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A Novel Robotic-Assisted Rehabilitation System
for Elbow Fracture: Design and Full-Cycle

Rehabilitation Strategy
Qianze Helian , Jiade Chang, Zhiyuan He , and Tao Sun , Senior Member, IEEE

Abstract— Postoperative rehabilitation is critical for
restoring elbow function following fractures, yet current
approaches face significant limitations. Manual rehabilita-
tion lacks precision and relies heavily on subjective expe-
rience, while existing robotic systems, primarily designed
for neurological rehabilitation, fail to provide essential
joint traction capabilities. In this paper, a novel robotic
system integrating elbow rotation and traction functions
(ERT-Robot) is proposed to provide full-cycle rehabilitation
training. The system features an adaptive rotation mech-
anism that accommodates upper limb biomechanics and
a traction mechanism for soft tissue stretching, ensuring
wide patient applicability. A full-cycle rehabilitation proto-
col incorporating three therapeutic modalities: reciprocat-
ing passive training, active range of motion training, and
muscle strength training, is introduced to address diverse
clinical needs across all rehabilitation phases. Experimen-
tal validation involving six healthy subjects demonstrated
that the robotic system significantly increased both hori-
zontal and vertical olecranon displacements compared to
natural arm rotation. Quantitative analysis showed minimal
differences between manual and robot-assisted rehabilita-
tion, with mean displacement variations of merely 1.33%
(horizontal) and 7.78% (vertical), demonstrating clinically
comparable performance. In addition, experimental results
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in three rehabilitation modalities confirmed the system’s
feasibility and efficiency for postoperative elbow fracture
management.

Index Terms— Elbow fracture, postoperative rehabilita-
tion robot, full-cycle rehabilitation, joint traction training,
deep learning.

I. INTRODUCTION

GLOBAL fracture incidence exceeds 178 million cases
annually, with elbow fractures accounting for over

12 million cases [1], creating substantial demand for reha-
bilitation services. The elbow joint, facilitating more than
60% of hand movements and involving 15 upper limb skele-
tal muscles, presents complex rehabilitation challenges with
prolonged recovery periods. Inadequate postoperative rehabil-
itation often leads to severe complications, including muscle
atrophy, periarticular tissues adhesion, and joint stiffness [2],
[3]. Consequently, elbow fracture rehabilitation has emerged
as a critical focus in orthopedic medicine.

Existing elbow fracture rehabilitation methods, including
both manual therapy and robot-assisted approaches, present
significant clinical limitations. While manual rehabilitation has
proven effective in reducing postoperative complications [4],
its heavy reliance on clinicians’ subjective experience leads
to inconsistent treatment precision and compromised outcome
stability. Although existing rehabilitation robots have rep-
resented technological progress, most designs overlook the
critical requirement for controlled joint traction. This funda-
mental deficiency ultimately impairs their ability to ensure
precise traction control, which is a key determinant of both
efficacy and safety in elbow fracture rehabilitation.

Currently, the majority of fracture rehabilitation research
is primarily focused on the lower limb joints, such as the
hip joint [5], knee joint [6], and ankle joint [7]. These
studies mainly revolve around aspects like weight-bearing,
axial loading, and rehabilitation methods. Through clinical
trials and experimental research, researchers have validated the
rehabilitation effects of exoskeletons and other rehabilitation
devices on patients with lower limb fractures after surgery.
However, in contrast to the lower limb joints, there is currently
a lack of robotic systems specifically designed for the rehabil-
itation of elbow fractures. Existing elbow rehabilitation robots
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predominantly adopt either serial or parallel configurations,
primarily designed for neurorehabilitation. These systems
typically feature single degree of freedom (DoF) rotational
movement. Early developments include CADEN-7, a serial
rigid robot proposed by Perry et al. [5], [8], which achieved
comprehensive upper limb motion but suffered from excessive
bulk. Chen et al. [9] developed a parallel exoskeleton employ-
ing cable-driven differential mechanisms for forearm rotation,
with limited joint mobility. Irshaidat et al. [10] introduced
a lightweight parallel pneumatic system for elbow rehabil-
itation, offering enhanced portability and safety. However,
these systems share critical limitations: inability to perform
elbow traction and adapt to individual carrying angles, ren-
dering them unsuitable for fracture rehabilitation. The elbow’s
complex biomechanics involve coupled flexion-extension with
rotational and sliding motions. Isolated rotational move-
ment without sliding deviates from natural joint kinematics,
potentially causing secondary fractures. While immobilization
remains the standard therapeutic approach for elbow trauma,
prolonged braking induces tissue stress deprivation, leading
to ligament/tendon contracture, muscle atrophy, and joint
stiffness [11]. Consequently, controlled joint traction is crucial
for effective rehabilitation. Furthermore, robotic systems must
accommodate individual carrying angle variations, as improper
fixation may result in secondary injuries. Based on these con-
siderations, the JAS company proposed an elbow rehabilitation
orthosis that incorporates traction training functionality [12],
[13]. However, its manual adjustment mechanism lacks elec-
tronic control, resulting in imprecise movement and absence
of carrying angle adaptation. And the system offers only two
predefined rehabilitation trajectories, lacking both customized
training protocols and active rehabilitation capabilities, signif-
icantly limiting its effectiveness in muscle strength recovery.

In addition to the mechanical structure of robots, control
strategies are another important factor affecting rehabilitation
outcomes. Based on patient involvement, existing control
strategies can be classified into passive and active modes.
Passive control, employing trajectory tracking methods such as
proportional-integral-derivative (PID) [14], back-stepping [15],
time-lag [16], and sliding mode control [17], is primarily
applied in early rehabilitation phases for patients with lim-
ited mobility. However, studies show that exclusive reliance
on passive training has a suboptimal outcome [18], [19].
Active control strategies are suitable for mid-to-late phase
patients with partial mobility. Elbow exoskeleton NEU-
ROExos [20] implemented variable impedance actuation,
offering independent and near-zero impedance torque control.
AGREE robot [21] employed impedance control with three
human-robot interaction modes. Unfortunately, existing studies
on passive and active control have neglected joint traction
implementation.

In recent years, motion estimation represents a critical
advancement in active control strategies, since it has fore-
sight for the generation of force and motion. Physiological
signals, such as surface electromyographic (sEMG), was one
of the most common methods for motion estimation. This
method could reduce human-robot interaction forces, making
it particularly suitable for postoperative fracture rehabilitation

[22]. Wu et al. [23] developed a hybrid model integrating
sEMG-based elbow joint motion estimation with neural net-
work compensation and adaptive control, enhancing patient
engagement and training safety. Gui et al. [24] introduced a
radial basis function neural network approach for sEMG-based
motion estimation, eliminating myoelectric-moment model
calibration. However, these studies focus on the estimation
of joint motion angles, lack of traction prediction capabilities,
and are not applicable to fracture rehabilitation needs.

In summary, current research on elbow rehabilitation robots
critically overlooks joint traction function, potentially leading
to postoperative complications or secondary fractures, while
lacking appropriate control strategies for fracture rehabilita-
tion. To address these issues, a novel robotic system integrating
elbow rotation and traction functions (ERT-Robot) is pro-
posed to provide full-cycle rehabilitation training. The system
features adaptive mechanisms accommodating individual vari-
ations in carrying angle, arm length, and circumference.
A full-cycle rehabilitation control method is developed for
comprehensive rehabilitation across all phases through joint
traction regulation. The early-phase protocol employs a
position-force controller to replicate natural 2-DOF elbow
motion. For mid-phase rehabilitation, a Convolutional Neural
Network-Long Short-Term Memory-Attention (CNN-LSTM-
Attention) model for sEMG-based estimation of rotation
angles and traction forces is designed. The late-phase pro-
tocol incorporates an admittance control model simulating
muscle loading, enabling personalized rehabilitation training.
The efficiency of proposed method was validated through the
experiments with six healthy subjects.

The rest of this paper is organized as follows. Section II
presents the design of ERT-Robot. Section III introduces
the control method for full-cycle rehabilitation. Experimen-
tal results and discussions are presented in Section VI and
Section V. Finally, Section VI concludes this article.

II. ROBOT DESIGN

The structural configuration of the proposed ERT-Robot,
comprising two primary components: an upper arm exoskele-
ton and a forearm exoskeleton, interconnected through a
carrying angle mechanism, as shown in Fig. 1. The forearm
exoskeleton integrates a traction mechanism (Fig. 1 (c)) and
fixation structure, while the upper arm exoskeleton contains
its corresponding fixation assembly. The robot provides −5◦

to 145◦ rotation and ±15◦ swing, encompassing the natural
range of elbow joint motion [3]. With a total mass of 3.74 kg
(without DC power supply), the ERT-Robot demonstrates
compact and lightweight design characteristics.

A. Joint Traction Function
The proposed traction mechanism enables simultaneous

joint rotation and traction through a U-shaped slider integrated
with the forearm exoskeleton, as shown in Fig. 2.

This configuration features U-shaped slider mounted on
bilateral rails, securely attached to the patient’s forearm. Each
side incorporates an electric cylinder connected to the slider
base via revolute joint, providing linear actuation. During
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Fig. 1. ERT-Robot system overview. (a) Virtual prototype, (b) Carrying angle mechanism, (c) Traction mechanism, and (d) Physical prototype.

Fig. 2. Structural configuration of ERT-Robot traction mechanism.

operation, the cylinders drive the sliders to move along the
rails, generating controlled traction. The system achieves
0-16 mm displacement with a maximum traction force
of 70 N.

To enable personalized rehabilitation, the traction force
direction relative to the forearm axis is made adjustable
through a dual-parallelogram mechanism. Two parallel sliding
rails on each side maintain U-shaped slider alignment with
the forearm exoskeleton. The mounting brackets of electric
cylinder, connected to the forearm exoskeleton the via revolute
joint, incorporate internal nut slides for manual tightening.
This design enables wide-angle adjustment: tightening the two
hand screws locks the traction angle in place, while loosening
them allows for orientation adjustment of both the cylinders
and rails. The mechanism provides adjustable traction angles
ranging from 45◦ to 85◦.

B. Adjustment Function
The carrying angle, defined as the acute angle between

the upper arm and forearm axes, averages 12.88◦
±5.92◦ in

Fig. 3. Structural configuration of ERT-Robot carrying angle mecha-
nism.

adults (males: 10.97◦
±4.27◦, females: 15.07◦

±4.95◦) [25].
To accommodate individual variations, an adaptive carrying
angle mechanism based on a parallelogram configuration is
developed, as shown in Fig. 3. The mechanism features a
parallelogram structure with a bearing at the midpoint of one
long side, connecting to the upper arm exoskeleton. T-shaped
sliders on both sides have horizontal parts sliding within the
upper arm exoskeleton and vertical parts sliding within a
connecting piece. This piece links to the forearm exoskeleton
via a revolute joint equipped with a DC motor for elbow
rotation. When the parallelogram’s long side rotates, the sliders
and connecting pieces move in sequence, causing the forearm
exoskeleton to swing, adjusting the carrying angle from −15◦

to 15◦.
To ensure human-robot compatibility, the system incor-

porates adjustable dimensions accommodating upper limb
anthropometric variations. Based on Chinese national stan-
dards for body dimensions [26], the design addresses four
key parameters: upper arm length, upper arm circumference,
forearm length, and forearm circumference. The upper arm
exoskeleton features a sliding rail mechanism with U-shaped
fixation brackets, allowing six-position length adjustment at
15 mm intervals via pins. For circumference adaptation,
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Fig. 4. Control system hardware architecture.

silicone pads bridge gaps between the exoskeleton and
patient’s arm.

C. Electrical Hardware and Sensor Unit
The system employs a hierarchical control architec-

ture, comprising an upper computer (Qt platform with
MATLAB neural network integration) and a lower computer
(STM32F103ZET6 microcontroller), as shown in Fig. 4. The
elbow joint rotation is driven by a 12V DC brushed motor
(5840-31ZY, Xinyongtai, China) with 70 kg·cm rated torque,
coupled with an incremental Hall encoder (JGB37-31ZY,
Xinyongtai, China) for speed and position control. Traction
motion is provided by a servo cylinder (LAF16-024D, Instech
Robotics, China) with integrated force sensor (100 Hz sam-
pling). sEMG signals are acquired via an Analog EMG Sensor
(DFRobot, China) at 1000 Hz for motion prediction. Phys-
iological monitoring includes heart rate detected by a Pulse
Sensor (100 Hz, Xinweilai, China) and arm motion detected by
an Inertial Measurement Unit (IMU) (100 Hz, WT61PC, Witte
Intelligence, China). Data transmission between computers is
facilitated by Bluetooth module (HC-05, Zave, China). Power
is supplied through a regulated digital switching power supply
(MN-305C, Maisheng, China) with overload protection.

D. Upper Computer Software
To realize the integration of hardware communication,

motion control and signal feedback, the upper com-
puter software is developed. The software architecture is
designed according to the rehabilitation control strategy (see
Section III). The system first evaluates the patient’s reha-
bilitation phase, then selects appropriate training modes and
parameters through the Qt-based interface. Command frames

are transmitted to the lower computer via a dedicated com-
munication protocol, enabling remote control and real-time
monitoring.

E. Safety

To ensure safety during operation, the ERT-Robot control
system incorporates multiple safety protocols, including soft
limits for joint rotation speed, angle and traction displacement.
In addition, it continuously monitors heart rate signalsPu , trig-
gering a warning prompt when exceeding 100 BPM (normal
resting rate: 60-100 BPM) [27]. If unacknowledged within 3 s,
the system initiates emergency shutdown.

III. ROBOT CONTROL METHODS

Based on the clinical performance of different reha-
bilitation phases, three rehabilitation control methods are
developed: reciprocating passive (RP) training, active range of
motion (AROM) training, and muscle strength (MS) training,
as shown in Fig. 5.

A. Full-Cycle Rehabilitation Control

1) RP Training: Early-phase rehabilitation requires pas-
sive training, involving physician-assisted limb rotation and
humeral surface-perpendicular forearm traction to enhance
joint mobility and reduce soft tissue stiffness.

To replicate this clinically, it is necessary to tailor the
motion parameters, such as joint angles and traction dis-
placements, to achieve personalized motion control. The
maximum joint angles and traction displacement are deter-
mined using physician demonstration based on admittance
control. Joint movement employs PID-controlled sinusoidal
trajectories between measured maximum flexion and extension
angles, monitored via IMU-based closed-loop control. Simul-
taneously, the traction cylinder executes sinusoidal trajectories
(0 mm to maximum displacement) under servo control, with
25 ms command intervals.

2) AROM Training: While passive training enhances joint
mobility, robot-assisted passive training alone proves insuffi-
cient for functional recovery. Rehabilitation efficacy primarily
depends on training intensity and patient engagement, rather
than robotic assistance alone. To promote active participation,
AROM training during mid-phase rehabilitation should be
implemented.

The AROM model incorporates the patient’s current
strength level, utilizing deep learning to establish sEMG-joint
angle-traction force correlations. sEMG data, processed by the
lower computer, is transmitted via Bluetooth to the Qt platform
for MATLAB-based neural network prediction of joint angles
and traction displacements.

3) MS Training: This mode considers the patient’s current
strength level and extreme range of motion. During late-phase
rehabilitation, following AROM training, patients demonstrate
partial muscle recovery. The system applies controlled resis-
tance during the joint flexion/extension to enhance muscle
strength.



2408 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 33, 2025

Fig. 5. Controller schematic of full-cycle rehabilitation strategy.

The admittance control model of the motor and the electric
cylinder are expressed as

Tθ (t) = Mθ1θ̈cu(t) + Bθ1θ̇cu(t) (1)

Fcy(t) = Md1d̈cu(t) + Bd1ḋcu(t) (2)

where Tθ (t) and Fcy(t) denote the joint torque on the motor
and force on the electric cylinder exerted by the elbow
joint, respectively. 1θ̇cu(t) and 1θ̈cu(t) represent the angular
velocity correction and angular acceleration correction of
the desired and reference values, respectively. 1ḋcu(t) and
1d̈cu(t) are the velocity correction and acceleration correction
of the desired and reference values, respectively. Mθ and Md
are the inertia coefficients, Bθ and Bd are the damping coef-
ficients. Through comprehensive MATLAB-based simulations
of the DC motor and servo cylinder systems, the values of
Mθ = 20, Bθ = 100, Md = 200 and Bd = 3000 were
determined.

B. Continuous Estimation of Joint Angles and Traction
Forces Based on sEMG

1) Data Collection and Preprocessing: Six healthy subjects
with no history of elbow disease participated in this study,
including 3 males, aged 22.5 ± 0.5 years, height 176.5 ±

3.5 cm, weight 68.25 ± 3.25 kg, and 3 females, aged 23.0 ±

1.0 years, height 162.0 ± 3.0 cm, weight 51.75 ± 3.75 kg. All
subjects were informed of the entire experimental procedure
and signed an informed consent form. All experiments involv-
ing human subjects were approved by the Ethics Committee
of Tianjin University.

The experimental setup is shown in Fig. 1 (d). Two mus-
cles that are closely related to elbow joint movement are
considered, including biceps brachii (BIC), triceps brachii
(TRI). Prior to testing, subjects relaxed their upper limbs
while the skin was cleansed with alcohol wipes to reduce
impedance. Maximum voluntary contraction (MVC) data were
recorded after signal processing. Subjects were secured to
the robot using straps, with the system set to admittance

mode to facilitate human-robot interaction. Synchronous data
acquisition of joint angles and traction forces was performed
using IMUs and servo cylinder force sensors.

The anti-interference capability of the control system is of
great significance [28], [29], [30]. To ensure the effective
operation of the control system in the presence of noise
and other disturbances, the sEMG signals are initially seg-
mented into sliding windows comprising 300 sample points
(approximately 3 s), with a sampling interval of 20 points
(about 200 ms) between each window. A 50 Hz notch filter is
employed to eliminate common power frequency interference,
and a 20-500 Hz Butterworth bandpass filter is utilized to
remove other potential interfering signals. After these filtering
steps, the signals undergo full-wave rectification and linear
enveloping to extract their features. Subsequently, normal-
ization is conducted to ensure the stability and accuracy of
the signals, as illustrated in Fig. 6. Additionally, considering
the timer delays of approximately 20 ms in both the upper
and lower computers, the overall delay of the control sys-
tem is about 220 ms. MVC-based normalization eliminates
inter-muscle variability. Signal smoothing is achieved through
sliding square window processing

esq(i) = k
N∑

n=1

e2
f ilt (i) (3)

where esq(i) denotes the square value of sEMG, e f ilt is the
input value before processing, k represents the squaring factor,
N is the window size, and I is the sampling point. Finally, the
square root reduction is performed as follows to obtain the
envelope signal eenv(i)

eenv(i) =
1
N

√
kesq(i) (4)

Four time-domain features are extracted from sEMG sig-
nals: mean absolute value (MAV), standard deviation (SD),
root mean square (RMS), and wavelength. MAV and RMS
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Fig. 6. sEMG preprocessing flow.

are commonly used to assess the intensity of muscle contrac-
tion and fatigue, while wavelength reflects signal complexity,
indicating muscle contraction/relaxation states. SD enhances
prediction accuracy.

The joint torque is derived from force sensor measurements,
considering the fixed angular offset ϕcy between the sensor
detection axis and forearm exoskeleton axis. Using the per-
pendicular distance xcy (0.053m, obtained from 3D model
measurements) between the force application point and motor
shaft within their common plane, the torque is calculated as

Tθ (t) = Fcy(t)xcy sin ϕcy (5)

2) Deep Learning Based Neural Network Model: The input
signals are feature extracts of the 2 muscles, which can be
regarded as an image with the size of [300, 2]. A CNN-LSTM-
Attention network is designed to solve estimation of elbow
joint angles and traction forces. The proposed architecture
employs a synergistic combination of: (a) CNN layers for
spatial feature extraction from sliding window segments, (b)
LSTM layers to capture temporal dependencies, and (c) an
attention mechanism that dynamically weights salient signal
phases to refine prediction accuracy.

As shown in Fig. 7, the network comprises two convolu-
tional layers, one LSTM layer, two average pooling layers,
and two fully connected layers, enabling continuous sEMG-
based estimation. The sliding window images of the muscle
activation are taken as the input and the corresponding elbow
joint angle and traction force are taken as the output. Hyperpa-
rameters were optimized through a combination of grid search
and cross-validation. CNN Layers: Kernel sizes (3 × 3) and
stride lengths (1×1) were chosen to balance feature resolution
and computational efficiency. LSTM Units: 128 units provided
optimal trade-offs between model complexity and prediction
latency. Attention Mechanism: A single-head attention layer
was sufficient, as multi-head setups did not improve perfor-
mance but increased inference time. Training Protocol: The
model was trained using the Adam optimizer (learning rate =

0.001) with early stopping to prevent overfitting.
3) Evaluation Criteria: In order to quantitatively describe

the regression ability of the model, three indices are adopted:
mean absolute error (MAE) reflects estimation accuracy, root
mean square error (RMSE) emphasizes larger deviations, and
coefficient of determination (R2) evaluates overall fit. Optimal
performance is indicated by MAE and RMSE approaching
zero, and R2 approaching one.

IV. REHABILITATION FUNCTION EXPERIMENTS AND
RESULTS

In Section III, the model was trained using data from six
subjects. To verify the generalizability of the robotic system,
an additional six new subjects were specifically recruited to
participate in all experiments in this section. The data from
these new subjects will be kept independent from the training
dataset.

A. Functional Verification Experiments
1) Mechanism Range of Motion: In order to ascertain the

mobility range of each mechanism of ERT-Robot, adjustments
were made to the elbow joint angle, traction force angle,
traction displacement and carrying angle under unloaded con-
ditions, as shown in Fig. 8. The results show that the robot’s
mobility aligns with the human elbow joint range of −5◦

to 145◦, traction force adjustment angle of 45◦ to 85◦, and
carrying angle range of −15◦ to 15◦, all of which meet clinical
rehabilitation needs.

2) Traction Function: The primary objective of design is to
confirm the efficacy of traction exerted by the robot on the
elbow joint. With the subject’s arm maintained in a horizontal
position, we measured the displacement of olecranon in both
unassisted and reciprocating passive training scenarios. During
this process, there is relative skin-to-bone movement on human
arm. As the upper limb advances as a cohesive unit, the
displacement of olecranon exhibits a specific relationship as

dO = dtd + dsd (6)

where dtd denotes the traction displacement of the olecranon,
and dsd represents the sliding displacement of the skin on the
arm relative to the underlying bone. The maximum value of dO
is compared across three situations for each subject: natural
arm rotation, manual rehabilitation, and ERT-Robot-assisted
rehabilitation. The olecranon’s prominent anatomical position
allows for clear identification without radiographic imaging,
making it an ideal site for direct IMU placement. During elbow
joint motion, the IMU accurately tracks three-dimensional
olecranon displacement, with these kinematic measurements
serving as the gold standard for quantifying traction displace-
ment in our experimental protocol.

Six subjects were randomly numbered 1 to 6. The exper-
imental data obtained from the two scenarios are shown in
Fig. 9. dO,N H and dO,N V denote the horizontal and vertical
displacements of olecranon in the natural state. Similarly,
dO,M H and dO,MV are the horizontal and vertical displace-
ments of ulnar olecranon during manual rehabilitation, while
dO,R H and dO,RV represent the corresponding displacements
during rehabilitation utilizing the ERT-Robot.

The experimental results, are shown in Fig. 10, indicate that,
when compared to the natural arm rotation, the horizontal
and vertical displacements of the olecranon were signifi-
cantly increased using manual rehabilitation and robot-assisted
rehabilitation. The difference between manual rehabilitation
and robot-assisted rehabilitation is very small, with aver-
age differences in horizontal and vertical displacements
were approximately 1.33% and 7.78%, respectively. As a
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Fig. 7. Deep learning network architecture.

Fig. 8. ERT-Robot range of motion. (a) Elbow range of motion,
(b) Adjustment range of traction angle, and (c) Adaptation range of
carrying angle.

Fig. 9. Experimental setup. (a) Experimental scenario, (b) Position of
the olecranon.

result, the effectiveness of the robotic traction function is
validated.

3) Safety: Mutation simulation was performed on the heart
rate signal, where the initial 20s is the normal heart rate
signal of subject 1. At the 20th second, the signal was
mutated to 110 BPM, exceeding the predefined heart rate
threshold. The experimental results are shown in Fig. 11.
Based on these results, the robot’s emergency stop exhibited
errors of 0.49◦ and 0.032 mm on the joint angle and traction

Fig. 10. Experimental results of the traction function. (a) Horizontal
displacements of the olecranon in different subjects, (b) Vertical dis-
placements of the olecranon in different subjects.

Fig. 11. Experimental results of emergency stop for subject 1. (a) Muta-
tion simulation on the heart rate signal, (b) Desired and feedback joint
angles, and (c) Desired and feedback traction displacements.

displacement. The corresponding response times are 175 ms
and 133 ms on the motor and electric cylinder, both of
which meet the requirements for a safe emergency stop of the
robot.

B. Offline Estimation of Joint Angle and Traction Force
Comprehensive performance evaluations were conducted

using conventional Backpropagation Neural Network (BPNN),
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TABLE I
QUANTITATIVE EVALUATION OF THE OFFLINE ESTIMATION

Fig. 12. Results of offline estimation for subject 1, subject 2, subject 3. (a) Estimation of joint angles, and (b) Estimation of traction forces.

LSTM, and CNN. Subjects were encouraged to control their
muscles to realize motion intentions of flexion and exten-
sion. The sEMG sensor, IMU sensor, and force sensor were
configured with sampling frequencies of 1000 Hz, 100 Hz,
and 100 Hz, respectively. Each acquisition time is 20s.
The experiments were replicated five times for each sub-
ject, with a 60s rest interval between set. Consequently,
the sampling segment for each subject amounted to 20000.
The number of sliding windows was calculated to be 986
((20000−300+20)/20).

The offline estimation results of joint angle and traction
force for each model are shown in Fig. 12. Evaluation results
from a randomized trial for subject 1-3 are given. The
quantitative evaluation results, shown in Table I, highlight
the variations in model generalization capabilities. Table I
comprehensively compares four neural network architectures
(BPNN, CNN, LSTM, and CNN-LSTM-Attention) in pre-
dicting joint angles and traction forces, evaluating three key
metrics: MAE, RMSE, and R2. The CNN-LSTM-Attention
hybrid model demonstrates statistically significant superiority
across all metrics compared to standalone models. Specifically,
the CNN-LSTM-Attention model exhibits a lower MAE value
(p < 0.05), signifying a reduced average deviation between
its predicted outcomes and the actual values. Its RMSE value
is also lower (p < 0.05), indicating that the model gener-
ates smaller fluctuations in prediction errors, thereby yielding
more stable results. Moreover, the model’s higher R2 value
(p < 0.05) reflects a greater degree of alignment between its
predicted results and the observed data. These findings sub-
stantiate the CNN-LSTM-Attention model’s comprehensive
superiority over other models in terms of prediction accuracy,
error range, and stability. It is worth noting that the LSTM
model demonstrated significantly lower estimation accuracy
in Subject 1 compared to other methods, failing to achieve

Fig. 13. Schematic diagram of measured joint angles. (a) Maximum
elbow flexion angle, (b) Maximum elbow extension angle, and (c) Carry-
ing angle.

reliable estimation. This limitation stems from the algorithm’s
parameter sensitivity in elbow joint angle and traction force
estimation, necessitating individual parameter calibration for
each subject. This is challenging in practical applications,
especially for patients with elbow fractures. In contrast, the
CNN-LSTM-Attention model exhibited outstanding accuracy
and stability across all quantitative indices.

C. Reciprocating Passive Training
To validate the effectiveness of the reciprocating passive

training control strategy, the experiments focused on trajec-
tory tracking accuracy during passive patient training were
conducted.

A joint protractor was used to measure the subject’s max-
imum elbow flexion angle θ f,max, maximum elbow extension
θe,max, carrying angle θcrraying , as shown in Fig. 13. The
subject’s joint angle control trajectory can be obtained as

θd(t) =
θ f,max − θe,max

2
sin(kt + b) +

θ f,max + θe,max

2
(7)

where θd(t) denotes the desired joint angle. k and b are
constant coefficients.

The joint traction limit position was established through
demonstration teaching. With the robot in admittance mode,
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TABLE II
AVERAGE ERRORS FOR THREE EXPERIMENTS

TABLE III
RMSE FOR THREE EXPERIMENTS

subjects performed ten elbow joint reciprocating movements.
The average maximum cylinder position across these move-
ments served as the passive training limit dcy,max. Thus,
the individualized joint traction control trajectories can be
expressed as

dd(t) =
dcy,max

2
sin(kt + b) +

dcy,max

2
(8)

where dd(t) denotes the desired traction displacement.
Each subject completed the experiment six times, with only

the data from one trial being displayed in the figures. The mean
and variance of the errors are detailed in Tables II and III. The
experimental results of the reciprocating passive training for
subject 1 is shown in Fig. 14 and Fig. 15. The data of different
subjects are shown in Tables II and III. The average error of the
joint angle is 3.04◦

±0.21◦, accompanied by an average RMSE
of 5.98◦

±0.11◦. Similarly, the average error of the traction
displacement is 0.36 mm±0.004 mm, with a corresponding
average RMSE of 1.07 mm±0.02 mm. These results indicate
that the robot is capable of accurately tracking, confirming the
robot’s efficacy in reciprocating passive training.

D. Active Range of Motion Training
To verify the effectiveness of the AROM training control

strategy, subjects were equipped with EMG sensors on both
biceps and triceps brachii muscles. Following a 3-second
signal acquisition period, subjects initiated autonomous elbow

Fig. 14. Reciprocating passive training results: joint rotation angles for
subject 1. (a) Desired and feedback joint rotation angles, and (b) Joint
rotation errors.

Fig. 15. Reciprocating passive training results: joint traction dis-
placements for subject 1. (a) Desired and feedback joint traction
displacements, and (b) Joint traction displacement errors.

Fig. 16. AROM training results: joint rotation angles for subject 1.
(a) Predicted and feedback joint rotation angles, and (b) Joint rotation
errors.

rotation while the system predicted joint angles and traction
forces at 200 ms intervals. The prediction and tracking perfor-
mance for subject 1 are shown in Fig. 16 and Fig. 17. The data
of different subjects on AROM training are shown in Tables II
and III.

Experimental results demonstrate that the average error
of the joint angle across different subjects in this training
is 2.57◦

±0.05◦, with an average RMSE of 6.16◦
±0.96◦.

Similarly, the traction force average error is 2.38 N±0.08 N,
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Fig. 17. AROM training results: joint traction displacements for sub-
ject 1. (a) Predicted and feedback joint traction forces, and (b) Joint
traction force errors.

Fig. 18. MS training results for subject 1. (a) Desired and feedback
joint traction forces, (b) Desired and feedback joint rotation angles, and
(c) Desired and feedback joint traction displacements.

accompanied by an average RMSE of 6.92 N±0.44 N. The
experimental results show that the robot can accurately predict
the movement intention of the limb and effectively implement
AROM training.

E. Muscle Strength Training
In order to validate the effectiveness of the muscle strength

training control strategy, we employed an admittance mode to
apply simulated loads during elbow joint movement. Follow-
ing clinical consultation with rehabilitation specialists, a safety
threshold of 13 N was established for elbow traction forces
across all six subjects. Force sensor data were recorded to
determine the maximum moment, which served as the sim-
ulated load. The experimental results for subject 1are shown
in Fig. 18 and Fig. 19. The data of all subjects on the MS
training are shown in Tables II and III.

Experimental results demonstrate that the average error of
the joint angle across different subjects in the MS training is
1.54◦

±0.02◦ and the average error of the traction displacement
is 0.07 mm±0.0006 mm. Meanwhile, the average RMSE of
the joint angle across subjects is 5.27◦

±0.19◦, and the average
RMSE of the traction displacement is 0.17 mm±0.0001 mm.

Fig. 19. MS training results: errors for subject 1. (a) Joint rotation errors,
and (b) Joint traction displacement errors.

In addition, force signal analysis for subject 1 (see Fig. 18(a))
revealed stable load maintenance during elbow joint recip-
rocating movement, confirming the efficacy of the robot in
muscle strength training.

V. DISCUSSION

This study presents a novel rehabilitation robotic system
integrating elbow joint rotation and traction functions. The
system features an innovative rotation mechanism accom-
modating upper limb carrying angles and an adjustable
traction mechanism for soft tissue stretching, with customiz-
able traction displacement and angle. Unlike previous robotic
systems [10], [31], [32] that lacked joint traction or neglect-
ing carrying angles [33], potentially leading to secondary
injuries, the proposed ERT-Robot addresses these limitations
through its comprehensive design. Furthermore, it overcomes
the restricted motion range issues of [34] and [35], offering
superior rehabilitation potential.

We propose a full-cycle rehabilitation control strategy incor-
porating joint traction adjustment across all rehabilitation
phases, featuring three training modes: reciprocating passive
training, AROM training, and muscle strength training. Exper-
imental results demonstrate exceptional performance, with
maximum joint angle RMSE of 8.14◦ for reciprocating passive
and muscle strength training, and deep learning-based joint
angle estimation achieving R2

= 0.958 with RMSE = 4.85◦.
These results surpass comparable studies, such as the CNN-
LSTM-Self-attention with Kalman filter by Zhang et al. [36]
(R2

= 0.7), and the sEMG/IMU based predictions by Silva-
Acosta et al. [37] (RMSE: 8.67◦ and 8.59◦, respectively).
In addition, while numerous studies have investigated elbow
joint kinematics [38], [39], [40], the proposed ERT-Robot
represents a significant advancement through its integrated
control of joint traction force and displacement.

The proposed ERT-Robot addresses critical limitations
in current elbow rehabilitation robot research, specifically
the absence of joint traction function and comprehensive
post-fracture rehabilitation control strategies. The developed
traction mechanism, carrying angle adaptation, and full-cycle
rehabilitation method demonstrate significant translational
potential for other joints, particularly the knee, which shares
similar physiological characteristics and rehabilitation princi-
ples with the elbow.
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For fracture rehabilitation, elbow joint traction is crucial to
prevent ligament adhesion and promote recovery of muscles,
ligaments, and other soft tissues. This process requires precise
control of both traction displacement and force to prevent sec-
ondary fractures. In neurological rehabilitation, however, joint
traction is unnecessary since patients’ skeletal systems and
soft tissues remain intact, with only neural pathways affected.
These distinct requirements demonstrate that the ERT-Robot
is not only specifically designed for fracture rehabilitation but
also fully adaptable to neurological rehabilitation scenarios.

While this study successfully demonstrates prototype func-
tionality through healthy subject trials, there are still some
limitations that need future investigation. The primary lim-
itation of this study is its relatively small sample size,
consisting exclusively of six healthy participants. To enhance
the clinical relevance and generalizability of our findings,
future work will recruit real clinical cases, expand the sample
size, and include participants with varying ages, genders, and
health conditions, particularly elbow fracture patients. Sec-
ondly, the sEMG-based motion estimation algorithm, currently
employing empirically determined parameters, requires further
refinement to enhance its predictive accuracy and adaptabil-
ity. Finally, the current experiments primarily focus on the
short-term traction performance and rehabilitation training
outcomes. Future work will focus on conducting long-term
follow-up assessments to evaluate the sustainability of joint
function recovery and long-term muscle strength improvement,
further validating the clinical application value of the ERT-
Robot. To comprehensively evaluate the ERT-Robot’s clinical
efficacy, we will also incorporate standardized clinical eval-
uation indicators, including Activities of Daily Living scores
and Mayo Elbow Performance scores.

VI. CONCLUSION

In this paper, a novel robotic system integrating elbow
rotation and traction for full-cycle postoperative rehabilitation
is developed. The mechanical design incorporates: (1) a rota-
tion mechanism accommodating upper limb carrying angles,
and (2) an adaptive traction mechanism with adjustable
displacement and angle, capable of accommodating diverse
patient anthropometrics for effective soft tissue stretching.
A full-cycle rehabilitation control strategy encompassing three
rehabilitation modes, that is reciprocating passive training,
AROM training, and muscle strength training, is implemented.
The hierarchical control architecture combines a lower-level
PID controller for position and force regulation with an
upper-level CNN-LSTM-Attention network for sEMG-based
estimation of joint angles and traction forces. The experiments
with six healthy subjects validated the feasibility and effective-
ness of the proposed robotic system in robot-assisted elbow
rehabilitation. This study provides a technical reference for
robotic-assisted rehabilitation after elbow fracture surgery and
has potential clinical applicability.
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