.
driven tion.
Yang et al. [124],  Good restoration performance of landscape de-  Need for improvement in finer detail restora-
2023 tails. tion.
Zi et al. [125], 2024 Excellent performance in color consistency. Influence by discrete noise.
Zhou et al. [126], Mitigated interference noise. High parameter volume.
2025
Sebastianelli et al. Capable of handling all weather conditions. Poor performance under high cloud coverage.
[127], 2022
SAR Wang et al. [128],  Outstanding performance in spectral preserva-  Poor performance on thick clouds.
Fusion 2023 tion.

images to eliminate clouds and reconstruct the cloudy regions,
demonstrating a marked advantage in handling dense and ex-
tensive clouds. The existing approaches for multitemporal cloud
removal can be generally divided into nonblind and blind meth-
ods, based on the necessity of employing a cloud mask, as shown
in Table III.

1) Multitemporal NonBlind Technique: As cloud detection
technology in ORS images has progressed, it is possible to
acquire extensive masks that identify regions affected by cloud
contamination [131]. Nonblind multitemporal cloud removal
methods utilize these masks, either provided or obtained through
prior cloud detection, to delineate the impaired areas and subse-
quently employ the complementary information from cloud-free
regions across various time phases to reconstruct the underlying
data [110]. This methodology ensures spectral consistency in
cloud-free regions, guided by the mask.

In the early stages of nonblind multitemporal cloud removal,
methods directly filled or replaced cloudy areas with similar
information from cloud-free regions in multiple time phases.

Techniques such as global optimization [132], Markov random
fields energy model [133], dictionary learning [134], weighted
regression model [135], and sparse representation [136] were
used to find the closest matching cloudy patches within the
multitemporal images. Early approaches relied on a straight-
forward strategy of filling in cloudy areas using similar in-
formation from multitemporal images at the same location,
neglecting the temporal variations of the materials within the
multitemporal images. In addition, these methods presupposed
that the corresponding regions in the auxiliary multitempo-
ral images were free of clouds, which often led to struc-
tural and spectral inaccuracies in the reconstructed cloud-free
images.

Considering the spectral disparities among multitemporal
images, methodologies grounded in low-rank modeling, tensor
decomposition, or sparse representation have been developed to
distill low-rank and sparse features from the multitemporal im-
ages for restoring cloudy areas. Such approaches can effectively
capture the interdependencies among the multitemporal images,
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Fig. 6. Commonly applied U-Net architecture in multitemporal nonblind
cloud removal methods [117]. The architecture includes a spatial encoder, a
temporal encoder, and a spatial decoder, which are used to extract spatial features,
extract key temporal features, and reconstruct cloud-free images, respectively.

Mask

yielding more precise restoration outcomes than the traditional
similarity-based replacement techniques. Furthermore, hybrid
approaches leverage low-rank tensor reconstruction to uncover
intrinsic structural features across multiple time phases and
integrate deep priors to capture contextual information [108],
[137], [138], [139]. These low-rank modeling, tensor decom-
position, and sparse representation are collectively known as
model-driven methods, which do not require cloud-free regions
in the multitemporal auxiliary images. However, they presup-
pose a minimal ground change, which is challenging to fulfill in
practical scenarios. Like the model-driven methods discussed in
Section II-A1, these approaches also encounter issues related to
parameter tuning and sensitivity to outliers.

The advent of deep learning has significantly advanced this
field, with neural networks employed to represent multitemporal
ORS images and to discern the mapping between multitemporal
cloudy regions and clear regions. For instance, end-to-end CNNs
have been effectively utilized to learn the relationship between
missing data and the auxiliary information from multiple time
phases [140], [141], [142]. Stucker et al. [117] presented another
U-Net model for cloud removal. The commonly applied U-Net
architecture as shown in Fig. 6. Data-driven approaches are
capable of capturing the nuances of temporal series variations,
which can result in more precise cloud removal. Nevertheless,
they encounter the pervasive challenges associated with deep
learning: The necessity for an ample training dataset to ensure
robust generalization, and the substantial demands on data re-
sources, hardware, and training time.

In summary, if a cloud mask has been preidentified, employing
multitemporal nonblind cloud removal techniques can more
precisely leverage auxiliary data from multiple time phases to
reconstruct cloudy areas. These methods concentrate solely on
the regions of missing data, establishing a connection between
these areas and the multitemporal images, thereby enabling
the reconstruction of promising outcomes [119]. However, the
intricacy of clouds poses a significant challenge to the accu-
rate manual annotation or automatic detection of cloud masks.
Consequently, if the cloud mask is not known beforehand or if the
precision of cloud detection is suboptimal, the efficacy of these
methods may be compromised or the quality may be markedly
diminished. Furthermore, while these methods can address the
temporal spectral variations presented in multitemporal images,
the temporal changes in the structural composition of the ground
features remain an open question.
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2) Multitemporal Blind Technique: To mitigate the depen-
dence on masks, numerous high-performing blind methods have
been introduced. These multitemporal blind techniques elimi-
nate clouds without the provision of a predefined cloud mask
and without the prerequisite of a preliminary cloud detection
process [110]. They are adept at multitemporal dehazing in
noncomplementary scenarios and are particularly effective in
addressing extensive regions of dense cloud cover. In addition,
the absence of a mask requirement simplifies the integration of
multitemporal and multisource methodologies.

Model-driven blind methods for multitemporal images utilize
models such as sparse representation [143] or matrix factor-
ization [144] to forge connections between multitemporal im-
ages or to distill key features for restoration. These approaches
enable the integration of cloud detection within the cloud re-
moval process, allowing for the simultaneous identification and
clearance of cloud masks. Similar to multitemporal nonblind
method, these techniques rely heavily on the quality of cloud-
free multitemporal auxiliary data and require clear images at
multiple times as supplementary information. Recently, new
methodologies have emerged that do not impose the condi-
tion of complete clarity and cloudlessness for multitemporal
auxiliary data. Tu et al. [120] used a weighted nuclear norm
to adaptively describe low-rank attributes with group sparsity
constraints to characterize the sparse nature of cloud component
difference maps. While the above methods do not mandate a
full set of clear images across time, they generally require a
collection of multitemporal images with diverse cloud coverage,
typically more than two, to act as auxiliary inputs. Approaches
that characterize data through sparsity or low-rank features risk
undermining the intrinsic high-dimensional structures and dis-
regard multitemporal semantic correlations, showing a height-
ened sensitivity to anomalies [119]. In addition, the efficacy
of model-driven cloud removal is contingent upon the param-
eters of representational dimensions, regularization, and prior
knowledge, as various image scenes may call for distinct optimal
settings [143]. Some alternative methods explore the integration
of neural networks to distill multitemporal prior knowledge,
aiming to amplify the potency of the prior information inher-
ent in model-driven techniques. Nevertheless, there is a dearth
of research that specifically integrates data-driven and model-
driven approaches, and this hybrid approach remains largely
unexplored [123].

The data-driven multitemporal blind cloud removal tech-
niques leverage deep neural networks to discern the complex
mappings between multitemporal cloudy images and the de-
sired cloud-free images. This conversion process from cloudy
to cloud-free is based on the network’s ability to capture com-
plex relationships. Compared to model-driven approaches, these
data-driven methods excel in extracting both global and local
features across multiple temporal datasets, thereby yielding
superior cloud removal outcomes. However, studies that specif-
ically integrate data-driven and model-driven approaches for
cloud removal tasks are relatively scarce, and the potential of
such hybrid methods remains largely untapped. The challenge
of information fusion without an effective selection mechanism
is critical in data-driven multitemporal blind cloud removal
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Fig. 7.  Widely used CNN structure in multitemporal blind cloud removal
methods [145]. The structure processes time information and extracts features
through convolutional blocks, and removes clouds in a sequence-to-sequence
manner.
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methods. Neglecting these mechanisms poses a risk of cloud
interference or redundant data, which could compromise the
efficient use of cloud-free regions and reduce overall per-
formance [126]. Nevertheless, neither model-driven nor data-
driven approaches have fully addressed the impact of temporal
variations in multitemporal data of terrestrial surfaces.

To mitigate the effects of these temporal changes, some
research has merged multitemporal cloud removal with SAR
data fusion techniques. For example, approaches that employ
X-fork Genetic Algorithms or Conditional GAN (cGAN) inte-
grate multitemporal and SAR images into an end-to-end gener-
ator designed to produce cloud-free images [146], [147]. Ebel
et al. [145] released a multitemporal decloud dataset containing
paired ORS and SAR images, and designed a 3-D CNN and
a sequence translation model. The widely used CNN structure
as shown in Fig. 7. The essence of the challenge for hybrid
models is the integration of multitemporal and multisource data
without the benefit of prior information. Although these hybrid
techniques can leverage the advantages of both methodologies,
they also risk obscuring the distinct weaknesses inherent to
each. A case in point is the speckle noise commonly found
in SAR image. Likewise, while data-driven cloud removal is
adept at eliminating clouds and can be highly effective, it is not
without its drawbacks, including prolonged training durations,
suboptimal cloud clearance, and potential color distortion [119].

In summary, the hallmark of multitemporal blind methods—
their independence from reliance on masks—eases the workload
of manual annotation and reduces the cloud removal impli-
cations stemming from inaccuracies in mask detection. These
approaches exhibit superior advantages in hybrid model-driven
scenarios, as well as in the integration of multisource, multi-
spectral, and spatial data. Consequently, multitemporal blind
methods have emerged as a prominent trend in the field of cloud
removal for ORS images in recent years.

3) Current Issues and Future Prospects: Multitemporal
cloud removal techniques, recognized for their efficacy in
addressing dense and extensive cloud coverage, have seen
widespread application in the cloud removal of satellite ORS and
aerial images. However, the prerequisite for these methods is the
acquisition of multitemporal images from a consistent vantage
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point, and instrumental discrepancies can lead to geometric
misalignment and registration inaccuracies [114]. Furthermore,
an overly brief sampling interval may result in similar cloud
patterns across images, diminishing the availability of auxiliary
information. In contrast, an extended interval could see changes
in terrestrial and spectral properties that adversely affect the
restoration process [148].

Looking ahead, the integration of multitemporal blind cloud
removal methods with the strengths of both model-driven and
data-driven strategies is anticipated to expand their applica-
tions. As large-scale modeling technologies progress and hard-
ware capabilities advance, more sophisticated cloud removal
approaches that leverage multitemporal, multisource, and multi-
spectral data, while simultaneously capturing temporal, spectral,
and spatial correlations, are poised to significantly enhance cloud
removal outcomes. Despite the promise of hybrid methodolo-
gies, challenges persist in harnessing complementary informa-
tion across spatial, spectral, and temporal domains, particularly
due to variations in multisource images and differences in spatial
resolution [144].

III. PERFORMANCE EVALUATIONS AND DISCUSSIONS
A. Experiment Preparation

1) Datasets: To illustrate the cloud removal capabilities of
the methods, we performed comparative performance exper-
iments on typical datasets tailored to each method. Typical
datasets used are as follows:

a) The remote sensing image cloud removing (RICE)
dataset [149], a benchmark for single-image cloud re-
moval, comprises two subsets: RICE1 and RICE2, with
each image dimensioned at 512 x 512 pixels. RICEI en-
compasses 500 pairs of cloudy and clear images, emulating
light cloud cover through artificially generated semitrans-
parent haze. RICE2, in contrast, fabricates 736 cloud-
mask-clear image pairs to mimic dense cloud coverage.

b) The sentinel-1/2 multispectral cloud removal (SEN12MS-
CR) [150], a widely recognized multimodal cloud removal
dataset, includes 13-band ORS image pairs and 2-band
SAR images. Itencompasses 122 218 paired samples, each
256 x 256 pixels in size, capturing four seasons across 175
distinct geographical locations.

¢) The SENI2MS-CR Time Series (SEN12MS-CR-TS)
dataset [145], designed for multitemporal cloud removal,
spans 53 distinct geographical locations. It encompasses
15 578 paired samples, each sample includes 30 different
temporal phases of 13-band ORS image pairs and 2-band
SAR images, segmented into numerous 256 x 256 pixel
blocks.

2) Metrics: To evaluate the effectiveness of these methods
more comprehensively on test datasets, we utilized four standard
cloud removal evaluation metrics [151]. Evaluation metrics used
are as follows:

a) The structural similarity index (SSIM) gauges the sim-
ilarity in structure between the reconstructed and the
clear image, thereby evaluating the veracity of the recon-
structed image. It encapsulates structural information as an
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TABLE IV TABLE V
COMPARISON RESULTS OF AVERAGE SSIM/PSNR/CIEDE/LPIPS oN AVERAGE METRIC RESULTS OF MULTIMODAL-BASED AND
BENCHMARK DATASETS MULTITEMPORAL-BASED METHODS ON SEN12MS-CR-TS
Methods SSIM PSNJ:2 IC};:QIMSE LPIPS | SSIM PSN]? IC%ZMSE LPIPS Catcgory Method SSIM__ PSNR _ RMSE _ LPIPS
DCP [25] 086 17.17 10363 0.09 | 0.626 17.06  9.64 0417 DSen2-CR [158] 0.881 29.94 7.967 0.307
FFA [150] 094 2859  7.085 0045 | 0901 3236 6635 0.112 Multimodal GLF-CR [85] 0.886  30.16  6.225 0.283
Trinity-Net [151] 0943 2924 6804 0039 | 0.888 2983 6533  0.145 TASANet 0.894 30.93 5.826 0.223
PSMB-Net [152] 0934 299 639  0.043 09 3177 5554 0114 6
DCIL [153] 0957 31.61 5481 0033 | 0903 33.09 5113 0.116 DiffCR [$9] 0895 3113 5387 0.204
DehazeFormer [154] | 0956 3230 5364 0037 | 0908 3476 4587  0.122 U-TAE [159] 0.879  29.12 8269  0.325
EMPF [155] 0954 3179 5733 0.027 | 0899 3349 5002  0.115 Multitemporal CR-TS Net [143] 0.882  29.72 7.823 0.314
MABDT-DW [36] | 0.957 31.88 5572  0.032 | 0907 3415 469  0.112 UnCRtainTS [123] 0.892 3027 5913 0.247
ConvIR-B [156] 0957 3169  5.621 004 | 0911 3418 4725  0.114 : : : :
ChalR [157] 0.959 3241 5294  0.038 | 091 346 4668  0.108

amalgamation of luminance, contrast, and texture. An
SSIM value nearing 1 signifies that the structural attributes
of the reconstructed image closely mirror those of the clear
image.

b) The peak signal-to-noise ratio (PSNR) quantifies image
quality by calculating the mean square error. A higher
PSNR indicates less distortion in the reconstructed image.

¢) The root mean square error (RMSE) serves as an error
metric, determining the root mean square error in pixel
intensities between the reconstructed and clear images.
A lower RMSE indicates a higher fidelity of the recon-
structed image with less perceptible distortion.

d) The learned perceptual image patch similarity (LPIPS)
captures detailed information that the human visual system
focuses on, demonstrating strong applicability in practi-
cal scenarios. Aligning closely with human perception, a
lower LPIPS value signifies greater image authenticity.

B. Experimental Results and Analysis

In the subsequent analysis, we assessed the cloud removal
performance of the methods across various scenarios and cloud
cover levels using a blend of qualitative and quantitative evalua-
tions. Ten single-image methods were trained for 1000 iterations
using the same datasets. Similarly, four multimodal and three
multitemporal methods were trained for 60 iterations using the
same dataset. All comparison experiments were conducted on
a platform equipped with an Intel i5-10400F processor and an
NVIDIA GeForce RTX 4070 GPU. The remaining parameters
of each method were kept consistent with those in the original
papers.

We selected ten effective single-image methods for compar-
ison: DCP [25], feature fusion attention (FFA) [152], Trinity-
Net [153], partial siamese with multiscale bicodec network
(PSMB-Net) [154], dynamic collaborative inference learning
(DCIL) [155], Dehazing Transformer (DehazeFormer) [156],
encoder-free multiaxis physics-aware fusion (EMPF) [157],
multiscale attention boosted deformable transformer-depth wise
(MABDT-DW) [36], channel interactions for image restoration
(ChalR) [159], and revitalizing convolutional network for image
restoration (ConvIR-B) [158]. Among them, ChalR currently
stands out as a superior single-image approach for cloud re-
moval. As depicted in Table IV, both methods exhibit out-
standing performance on all evaluation metrics, with particu-
lar excellence noted in brightness, spectral fidelity, and visual

perceptual authenticity. As shown in Fig. 8, these methods
deliver satisfactory outcomes in scenarios with light cloud cover
and haze. Nevertheless, in scenes characterized by denser and
thicker cloud layers, issues such as artifacts and distortions be-
come evident. While single-image cloud removal techniques are
capable of addressing semitransparent clouds, their effectiveness
is compromised when confronted with scenarios where thick
clouds completely block the ground features, due to the limited
information that can be gleaned from a single image. This
limitation inherently restricts the cloud removal capabilities in
such instances.

As depicted in Table V and Fig. 9, the exemplary cloud
removal outcomes of multimodal approaches include deep
sentinel-2 cloud removal (DSen2-CR) [160], global-local fu-
sion cloud removal (GLF-CR) [86], tied and anchored stereo
attention network (TASANet), and diffusion cloud removal
(DiffCR) [90]. Among them, DiffCR currently stands out as a
superior multimodal approach for cloud removal. Compared to
GLF-CR, DiffCR demonstrates higher performance in structural
and textural restoration metrics, along with reduced distortion
in both brightness and spectral fidelity. Both techniques exhibit
commendable thick cloud removal capabilities across different
levels of cloud coverage. DSen2-CR retained the original input
but converted some parts of the image into artifacts. GLF-CR is
plagued by residual cloud shadows and artifactissues. TASANet
employs multiscale feature extraction to mitigate artifact gener-
ation. DiffCR significantly alleviates the artifact phenomenon
but introduces extra noise. These multimodal techniques are
designed to incorporate supplementary SAR data, enabling the
recovery of textures obscured by dense cloud. Nonetheless, the
presence of SAR speckle noise disrupts the fusion process,
leading to the persistence of artifacts in the final declouded
images.

The representative cloud removal outcomes of multitemporal
approaches are depicted in Table V and Fig. 9, featuring U-net
with Temporal Attention Encoder (U-TAE) [161], cloud removal
satellite time (CR-TS Net) [145], and uncertainty quantifica-
tion for cloud removal in optical satellite time series (UnCR-
tainTS) [125]. Among them, UnCRtainTS currently stands out
as a superior multitemporal approach for cloud removal. These
methods leverage supplementary data from different temporal to
proficiently restore information from dense cloud regions. While
both approaches have demonstrated success in structural and tex-
tural restoration, there remains scope for enhancement in fidelity
and visual authenticity. U-TAE collapses the time dimension into
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Fig. 8. Visualization results of single-image methods on RICE. From left to right are (a) cloudy ORS images, (b) cloud-free ORS images, (c) results of DCP, (d)
results of FFA, (e) results of Trinity-Net, (f) results of PSMB-Net, (g) results of DCIL, (h) results of DehazeFormer, (i) results of EMPF, (j) results of MABDT-DW,
(k) results of ConvIR-B, and (1) results of ChalR.
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Fig. 9. Visualization results of multitemporal methods on SEN12MS-CR-TS. From left to right are (a) cloudy ORS images, (b) SAR images, (c) cloud-free ORS
images, (d) results of U-TAE, (e) results of DSen2-CR, (f) results of CR-TS Net, (g) results of GLF-CR, (h) results of UnCRtainTS, (i) results of TASANet, and
(j) results of DiffCR.

a single mapping. CR-TS Net employs a sequence-to-sequence  C. Discussions

network to diminish noise, whereas UnCRtainTS incorporates

uncertainty predictions into its loss function, leading to more Combining the experimental results with the methods review
authentic color recovery and finer textural details. Upon exam-  rteveals that various cloud removal techniques exhibit unique
ining the declouded outcomes, it is evident that the incorporation ~ strengths when addressing different types of cloud coverage and
of multitemporal land cover variations introduces persistent image information. Single-image methods excel in scenarios
artifacts and distortions. with haze and semitransparent clouds by capitalizing on the
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current cloud areas and adjacent similar features. They are
straightforward and efficient, eliminating the need for extra aux-
iliary data collection and alignment preprocessing. In contrast,
multimodal, multitemporal methods shine in thick cloud scenar-
ios by tapping into additional structural or historical information.
Researchers can opt for the most appropriate method among
these three categories, contingent upon their hardware and data
conditions, to either remove clouds or reduce their impact,
thus improving the precision of subsequent sophisticated tasks.
Nonetheless, it is imperative to acknowledge the constraints
inherent in these methods, such as

1) Data Pairing Challenge: Deep learning approaches often
require cloud-free and cloudy image pairs of the same size
and resolution at the same location for guiding model training.
However, in real-world scenarios, capturing paired ORS images
from the same location at the same time is impractical. Even
with minimal time intervals, variations in terrain and lighting
conditions are unavoidable. Confronted with this predicament,
researchers often utilize cloud-free images combined with cloud
masks to synthetically generate cloudy images. These synthetic
image pairs tend to exhibit substantial generalization errors,
significantly diminishing their effectiveness in cloud removal
when applied to actual cloudy images. Furthermore, multimodal
and multitemporal methods demand not only the alignment of
cloud-free and cloudy images but also the precise registration
and matching of SAR and multitemporal images, which signif-
icantly amplifies the complexity of data preprocessing.

2) Complexity of Cloud Features: The complexity of cloud
features is manifested in their irregular shapes, uneven concen-
trations, and nonuniform distributions. These characteristics ex-
acerbate the inaccuracy of feature extraction or information fu-
sion in cloud removal models. Consequently, after cloud removal
operations, cloud regions may still exhibit lingering blur, distor-
tion, artifacts, and detail distortion. The most effective cloud
removal techniques currently rely on neural networks, but these
can lead to the loss of detailed features due to their fixed-size
convolutions and pooling operations. Moreover, single-image
cloud removal is constrained by information limitations, which
hinder its effectiveness in dealing with dense clouds. In addition,
SAR fusion introduces extra speckle noise, while multitemporal
methods ignore the temporal changes in the landscape.

3) Inadequate Information Utilization: Constrained by com-
putational and storage resources, some research discard mul-
tispectral information by converting ORS images into RGB
three-channel images that are perceptible to the human eye.
Some studies discard long temporal sequences, preserving only
a select few data points. Such information compression leads to
a substantial loss of detail, thereby constraining the efficacy of
cloud removal models. Thus, preserving essential information
for cloud removal within the constraints of limited resources
poses a significant challenge.

The aforementioned challenges continue to be focal points in
ongoing research and are critical issues that demand immedi-
ate attention. Potential improvements to key technologies and
prospective research avenues for addressing these issues can be
encapsulated as follows:

1) To address the challenge of data pairing, cloud detection
and segmentation models can be employed to extract cloudy
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features, synthesizing more datasets that closely resemble real-
world scenarios. Another approach is to integrate cloud detection
and segmentation models with multitask learning frameworks
to remove cloud in a concurrent process. Moreover, the model’s
generalization capabilities can be augmented by employing un-
supervised, semisupervised, or weakly supervised learning tech-
niques. For example, GANs can be applied by treating cloudy
images as the source domain and cloud-free images as the target
domain, thereby generating cloud-free images from cloudy im-
ages. In addition, the development of robust, adaptive methods
in the frequency domain or model-based approaches that do
not rely on labels presents another strategy. Lastly, combining
artificially synthesized paired datasets with real-world unpaired
datasets and leveraging semisupervised or weakly supervised
learning mechanisms is also a viable solution to this issue.

2) To tackle the problem of incomplete cloud removal, a
model design perspective is essential. While many attention
mechanisms and multiscale strategies can indeed focus on the
characteristics of complex cloudy regions, they often fail to
adequately attend to faint ground signals, resulting in a lack of
capability to extract fine local details. Enhancing the attention
or extraction of local high-frequency texture features could
potentially promote the recovery of more details. Moreover, in-
formation fusion should not merely be a matter of concatenation
and attention; instead, it should involve more complementary
cross-modal interactions. It is also important to emphasize the
high-frequency information from SAR data and to mitigate the
effects of noise.

3) To address the issue of underutilized information, future
hybrid methodologies have the potential to significantly improve
cloud removal capabilities. For instance, in hybrid model-driven
and data-driven methods, the training process can be guided by
physical models. Integrating various cloud removal models is an-
ticipated to elevate the overall accuracy. In addition, by combin-
ing single-image, multitemporal, multispectral, and SAR data,
there is a promising prospect for the development of more robust
multimodal, multitemporal fusion methods. Training large-scale
cloud removal models on extensive distributed datasets to fully
leverage ORS data. Furthermore, adopting lightweight design
principles to minimize the extraction of redundant information
and reduce model complexity is also essential.

IV. CONCLUSION

The study of cloud removal technologies has become in-
creasingly significant in bolstering the quality of ORS im-
ages and increasing its usage rate. This article begins with a
comprehensive review and categorization of existing cloud re-
moval techniques, which are categorized into the following main
categories: single-image, multimodal, and multitemporal. Each
category possesses distinct advantages and is suited to different
scenarios, encompassing key technologies such as physical mod-
eling, deep learning, multispectral analysis, and SAR fusion.
Comparative experiments on benchmark datasets were subse-
quently conducted to further evaluate the cloud removal efficacy
of these methods. The article concludes with a comprehensive
discussion of the challenges impeding these techniques and
proposes potential corrective measures.
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Several significant initiatives to improve cloud removal ca-
pabilities are anticipated to garner extensive interest. These
endeavors include the use of unpaired learning mechanisms to
bolster the models’ generalization ability and the integration of
multitask learning frameworks to establish a more holistic pro-
cessing approach. SAR fusion also aims to develop models that
are able to extract or highlight high-frequency texture features,
thereby mitigating the impact of speckle noise. In addition, there
is a growing interest in exploring hybrid models, especially those
with multimodal and multitemporal fusion. The combination of
model-driven and data-driven strategies is also emphasized to
further improve the models’ generalization capabilities. Lastly,
the utilization of complementary information across spatial,
spectral, and temporal domains is highlighted to mitigate the
impact of texture variations.
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