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Abstract— Urbanization advances at unprecedented rates,
leading to negative environmental and societal impacts. Remote
sensing can help mitigate these effects by supporting sustainable
development strategies with accurate information on urban
growth. Deep learning-based methods have achieved promising
urban change detection results from optical satellite image pairs
using convolutional neural networks (ConvNets), transformers,
and a multitask learning setup. However, bi-temporal methods
are limited for continuous urban change detection, i.e., the
detection of changes in consecutive image pairs of satellite image
time series (SITS), as they fail to fully exploit multitemporal data
(>2 images). Existing multitemporal change detection methods,
on the other hand, collapse the temporal dimension, restricting
their ability to capture continuous urban changes. In addition,
multitask learning methods lack integration approaches that
combine change and segmentation outputs. To address these
challenges, we propose a continuous urban change detection
framework incorporating two key modules. The temporal feature
refinement (TFR) module employs self-attention to improve
ConvNet-based multitemporal building representations. The tem-
poral dimension is preserved in the TFR module, enabling the
detection of continuous changes. The multitask integration (MTT)
module utilizes Markov networks to find an optimal building map
time series based on segmentation and dense change outputs. The
proposed framework effectively identifies urban changes based on
high-resolution SITS acquired by the PlanetScope constellation
(F1 score 0.551), Gaofen-2 (F1 score 0.440), and WorldView-2
(F1 score 0.543). Moreover, our experiments on three challenging
datasets demonstrate the effectiveness of the proposed framework
compared to bi-temporal and multitemporal urban change detec-
tion and segmentation methods. The code is available on GitHub:
https://github.com/SebastianHafner/ContUrbanCD

Index Terms— Earth observation, multitask learning, multi-
temporal, remote sensing, transformers.

I. INTRODUCTION
RBANIZATION is progressing at unprecedented
rates [1]. Thus, the global amount of urban land is
projected to increase by a factor of 2-6 over the 21st
century [2]. The rapid expansion of urban land, i.e., urban
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sprawl, is associated with multiple negative effects on the
environment and human well-being [3], [4]. To mitigate
urban sprawl, informed and sustainable urban development
strategies are crucial [5]. However, these strategies are
currently hampered by a lack of timely information on the
extent of urban land.

Remote sensing is an efficient tool to monitor the Earth’s
surface [6]. Urban changes are commonly detected from two
satellite images acquired at different times over the same
geographical area. Traditional change detection methods use
arithmetic operations to derive change features (CFs) from
bi-temporal image pairs. For example, various arithmetic
methods have been developed to derive CFs from optical
images, such as image differencing, image regression, and
change vector analysis [7]. These features are then classi-
fied into changed/unchanged pixels or objects using different
classification algorithms, including machine learning algo-
rithms [6], [7].

In recent years, deep learning has been continuously replac-
ing traditional change detection methods [8], [9], [10], [11].
Specifically, deep convolutional neural networks (ConvNets)
have been used extensively for change detection in bi-temporal
optical satellite image pairs [see Fig. 1(a)]. The simplest
way of adapting common ConvNets such as U-Net [12]
for change detection is with an input-level fusion (or early
fusion [13]) strategy, referring to the concatenation of image
pairs before passing them to a ConvNet. Contrarily, late fusion
strategies typically process images separately in a Siamese
network consisting of two ConvNets with shared weights.
Extracted bi-temporal features are then fused using concate-
nation or absolute differencing [13], [14]. Since Siamese
networks are generally considered preferable to input-level
fusion strategies, multiple studies developed modules that are
incorporated into Siamese network architectures to improve
feature representations [15], [16], [17]. For example, Chen et
al. [18], [19] proposed to refine features extracted by ConvNets
from very high-resolution (VHR) imagery using a transformer-
based module, alleviating the limited long-range context
modeling capability of convolutions with self-attention. Since
then, self-attention has become a popular mechanism for
capturing long-range spatial dependencies in VHR change
detection [17], [20], [21], [22].

In recent years, high-resolution (i.e., 1-10 m) satellite image
time series (SITS) have become increasingly available [23].
Those data have enabled a shift from detecting land cover
changes in image pairs acquired years apart to continuous
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Fig. 1. Overview of standard urban change detection frameworks and
the proposed method. (a) Bi-temporal urban change detection is typically
performed on image pairs acquired multiple years apart. (b) Multitempo-
ral change detection methods leverage image time series but only predict
changes between the first and last image. (c¢) Bi-temporal model is applied
to consecutive image pairs of a time series to perform continuous urban
change detection; however, this method fails to incorporate multitemporal
(i.e., >2 images) information (c). On the other hand, we propose (d) con-
tinuous urban change detection method that incorporates multitemporal
information.

annual and subannual change detection [24]. In contrast, urban
change detection methods are predominantly designed for
bi-temporal change detection from image pairs acquired mul-
tiple years apart [25]. However, considering the unprecedented
rate of global urbanization [26], it is essential to develop a new
suite of methods that detect urban changes continuously. While
continuous change detection can be achieved by applying a
bi-temporal model to consecutive image pairs in SITS [see
Fig. 1(c)], this approach fails to exploit multitemporal, i.e.,
>2 images, information. Furthermore, recent studies [27], [28]
have demonstrated the effectiveness of multitemporal change
detection models that predict changes between the first and
last images of an SITS [see Fig. 1(b)]. For example, multi-
temporal information can help to reduce commission errors
from registration errors, illumination differences, or other
types of change unrelated to the problem of interest [28].
In addition, it can mitigate the effect of cloud artifacts in single
images [27]. Existing multitemporal change detection meth-
ods employ either recurrent layers, such as long short-term
memory (LSTM) layers [29], or 3-D convolutional layers to
model temporal information [27], [28], [30], [31]. While these
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layers effectively model short-range temporal dependencies in
time series data, the self-attention mechanism can explicitly
model temporal dependencies across all timestamps of a
time series [32]. Thus, several recent segmentation methods
for SITS employ the self-attention mechanism to explicitly
model temporal dependencies across all timestamps of a time
series [33], [34]. However, the temporal models in these
methods collapse the temporal dimension, resulting in a single
output feature. Therefore, they do not facilitate continuous
urban change detection, which requires the full temporal
information to produce change maps between each consecutive
image pair in the SITS.

Another promising avenue of research for change detection
is multitask learning [35], where a related semantic segmenta-
tion task is trained parallel to the change detection task using
a shared feature representation. The change detection task
is typically combined with building segmentation for urban
change detection [28], [36], [37], [38], [39]. To that end,
Siamese networks are extended with an additional decoder for
the semantic segmentation task. The feature maps extracted
by the encoder are then shared between the change decoder
and the segmentation decoder. However, despite the attention
multitask learning has attracted in change detection, effective
methods to integrate segmentation and change outputs have
been largely unaddressed. For example, most multitask urban
change detection studies consider building and change pre-
dictions independent outputs of the network [28], [36], [37],
[38], [39]. Therefore, these studies do not account for inconsis-
tencies between the building segmentation and urban change
predictions. Moreover, they fail to exploit the complementary
information produced by multitask predictions.

In this article, we propose a continuous urban change
detection method [see Fig. 1(d)] and explore two research
gaps in the current literature, namely, 1) the modeling of
multitemporal information using self-attention for continuous
urban change detection and 2) the integration of segmentation
and change predictions in multitask learning setups. Specif-
ically, we propose a new network architecture that relies on
convolutions to extract multitemporal building representations
and employs self-attention to model temporal dependencies
in feature space while preserving the temporal dimension.
We also propose a novel integration approach that determines
the optimal building segmentation for each image in a time
series based on the multitask network outputs. The effective-
ness of the proposed architecture and integration approach
is demonstrated on three urban change detection datasets
featuring high-resolution optical SITS.

The following summarizes the main contributions of this
article.

1) We introduce a continuous urban change detection
model that produces change outputs for each consecutive
image pair in SITS while leveraging the full temporal
dimension of the time series.

To enable continuous change detection, we present
a transformer-based feature refinement module that
effectively models temporal information in SITS. Impor-
tantly, our module preserves the temporal dimension
of the representations, in contrast to existing temporal

2)
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modules that collapse multitemporal representations into
a single one.

3) We propose a new multitask integration (MTI) approach
that represents segmentation and change outputs in
Markov networks to find the optimal building maps time
series based on the network outputs.

4) Experiments on three datasets, namely, SpaceNet 7
(SN7), Wuhan Urban Semantic Understanding (WUSU),
and Time Series Change Detection (TSCD), show that
the proposed continuous urban change detection method
is more effective than related methods.

II. RELATED WORK
A. Bi-Temporal Change Detection

In recent years, a plethora of deep learning-based
bi-temporal change detection methods have been proposed.
Most of these works focus on developing new Siamese
network architectures and/or training strategies. Initially,
Daudt et al. [13], [14] proposed two Siamese ConvNet archi-
tectures for change detection. The Siam-Diff and Siam-Conc
architectures employ encoders with shared weights for feature
extraction from bi-temporal high-resolution image pairs and
combine the corresponding feature maps using a subtraction
and concatenation strategy, respectively. While encoders and
decoders in these models follow the U-Net architecture [12],
Fang et al. [15] incorporated a nested U-Net (i.e., UNet++
[40]) into a Siamese network to maintain high-resolution, fine-
grained representations through dense skip connections. Many
works also improved Siamese networks by incorporating dif-
ferent modules into the architecture. For example, an ensemble
channel attention module was proposed for feature refinement
in [15], and a new spatial pyramid pooling block was utilized
in [16] to preserve shapes of change areas.

However, most recent methods are developed for
bi-temporal change detection from VHR image pairs.

Consequently, many methods employ the self-attention
mechanism to improve the modeling of long-range
dependencies in VHR imagery [17], [18], [19], [20].

Both [18] and [19] extract image features with ConvNets and
employ self-attention modules to learn more discriminative
features. Other works combined ConvNets and transformers
with attention modules and multiscale processing [17], [41].
Bandara and Patel [20], on the other hand, proposed a fully
transformer-based change detection method. Specifically,
ChangeFormer combines two hierarchically structured
transformer encoders with shared weights and a multilayer
perception decoder in a Siamese network architecture. Since
transformer-based methods strongly rely on pretraining,
Noman et al. [22] recently proposed ScratchFormer which
is a transformer-based change detection method that is
trained from scratch but achieves SOTA performance.
The ScrachFormer architecture utilizes shuffled sparse
attention layers that enable faster convergence due to their
sparse structure. Although these transformer-based methods
are considered SOTA for urban change detection, their
effectiveness has been predominately demonstrated on
bi-temporal VHR datasets such as LEVIR-CD [18] and
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WHU-CD [42]. In comparison, high-resolution imagery is
acquired much more frequently by satellite constellations
such as PlanetScope, making it an invaluable data source for
change detection applications. Therefore, developing methods
that effectively leverage transformers for change detection
from high-resolution imagery is crucial.

B. Change Detection and Segmentation From Time Series
Data

Few studies have developed deep learning methods for
urban change detection from high-resolution SITS. For exam-
ple, Papadomanolaki et al. [27] proposed to incorporate LSTM
networks into a U-Net model to leverage optical SITS for
change detection. Their L-UNet outperformed bi-temporal
ConvNet-based methods on a bi-temporal dataset enriched
with intermediate satellite images [27]. Others proposed an
encoder—decoder LSTM model that is trained to rearrange
temporally shuffled time series [31]. The core assumption of
this unsupervised method is that the model fails to correctly
rearrange shuffled data for changed pixels. On the other
hand, Meshkini et al. [30] proposed a weakly supervised
change detection method that employs 3-D convolutional lay-
ers to capture spatial-temporal information in SITS. Recently,
He et al. [43] presented a deep learning method for time series
land cover change detection. However, since their model only
uses 1-D convolutions along the temporal dimension, it does
not consider the spatial dimension, which is a limiting factor
for high-resolution data.

Due to the limited number of change detection methods for
SITS, we also expand this review to the semantic segmentation
of SITS. Several recent semantic segmentation methods for
SITS employed the self-attention mechanism for temporal
modeling of multitemporal features [33], [34], [44]. Garnot
and Landrieu [33] employed a lightweight-temporal attention
encoder [45] for the temporal modeling of multitemporal
feature maps extracted using a shared ConvNet encoder. Simi-
larly, Cai et al. [44] employed an attention bidirectional LSTM
module for temporal modeling of ConvNet-based feature maps
time series. The modules in both studies collapse the tem-
poral dimension, resulting in a single feature map obtained
using a ConvNet decoder. While Tarasiou et al. [34] used a
vision transformer to learn feature representation from SITS,
their model also outputs a single feature map for semantic
segmentation.

In summary, existing multitemporal change detection meth-
ods rely on recurrent and 3-D convolutional layers for
temporal modeling. While multitemporal semantic segmen-
tation methods frequently employ temporal attention-based
modules, they collapse the temporal dimension similar to
multitemporal change detection methods. While these methods
can be adapted for change detection, collapsing the temporal
dimension limits them to the detection of changes between the
first and the last image of an SITS [i.e., multitemporal change
detection in Fig. 1(b)].

C. Multitask Learning

Multitask learning has been investigated by several studies
for urban change detection over the past years. Liu et al. [36]
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proposed a dual-task Siamese ConvNet to learn more discrim-
inative feature representations for building change detection
from bi-temporal image pairs. The proposed dual-task con-
strained deep Siamese convolutional network (DTCDSCN)
consists of three main components: a shared ResNet-based
encoder, a shared decoder for building segmentation, and a
separate decoder for change detection. On the other hand,
Papadomanolaki et al. [28] proposed a multitask learning
framework for urban change detection from image time series
by adding building segmentation tasks for the first and last
images of a time series to the urban change detection task.
While L-UNet [27] is employed to extract changes, the seg-
mentation is performed with a separate decoder that directly
uses the feature maps extracted for the image pair by the
shared encoder.

Some urban change detection studies also combined multi-
task learning with semi-supervised learning [37], [38]. In [37],
the Siam-Diff network [14] was extended with an additional
shared decoder for building segmentation, and an unsupervised
term was introduced to encourage consistency between the
changes derived from the building predictions and those pre-
dicted by the change decoder. Shu et al. [38], on the other
hand, proposed to learn consistency between two building
predictions corresponding to the prechange image. The first
prediction is obtained by segmenting the prechange image
and the second one by combining segmentation features of
the postchange image with changes features.

In general, these multitask studies demonstrate that learning
a segmentation task in parallel to the change detection task
improves the latter. However, none of these studies investigate
combining the change and segmentation network outputs to
improve performance. Consequently, inconsistencies between
the network outputs are also not accounted for.

III. PROPOSED METHOD

A. Overview

As illustrated in Fig. 2, the main components of the pro-
posed method are a ConvNet-based encoder, transformer-based
temporal feature refinement (TFR) modules, a CF module,
two task-specific ConvNet-based decoders, and a Markovian
MTI module. The following summarizes the urbanization
monitoring process of the proposed method for a time series
of satellite images.

1) First, for each image in the time series, multiscale
feature maps are extracted using an encoder with shared
weights.

Next, the above time series of feature maps are grouped
by scale and fed to separate TFR modules consisting
of transformer encoder layers. The temporally refined
feature maps are regrouped according to their timestamp.
Then, the CF module obtains CF maps from the tem-
porally refined segmentation feature maps. The module
considers changes between all possible combinations of
temporal pairs.

Two task-specific decoders are deployed to obtain build-
ing segmentation outputs for each image in the time

2)

3)

4)
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series from the temporally refined segmentation features
maps and change outputs from the CF maps.

Finally, the building and urban change outputs are
combined using the MTI module. The module uses
pixel-wise Markov networks to obtain optimal building
states for the SITS.

Detailed descriptions of the components comprising the

proposed method, as well as the loss function, are given in
Sections III-B and III-G.

5)

B. SITS Encoding

We consider a time series of T satellite images, repre-
sented as X € RTXCxXHXW “where C, H, and W denote the
channel, height, and width dimensions, respectively. A Con-
vNet encoder with shared weights is utilized to separately
extract feature maps Fg., from each image in the time series,
as follows:

Fop = e(X) (1)

where e(-) represents the encoder, and subscript seg indicates
that the feature maps contain representations for building
segmentation.

The architecture of the encoder is based on the U-Net
encoder [12]. Specifically, after an initial convolution block,
the combination of a max-pooling layer and a consecu-
tive convolution block is applied four times. Each of these
four steps halves the spatial dimensions H and W due to
the pooling operation, whereas the number of features D
is doubled with the convolution block. Importantly, U-Net
achieves precise localization by leveraging skip connections
that forward the feature maps before each pooling operation
to the decoder. Therefore, the output of the encoder consists
of five feature map time series with different scales. To denote
the scale of these time series, we introduce superscript s
in the notation: F‘;eg, where s € {0, 1,2,3,4}. For a given
feature map time series F,, the sizes of the height and width
dimensions, as well as the feature dimension, are dependent
on s, as follows:

H

‘ 14
H =—, W=_ )
2S 2S

It should be noted that for brevity, Fig. 2 illustrates the
proposed method for s € {0, 1, 2}.

, D°=64-2°.

C. Temporal Feature Refinement

The TFR module, illustrated in Fig. 3, creates temporally
refined feature maps using the self-attention mechanism along
the temporal dimension [32]. Unlike the temporal modules in
existing change detection and segmentation methods for SITS,
our module preserves the temporal dimension.

The module takes as input a time series of feature maps at
the same scale s and reshapes this 4-D tensor to a 3-D tensor
TS e RT*P"*P" by flattening the spatial dimensions H® and
W?*. Consequently, T, D, and P represent the temporal, feature
embedding, and spatial dimensions, respectively. After reshap-
ing the feature map time series, self-attention is applied along
the temporal dimension 7T for each cell in the spatial dimension
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feature maps at each scale with multitemporal information, and the CF module generates bi-temporal difference feature maps from the temporally refined
feature maps. Then, two separate decoders are used to obtain segmentation and change predictions from the respective feature maps. Finally, predictions for
the two tasks are combined using an MTI module. For brevity, only three out of the five scales of the feature maps are shown.
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Fig. 3. Tllustration of the TFR module, preserving the temporal dimension
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Fig. 4. Illustration of the transformer encoder layer applying multiheaded
self-attention.

P. However, since the self-attention mechanism contains no
recurrence, it is necessary to first inject information about the
temporal position of the feature vectors in the time series.
Specifically, temporal encodings having the same dimension
as the feature vectors are generated based on sine and cosine
functions of different frequencies [32]. These relative temporal
encodings are then added to the feature vectors.

The tensor, enriched with relative temporal position infor-
mation, is passed through two transformer encoder layers (see
Fig. 4). The key component of the transformer encoder layer
is the multihead attention block, which performs self-attention
defined as follows:

(%)
Att(Q, K, V) = softmax| —— |V 3)

VD
where Q, K, and V are referred to as query, key, and
value, respectively. The query—key—value triplet is computed
with three linear projection layers with parameter matrices
W2 WK WY e RP*D that are separately applied to a given
cell of the 3-D tensor T),, where p denotes the cell index in T°.

The core idea of multihead attention is, however, that
self-attention is performed multiple times in parallel using &
attention heads, as follows:

MultiHead(Q, K, V) = Concat(heady, ..., headh)WO

where head; = Att (QWQ, KWK, VWY ) (4)

1

Each head; performs self-attention on different projections
of the keys, values, and queries obtained from linear layers
with parameter matrices W2, WX, W/ e RP*Pw Finally,
the concatenated outputs of the heads are reprojected using
parameter matrix W< € R"PrwxD "We employ h = 2 attention
heads, where the head dimension is given by Dyeq = D/ h.

After applying self-attention to each multitemporal feature
vector, we obtain a 3-D tensor containing temporally refined
building representations. In practice, however, all cells of
tensor T° are processed in parallel by incorporating them
into the batch dimension which is omitted for clarity. Finally,
the 3-D tensor is reshaped to the dimensions of the feature
map time series by unflattering dimension P. We denote this
temporally refined feature map time series with Fieg.

D. CF Extraction

The CF module is used to convert the temporally refined
segmentation feature maps to CF maps. Specifically, we con-
sider the temporally refined feature maps IA?'geg and ffeg,
corresponding to two images acquired at time 7 and time k,
where 1 <t < k < T. Then, CF map Ff, corresponding
to the urban changes between the bi-temporal image pair is
constructed as follows:

Zh = Fl;eg - F;eg ®)
where n denotes a change edge between timestamps ¢ and k.
It should be noted that this is done for each scale s of the
feature maps.

This operation is identical to the CF computation in the
Siam-Diff method [14]. However, instead of only considering
changes between the first and the last images of a time series,
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Fig. 5.  Markov networks with different edge settings (exemplified for a
time series with length T = 5). Nodes and edges are denoted by A and &,
respectively. (a) Adjacent. (b) Cyclic. (c) Dense.
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the CF module computes CF maps for all possible combina-
tions of image pairs. The total number of combinations Ngense
is given by the length of the time series 7', defined as follows:
T-1
> .
We refer to the scenario when all possible combina-
tions of image pairs are considered as dense. However,
we also investigate sparser settings such as adjacent, con-
sidering only changes between temporally adjacent images
(Nadjacent = T —1), and cyclic, adding the changes between the
first and last image to the adjacent setting (Neyeiic = T') (see
Fig. 5(a)—(c) for visualizations of these settings in Markov
networks with 7 = 5). We provide ablation results on the
different edge settings in Section V-D. Finally, it should
be noted that the CF module does not have any trainable
parameters.

(6)

Nyense =

E. Multitask Decoding

Two separate decoders are deployed to convert the tempo-
rally enriched segmentation feature maps and the CF maps
to building outputs and urban change outputs, respectively.
Formally, we obtain 7 built-up area segmentation outputs
Oy, € (0, ">V with the segmentation decoder dyeg(-) as
follows:

Oueg = dueg (Fieg). (7)

Furthermore, we obtain N change detection outputs O, €
(0, HN*HXW ith the change decoder dq,(-) as follows:

Och = den(Fep). ®)

Both decoders follow the architecture of the U-Net expan-
sive path consisting of four upsampling blocks followed by
a 1 x 1 convolution layer and a sigmoid activation function.
Upsampling blocks double the height and width of feature
maps via a transpose conv 2 x 2 layer. Upsampled feature
maps are then concatenated along the channel dimension with
the temporally refined feature maps matching their scale (skip
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connection). Subsequently, the layer triplet 3 x 3 convolution,
batch normalization, and ReLu activation is applied twice.

F. Loss Function

The network is trained using a loss function composed of
two terms, namely, for the urban change detection task (L)
and the building segmentation task (L,). For both loss terms,
a Jaccard metric measuring the similarity between continuous
network outputs O € (0, 1) and binary labels Y € {0, 1} is
used [46]. We denote the Jaccard metric by J(,) and define
the loss function as follows:

T N
L= Z ‘,(O;eg’ Y;eg) + Z ](Ogh! th)
=1 n=1

where T denotes the length of the time series and N denotes
the number of edges (i.e., combinations of bi-temporal image
pairs) considered. Segmentation and change labels are denoted
by Yeee € {0, 1}7*7>W and Y, € {0, 1}V>H*W  respectively.
Specifically, we assume that pixel-wise building annotations,
Yo, are available and derive pixel-wise built-up changes, Y,
according to the considered edges.

)

G. Multitask Integration

To combine segmentation and change predictions, we pro-
pose the MTI module which determines the optimal building
segmentation output for each image in a time series. Since
this is a pixel-based approach, we represent the location of a
specific pixel in the segmentation and change output notations
by introducing superscript coordinates i and j. Following that,
0/ denotes the segmentation output for a specific pixel i
and j at timestamp 7, where i € {1,..., H}, j e {l,..., W},
and ¢ € {1,..., T}. Likewise, the change output for a specific
pixel is denoted by O%’", where n denotes the change edge
connecting timestamps ¢ and k.

The core idea of the MTI module is to represent segmenta-
tion and change outputs in a pairwise Markov network. This
subclass of Markov networks is associated with an undirected
graph G (N, E) in which the nodes N correspond to
random variables and the edges &£ represent pairwise rela-
tionships between the nodes (see [47]). For a given pixel,
we construct a Markov network with T nodes corresponding to
the timestamps in an image time series. Specifically, all nodes
in the network correspond to a binary variable representing the
presence of buildings (i.e., N € {true, false}). We use state 1
to denote true, representing the presence of a building, and
state 0 to denote false, representing the absence of a building.
Adjacent nodes in the network are connected with N —1 edges,
where we use £'=F to denote an edge connecting timestamps ¢
and k. We refer to this Markov network structure as an adjacent
network [see Fig. 5(a)].

To represent the segmentation and change outputs, the graph
structure needs to be associated with a set of parameters that
capture the relationships between nodes. The parameterization
in a pairwise Markov network is achieved by assigning factors
over nodes or edges, where a factor ¢, also referred to as
potential, is a function from value assignments of random vari-
ables to real positive numbers R™. Thus, a pairwise Markov
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TABLE I
OVERVIEW OF DATASET CHARACTERISTICS FOR SN7, THE WUSU DATASET, AND THE TSCD DATASET

Dataset Location Satellite Resolution

Spectral Spatial Temporal
SpaceNet 7 Global (60 sites)  PlanetScope 3 bands (RGB) 4m 5 images*(2017 to 2020)
WUSU Wuhan, China Gaofen-2 4 bands (RGB + NIR) 1 m 3 images (2015, 2016, 2018)
TSCD Chengdu, China ~ WorldView-2 3 bands (RGB) 0.5m 4 images (2016, 2018, 2020, 2022)

* Approximately 24 monthly timestamps acquired between 2017 and 2020 are available for each site in the dataset.

network is associated with a set of node potentials {¢(N;) :
t = 1,...,T} and a set of edge potentials {¢(N;, N}) :
(N;, Ni) € G}. The overall distribution represented by the
network is then the normalized product of all the node and
edge potentials.

The segmentation outputs for a specific pixel are incorpo-
rated into the Markov network by assigning a factor ¢, over
each node \;. Then, the segmentation outputs are encoded as
node potentials, as follows:

¢ N =1) =03/

N =0)=1-08)"

seg

(10)

These node potentials characterize the bias of nodes toward
state 1 or 0, representing the presence or absence of a building,
respectively. We refer to this Markov network as degenenrate
network, characterized by the absence of functions that capture
the interactions between nodes.

To incorporate the change outputs for a specific pixel,
we first include additional edges for the edge settings cyclic
and dense. Specifically, for the cyclic case [see Fig. 5(b)], edge
EM=T connecting the first node N'! and the last node N7,
is added. On the other hand, for the dense case [see Fig. 5(c)],
all possible nonadjacent edges are added to the graph. Then,
we define factors over the edges in the Markov network to
add pairwise interactions of connected nodes. Specifically,
we define pairwise potentials ¢, for each edge £", connecting
two nodes A and N*. Since all variables in the network
are binary, each factor over an edge has four parameters. The
change outputs are encoded as edge potentials for the four
combinations of states, as follows:

PN = 0, N* = 1= Oiiﬁj)-n
SN =1, N =0) = Oi’ﬁ/),n
N =0, N =0)=1— Oil};}).,n

N = LN* =1)=1-04"" (11)

where edge n is connecting timestamps ¢ and k.

The value associated with each particular assignment of
states denotes the affinity between the two states. Conse-
quently, the higher the value assigned to the edge potential
for a particular combination of states, the more compatible
these two states are.

To define a global model from the local interactions defined
in the parameterization of the Markov network, we take the
product of the local factors and then normalize it. Once the dis-
tribution is defined, we perform a maximum a posteriori query

to find the optimal state assignment for each node in the graph.
The optimal state assignment corresponds to the configuration
that minimizes the overall energy determined by the node
and edge potentials assigned to the graph, as defined in (10)
and (11). Therefore, the resulting state assignment for the
nodes is optimal with respect to the potentials obtained from
the network outputs but not necessarily with respect to the
segmentation and change labels. We perform inference using
the belief propagation algorithm (see [47, Algorithm 10.4]).
Due to the absence of loops in the graph, belief propagation
provides an exact solution. Finally, it should be noted that the
MTI module does not contain any trainable parameters and is
only deployed during inference.

IV. EXPERIMENTAL SETTING
A. Datasets

A diverse set of multitemporal datasets is used to evaluate
the proposed method. Table I compares key characteristics of
these datasets, and detailed descriptions are provided in the
following paragraphs.

1) SpaceNet 7: The SN7 dataset features time series of
satellite images acquired by the PlanetScope constellation
between 2017 and 2020 for 60 sites spread across the globe
[48]. Each time series consists of about 24 monthly mosaics
with a spatial resolution of 4 m (approximately 1024 x
1024 pixels). Furthermore, the SN7 dataset provides manually
annotated building footprints, whereas annotations are missing
for image parts affected by clouds. While the task of the
original SN7 challenge was to track these building footprints
(i.e., vector data), the SN7 dataset has been leveraged for
a diverse set of tasks such as urban mapping [49], building
counting [50], and urban change forecasting [51]. To split the
SN7 dataset into training, validation, and test areas, we apply
the within-scene splits recommended in [50]. Specifically,
approximately 80% of a scene (top part) is used as a source
of training patches, and the remaining 20% (bottom part)
is divided evenly into validation (bottom-left part) and test
(bottom-right part) areas. Within-scene splits minimize the
occurrence of out-of-distribution data during testing while
simultaneously avoiding data leakage between the training and
test set by utilizing spatially disjoint areas for the different
dataset splits. During training, samples from the training areas
are generated by randomly selecting 7' timestamps from the
time series of a site. The rasterized building labels (see [37])
for these timestamps, were used to compute the change label.
We draw 100 samples from each site during an epoch to reach
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an adequate number of steps before model evaluation. For
model evaluation (validation and testing), the first and the last
cloud-free images of a time series, in addition to evenly spaced
intermediate images, were selected.

2) Wuhan Urban Semantic Understanding Dataset: The
WUSU dataset features tri-temporal high-resolution Gaofen-2
images covering two districts in Wuhan (Hubei Province,
central China) in 2015, 2016, and 2018 [52]. The prepro-
cessing workflow of the satellite images includes orthographic
correction and multitemporal image registration. Furthermore,
the four multispectral bands acquired at 4 m spatial resolution
are pansharpened to a spatial resolution of 1 m, resulting in
images of size 6358 x 6382 and 7025 x 5500 pixels for
Hongshan District and Jiang’an District, respectively. In addi-
tion to the Gaofen-2 images, the WUSU dataset provides
corresponding land-use/land-cover (LULC) labels, including
manually refined building annotations (Class 2 Low building
and Class 3 high building). Since the proposed method requires
binary building labels, Class 2 and Class 3 were remapped to
the foreground class, whereas all other classes were remapped
to the background class. We follow the within-scene split
recommended by the authors, using the top halves of the six
images for the test set and the bottom halves for the training
set that was further divided into training (90%) and validation
(10%) tiles.

3) Time Series Change Detection Dataset: The TSCD
dataset features bi-annual WorldView-2 satellite images
acquired over Chengdu (Sichuan Province) between 2016 and
2022 [53]. The images have a resolution of approximately
0.5 m and are split into 512 x 512 pixel tiles. The tiles
are divided into a training, validation, and test set. The
TSCD dataset provides building change labels for each adja-
cent image pair (2016-2018, 2018-2020, and 2020-2022).
We derived change labels for an arbitrary image pair from the
time series by considering all adjacent change labels connect-
ing this pair and computing the number of changes. An odd
number of adjacent changes indicates a change between the
image pair, whereas an even number indicates no change.

B. Baseline and Benchmark Methods

We selected a comprehensive set of baseline and benchmark
methods for quantitative and qualitative comparisons with the
proposed methods. These selected methods are grouped into
two categories, which are listed below.

1) Bi-Temporal Change Detection Methods:

1) Siam-Diff [14] employs a Siamese encoder to extract
feature maps from bi-temporal images. A decoder pro-
duces the change prediction from the subtracted feature
maps. The encoders and decoder follow the U-Net
architecture.

SNUNet [15] replaces the architecture in the Siam-Diff
network with a Nested U-Net (UNet++ [40]). In addi-
tion, a channel attention module is incorporated into the
architecture.

DTCDSCN [36] combines a typical Siamese ConvNet
for bi-temporal change detection with a dual attention
module and two additional decoders with shared weights
for building segmentation.

2)

3)
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4) BIT [19] employs a bi-temporal image transformer mod-
ule that operates in a compact token space to refine
features extracted by a Siamese ConvNet.

AMTNet [17] also extracts features using a Siamese
ConvNet, and combines attention mechanisms and
multiscale processing techniques to model contextual
information in bi-temporal images.

ScratchFormer [22] introduces shuffled sparse attention
layers in a Siamese ConvNet encoder to effectively
capture semantic changes when training from scratch.

5)

6)

2) Multitemporal Change Detection/Segmentation Methods:

1) L-UNet [27] employs a shared U-Net for multiscale
feature extraction in SITS and uses LSTM modules [29]
for temporal modeling. The LSTM modules produce a
single multiscale feature map which is transformed into
the output feature map using a U-Net decoder.
Multitask L-UNet [28] adds a semantic U-Net decoder to
L-UNet to segment buildings in the first and last images
of a time series.

U-TAE [33] uses a shared U-Net encoder to extract
multiscale feature maps for the SITS. A temporal atten-
tion encoder (L-TAE [45] is then used to collapse the
temporal dimension, before using the U-Net decoder to
produce a single output feature map.

TSVIT [34] splits an SITS into nonoverlapping patches
in space and time which are tokenized and subsequently
processed by a temporo-spatial encoder. A segmentation
head reassembles the encoded features into a single
output feature map.

U-TempoNet [44] uses a shared ConvNet encoder to
extract multiscale feature maps for all images. Sub-
sequently, a single multiscale feature map, obtained
through temporal modeling with a bidirectional LSTM,
is processed with a decoder to produce the output feature
map.

The Siamese ConvNets Siam-Diff, SNUNet, and
DTCDSCN are commonly used as change detection baselines,
whereas BIT, AMTNet, and ScratchFormer represent recent
methods combining Siamese ConvNets with transformers.
On the other hand, L-UNet and Multitask L-UNet are
benchmark methods for multitemporal change detection.
It should be noted that Multitask L-UNet and DTCDSCN are
multitask methods that perform change detection and building
segmentation. Finally, U-TAE, TSViT, and U-TempoNet
are recent segmentation methods for SITS inputs that can
be adopted for multitemporal change detection without
architectural changes.

2)

3)

4)

5)

C. Model Evaluation

Three accuracy metrics were used for the quantitative
assessment of model predictions: F'1 score, intersection over
union (IoU), and overall accuracy (OA). Formulas for the
metrics are given below [see (12)-(14)], where TP, TN, FP,
and FN represent the number of true positive, true negative,
false positive, and false negative pixels, respectively,

TP
TP + 1 (FP + FN)

F1 score = (12)
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TP
JoU= ——— (13)
TP + FP + FN
TP + TN
OA = ) (14)
TP + TN + FP + FN

Using these two accuracy metrics, we assessed model per-
formance across three tasks to accommodate the large variety
of baseline and benchmark methods. These tasks are described
in detail in the following.

1) Bi-Temporal Change Detection: Measures the accuracy
of the predicted changes between the first and last image
of a time series.

2) Continuous Change Detection: Measures the average
accuracy of the predicted changes between consecutive
image pairs in a time series.

3) Segmentation: Measures the accuracy of the building
predictions corresponding to the last image of a time
series.

The first task focuses on urban change detection from image
pairs acquired multiple years apart. This task is considered by
most urban change detection methods. For bi-temporal change
detection methods, changes were directly predicted based on
the first-last image pair, ignoring intermediate images in a time
series. On the other hand, the second task focuses on assessing
change predictions between consecutive image pairs in a time
series. Consequently, the continuous urban change detection
task focuses on image pairs with periods between acquisition
dates that are considerably shorter (i.e., annual and subannual).
The last task assesses the auxiliary segmentation task of
multitask methods and segmentation models. It should be
noted that the change detection performance of segmentation
models is not assessed because postclassification comparison
suffers from the accumulation of classification errors [54].

D. Implementation Details

We implement the proposed method using the deep learning
framework PyTorch [55]. In addition, the einops package [56]
was used to efficiently reshape feature maps, and the pgmpy
package [57] to implement the Markov network and perform
belief propagation. Models were trained for a maximum dura-
tion of 100 epochs on NVIDIA GeForce RTX 3080 graphics
cards, using early stopping with patience 10 to prevent models
from overfitting to the training set. AdamW was used as
optimizer [58] with a linear learning rate scheduler. The
remainder of this section describes the training setup in detail.

1) Augmentations: To enhance the training dataset,
we applied four data augmentation operations, namely, rota-
tions (k - 90°, where k is randomly selected from {0, 1, 2, 3}),
flips (horizontal and vertical with a probability of 50%),
Gaussian blur, and random color jittering. The parameters
that determine how much to jitter the brightness, contrast,
saturation, and hue of an image were set to 0.3 [20]. For
validation and testing, on the other hand, no data augmentation
was applied.

2) Oversampling: To account for the fact that the occur-
rence of change is usually considerably less frequent than no
change [59], change areas were oversampled during network
training. For a given site, twenty patches of size 64 x 64 pix-
els were randomly cropped from the change label, before
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assigning each patch a probability according to its change
pixel percentage, including a base probability for patches
with no change pixels. A single patch was chosen based
on those probabilities. For transformer-based methods (BIT,
AMTNet, and Scratchformer), the patch size was increased to
128 x 128 pixels to include more long-range spatial context.

3) Hyper-Parameter Tuning: For each model, hyper-
parameters were tuned empirically on the validation set using
grid search. Specifically, an exhaustive search with three
learning rates (1 - 1073,5-107°, 1-107%) and two batch sizes
(8, 16) was performed to determine the optimum values of
hyper-parameters. Then, five models were trained with the best
hyper-parameters but different seeds for weight initialization
and data shuffling. Consequently, reported values correspond
to the average of five runs.

Multitask L-UNet requires additional hyper-parameters to
balance the contribution of the segmentation and change loss
terms, which we adopted from the article [28]. All bi-temporal
urban change detection methods were trained on the cyclic
edges setting [see Fig. 5(b)].

V. EXPERIMENT RESULTS

In this section, we present the quantitative and qualitative
results on the SN7 and WUSU datasets, and the ablation study
results. It should be noted that all accuracy values are reported
on the respective test sets and correspond to the mean values
obtained from five models. These were trained with different
seeds using the best hyper-parameters determined with a grid
search (see Section IV-D). On the other hand, the median
model is used for the qualitative results, which are only shown
for competitive methods selected based on the quantitative
results.

A. SpaceNet 7

The quantitative results for the SN7 dataset are listed in
Table II. The proposed method achieved the highest F'1 scores
and IoU values for both urban change detection tasks (i.e.,
bi-temporal and continuous). Several multitemporal models
(L-UNet, Multitask L-UNet, and U-TempoNet) outperform
bi-temporal change detection methods on the bi-temporal task
while others are less effective (U-TAE and TSViT). Among the
bi-temporal methods, ScartchFormer and the ConvNet-based
methods Siam-Diff and SNUNet achieved the highest accuracy
values. For building segmentation, the proposed method also
outperformed the other multitask methods including DTCD-
SCN and Multitask L-UNet.

Figs. 6 and 7 show qualitative change detection and build-
ing segmentation results for two SN7 test sites located in
Australia and USA, respectively. For both sites, the pro-
posed method detects urban changes more accurately than
competing methods (DTCDSCN, ScratchFormer, and Multi-
task L-UNet). In particular, the continuous change detection
results for consecutive image pairs (rows two to five) show
a better agreement with the label than those of the other
methods. In addition, the change outputs of the proposed
method show a high level of consistency, meaning that the
aggregated continuous changes correspond to the bi-temporal
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TABLE I

QUANTITATIVE RESULTS ON THE SN7 TEST AREAS. THE BEST AND SECOND-BEST PERFORMANCES ARE HIGHLIGHTED IN RED AND BLUE,
RESPECTIVELY. “-” DENOTES THAT THE ACCURACY METRIC DOES NOT APPLY TO A SPECIFIC METHOD
SINCE THE CORRESPONDING VARIABLE IS NOT PREDICTED

Change detection Segmentation

Method Bi-temporal Continuous
(F1 /10U / OA) (F1 /10U / OA) (F1 /10U / OA)

Siam-Diff 0.453/0.293 / 98.8 0.273 / 0.158 / 99.5 -

SNUNet 0.454 /0.294 / 98.8  0.300 / 0.177 / 99.6 -
DTCDSCN 0.413/0.260/98.7 0.250/0.143/99.6 0.488 / 0.323 /92.3
BIT 0.386/0.239/99.0 0.275/0.160 / 99.6 -
AMTNet 0.424 /0.269 /98.7 0.282/0.164 / 99.6 -
ScratchFormer  0.468 / 0.305/98.9  0.328 / 0.196 / 99.6 -

L-UNet 0.519 / 0.350 / 98.9 - -

MT L-UNet 0.515/0.347 / 98.9 - 0.512/0.344 /1 92.7
U-TAE 0.366 / 0.225/ 97.5 - -

TSViT 0.168 / 0.092 / 97.2 - -
U-TempoNet 0.494 / 0.328 / 98.8 - -
Proposed 0.551/0.381/99.0 0.414/0.261/99.7 0.596 / 0.424 / 94.3

chtl = t5

Proposed Label

DTCDSCN ScratchFormer MT L-UNet

Fig. 6. Qualitative urban change and building segmentation results for an SN7 test site located in Australia. The PlanetScope SITS is shown on the left, and
the model outputs and the label are shown on the right. The top row shows the changes between the first and last image of the time series, rows two to five
show the continuous changes between consecutive image pairs, and the bottom row the buildings segmentation corresponding to the last image.

changes between the first and the last image (top row). Finally,
the proposed method maps buildings with more detail than

the competing methods, as shown in the bottom row of
Figs. 6 and 7.
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DTCDSCN

Fig. 7.

ScratchFormer

) Popos

Qualitative urban change and building segmentation results for an SN7 test site located in USA. The PlanetScope SITS is shown on the left, and

the model outputs and the label are shown on the right. The top row shows the changes between the first and last image of the time series, rows two to five
show the continuous changes between consecutive image pairs, and the bottom row the buildings segmentation corresponding to the last image.

B. Wuhan Urban Semantic Understanding Dataset

Change detection performance on the WUSU dataset is
lower than on the SN7 dataset (see Table III). For bi-temporal
change detection, only ScratchFormer, L-UNet, and Multitask
L-UNet exceed an F'1 score of 0.275 and an IoU value of
0.160. In comparison, accuracy values for the continuous
change detection task are slightly higher, except for the
proposed method. Overall, our method outperformed all other
methods on both change detection tasks. This also applied to
the building segmentation task, where the proposed method
achieved an F'1 score of 0.663 and an IoU value of 0.496.

Figs. 8 and 9 show qualitative change detection and build-
ing segmentation results for two WUSU test sites located
in Wuhan’s Jiang’an District in China. The change detec-
tion results produced by the proposed method show good
agreement with the label, especially in comparison with
the competing methods. As for SN7, the proposed method

achieved a high level of consistency between the continuous
change detection outputs (rows two and three) and the change
output between the first and last image (top row). In contrast,
the bi-temporal change detection methods identified changes
between the first and last images (ch t1 = ¢3) that are
present in neither of the continuous change rows (ch 11 =
t2 and ch 2 = ¢3). Finally, the bottom row demonstrates
that all methods accurately map buildings, but the proposed
method achieved more detailed building delineations than its
competitors. It should also be noted that the label does not
distinguish individual buildings in very dense built-up areas
(e.g., the bottom left area in Fig. 8).

C. Time Series Change Detection Dataset

The quantitative results for the TSCD dataset are listed in
Table IV. Multitemporal methods outperformed bi-temporal
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TABLE III

QUANTITATIVE RESULTS ON THE WUSU TEST AREAS. THE BEST AND SECOND-BEST PERFORMANCES ARE HIGHLIGHTED IN RED
AND BLUE, RESPECTIVELY. “-” DENOTES THAT THE ACCURACY METRIC DOES NOT APPLY TO A SPECIFIC METHOD
SINCE THE CORRESPONDING VARIABLE IS NOT PREDICTED

Change detection Segmentation
Method Bi-temporal Continuous
(F1 /IoU / OA) (F1 /IoU / OA) (F1 /IoU / OA)

Siam-Diff 0.175/70.096 / 96.1  0.236/0.134/97.4 -

SNUNet 0.188 /0.104 /949 0.211/0.118 / 96.5 -
DTCDSCN 0278 /0.162/96.2 0.318/0.189/97.6 0.539/0.369 / 84.2
BIT 0.213/0.120/ 96.5 0.314/0.187 / 97.9 -
AMTNet 0.187/0.104 /959 0.264/0.152/97.6 -
ScratchFormer  0.324 / 0.193 / 96.6  0.352/0.214 / 97.8 -

L-UNet 0.279 7 0.162 / 96.0 - -

MT L-UNet 0.276 / 0.161 / 96.1 - 0.479 /0.315 / 83.1
U-TAE 0.267 7 0.154 7 92.1 - -

TSViT 0.219/0.123 / 92.1 - -
U-TempoNet 0.246 / 0.141 / 95.0 - -
Proposed 0.440/0.282/97.0 0.389/0.242/98.3 0.663 / 0.496 / 88.9

i l’/[ll,“un
1 !!IIII
(]
b 74
l. F
/'

ScratchFormer

Fig. 8.

MT L-UNet

Proposed

Qualitative urban change and building segmentation results for a WUSU test site located in Wuhan’s Jiang’an District, China. The Gaofen-2 SITS is

shown on the left, and the model outputs and the label are shown on the right. The top row shows the changes between the first and last image of the time
series, rows two and three show the continuous changes between consecutive image pairs, and the bottom row the buildings segmentation corresponding to

the last image.

methods on detecting changes between the first and last times-
tamps of SITS. On the continuous task, bi-temporal methods
capable of modeling long-range spatial dependencies in VHR
imagery (BIT, AMTNet, and ScratchFormer) outperformed
Siam-Diff and SNUNet. However, our method achieved the
highest performance on both tasks despite not leveraging
spatial attention.

D. Ablation Study

1) Loss Function: Table V shows the ablation results for
different change loss edge settings (first-last, adjacent, cyclic,

and dense) and the segmentation loss. MTI was disabled for
this experiment to isolate the effect of the loss function on
network performance. It should also be noted that the settings
adjacent, cyclic, and dense all require building annotations for
each image in the time series as labels (see Section III-F),
whereas first-last only requires building annotations for the
first and last images. Considering additional change edges
in the loss function generally improves continuous change
detection performance. In contrast, a single change loss term
suffices for the bi-temporal change detection task. The seg-
mentation loss term improves performance for both change
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DTCDSCN

ScratchFormer

Fig. 9. Qualitative urban change and building segmentation results for a WUSU test site located in Wuhan’s Jiang’an District, China. The Gaofen-2 SITS is
shown on the left, and the model outputs and the label are shown on the right. The top row shows the changes between the first and last image of the time
series, rows two and three show the continuous changes between consecutive image pairs, and the bottom row the buildings segmentation corresponding to

the last image.

TABLE IV

QUANTITATIVE RESULTS ON THE TSCD TEST AREAS. THE BEST AND
SECOND-BEST PERFORMANCES ARE HIGHLIGHTED IN RED AND
BLUE, RESPECTIVELY. “-” DENOTES THAT THE ACCURACY
METRIC DOES NOT APPLY TO A SPECIFIC METHOD SINCE THE
CORRESPONDING VARIABLE IS NOT PREDICTED

Change detection

Method Bi-temporal Continuous
(F1 /IoU / OA) (F1 /IoU / OA)

Siam-Diff 0.211/0.118 /89.3  0.284 / 0.166 / 93.2
SNUNet 0.220/0.123 / 89.4  0.328 / 0.197 / 92.6
BIT 0.203/0.114 /90.0 0.363/0.222 / 94.5
AMTNet 0.298 /0.178 / 91.1  0.398 / 0.249 / 94.9
ScratchFormer  0.270 / 0.157 / 91.7  0.504 / 0.340 / 95.9
L-UNet 0.401 / 0.251 / 84.6 -

U-TAE 0.415/0.262 / 81.6 -

TSViT 0.355/0.216 / 79.3 -
U-TempoNet 0.435/0.279 / 85.1 -
Proposed 0.543 /0.373 /93.7 0.573 / 0.402 / 96.6

detection tasks, which holds for all change loss settings.
Therefore, the optimal loss setting consists of a change loss
with dense edges combined with a segmentation loss.

2) TFR Module: We perform an additional ablation experi-
ment investigating the contribution of the TFR module and
testing if recurrent sequence models, particularly recurrent
neural networks (RNNs) [60] and LSTMs [29], can be con-
sidered as alternatives to self-attention. We run all settings

with and without the MTI module due to the complementary
nature of the modules. Table VI shows that adding the TFR
module to our framework achieves large performance gains
across all tasks and datasets. Among the sequence models,
self-attention outperformed the recurrent sequence models on
the segmentation task across all datasets and the continuous
urban change detection task on SN7 and the TSCD dataset.
It only fell short of LSTMs on the WUSU dataset. Finally,
for bi-temporal change detection, self-attention outperformed
RNNs on all datasets but LSTMs achieved better results before
MTIL. In general, self-attention is the most effective sequence
model, especially in combination with the MTI module. How-
ever, LSTMs should be considered for multitemporal change
detection and datasets with few timestamps.

3) MTI Module: We perform a third ablation experiment
investigating performance gains from leveraging additional
edges in the MTI module. Here, we apply MTI with different
settings to the outputs of our method trained using the change
loss with the maximum number of edges and the segmenta-
tion loss. The TFR module using self-attention was enabled.
A degenerate Markov network that uses no change information
(i.e., only the segmentation information represented as nodes)
is added as a baseline. Table VII shows that introducing change
information in the MTI module results in considerable change
detection performance gains compared to the degenerate set-
ting, as well as minor segmentation performance gains. For
example, using the adjacent setting improves change detection
performance (first-last) by 44.8% and 61.6% in terms of
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TABLE V

ABLATION RESULTS FOR THE L0OSS FUNCTION WITH DIFFERENT EDGE SETTINGS FOR THE CHANGE LOSS TERM. THE BEST AND SECOND-BEST
PERFORMANCES ON THE SN7, WUSU, AND TSCD DATASETS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

Change detection

Segmentation
ral Continuous

(F1 / 1oU / OA)

(F1 /ToU / OA)

0.253 /7 0.145 /7 99.6
0.323 /0.193 / 99.7
0.357 7/ 0.217 7 99.6
0.384 /0.238 / 99.6
0.361 7/ 0.220 / 99.6
0.377 /1 0.233 / 99.7
0.364 / 0.223 7/ 99.6
0.397 /1 0.248 /1 99.7

0.565 /0.394 / 93.8
0.584 /0.413 / 94.1
0.581 7/ 0.409 / 94.0

0.593/0.422 /1 94.3

0.234 7 0.133 / 96.3
0.297 7 0.175 / 98.3
0.297 /0.175/ 97.9
0.373/0.229 /1 98.2
0.289 / 0.169 / 98.2
0.391/0.243 / 98.3

0.650 / 0.482 / 88.4
0.650 / 0.482 / 88.6

0.660 / 0.493 / 88.8

Dataset Change loss  Seg loss Bi-tempo
(F1 /ToU / OA)
first-last X 0.453 7 0.294 / 98.7
first-last v 0.519 / 0.350 / 98.8
adjacent X 0.479 / 0315/ 98.8
= adjacent v 0.520 / 0.352 / 98.9
& cyclic X 0516/0.348 /988
cyclic v 0.532 /0.363 / 98.9
dense X 0.511/0.343 / 98.8
dense v 0.537 /1 0.367 / 98.8
first-last X 0.274 / 0.159 / 95.7
first-last v 0.401 /0.251 / 96.5
5)) adjacent X 0.251/0.144 / 96.4
§ adjacent v 0.356 /0.217 / 95.3
cyclic X 0.328 / 0.196 / 96.0
cyclic v 0.420 / 0.266 / 96.6
first-last X 0.270 / 0.157 / 84.9
8 adjacent X 0.255/0.147 / 89.6
% cyclic X 0.512/0.344 /1 92.9
dense X 0.543/0.373 /1 93.7

0.157 7 0.086 / 62.8
0.453/0.296 / 95.1
0.553/0.383 / 96.4
0.573 / 0.402 / 96.6

TABLE VI

ABLATION RESULTS FOR THE TFR MODULE WITH DIFFERENT SEQUENCE MODELS. THE MAXIMUM NUMBER OF EDGES WAS USED FOR EACH

EXPERIMENT IN THE CHANGE L0OSS AND MTI MODULE. THE BEST

AND SECOND-BEST PERFORMANCES ON THE SN7, WUSU, AND TSCD

DATASETS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

Change detection Segmentation

Bi-temporal
(F1 /IoU / OA)

Continuous
(F1 /IoU / OA)

(F1 /IoU / OA)

0.490 / 0.324 / 98.8
0.511/0.343 / 98.9
0.523 /0.354 / 98.8
0.525 /0.356 / 98.9
0.549 / 0.378 / 98.9
0.547 / 0.377 /1 99.0
0.537 / 0.367 / 98.8
0.551/0.381 /99.0

0.314 /0.186 / 99.6
0.344 /7 0.208 / 99.6
0.333 /0.200 / 99.6
0.377 /1 0.232 / 99.6
0.351/0.213 /99.7
0.402 / 0.252 7 99.6
0.397 7 0.248 / 99.7
0.414 / 0.261 7 99.7

0.549 /0.379 / 93.6
0.576 / 0.404 / 94.2
0.556 / 0.386 / 93.5
0.572 / 0.401 / 93.8
0.571 / 0.400 / 94.1
0.588 /0.417 / 94.4
0.593/0.422 /1 94.3
0.596 / 0.424 / 94.3

0.342 7 0.208 / 96.8
0.392 /0.245 / 96.6
0.423 7 0.268 / 96.7
0.440 / 0.282 / 96.9
0.426 7/ 0.271 / 96.8
0.441/0.283 / 96.9
0.420 /7 0.266 / 96.6
0.440 / 0.282 / 97.0

0.364 /0.223 / 97.9
0.339/0.205/ 97.6
0.391/0.243 / 98.2
0.390 7 0.243 / 98.2
0.394/0.245/ 98.3
0.387 /0.240 / 98.2
0.391/0.243 7/ 98.3
0.389 /0.242 / 98.3

0.583/0.412 / 86.2
0.649 / 0.480 / 88.4
0.613/0.443 / 87.1
0.658 / 0.491 / 88.4
0.615/0.444 / 87.3
0.658 / 0.490 / 88.5
0.660 / 0.493 / 88.8
0.663 / 0.496 / 88.9

Dataset TFR module Sequence model MTI module
X - X
X - v
v Recurrent (RNN) X
o~ v Recurrent (RNN) v
% v Recurrent (LSTM) X
v Recurrent (LSTM) v
v Self-attention X
v Self-attention v
X - X
X - v
v Recurrent (RNN) X
a v Recurrent (RNN) v
§ v Recurrent (LSTM) X
v Recurrent (LSTM) v
v Self-attention X
v Self-attention v
X - X
6 v Recurrent (RNN) X
% v Recurrent (LSTM) X
v Self-attention X

0.278 / 0.163 / 89.7
0.445/0.293 / 91.8
0.561 /0.391 / 93.8
0.543 /0.373 /1 93.7

0.295 /7 0.173 / 93.7
0.497 /1 0.334 / 95.5
0.565 7/ 0.394 / 96.6
0.573 7/ 0.402 / 96.6

F1 score and IoU, respectively, compared to the degenerate
setting on the SN7 dataset. On the WUSU dataset, the cor-
responding performance improvements are 57.5% and 73.6%
for the F'1 score and IoU, respectively (cyclic loss scenario).
Table VII also shows that introducing change information
beyond adjacent edges results in further change detection
performance gains, albeit to a much lesser extent. For example,

compared to only using adjacent change information, dense
information improved the F'1 score and IoU values by 2.0%
and 3.0%, respectively. In the context of the WUSU dataset,
additional change information (i.e., adjacent versus cyclic)
improved the F1 score and IoU values by 1.6% and 2.2%,
respectively. Therefore, the ablation study demonstrates that
the proposed MTI module effectively integrates the outputs
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TABLE VII

ABLATION RESULTS FOR THE MTI MODULE ON THE SN7 AND WUSU DATASETS. THE EDGE SETTINGS CYCLIC AND DENSE ARE EQUIVALENT FOR
THE WUSU DATASET SINCE ITS TIME SERIES CONSISTS OF THREE IMAGES. THE BEST AND SECOND-BEST PERFORMANCES ARE HIGHLIGHTED

IN RED AND BLUE, RESPECTIVELY

Change detection

Continuous
(F1 / IoU / OA)

Segmentation

(F1 /IoU / OA)

0.397 /0.248 /1 99.7
0.173 / 0.095 / 98.8
0.410/0.258 /1 99.7
0.412 7/ 0.260 / 99.7
0.414/0.261 /1 99.7

0.593 /0.422 / 94.3
0.593 7 0.422 / 94.3
0.595 /7 0.424 / 94.4
0.596 / 0.424 / 94.3
0.596 / 0.424 / 94.3

Dataset MTI module Edge setting Bi-temporal
(F1 /IoU / OA)
X - 0.537 / 0.367 / 98.8
- v degenerate 0.373/0.229 / 97.8
Z v adjacent 0.540 / 0.370 / 99.0
e v cyclic 0.547 /1 0.377 1 99.0
v dense 0.551 /7 0.381 7/ 99.0
X - 0.420 / 0.266 / 96.6
c:/)a v degenerate 0.275 7 0.159 / 93.8
; v adjacent 0.433 /0.276 / 97.0
v cyclic 0.440 / 0.282 /97.0

0.391/0.243 / 98.3
0.203 /0.113 / 95.5
0.389 /0.242 / 98.3
0.389/0.242 / 98.3

0.660 / 0.493 / 88.8
0.660 / 0.493 / 88.8
0.663 / 0.497 / 88.9
0.663 / 0.496 / 88.9

of the segmentation and change detection tasks at inference
time.

4) Time Series Length: To investigate the effect of SITS
length on performance, we tested the proposed network with
different settings for 7 on SN7. In addition, we compared
self-attention and LSTM for sequence modeling in the TFR
module. The maximum number of edges (i.e., dense edge
setting) was used across all T settings in the change loss
[see (6)]. The segmentation loss was enabled, whereas the
MTTI module was disabled. It should be noted that for lengths
T = 3 and T = 2, the edge settings dense are equiva-
lent to cyclic and adjacent, respectively. Fig. 10 shows the
results of this experiment for bi-temporal change detection
[see Fig. 10(a)], continuous change detection [see Fig. 10(b)],
and segmentation [see Fig. 10(c)]. The bi-temporal results
show that adding intermediate images improves change detec-
tion performance. However, performance saturates at 7 =
5 and even decreases for the recurrent sequence model at
T = 6. Segmentation performance generally also increases
with time series length until 7 = 5. In contrast, the con-
tinuous change detection task increases in difficulty with time
series length, since the temporal gap between adjacent image
pairs in the time series decreases. Consequently, continuous
change detection performance tends to decrease at longer time
series lengths. Regarding the sequence model comparison,
our network achieved better bi-temporal change detection
performance using the recurrent model in the TFR module,
except for the longest time series length (T = 6). However,
performance differences are below 5.5% across all-time series
lengths. On the other hand, self-attention outperformed the
recurrent model for the continuous change detection and
segmentation tasks. The largest performance gains in both
cases were observed for the longest time series lengths (i.e.,
T=5and T =6).

VI. DISCUSSION

Our results highlight the challenging nature of continu-
ously detecting urban changes from high-resolution SITS.
Indeed, most change detection studies focus on bi-temporal
urban change detection from VHR imagery. The suite of
methods considered SOTA for bi-temporal change detection

typically employ the self-attention mechanism popularized
by the transformer architecture to capture long-range con-
textual information in VHR imagery [17], [18], [19], [20].
On popular benchmark datasets such as LEVIR-CD [18]
and WHU-CD [42], these SOTA methods have achieved
remarkable results with F'1 scores exceeding 0.9. Although
transformer-based methods generally outperformed their bi-
temporal ConvNet-based counterparts in our experiments, they
rarely achieved F1 scores higher than 0.4 on the continuous
urban change detection task (see Tables II-IV). Therefore,
our results indicate that bi-temporal change detection meth-
ods generally face limitations for continuous urban change
detection.

In comparison to the SOTA methods for bi-temporal change
detection, our method leverages the self-attention mechanism
to model multitemporal information in SITS. We showed
that the proposed TFR module contributes to the network’s
representation learning capability, resulting in improved con-
tinuous change detection performance (see Table VI). We also
compared our method against multitemporal methods using
self-attention or recurrent models for temporal modeling.
However, these methods collapse the temporal dimension of
the SITS, limiting them to the detection between the first and
last image. Although multitemporal methods generally outper-
formed bi-temporal methods on this task, they fell short of the
proposed method (see Tables II-1V). Overall, we deem self-
attention an effective mechanism for the temporal modeling
of SITS. Despite that, our ablation results show that recurrent
sequence models such as LSTMs could be considered as
an alternative, especially at shorter time series lengths (see
Table VI).

Our work also highlights the need for effective integra-
tion approaches in multitask learning schemes. Specifically,
although multitask learning is commonly applied for change
detection [28], [36], existing multitask studies do not address
the integration of the semantic segmentation and change detec-
tion outputs. To fill this research gap, we proposed the MTI
module that represents segmentation and change predictions
using Markov networks to find the optimal built-up area
state for each timestamp in a pixel time series. Our results
demonstrate that the proposed integration approach improves
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Fig. 10. Effect of time series length and sequence model in the TFR module
on network performance (without MTI module) for the SN7 dataset. Network
performance is evaluated in terms of (a) bi-temporal change detection,
(b) continuous change detection, and (c) segmentation. The maximum number
of edges was used for each time series length in the change loss. Values
represent the mean +1 standard deviation of 5 runs.

both tasks, namely, the change detection and building seg-
mentation task (see Table VII). Furthermore, we demonstrate
that the proposed approach benefits from integrating dense
change information, obtained from predicting changes between

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

all possible combinations of satellite image pairs in a time
series, compared to using only adjacent change information
(see Table VII).

Although we demonstrated the effectiveness of our method
across three datasets, performances vary significantly across
them. Overall, the lowest change detection performances
were obtained for the WUSU dataset. The visualizations of
the Gaofen-2 SITS highlight several challenging aspects for
change detection in this dataset (see Figs. 8 and 9). In par-
ticular, the images were acquired under different atmospheric
conditions, and they have large off-nadir angles and contain
shadows. In comparison, these artifacts are not apparent in
the SN7 images (see Figs. 6 and 7), reducing the complexity
of the change detection task. However, building segmentation
performance on the SN7 dataset is lower than on the WUSU
dataset. We attribute this to the fact that individual buildings
are more difficult to distinguish in PlanetScope imagery due
to its lower spatial resolution (see Table I). The TSCD dataset
stands out for its strong continuous urban change detection
performances, while performances on the bi-temporal task are
lower, especially for bi-temporal change detection methods.
Here, it should be considered that the dataset only provides
labels between adjacent images. Therefore, we had to derive
change labels for nonadjacent images (see Section IV-A),
which could affect the reference data quality.

Despite the improvements our method achieves over exist-
ing methods, we also identified several limitations related to
our work. First of all, our integration approach relies on mean-
ingful potentials extracted from the multitask network outputs.
However, the outputs of deep networks may not be well-
calibrated [61]. Furthermore, we assumed that our networks
do not encounter out-of-distribution data during deployment
due to the within-scene splits. In practice, however, urban
mapping and change detection methods may encounter domain
shifts when deployed to unseen geographic areas [39], [49].
Therefore, future work will test the susceptibility of our MTI
approach to out-of-distribution data. For example, the effec-
tiveness of the MTI module could be improved by explicitly
calibrating the segmentation and change outputs of the model,
using calibration techniques such as temperature scaling [61].

Another limitation of the proposed method is that it requires
continuous building labels for training. Most popular urban
change detection datasets are bi-temporal and feature VHR
imagery. On the other hand, few urban change detection
datasets featuring SITS and corresponding building labels
for each image are available. Therefore, weakly supervised
methods, using partial annotation or less accurate labeling,
should be investigated for continuous urban change detection
from SITS (e.g., [30]).

VII. CONCLUSION

This study introduces a continuous urban change detection
framework for optical SITS. The proposed method incorpo-
rates a transformer-based module to temporally refine feature
representations extracted from image time series using a
shared ConvNet. Unlike existing temporal modules in mul-
titemporal change detection methods, our module preserves
the temporal dimension, enabling the detection of continuous
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changes. In addition, we propose a novel MTI approach
based on pairwise Markov networks, effectively combining
building segmentation and dense urban change information.
We evaluated our method on three SITS change detection
datasets: SN7, the WUSU dataset, and the TSCD dataset.
The proposed method outperformed existing bi-temporal and
multitemporal change detection methods and segmentation
methods. In particular, our findings show the limitations of
bi-temporal methods in continuous change detection, as they
cannot fully exploit multitemporal information in SITS. While
multitemporal change detection methods overcome this limi-
tation, they remain constrained to detecting changes between
the first and last images in SITS. Our ablation study fur-
ther demonstrates the effectiveness of the TFR module in
modeling multitemporal information and the benefits of incor-
porating dense change information during training. Moreover,
it confirms that the MTI module successfully integrates seg-
mentation and change outputs, leading to improved accuracy
across both tasks. In summary, this research underscores the
potential of high-resolution SITS for continuous urban change
detection. Future work will explore weakly supervised and
self-supervised change detection methods for SITS to reduce
dependence on annotations.
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