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ABSTRACT A conical magnetic bearing system (CAMBs) has emerged as a promising solution for
various applications relying on magnetic force, thanks to its unique geometry, which reduces the need
for multiple active magnets and reduces energy consumption for supporting maximum loads and lower
copper losses. Due to the inherent nonlinearity and coupling characteristics of the 5-DOF CAMBs, a detailed
mathematical model as well as the design of a highly accurate control scheme are essential, especially under
the influence of external disturbances, unbalance disturbances, and supply faults. The proposedmathematical
model integrates both the electrical and mechanical systems, making it subject to mismatched and matched
disturbances. Furthermore, the system also accounts for issues such as supply faults, supply saturation, and
time delays in both power supplies and sensors. To address these challenges, a cascade control structure for
CAMBs is proposed, comprising an outer loop and an inner loop. The outer loop employs fractional order
sliding mode control (FOSMC) to regulate the rotor’s displacement and rotational angle. Meanwhile, the
inner loop utilizes a fractional-order PID (FOPID) controller to control coil currents, effectively mitigating
the influence of eddy currents and the time delay issues associated with power supplies and sensors.
Furthermore, disturbances are addressed through a hybrid extended state observer (ESO) structure, where
a fast ESO is implemented in the inner loop, while a slow ESO is applied to the outer loop to observe
mismatched and matched disturbances. Overall stability of the closed-loop system control is mathematically
proven. Finally, the simulation evaluation using particle swarm optimization for CAMBs under disturbances,
faults, and time delays demonstrates that the proposed control system achieves effectiveness, feasibility, and
robustness.

INDEX TERMS 5-DOF conical active magnetic bearings, supply fault, time delay, fractional order control,
mismatched and matched disturbances.

I. INTRODUCTION
Active magnetic bearing systems are extensively utilized in
various industries. These systems employ electromagnetic
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bearings, which operate using power electronic components,
to support high-speed machinery such as power drives [6],
suspended flywheels [12], and turbomolecular pumps [5].
A typical active magnetic bearing system consists of four
main components: an electric actuator, a digital control unit,
a switching amplifier, and a position sensor. The system
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includes multiple electromagnets that generate magnetic
fields to suspend the rotating rotor, allowing it to levitate
without physical contact. In addition, conical-shaped mag-
netic bearings have emerged as a promising solution for
various magnetic force-supported applications due to their
distinctive geometry, which reduces the number of active
magnets required [21], [35], [36].

As illustrated in Fig. 1, the rotor surface at the bearing end
is slightly angled, creating a slanted air gap between the rotor
and the bearing. This design allows the electromagnetic coils
to generate both axial and radial forces, eliminating the need
for an additional set of axially controlled electromagnetic
coils. The key advantages of this configuration include
reduced energy consumption for supporting maximum loads
and lower copper losses [22]. However, the system faces
significant challenges due to high coupling effects between
the axes, making the development of a reliable controller
under a wide range of operating conditions a complex
task [33], [37]. Studies [33] have provided a model of the
conical bearing that is derived in state variable form with
airgap flux, airgap displacement, and velocity being used as
state variables. This description converts the equations of
rotor dynamics into a simple form. However, considering
the dynamics of the system, the studies ignore the variation
in parametric and gyroscopic effects, which is a significant
nonlinearity. A recent publication on modeling for CAMBs,
where the mismatched disturbances are determined using a
disturbance estimator, is presented in [35]. However, when
considering the technological characteristics of the CAMBs,
the above model ignores the matched disturbance effect on
the control input channel. In the paper, we propose a CAMBs
model that considers multi-channel lumped disturbances.
The governing equations characterising the relationship
between electromagnetic forces, air gaps, gyroscopic force,
mass unbalance, and control currents are used to build the
nonlinear model of the conical magnetic bearing. In previous
studies, supply faults, power saturation under unbalanced
disturbances, and unmodeled dynamics are not considered
when building detailed CAMBs models. This makes the
mathematical models of the objects not fully represented,
especially when faults and time delays occur. Therefore,
in this study, we propose to build a new, more complete model
of CAMBs.

A. OVERVIEW OF CONTROL
The key point to guarantee the quality of the system output
is to properly handle the saturation of coil current and
lumped disturbances in CAMBs. Traditional decentralized
PID control used for magnetic bearings still has some limits
in exploiting the possible active potentials for controlling
rotor vibration, positioning, and alignment to the fullest
extent. Since a CAMBs is highly nonlinear, nonlinear
control techniques are natural choices that can provide more
complete consideration of the nonlinearities and inherent
coupling properties and even permit greater use of available

FIGURE 1. 3D visualization of the motor shaft equipped with conical
active magnetic bearings.

clearance during operation. Using grey-box identification,
a linear and multi-variable cone-shaped AMB system is
presented in [7], and then a Linear Quadratic Regulator is
used to stabilize the plant. Controllers designed using fuzzy
techniques have recently been studied, and studies conducted
in [18], [23], and [30] have shown that the quality and
stability of the CAMBs are guaranteed, and the displacement
overshoot is small. A nonlinear adaptive control is proposed
in [38] to improve performance with uncertainty in the rotor
angular velocity and stabilize the system over a greater range
of error than the nonlinear controller without adaptation.
Furthermore, sliding mode control (SMC) can effectively
deal with model uncertainties and disturbances of nonlinear
systems. Studies in [29], [40], and [41] indicate that the robust
control method with sliding mode control for AMB has the
advantages of being stable to disturbance factors and less
sensitive to the variation of model parameters, especially with
fast dynamic responses. Recently, SMC strategies based on
the fractional-order sliding surface have been widely applied
to various systems [8], [10], with good tracking performance
and more robust control performance compared to traditional
integer-order controllers. However, all those studies ignore
the issue of current loop control, while current loop operation
can have a great impact on the outer loop, especially when
supply faults and time delays occur.

B. OBSERVATION
An extended state observer-based fractional-order sliding
mode controller was proposed in [16], [17], and [47] to
achieve rapid response, reduce tracking errors, and enhance
control performance while mitigating chattering. However,
the traditional ESO approach is primarily suited for systems
with an Integral Chain Form structure and single-channel
matched lumped disturbances [14]. In contrast, many elec-
tromagnetic systems exhibit non-ICF structures and multi-
channel matched and mismatched lumped disturbances [13],
where the conventional ESO method becomes ineffective.
Recently, generalized ESOs (GESOs) have been success-
fully applied to various industrial systems with non-ICF
structures and mismatched lumped disturbances [39], [46].
Nonetheless, in systems experiencing multi-channel lumped
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disturbances, a single GESO or ESO alone cannot reliably
estimate both matched and mismatched disturbances. The
limitations of traditional ESO andGESO-based control meth-
ods, as highlighted above, serve as the primary motivation for
designing the Hybrid Extended State Observer (HyESO) to
handle systems with multi-channel lumped disturbances.

C. OUTER LOOP
In theory, fractional-order sliding surfaces exhibit slower
energy transfer during switching, leading to reduced chatter-
ing compared to integer-order sliding surfaces, which decay
exponentially to zero. Experimentally, FOSMC has demon-
strated superior control performance with lower chattering
and greater robustness against external load disturbances
and parameter variations compared to traditional integer
order SMC [34]. This study integrates the disturbance
compensation capability of the HyESO with the strengths
of the fractional-order sliding mode control, proposing a
novel HyESO-based FOSMC strategy. The key role of the
HyESO is to treat modeling errors and external disturbances
as the system’s lumped disturbances, which are then esti-
mated and compensated for in real time. By incorporating
integral terms and fractional-order calculus into the sliding
mode control, the proposed approach significantly enhances
control accuracy while effectively reducing chattering in the
system. The primary control command is determined by the
FOSMC, while the HyESO generates a compensation control
command, making the strategy suitable for both position and
current control in the CAMBs.

D. INNER LOOP
Recently, the non-integer PID controller, which is also called
the fractional-order PID controller, has been an emerging tool
to overcome the drawbacks and limitations of conventional
PID [11]. The fractional-order PID controller extends the
conventional PID structure by incorporating adjustable orders
for both integration and differentiation, making it a five-
degree-of-freedom controller. This added flexibility enhances
system adaptability, improves dynamic response, and reduces
sensitivity to disturbances. Comparative analyses between
PID and FOPID have demonstrated that FOPID offers
superior robustness and flexibility [43]. By tuning two
additional controller parameters, i.e., the integral order
and the differential order, the FOPID can outperform the
traditional PID controller in drive control for motors [24],
[25] and active magnetic bearing [9], [27]. For instance,
an artificial intelligence-based non-integer PID controller has
been designed for a control strategy for active magnetic
bearing [26]. In [9], a fractional-order PID controller based
on an evolutionary optimization approach for a magnetic
levitation system. However, in the above studies, the issue
of supply faults and time delay is still limitedly considered.
Therefore, in this study, to improve the control quality under
faults and time delay situations, FOPID combined with ESO
is studied for the electrical system.

E. OPTIMIZATION
To enhance the control performance of active magnetic
bearing systems, artificial neural networks (ANNs) can be
utilized in optimization techniques. By training the neural
network with specific objectives such as minimizing power
consumption, reducing vibrations, or maximizing system
stability, from which the control inputs can be adjusted to
achieve the desired system behavior more effectively [42].
Artificial intelligence methods, including particle swarm
optimization (PSO), fuzzy logic control, and ANNs, play
a crucial role in improving the efficiency and reliability of
AMB systems [25]. In flywheel energy storage applications,
AMBs offer significant benefits, such as eliminating friction
losses and maintaining performance under challenging con-
ditions. While fuzzy logic control enables automated tuning,
PSO and ANNs can optimize PID controller parameters
to enhance overall system control [11]. In this study, PSO
based on performance index ITAE is used for CAMBs to
optimize error and energy, thereby ensuring stable operation
and energy optimization for magnetic bearings, which can be
applied to many operations such as flywheel.

The overall contribution of the paper is stated as follows:
1. Model: Different from basic mechanical systems of

CAMBs in studies [28], [35], [36], [45], the proposed mathe-
matical model of the 5-DOF conical magnetic bearing system
that integrates both the electrical and mechanical systems
under mismatched and matched disturbances is expressed.
In addition, supply faults, power saturation under unbalanced
disturbances, and unmodeled dynamics are considered when
building detailed CAMBs models for the first time.

2. Theory: Distinct from studies [3], [20], [31], [35], [36],
[45], [48] that only consider mismatched disturbances, ignor-
ing supply faults, time delays, and matched disturbances.
In this study, a cascaded fractional order control structure
for CAMBs is proposed, comprising an outer loop and an
inner loop. The outer loop employs fractional sliding mode
control to regulate the rotor’s displacement and rotational
angle. Meanwhile, the inner loop utilizes a fractional-order
PID controller to control coil currents, effectively mitigating
the time delay issues associated with power supplies and
sensors.Matched andmismatched disturbances are addressed
through a hybrid extended state observer structure, where
a fast ESO is implemented in the inner loop, while a slow
ESO is applied to the outer loop to observe mismatched and
matched disturbances.

3. Evaluation method: PSO using performance index
ITAE is proposed for CAMBs to tune the parameters of
both the inner loop and outer loop to optimize the energy
consumption and errors of the controllers and observers,
including fractional order parameters.

The remainder of this study is organized as follows:
An introduction to the CAMBs with multi-channel lumped
disturbances is detailed in Section II. In Section III, the
hybrid ESO strategy is proposed to deal with the problem of
the mismatched and matched disturbances. Fractional order
controllers, including FOPID and FOSMC, are analyzed in
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Section IV. Simulations are shown in Section V, including
a comparison between the controllers of the inner loop and
the outer loop. Finally, the main conclusions of this study are
drawn in Section VI.

II. SYSTEM DESCRIPTION AND MATHEMATICAL MODEL
A. MECHANICAL SYSTEM
1) PROBLEM SETTING
Assuming that, the rotational motion of the rotor arounded
z−axis are independently controlled by the motor in speed
control mode. Thus, the motions of the CAMBs are included
the translational and rotational motions of the rotor along
x, y− axes. Then, the CAMBs includes five degrees of
freedom as shown in Figs. 1-2.

FIGURE 2. Schematic of conical active magnetic bearing forces.

The mechanical diagram for the rotor-bearing system is
illustrated in Fig. 2. Assuming that the rotor is rigid, then
the second-order equations of motion for the rotor can be
represented as usual by using the Newton-Euler law of
motion:

mz̈ = (F1 + F2 + F5 + F6) sinβ

− (F3 + F4 + F7 + F8) sinβ + Fz
mẍ = (F5 − F6 + F7 − F8) cosβ + Fx
mÿ = (F1 − F2 + F3 − F4) cosβ−mg+ Fy

Jd θ̈x + Jpθ̇y� = [(F1−F2) b2+(F4 − F3) b1] cosβ

+ (F2 − F1 + F3 − F4)Rm sinβ +Mx

Jd θ̈y − Jpθ̇x� = [(F6−F5) b2+(F7 − F8) b1] cosβ

+ (F5 − F6 + F8 − F7)Rm sinβ +My

(1)

where z, y, and x represent the three radial translations,
while θx and θy denote rotations about the x-axis and y-axis,
respectively. The parameter m represents the rotor mass, Jd
and Jp are the transverse and polar moments of inertia of the
rotor, respectively, and � is the rotor’s rotational speed. Fj
(j = 1 to 8) denotes the forces at the bearings, whereas Fx ,
Fy,Mx , andMy represent external disturbances acting on the
rotor. The parameters b1 and b2 define the bearing span, Rm
is the effective radius, and β is the inclination angle.

In the two rotational kinematics equations, a gyroscopic
effect, which is a significant nonlinearity associated with
the rotor dynamics is considered. The gyroscopic effect in
the CAMBs induces coupling between the pitch motion
(rotation about the x−axis) and yaw motion (rotation about

the y−axis), with its intensity increasing proportionally to
the rotor’s rotational speed. This phenomenon significantly
complicates the stabilization of the system, particularly
in high-speed applications. Nomenclature of CAMBs is
summarized in Table 1.

TABLE 1. Parameters of CAMBs.

2) LINEARIZED BEARING FORCE MODEL
Assuming the reluctance of the iron is neglected concerning
the gap reluctance. In addition, all magnets have an identical
structure, and the fringing effect can be neglected; the
electromagnetic forces are given as follows [36]:

Fk =
µ0N 2Ap

4
iyk2

gyk2
; k = 1, . . . , 4

Fj =
µ0N 2Ap

4
ixm2

gxm2 ; j = 5, . . . , 8 (2)

where m = j − 4; µ0 = 4π × 10−7H/m is the
air permeability. Equation (2) shows that the force for an
active magnetic bearing is proportional to the square of the
current and inversely ratio to the displacement. This quadratic
relationship is inconvenient for control purposes, it is much
more desirable to have a linear relation between the control
current and force. The bearing air gaps presented in (3)
can be referred to the center of gravity (COG) coordinates
involving the geometrical quantities introduced in Fig. 2 as
follows:

g1,2 = go − z sinβ ∓ (y+ b2θx) cosβ

g3,4 = go + z sinβ ∓ (y− b1θx) cosβ

g5,6 = go − z sinβ ∓
(
x − b2θy

)
cosβ

g7,8 = go + z sinβ ∓
(
x + b1θy

)
cosβ (3)

The coil current of the system can be calculated through
the control strategy ‘‘differential driving mode’’. The general
principle is that one electromagnet is driven with the sum of
a bias and a control current, while the opposite one with their
difference. Five control currents ir are used to control the five-
DOF plant. The currents flowing along the coils are expressed
as follows:

i = I0 + HIr (4)
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The details of (4) are provided in the appendix. By apply-
ing (3) and (4) to (2) and (1), and utilizing the Taylor series
expansion, the magnetic force is linearized as follows:

Famb = −Kdq + Kii (5)

where q =
[
z x y θx θy

]T denote states of CAMBs;
Kd is stiffness matrix of the CAMBs and Ki is stiffness
current matrix. The linear magnetic field is assumed above,
however in practice there exists hysteresis and saturation
in the magnetic field so that the magnetic field is not
linear. Hence, the exists uncertainties are called unmodeled
magnetic force, including fringing effect, flux leakage, and
high-order components are omitted in the Taylor expansion.

3) UNBALANCE DISTURBANCES
Rotor mass unbalance of magnetically levitated rotors causes
deterioration of dynamic and static characteristics. The
eccentricity of the rotor causes unbalanced vibration, which
is a common problem in rotating machinery. When the rotor
is compelled to rotate around its center of inertia, Gm, rather
than its geometric center, G, a centrifugal force arises due
to the acceleration of the inertia center. This force generates
a synchronous transmitted force, leading to synchronous
rotor displacement. In extreme cases, as the imbalance
effect increases with the rotor’s rotational speed, high-speed
operation can cause the rotor to whirl beyond the permissible
air gap. This may lead to partial or even full annular contact
with the stator, potentially causing irreversible damage to the
bearing system.

FIGURE 3. Illustration of unbalanced rotor.

The unbalance is modelled as a residual mass displaced
from the rotating axis, which is combined into one variable
called unbalance moment meunb, and the phase is θunb.
The static and dynamic imbalances, which are presented as
follows:

Funb =


Fz
Fx
Fy
Tx
Ty

 =


0

meω2 cos (ωt + θ)

meω2 sin (ωt + θ)(
Jd − Jp

)
εω2 cos (ωt + θ)(

Jd − Jp
)
εω2 sin (ωt + θ)

 (6)

θ is the initial phase of the mass center, e is eccentricity and
ϵ is inclination angle.
Remark 1: Based on the analysis of Fig. 3 and the dynamic

imbalances (6), the faster the rotor rotates, the larger the
amplitude and frequency of the unbalanced disturbances.
This type of active magnetic bearing drive is specially
designed to operate at very high speeds. Therefore, it is
necessary to build a high-precision controller so that when
external disturbances impact the rotor, the impact can be
minimized, ensuring stable operation of the CAMBs.

B. ELECTRICAL SYSTEM UNDER SUPPLY FAULT
1) IDEAL MODEL
As shown in Fig. 1, CAMBs needs to use 8 electromagnets for
contactless lifting control for the rotor section. The prototype
structure of the electromagnet is illustrated as in Fig. 4.

FIGURE 4. Prototype structure of electromagnet.

The coil voltage Vc given in Fig. 4 across the electromag-
net’s coil from Kirchhoff’s law is given as follows:

Vc = Lc
d i
dt

+ Rci (7)

where Lc is the coil inductance, Rc is coil resistance.

2) UNCERTAINTY MODEL
The uncertainty parameter model combines the uncertainty
of the coil inductance (Lc) and the coil resistance (Rc). The
effect of uncertainty parameters and external disturbances is
called a matched disturbance. Equation (7) can be rewritten
under the matched disturbances as follows:

Lc
d i
dt

= Vc − Rci + Lm (8)

where Lm = −1Lc d idt −1Rci+1Lm is the matched lumped
disturbance influenced by unmodeled dynamic such as eddy
currents 1Lm.

3) FAULT AND SATURATION SUPPLY MODEL
The fault and saturation supply model of each electromagnet
coil is described as follows:

Vc (t) = Vc0 (t)

+
(
(ρ (t)− 1) sat (Vc0 (t))+ Vcf (t)+1Vc0

)
(9)

where Vc0 and Vc represent the desired control input and the
actual control input, respectively.1Vc0 denotes the difference
between the desired control input and the actual control
input. ρ(t) denotes an effectiveness indicator satisfying
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0 ≤ ρ(t) ≤ 1. Vcf (t) denotes the unknown additive supply
fault that is time-varying, immeasurable, and completely out
of control.

In (9), four fault conditions need to be considered as
follows:

1) Healthy condition: For ρ = 1 and Vcf = 0, the power
supply operates normally.

2) Bias fault condition: For ρ = 1 and Vcf ̸= 0, the
power supply experiences an additive fault.

3) Partial loss of effectiveness condition: For 0 < ρ <

1 and Vcf = 0, the power supply suffers from partial
power loss but remains operational.

4) Stuck fault condition: For ρ = 0 and Vcf ̸= 0,
the power supply encounters a stuck fault. The stuck
fault condition typically occurs when the number of
supply powers exceeds the number of control outputs,
necessitating further investigation of control allocation
schemes.

In this study, both loss of effectiveness and bias faults are
concurrently considered for the electrical system of CAMBs.
To address this problem, the fast ESO is used to estimate
the lumped disturbances that include fault and saturation
supplies.

4) TIME DELAY
When both input time delay and sensor delay coexist
in a system, their effects add up and can cause serious
performance degradation. In this study, the input time delay
and sensor delay of the electrical system are considered
as pure time delay. From which the first order transfer
function of the electrical system with a time delay is given as
follows:

G(s) =
1

Rc + Lcs
e−sτ (10)

where τ is the time constant of the system, including time
constant of sensors and the time constant of supply powers.
Remark 2: The time delay problem of supplying power

and sensors will greatly affect the control quality of the
system. To solve the above problem, fractional order PID
is studied and applied to the electrical system of CAMBs,
thereby improving the control quality compared to the
conventional PID. The detailed comparison between PID
and FOPID will be presented in scenario 1 in the numerical
simulation study.

C. COMBINED MODEL
AMBs are a group of nonlinear and unstable dynami-
cal systems with multi-channel matched and mismatched
kind of lumped disturbances [15], [32]. The model of
mismatched lumped disturbance combined the effects of
external disturbance, the uncertain electromagnetic force, and
parametric uncertainties. The parametric uncertainties come
from manufacturing and assembly errors in the nominal air
gap g0, inclined angle β, rotor massm, or the other parameters
of the rotor of CAMBs. Combining (1), (5), and (6) we

obtain:

M q̈ + Gq̇ + Kdq = Kii + Funb (11)

Considering the parametric uncertainties in (11) we have

Mq̈ = Kii + Lmm (12)

where Lmm = −1Mq̈ − (G +1G) q̇ − (Kd +1Kd )q +

1Kii+Funb is mismatched lumped disturbance. Using above
differential equations, nonlinear state space model for the
rotor of CAMBs is developed by rotor position, rotor velocity
and coil current as three state variables as x1 = q; x2 =

q̇; x3 = i and coil voltage (Vc) as controlled input (u) with
rotor displacement q as output variable.

ẋ1 = x2
ẋ2 = M−Kix3 + M−Lmm
ẋ3 = L−

c u − L−
c Rci + L−

c Lm

(13)

The lumped disturbances of CAMBs include uncer-
tainty parameters, unmodeled dynamics, unbalanced rotors,
unknown disturbances, force coefficients, actual air gaps on
the plant, and system geometry, among others.
Assumption 1: Since the energy within an integral system

is inherently constrained in physical applications, the uncer-
tainties present in the system remain bounded. They typically
depend on factors such as rotor position, coil currents, and
other physical parameters, which do not undergo abrupt
changes. Suppose that the amplitudes of the mismatch
disturbances Lmm and matched disturbances Lm and it’s
derivative are bounded variation.

III. HYBRID EXTENDED STATE OBSERVER
The ESO technique is primarily suited for systems with
an integral chain form structure and single-channel lumped
disturbances that are matched. However, in many control
applications, systems often exhibit non-ICF structures and
involve multi-channel lumped disturbances, both matched
and mismatched, where the conventional ESO approach
may not be effective. To address this limitation, a hybrid
extended state observer scheme has been developed to
estimate and compensate for both matched and mismatched
lumped disturbances.

The hybrid extended state observer is defined as follows:
Mismatched dynamics:

˙̂x1 = x̂2 + β1
(
x1 − x̂1

)
˙̂x2 = ϕ1 + x̂e1 + β2

(
x1 − x̂1

)
˙̂xe1 = β3

(
x1 − x̂1

) (14)

where

ϕ1 = M−Kix3
β1 =

[
3ω1;3ω1;3ω1; 3ω1; 3ω1

]
β2 =

[
3ω2

1;3ω
2
1;3ω

2
1; 3ω

2
1; 3ω

2
1

]
β3 =

[
ω3
1; ω

3
1;ω

3
1; ω

3
1; ω

3
1

]
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Matched dynamics:{
˙̂x3 = ϕ2 + x̂e2 + θ1

(
x3 − x̂3

)
˙̂xe2 = θ2

(
x3 − x̂3

) (15)

where ϕ2 = L−
c u − L−

c Rci
θ1 =

[
2ω2; 2ω2; 2ω2; 2ω2; 2ω2 2ω2; 2ω2; 2ω2

]
θ2 =[

ω2
2; ω

2
2; ω

2
2; ω

2
2; ω

2
2 ω

2
2 ω

2
2 ω

2
2

]
and ω1, ω2 denotes pos-

itive observer gains to be determined. The estimation errors
are defined as follows:

˙̃x1 = x̃2 − β1x̃1
˙̃x2 = ϕ̃1 + x̃e1 − β2x̃1
˙̃xe1 = −β3x̃1{
˙̃x3 = ϕ̃2 + x̃e2 − θ1x̃3
˙̃xe2 = −θ2x̃3

(16)

To facilitate the stability analysis, the scaled estimation errors
are defined as ε =

[
ε1 ε2 ε3

]T
=
[
x̃1 x̃2/ω1 x̃e1/ω2

1

]T and
ν =

[
ν1 ν2

]T
=
[
x̃3 x̃e2/ω2

]T and the dynamics (16) can
be rewritten as

ε̇ = ω1A1ε + B1
ϕ̃1

ω1
+ B2

δ1

ω2
1

ν̇ = ω2A2ν + B3
ϕ̃2

ω2
+ B4

δ2

ω2
2

(17)

where

A1 =

−3 1 0
−3 0 1
−1 0 0

 , B1 =

01
0

 , B2 =

00
1


A2 =

[
−2 1
−1 0

]
, B3 =

[
1
0

]
, B4 =

[
0
1

]
The A1 and A2 are Hurwitz matrix, thus, there are positive
define matrices P1 and P2 satisfying these functions where I
denotes an identify matrix AT

1 P1 + P1A1 = −I and AT
2 P2 +

P2A2 = −I. A Lyapunov function V1 is defined as

V1 =
1
2

(
εTP1ε + νTP2ν

)
(18)

The derivative of V1 can be deduced as

V̇1 =
1
2

(
ε̇TP1ε + εTP1ε̇ + ν̇TP2ν + νTP2ν̇

)
=

1
2
ω1ε

T
(
AT
1 P1 + P1A1

)
ε +

1
2
ω1ν

T

×

(
AT
2 P2 + P2A2

)
ν + εT

(
P1B1

ϕ̃1

ω1
+ P1B2

δ1

ω2
1

)

+ νT ×

(
P2B3

ϕ̃2

ω2
+ P2B4

δ2

ω2
2

)
= −

1
2
ω1ε

T ε −
1
2
ω2ν

T ν + εT41 + νT42 (19)

According to the inequality theorem, the boundness of the
above function can be obtained by

V̇1 ≤ −
1
2
ω1ε

T ε −
1
2
ω2ν

T ν +
1
2
εT ε

+
1
2
4T

141 +
1
2
νT ν +

1
2
4T

242

= −
1
2
(ω1 − 1) εT ε −

1
2
(ω2 − 1) νT ν

+
1
2
4T

141 +
1
2
4T

242

≤ −
1
2
ωmin

(
εT ε + νT ν

)
+ χ0 (20)

where ωmin = min {ω1 − 1, ω2 − 1} It is evident that V̇1 ≤

0 if the observer gains ω1 and ω2 are selected satisfying
ω1 > 1, ωmin

(
εT ε + νT ν

)
> 2χ0. Thus, the estimation

errors ε and ν are bounded, suggesting that x̃i and x̃ei are
ultimately bounded. The aforementioned HyESO estimates
the whole system states, including the unmeasurable velocity
and total disturbance. The estimated states will be adopted in
the following controller design.

IV. FRACTIONAL ORDER CONTROL SYSTEM
A. OUTER LOOP
1) FRACTIONAL CALCULUS
Fractional calculus has existed since the inception of integer-
order calculus, though it was traditionally regarded as a
purely mathematical concept. However, in recent decades,
it has gained significant attention in system analysis and con-
trol engineering. The fractional-order fundamental operator,
denoted as t0D

α
t , is defined as follows [19]:

Dα ≜ t0D
α
t =


dα

dtα
, R(α) > 0,

1, R(α) = 0,∫ t

t0
(dτ )−α, R(α) < 0.

(21)

where t0 and t are the limits of the operation, α is the
order of the operation, and generally α ∈ R and α

can be a complex number. The two most commonly used
definitions for the general fractional differentiation and
integration are the Caputo-Fabrizio definition, the Grunwald-
Letnikov definition, and the Riemann-Liouville definition.
The fractional differential of Caputo-Fabrizio is defined
as [44]:

C
t0D

α
t f (t) =

1
0(n− α)

∫ t

t0

f (n)(τ )
(t − τ )α−n+1 dτ (22)

where α ≥ 0 and n − 1 ≤ α < n, n is a positive integer,
0(·) is the Gamma function. The fractional differential of
Riemann-Liouville is defined as follows [44]:

RL
a Dαt f (t) =

1
0 (n− α)

(
d
dt

)n t∫
t0

f (τ )

(t − τ)1−(n−α) d(τ ) (23)

Under the zero initial condition, the Laplace transform of
fractional calculus is defined as follows [19]:

L
{
t0D

α
t f (t)

}
= sαF (s) (24)

Remark 3: These fractional order derivative defini-
tions (23) and (24) have several advantages, but they are
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not suitable for all cases. On the one hand, in the Riemann-
Liouville type, when the fractional differential equations are
used to describe real-world processes, the Riemann-Liouville
derivative has some drawbacks. Thus, the applicability range
of Riemann-Liouville fractional derivatives is limited [1].
For differentiability, the Caputo derivative requires higher
regularity conditions: to calculate the fractional derivative
of a function in the Caputo type, we should first obtain
its derivative. Caputo derivatives are defined only for
differentiable functions, while the functions that do not have
a first-order derivative may have fractional derivatives of all
orders less than one in the Riemann-Liouville sense [4].

2) FRACTIONAL SLIDING MODE CONTROLLER
In this study, the fractional order sliding mode controller
for the state control of CAMBs is proposed to improve the
robustness and effectiveness of the control system. Defining
the state error as follows:

e = q − r = x1−r (25)

where r is the reference input. The dynamic of error e is given
as:

ė = x2 − ṙ (26)

when defining v = M−Kix3, we have:

ë = ẋ2 − r̈ = (v + xe1)− r̈ (27)

According to the theory of fractional order calculus, a frac-
tional order sliding surface is defined as follows:

s = c1e + ė + c2D−αe (28)

where c1, c2 are controller parameters and α ∈ (0, 1] is
the fractional order. The system dynamics along the sliding
surface is given as follows:

ṡ = c1ė + ë + c2D1−αe

= c1 (x2 − ṙ)+ (v + xe1)− r̈

+ c2D1−α (x1 − r) (29)

Moreover, the observed sliding mode variable is ŝ = c1ê +
˙̂e + c2D−α ê, where ê = x̂1−r, ˙̂e = x̂2 − ṙ. Choosing the
fractional order SMC law as follows:

v = r̈ − c1
(
x̂2 − ṙ

)
− x̂e1

− c2D1−α (x̂1 − r
)
− ηsgn

(
ŝ
)

(30)

where η > 0. By using v = M−Kix3 the current reference is
calculated as follows:

Iref = Ki
−1Mv (31)

where Iref is the reference signal of inner loop. In order to
achieve the highly precise tracking control and low chattering
value, the sign function should be replaced by a saturation
function.

3) STABILITY ANALYSIS
In the case of a fully actuated system with full state feedback,
it has been established that the sliding control method
guarantees that the system response reaches the sliding
surface and that the surface is asymptotically stable. Defining
a candidate Lyapunov function as follows:

V =
1
2
sT s (32)

Asymptotic stability of the system under uncertainties is
guaranteed as the derivative of the Lyapunov function is
negative definite. Differentiating (32) with respect to time,
the following equation is obtained as follows:

V̇ = sT ṡ (33)

Substituting (28) and (29) into (33), we can obtain as follows:

V̇ = sT
(
c1(x2 − ṙ) + (v + xe1) − r̈ + c2D1−α

× (x1 − r)) (34)

Now putting the value of control input from (30)and (31), (34)
becomes:

V̇ = sT (c1(x2 − ṙ) + (r̈ − c1(x̂2 − ṙ) − x̂e1 − c2D1−α

(x̂1 − r) − ηsgn
(
ŝ
)
) + c2D1−α(x1 − r) + xe1 − r̈)

+ ψ ir − xe2))

= sT (−ηsgn
(
ŝ
)
+
(
xe1 − x̂e1

)
+ c1

(
x2 − x̂2 + c2

× D1−α (x1 − x̂1
))

= (ŝ + sT − ŝ)ηsgn(ŝ) + (ŝ + sT − ŝ)(xe1 − x̂e1)

(ŝ + sT − ŝ)c1(x2 − x̂2) + (ŝ + sT − ŝ)c2D1−α

× (x1 − x̂1) (35)

V̇ ≤ −ŝηsgn(ŝ) +
(
|(xe1 − x̂e1)| + c|(x2 − x̂2)| + c2

×D1−α
|(x1 − x̂1)|

)
ŝ + |sT − ŝ|

(
|(xe1 − x̂e1)|

+c|(x2 − x̂2)| + c2D1−α
|(x1 − x̂1)|

)
+ η|sT − ŝ|

= −η|ŝ| + η|sT − s| +
(
|(xe1 − x̂e1)| + c|(x2 − x̂2)|

+c2D1−α
|(x1 − x̂1)|

)
ŝ|sT − ŝ|

(
|(xe1 − x̂e1)| + c

×|(x2 − x̂2)| + c2D1−α
|(x1 − x̂1)|

)
(36)

Because of the convergence of the extended state observer,

η

∣∣∣sT − ŝ
∣∣∣+ (∣∣(xe1 − x̂e1

)∣∣+ c
∣∣(x2 − x̂2

)∣∣+ c2D1−α

×
∣∣(x1 − x̂1

)∣∣) ŝ +

∣∣∣sT − ŝ
∣∣∣ (∣∣(xe1 − x̂e1

)∣∣+ c
∣∣(x2 − x̂2

)∣∣
+c2D1−α ∣∣(x1 − x̂1

)∣∣)
is bounded and sufficiently small, then we have V̇ < 0, the
system is obtained globally and asymptotically stable.
Remark 4: In this study, the sign function in (30) is

replaced by the saturation function to minimize the chattering
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FIGURE 5. Control structure of Inner loop under time delays and supply faults.

phenomenon as follows:

sat
(
ŝ
)

=

{
tanh

(
ŝ
)
, if

∣∣ŝ∣∣ ≥ κ

s, if
∣∣ŝ∣∣ < κ

(37)

where κ denotes the boundary layer, tanh is a hyperbolic
function.
Remark 5: From (28), it can be seen that the fractional-

order integration of e is used to construct the sliding surface,
it can be seen as a low-pass filter and can reduce the amplitude
of high-frequency fluctuations of e. The robustness and
efficiency of the proposed FOSMC approach are highlighted
through the inclusion of two crucial terms:
(i) The term D1−αx1 denotes the (1−α)th-order differen-

tiation of x1, so the fractional dimension accelerating
change of state error is contained in the output. As a
result, the FOSMC method becomes more responsive
to variations in state error, ensuring faster output
adjustment.

(ii) The other term is the sgn(ŝ) in (30) or the sat(ŝ) in (37),
the former is a high-frequency switching signal, and the
latter is a relatively smooth switch signal. According
to the sliding surface s defined by (28), it is clear that
an (α − 1)th-order integrator for x1 is contained, thus
the fractional order sliding surface s is smoother than
the conventional sliding surface. By using the FOSMC
method, the chattering of sgn(ŝ) in (30) is eliminated to
some degree, and the term sat(ŝ) in (37) is smoother.

B. INNER LOOP
The design of the controller must carefully balance the
functionality of the closed-loop system in applications of
CAMBs. While advanced integer-order controllers enhance
reliability and flexibility, their complex structure and high
computational requirements limit their practicality in indus-
trial environments. Recently, fractional calculus has garnered
significant attention for its ability to provide accurate
dynamic system modeling, offering a broader perspective
than traditional integral calculus.

Research utilizing eddy current evaluation suggests that
fractionally ordered differential equations can more precisely
represent the dynamic behavior of CAMBs compared to

integer-order models. Fractional-order controllers, particu-
larly in scenarios involving fractional-order differential equa-
tions, exhibit superior performance compared to integer-order
controllers by accounting for the influence of eddy currents.

In recent years, the FOPID controller has been verified
to be more effective than conventional PID controllers,
especially in terms of robustness to system gain changes
because of the flat phase constraint. For the inner loop
control of the electrical part, we use the fractional-order PID
controller expressed as follows [11]:

u (t) = kpe (t)+ kiD−λ
+ kdDµe (t) (38)

where e (t) is errors of the current of coils, u (t) are the output
of the inner loop controller. Laplace transform of (38) can be
calculated as follows:

C (s) = kp +
ki
sλ

+ kd sµ (39)

where kp, ki, kd , λ, and µ are the parameters to be tuned for
the FOPID controller. The structure of the FOPID controller
for the inner loop of CAMBs is described in Fig. 5. By using
Hermite Biehler theorem, stabilizing sets ofPIλDµ controller
for the plant with time delay are determined [2].
Remark 6: It should be highlighted that the conventional

PID controller can be viewed as a particular case of the
FOPID controller when λ = 1 and µ = 1. By fine-
tuning the two extra parameters of the FOPID controller, its
performance can be significantly improved, surpassing the
traditional PID controller for CAMBs.
Remark 7: Fractional-order PID controllers, when opti-

mized using particle swarm optimization, have demonstrated
their ability to satisfy essential requirements such as limiting
current, minimizing overshoot, and enhancing response
times. Moreover, they contribute to better system dynamics
and steady-state characteristics, making them an attractive
option for advancing control methodologies of CAMBs.

V. NUMERICAL SIMULATION STUDY
A. SIMULATION SETTINGS
In order to show the advantages of the HyESO-based
fractional order approach proposed in this paper compared
with the conventional sliding mode control and active
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FIGURE 6. HyESO based cascaded position-current control.

disturbance rejection control (ADRC), we will use the
MATLAB/Simulink environment to compare the perfor-
mance, robustness, and effectiveness. The validation platform
is implemented by the MATLAB R2024b environment using
a fixed-step solver type and the Ode3 solver. The computer
in the simulation is equipped with an Intel(R) Core(TM) i7-
10850H CPU and 32 GB RAM, and fractional order calculus
is solved by FOMCONToolbox. The parameters of the object
are as shown in the Table 1 [35]. In order to demonstrate
the effectiveness of the proposed control system for CAMB,
Scenario 1 for the inner loop and Scenario 2 with both outer
loop and inner loop are presented as follows:
Scenario 1: Robustness of current loop under supply

fault, input saturation, and time delay of sensor and supply.
Structure of control system is given in Fig. 5
Control method: Four control systems are used to compare

the performance and robustness for the inner loop. The
control systems are included PID [35], FOPID [3], ESO-
based PID [31] (i.e., PID-ESO), and the proposed control
using ESO-based FOPID tuned by PSO (i.e., FOPID-ESO).

System Configuration: The parameter uncertainties,
including 1Lc and 1Rc (i.e., the actual parameters of
CAMBs deviate about 10% from the nominal value), lumped
disturbances, input saturation, and time delay of sensor
and supply are considered in this scenario. The matched
disturbances are given as follows:

Lm = 100 sin (250t) (40)

Scenario 1.1. The supply faults are not allowed to occur
during the operation of the electromagnet.

Scenario 1.2. The supply faults are allowed to occur during
the operation of the electromagnet. From (9), the loss of
effectiveness and bias faults are taken into account as follows:

ρ (t) = 0.7 + 0.2 sin (20π t) (41)

Vfc = 0.1 sin (30π t) (42)

Scenario 2: Robustness of inner loop and outer loop under
supply fault, input saturation, and time delay of sensor and
supply. Structure of control system is given in Fig. 6.

Control method: Three control systems are used to
compare the performance and robustness of the control

FIGURE 7. External disturbances acting on the rotor.

system, including the inner loop and outer loop. The control
systems are given as controller 1 (i.e., ADRC [20] is applied
for outer loop and PID [35] for inner loop), controller 2 is
proposed by using ESO-based SMC [48] for outer loop
and ESO-based PID [31] for inner loop, and the proposed
fractional order controller 3 uses ESO-based FOSMC for
outer loop and ESO-based FOPID, and all control parameters
of Controller 3 are tuned by PSO.

System Configuration: The rotor is brought to the
equilibrium position at the initial time. The conical active
magnetic bearing is affected by the parameter uncertainties
including 1M, 1G, and 1Kc (i.e., the actual parameters
of CAMBs deviate about 10% from the nominal value), the
external disturbances as shown in Fig. 7, and the unbalance
disturbance.

Scenario 2.1. The rotor of CAMBs rotates at high speed
(3000 rpm) without unmodeled dynamics.

Scenario 2.2. Rotor of CAMBs rotates at very high
speed (12,000 rpm) under unmodeled dynamics δz, δx , δy and
δθx , δθy are given as follows:

δz = δx = δy = 5 sin (100t) (43)

δθx = δθy = 0.25 sin (100t) (44)

B. EVALUATION METHOD
To evaluate the effectiveness of the proposed method,
not only the quantitative results but also the qualita-
tive comparisons of tracking performance between the
three controllers are also implemented, which consider
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FIGURE 8. (a) Current responses of the controllers, (b) Current errors of
the controllers (Scenario 1.1).

FIGURE 9. (a) Control voltage of the controllers, (b) Response of observed
disturbance of the proposed system FOPID-ESO-PSO (Scenario 1.1).

performance metrics on displacement error, rotational angle
error, and current error.

FIGURE 10. (a) Current responses of the controllers, (b) Current errors of
the controllers (Scenario 1.2).

1) Integral squared errors (ISE)

ISE =

∫ t

0
e2ϱ(t)dt (45)

2) Integral absolute errors (IAE)

IAE =

∫ t

0

∣∣eϱ(t)∣∣ dt (46)

3) Integral time-multiplied absolute errors (ITAE)

ITAE =

∫ t

0
t
∣∣eϱ(t)∣∣ dt (47)

4) Root Mean Squared Error (RMSE)

RMSE =

√√√√1
n

n∑
i=1

e2i (48)

5) Integral Time Squared Error (ITSE)

ITSE =

∫ t

0
te2(t)dt (49)

The ISE index penalizes a larger error than a smaller
one, while the IAE index emphasizes the effect of error
magnitude on the system’s oscillation. The ITAE index
prioritizes steady-state error over initial response, striking a
balance between ISE and IAE. RMSE, on the other hand,
evaluates the average deviation between actual and desired
values, offering an intuitive measure of control accuracy and
performance. ITSE emphasizes the importance of reducing
errors over time, particularly penalizing errors that persist in
later stages, thereby encouraging rapid stabilization of the
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FIGURE 11. (a) Control voltage of the controllers, (b) Control voltage of
the proposed system FOPID-ESO-PSO under supply fault, (c) Response of
observed disturbance of the proposed system FOPID-ESO-PSO (Scenario
1.2).

system. It is worth noting that a lower value of these indices
indicates a better control outcome.

To further improve the tracking performance of the pro-
posed controller, the particle swarm optimization algorithm
is employed to find the optimal controller and observer
parameters. PSO is a powerful optimization algorithm
inspired by the collective behaviour of swarms of birds
or schools of fish. By iteratively updating the position
and velocity of each particle in the swarm based on its
current position and velocity, the particles in the swarm can
gradually converge to the global best solution. Owing to
its simplicity and stable convergence characteristics, PSO
has been successfully applied to a variety of optimization
tasks, including function optimization, parameter tuning,
and energy power. Since the tracking performance of the
controller mainly depends on the control gains of the
controller and the observers of the inner loop and outer loop.

FIGURE 12. Transient response of rotor displacement: (a) Displacement z ;
(b) Displacement x ; (c) Displacement y (Scenario 2.1).

The fitness function for PSO is defined based on the ITAE
criteria as follows:

min J =

∫ t

0
(w1t |e(t)| + w2t |u(t)|) dt (50)

where w1,w2 are weighting factors of errors and control
input, respectively.

C. RESULT OF SCENARIO
1) RESULT OF SCENARIO 1
Scenario 1.1:Without supply faults.

This scenario demonstrates the effectiveness of the pro-
posed controller FOPID-ESO-PSO to control the current of
the inner loop under the influence of supply fault and time
delay of supplies and sensors. In Fig. 8 shows the current
response error of the controllers is shown; it can be seen
that the errors of the controllers decrease in the order of
PID, PID-ESO, FOPID, and FOPID-ESO. There, the error of
FOPID is very good without using disturbance observation,
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FIGURE 13. Transient response of rotor rotational angle: (a) Rotational
angle θx ; (b) Rotational angle θy (Scenario 2.1).

FIGURE 14. Current responses of the controllers (Scenario 2.1).

but the error is better than that of PID combined with ESO.
Therefore, the proposed combination of ESO and PSO into
FOPID has led to good results as Fig. 8b. The control voltage
of the controllers is shown in Fig. 9a, and it is seen that the
energy consumption of the 4 controllers is similar. Finally, for
FOPID-ESO-PSO to achieve such good results, the observer
has to work effectively when the lumped disturbance has both
large amplitude and frequency as shown in Fig. 9b.
Scenario 1.2: Under supply faults
This scenario demonstrates the effectiveness of the pro-

posed controller FOPID-ESO-PSO to control the current of
the inner loop under the influence of supply fault and time
delay of supplies and sensors. In which Fig. 10 shows the
current response error of the controllers in scenario 1.2 when
the system under the faults, it can be seen that the errors
of the controllers decrease in the order of PID, PID-ESO,
FOPID, FOPID-ESO. There, the error of FOPID is very

FIGURE 15. Control voltage of the controllers under supply fault:
(a) Controller 1, (b) Controller 2, (c) Controller 3 (Scenario 2.1).

good without using disturbances observation, but the error
is better than that of PID combined with ESO. Therefore,
the proposed combination of ESO and PSO into FOPID
has led to good results as Fig. 10b. The control voltage of
the controllers is shown in Fig. 11a, and it is seen that the
energy consumption of the 4 controllers is similar. Finally,
for FOPID-ESO using PSO to achieve such good results, the
observer has to work effectively when the lumped disturbance
has both large amplitude and frequency, as shown in Fig. 11c.
The supply fault phenomenon is clearly shown in Fig. 11b,
when the output voltage cannot be achieved as the desired
input voltage due to the influence of the fault.

2) RESULT OF SCENARIO 2
Scenario 2.1:Without unmodeled dynamics and operating in
high speed 3000 rpm.

In this scenario, the rotor of CAMBs rotates at 3000 rpm
without considering unmodeled dynamics. However, due
to the influence of the external disturbance, supply faults,
time delay, and parameter uncertainty, it causes a significant
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FIGURE 16. Unbalanced disturbances of the controllers: (a) Controller 1,
(b) Controller 2, (c) Controller 3 (Scenario 2.1).

FIGURE 17. Response of observed disturbance of the proposed system:
(a) Displacement z, x, y , (b) Rotational angle θx , θy (Scenario 2.1).

impact on the response of the CAMBs. The transient response
of rotor displacements and rotational angles of the three

FIGURE 18. Transient response of rotor displacement: (a) Displacement z ;
(b) Displacement x ; (c) Displacement y (Scenario 2.2).

controllers is shown in Fig.s 12-13. The proposed controllers
2 and 3 achieve the best results when the errors are very small
in the situations of external disturbances and unmodeled
dynamic impact.

It can be seen that due to the good control quality of
controller 3, the unbalanced disturbances, as shown in Fig. 16,
are also the smallest. From that, the current and voltage
results of the controllers are shown in Fig. 14and Fig. 15.
To achieve the effectiveness of controller 3, the observer has
accurately observed the disturbances of displacements and
rotational angles as shown in Fig. 17 under the uncertainty
parameter, external disturbances in Fig. 7, and the unbalance
disturbances in Fig. 16.
Scenario 2.2: Under unmodeled dynamics and operating

very high speed of 12,000 rpm.
In this scenario, the rotor of CAMBs rotates at 12000 rpm

without considering unmodeled dynamics. The transient
response of rotor displacements and rotational angles of
the three controllers is shown in Figs. 18-19. The proposed
controller 3 achieves the best results when the errors are very
small in situations of external disturbances and unmodeled
dynamic impact. It can be seen that due to the good control
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FIGURE 19. Transient response of rotational angle: (a) Rotational angle
θx ; (b) Rotational angle θy (Scenario 2.2).

FIGURE 20. Current responses of the controllers (Scenario 2.2).

quality of controller 3, the unbalanced disturbances, as shown
in Fig. 22, are also the smallest. From that, the current
and voltage results of the controllers are shown in Fig. 20
and Fig. 21. To achieve the effectiveness of controller 3,
the observer has accurately observed the disturbances of
displacements and rotational angles as shown in Fig. 23 under
the uncertainty parameter, external disturbances in Fig. 7, and
the unbalance disturbances in Fig. 22.

D. DISCUSSION OF SCENARIO
For ease of presentation and tracking of results, we use a
log scale to create bar charts. In addition, the percentage
performance reduction compared to the column on the left
is also displayed; detailed explanations will be presented in
the following sub-subsections.

1) DISCUSSION OF SCENARIO 1
By using the performance indices as ISE, IAE, ITAE,
RMSE, and ITSE (45)-(49), the effectiveness of the proposed

FIGURE 21. Control voltage of the controllers under supply fault:
(a) Controller 1, (b) Controller 2, (c) Controller 3 (Scenario 2.2).

control structure is illustrated by the results of these metrics,
which are shown in Figs. 24-25. The percentage shown
on top of each column represents the reduction of this
controller when evaluated compared to the adjacent left
controller. For example, in Figure 24, when evaluating the
ISE index, the performance index of FOPID decreased
by 83.75% compared to PID, PID-ESO decreased by
1.78% compared to FOPID, and FOPID-ESO decreased
by 98.93% compared to PID-ESO. Incorporating adjustable
orders for both integration and differentiation of FOPID
adds flexibility, enhances system adaptability, improves
dynamic response, and reduces sensitivity to disturbances.
Comparative analyses between PID, ESO-based PID, and
FOPID have demonstrated that FOPID offers robustness
and flexibility and achieves results that are equivalent
to PID-ESO and superior to PID. As can be seen, the
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FIGURE 22. Unbalanced disturbances of the controllers: (a) Controller 1,
(b) Controller 2, (c) Controller 3 (Scenario 2.2).

proposed method FOPID-ESO gives the smallest results in
all performance metrics of the current response, which means
that the proposed controller can provide stronger robustness
and higher accuracy for the inner loop under the matched
disturbances.

2) DISCUSSION OF SCENARIO 2
By using the performance indices as ISE, IAE, ITAE, RMSE,
and ITSE (45)-(49), the effectiveness of the proposed control
structure is illustrated by the results of these metrics, which
are shown in Figs. 26-35. The percentage shown on top
of each column represents the reduction of this controller
when evaluated compared to the adjacent left controller. For
example, in Figure 26, when evaluating the ITAE index,
the performance index of controller 1 decreased by 99.90%
compared to controller 1, controller 3 decreased by 73.66%
compared to controller 2. Reading bar charts is similar
to reading performance indicators and other figures. The
results of scenario 2.1 are shown from Fig. 26-30, scenario
2.2 is from Fig. 31-35, we can generally comment that the
response of the displacement z, x, y and the rotational angles
θx , θy when comparing the proposed controller 2 with the

FIGURE 23. Response of observed disturbance of the proposed system:
(a) Displacement z, x, y , (b) Rotational angle θx , θy (Scenario 2.2).

FIGURE 24. Performance of inner loop on log scale (Scenario 1.1).

FIGURE 25. Performance of inner loop on log scale (Scenario 1.2).

FIGURE 26. Performance of displacement z on log scale (Scenario 2.1).

standard controller using ADRC at the outer loop combined
with PID at the inner loop has brought about superior
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FIGURE 27. Performance of displacement x on log scale (Scenario 2.1).

FIGURE 28. Performance of displacement y on log scale (Scenario 2.1).

FIGURE 29. Performance of rotational angle θx on log scale (Scenario 2.1).

FIGURE 30. Performance of rotational angle θy on log scale (Scenario 2.1).

FIGURE 31. Performance of displacement z on log scale (Scenario 2.2).

results. In addition, another control structure we proposed,
controller 3, once again achieved superior results when
compared with controller 2. As can be seen, the proposed
method gives the smallest results in all performance metrics

FIGURE 32. Performance of displacement x on log scale (Scenario 2.2).

FIGURE 33. Performance of displacement y on log scale (Scenario 2.2).

FIGURE 34. Performance of rotational angle θx on log scale (Scenario 2.2).

FIGURE 35. Performance of rotational angle θy on log scale (Scenario 2.2).

of the displacements and the rotational angles, which means
that the proposed controller 3 and controller 2 can provide
stronger robustness and higher accuracy for CAMBs under
the mismatched and matched disturbances.

VI. CONCLUSION
In this study, the detailed mathematical model, as well as
the design of a highly accurate control scheme, is proposed
under the influence of external disturbances, unbalanced
disturbances, and supply faults. The proposed mathematical
model integrates both the electrical and mechanical systems,
making it subject to mismatched and matched disturbances.
Furthermore, the system also accounts for issues such as
supply faults, supply saturation, and time delays in both
power supplies and sensors. The cascade control structure
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for CAMBs is proposed, comprising an outer loop and an
inner loop. The outer loop employs fractional sliding mode
control to regulate the rotor’s displacement and rotational
angle. Meanwhile, the inner loop utilizes a fractional-order
PID controller to control coil currents, effectively mitigating
the time delay issues associated with power supplies and
sensors. Finally, disturbances are addressed through the
hybrid extended state observer structure, where the fast ESO
is implemented in the inner loop, while the slow ESO is
applied to the outer loop to observe mismatched and matched
disturbances.

Further research may include real-time testing of the
CAMBs in various applications such as flywheels, air
compressors, and others to validate the controller’s stability
and effectiveness.
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APPENDIX
The details of the matrices M,G,Ki,Kd of the paper are
presented in detail as follows:

M =


m 0 0 0 0
0 m 0 0 0
0 0 m 0 0
0 0 0 Jd 0
0 0 0 0 Jd



G =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 Jpθ̇z
0 0 0 −Jpθ̇z 0



Ki =



Ki1 sinβ Ki1 cosβ 0 0 Ki1σ
Ki2 sinβ −Ki2 cosβ 0 0 −Ki2σ

−Ki1 sinβ Ki1 cosβ 0 0 −Ki1γ
−Ki2 sinβ −Ki2 cosβ 0 0 Ki2γ
Ki1 sinβ 0 Ki1 cosβ Ki1α 0
Ki2 sinβ 0 −Ki2 cosβ −Ki2α 0

−Ki1 sinβ 0 Ki1 cosβ Ki1γ 0
−Ki2 sinβ 0 −Ki2 cosβ −Ki2γ 0



T

Kd =


−K11 0 0 −K14 −K15
0 −K22 0 0 −K25
0 0 −K33 −K34 0

−K41 0 −K43 −K44 0
−K51 −K52 0 0 −K55


α = b2 cosβ − Rm sinβ

γ = −b1 cosβ + Rm sinβ

σ = −b2 cosβ − Rm sinβ

K11 = 4(Kq1 + Kq2 )sin
2β

K14 = −K15 = (b1 + b2)(Kq1 − Kq2 ) sinβ cosβ

K22 = K33 = 2cos2β(Kq1 + Kq2 )

K25 = K52 = −K34 = −K43 = cos2β(Kq1 + Kq2 )

× (b1 − b2)

K41 = −K51 = sinβ(Kq1 − Kq2 ) [(b1 + b2) cosβ

−2Rm sinβ)]

K44 = K55 = cosβ(Kq1 + Kq2 )
[
(b21 + b22) cosβ

−Rm(b1 + b2) cosβ)]

The details of (4) are presented as follows:

iy1
iy2
iy3
iy4
ix1
ix2
ix3
ix4


︸ ︷︷ ︸

i

=



I01
I02
I01
I02
I01
I02
I01
I02


︸ ︷︷ ︸

I0

+



1 0 0 0 1
1 0 0 0 −1

−1 0 1 0 0
−1 0 −1 0 0
1 0 0 1 0
1 0 0 −1 0

−1 1 0 0 0
−1 −1 0 0 0


︸ ︷︷ ︸

H


Iz
Ix1
Iy1
Ix2
Iy2


︸ ︷︷ ︸

ir
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