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ABSTRACT Urinary Tract Infections (UTIs) are common medical diseases that occur from bacterial
infections which can impact any area of the urinary system. Detecting urine particles is crucial for diagnosing
UTIs and other renal abnormalities, as the presence of red blood cells (RBCs), white blood cells (WBCs),
casts, fungi, and bacteria in urine can indicate disorders such as hematuria, kidney stones, and urinary tract
malignancies. This study introduces an advanced deep learning method that utilizes ensemble of YOLOv9e
and KD-YOLOX-ViT models. YOLOv9e model is built upon the Generalized Efficient Layer Aggregation
Network (GELAN) and Programmable Gradient Information (PGI). The KD-YOLOX-ViT model integrates
knowledge distillation and Vision Transformer (ViT) modules within the YOLOX framework to improve
performance. This ensemble framework combines the strengths of YOLOv9e and KD-YOLOX-ViT models
to automate the detection and classification of seven distinct urine sediment particles, effectively addressing
challenges related to class imbalance, image resolution, and domain adaptation. The YOLOv9e model
exhibited exceptional performance, obtaining precision, recall, and mean average precision (mAP50) scores
of 88.5%, 88.1%, and 92.2%, respectively. The KD-YOLOX-ViT model also performed well, achieving
precision, recall, mAP50, and mAP50-95 scores of 86%, 88%, 86.7%, and 53.3%, respectively. By ensem-
bling YOLOv9e and KD-YOLOX-ViT using Weighted Box Fusion (WBF), the model achieved a final
mAP50 of 94.18%. The model’s adaptability was further validated through rigorous external validation on a
novel dataset, yielding in a mAPS50 of 94.64%. Comparative analysis with state-of-the-art methods confirms
the model’s real-time analytical capabilities. Moreover, the integration of eXplainable Al (XAI) enhances
interpretability, offering valuable insights for confident clinical diagnosis. This comprehensive approach
shows significant promise in advancing diagnostic accuracy and enabling earlier, real-time treatment on a
global scale.

INDEX TERMS Urine sediment detection, YOLOv9e, KD-YOLOX-ViT, external validation, ensembling
methods.

I. INTRODUCTION

Urinary Tract Infections (UTIs) and other renal abnormalities
are prevalent medical conditions that can have a substantial
influence on any section of the urinary system, such as the
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kidneys, ureters, bladder, and urethra. Urine tract infections
(UTIs) commonly happen when bacteria, usually from the
gastrointestinal system, enter the urine tract through the ure-
thra and reproduce, causing inflammation and irritation of
the tissues in the urinary tract [1]. The presence of germs in
the body leads to symptoms such as discomfort, a sensation
of burning during urination, frequent urine, and a strong
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need to urinate. Without prompt medical attention, the infec-
tion might progress to the kidneys, resulting in more severe
symptoms and possible consequences. Renal abnormalities,
such as the detection of red blood cells (RBC), white blood
cells (WBC), casts, fungus, and bacteria in urine, can serve
as indicators for a range of disorders including hematuria,
kidney stones, and urinary tract malignancies [2]. Both uri-
nary tract infections (UTIs) and other kidney abnormalities
have a substantial influence on worldwide health, resulting
in approximately 830,000 deaths and 18,467,000 disability-
adjusted life years each year. Obtaining a comprehensive
understanding of the underlying causes behind these disor-
ders is essential in order to create efficient diagnostic and
therapeutic approaches for managing and preventing these
infections and abnormalities [3].

The identification of renal abnormalities is dependent on
a combination of clinical evaluation, urine dipstick analysis,
urine culture, and thorough urinalysis. At first, healthcare
personnel assess lower urinary tract symptoms (LUTS) such
as dysuria, polyuria, hematuria, and pelvic pain [4]. Urine
dipstick testing is a quick and cost-efficient way to identify
infection-related compounds such as leukocytes, nitrites, and
blood [5]. In order to obtain a more conclusive diagnosis,
urine cultures are performed to identify the precise bacteria
responsible for the infection and establish the most suitable
antibiotic treatment. In addition, a thorough urinalysis, which
includes a microscopic examination, offers extensive infor-
mation about the presence of casts, crystals, epithelial cells,
red blood cells, white blood cells, and fungus [6]. This helps
in evaluating the severity and specific features of urinary tract
infections and other kidney disorders. RBCs in the urine can
be a sign of hematuria and bladder or urinary tract malig-
nancy, whereas the presence of crystals suggests the existence
of kidney or urinary tract stones. White blood cells (WBCs)
and epithelial cells are useful in the diagnosis of urinary tract
infections (UTIs), and the presence of epithelial cells in urine
may also suggest the presence of specific forms of cancer [7].

The existing diagnostic techniques for urinary tract infec-
tions (UTIs) and kidney abnormalities have numerous notable
constraints, particularly when used in point-of-care set-
tings [8]. Urine dipstick tests and clinical assessments
frequently lack the required sensitivity and specificity to
accurately detect urinary tract disorders. Urine sediment
analysis is an important technique for identifying kidney
problems, but it involves a laborious and time-consuming pro-
cess [9]. This approach includes centrifuging fresh urine sam-
ples and doing a microscopic examination by highly skilled
specialists [10]. The conventional approach usually requires
a time frame of 24 to 48 hours, which turns it inappropriate
for prompt diagnosis and fast clinical decision-making. Urine
microscopy is limited to well-equipped laboratories due to the
need for trained workers and specialized equipment, making
it unavailable in many primary care and urgent care settings.
Moreover, the process of manually examining urine sediment
is susceptible to human variability, subjective analysis, and
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reliance on the operator, especially in laboratories that handle
a large number of samples. The limitations emphasize the
immediate requirement for more effective, automated, and
easily available diagnostic techniques to enhance the iden-
tification and treatment of kidney disorders [11].

Recent research has utilized deep learning (DL) [12], [13],
[14], [15], [16] approaches to improve both the accuracy and
effectiveness of automated urine sediment analysis. These
sophisticated models have shown major potential in identi-
fying and categorizing urine particles, simplifying diagnostic
procedures in clinical environments. Nevertheless, despite
these advances, numerous limitations remain, signifying a
demand for additional investigation. Current models often
struggle with accurately distinguishing particle subtypes,
leading to potential diagnostic inaccuracies [11], [17]. Addi-
tionally, the reliance on limited datasets raises concerns about
the generalizability of these models across diverse clinical
scenarios. While some methods achieve high accuracy, they
frequently lack thorough testing across varied datasets, lim-
iting their real-world applicability. This research seeks to
address these challenges by developing a more robust and
generalizable approach to urine sediment detection. The main
contributions of this study are stated below:

1. The YOLOvV9e and KD-YOLOX-VIiT models were
successfully utilized for the precise detection and clas-
sification of urine sediment particles, demonstrating
their individual strengths and suitability for medical
image analysis. This study evaluates their accuracy and
highlights their potential applicability in the domain of
automated urine sediment analysis.

2. Additional dataset has been used for extensive exter-
nal validation, enhancing the validity of the results
and addressing issues regarding the generalizability
of existing approaches. The model’s constant perfor-
mance in multiple datasets demonstrates its ability to
adapt in a wide range of clinical settings.

3. An ensemble framework combining YOLOv9e and
KD-YOLOX-ViT was proposed, utilizing Weighted
Box Fusion (WBF) to aggregate predictions from both
models. This integration of complementary architec-
tures led to enhanced detection accuracy and robust-
ness, significantly improving the overall efficacy and
reliability of urine sediment analysis. This approach
marks a notable advancement in achieving higher pre-
cision in this domain.

The article is divided into five sections. Section I provides
a brief explanation of the study’s motivation, as well as the
challenges involved in detecting urine sediment. Section II
will discuss similar works and their contributions and limi-
tations. In Section III, we provide a conceptual framework
that serves as the foundation of the proposed methodology.
The results of this research and the analysis of its constraints
and potential future developments are concisely presented in
Section IV. Section V includes conclusion.
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Il. RELATED WORKS

The incorporation of deep learning [12], [13], [17], [18],
[19] models in medical diagnostics has greatly progressed the
field of automated urine sediment analysis. These models are
increasingly used to address the limits of manual microscopy,
providing improved accuracy, speed, and objectivity [20],
[21], [22], [23], [24]. This literature review examines the
present condition of deep learning applications in urine sed-
iment detection, with a specific emphasis on the progress
made, difficulties observed and promising possibilities for
future investigation.

Lyu et al. [17] presented YUS-Net, an innovative deep
learning model designed to automatically detect urine sedi-
ment particles using the YOLOX framework. This approach
combines attention processes and a tailored data augmenta-
tion strategy to improve the process of extracting features
from microscopic urine photos. YUS-Net effectively tack-
les the issue of class imbalance by utilizing Varifocal loss,
resulting in a mean average precision (mAP) of 96.07%
on the USE dataset. This study emphasizes the effective-
ness of the approach in identifying difficult particle types,
such as casts and epithelial cells. Nevertheless, YUS-Net
has many shortcomings such as its incapability to differen-
tiate between different particle subtypes and its dependence
on a single dataset, which gives rise to questions over its
applicability to other scenarios. The research conducted by
Suhail and Brindha [19] assessed the effectiveness of an
identification system based on EGA-YOLOvVS. Among the
many versions of YOLOVS, it was discovered that YOLOvVS5I
had the greatest mean average precision (mAP) of 85.8%.
It particularly excelled in accurately identifying erythrocytes
and casts. This study also emphasizes the superior speed and
accuracy of YOLOvVS models in comparison to conventional
CNN-based approaches. Nevertheless, the model’s depen-
dence on a restricted dataset and its struggle to differentiate
between subclasses highlight the necessity for larger datasets
and more varied testing conditions in order to enhance the
accuracy of detection and its capacity to apply to differ-
ent scenarios. Liang et al. [11] improved urine sediment
detection by utilizing a DenseNet-enhanced Feature Pyramid
Network (DFPN), resulting in notable contributions. Their
study was centered around tackling problems such as class
ambiguity and cell adhesion in USE images. By including
attention mechanisms and fine-tuning on the COCO dataset,
they achieved a mean average precision (mAP) of 86.9%.
This approach notably enhanced the precision of erythro-
cyte detectio. Although DFPN’s capability to extract detailed
characteristics is remarkable, its performance may differ
depending on the diversity of the dataset. This indicates that
additional validation on diverse datasets is required to verify
the reliability of DFPN in clinical applications.

In spite of the promising progress, there are still some
obstacles that need to be addressed. The research conducted
by Avci et al. [16] demonstrates the constraints associated
with depending on artificial datasets to train deep learning
models. Their incorporation of super-resolution techniques
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into Faster R-CNN yielded impressive classification accu-
racies. However, the absence of real-world data during the
training phase raises doubts about the model’s suitability
for various clinical contexts. Li et al.’s [15] implementation
of RetinaNet with ResNet and FPN yielded an accuracy of
88.65%. However, they observed difficulties related to mis-
classification and the presence of overlapping particles. The
performance of the model may fluctuate depending on the
quality of the samples, the techniques used for preparation,
and the presence of artifacts. This highlights the importance
of doing more rigorous validation in various clinical contexts.
Chan et al. [14] tackled the problem of limited annotated data
in medical imaging by proposing a few-shot object recogni-
tion method specifically designed for urine sediment analysis.
Their method achieved a notable enhancement in detection
accuracy for new classes by incorporating Background Sup-
pression Attention (BSA) and Feature Space Fine-tuning
(FSF) modules into a Faster R-CNN framework. Neverthe-
less, the study’s dependence on few-shot learning approaches
emphasizes the persistent difficulty of limited data availabil-
ity in the field of medical imaging. Although this technique
shows potential for enhancing diagnostic accuracy, additional
study is required to guarantee that these models can be suc-
cessfully used in a wider variety of clinical settings.

Despite the fact that deep learning models have demon-
strated significant potential in enhancing automated urine
sediment analysis, there are still numerous existing con-
straints. The use of limited and occasionally artificial datasets
gives rise to questions over the ability of these models to be
used effectively and consistently in a wide range of clinical
situations. Moreover, the present models have a substantial
hurdle in failing to differentiate between different types of
particles and effectively manage complicated scenarios where
particles overlap. Further studies should prioritize the expan-
sion of datasets, development of model generalization, and
incorporation of more advanced post-processing approaches
that improve the accuracy and feasibility of these models in
real-world hospital environments.

Ill. EXPERIMENTAL METHODOLOGY

This study presents a framework for multiclass object detec-
tion of urine sediment particles using the Urine Sediment
Dataset (USE) and an independent clinical microscopy
dataset for external validation. After preprocessing, including
annotation conversion and bounding box extraction, several
YOLO-based models were trained and evaluated. An ensem-
ble approach combining YOLOv9e and KD-YOLOX-ViT
was used, with predictions aggregated via Weighted Box
Fusion (WBF). EigenCAM was applied for model inter-
pretability. The framework demonstrated high performance
and generalizability, highlighting its potential for clinical
diagnostic applications.

A. DATASET DESCRIPTION
The Urine Sediment Dataset (USE) [11], [13], [25] utilized
in this study is derived from a publicly accessible source,
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TABLE 1. Dataset details.

The Urine Sediment Dataset (USE)

Class Instances
Erythrocytes (eryth) 21,815
Leukocytes (leuko) 6,169

Epithelial cells (epith) 6,175
Crystals (cryst) 1,644
Casts 3,663
Mycetes 2,083
Epithelial nuclei (epithn) 687
A Clinical Microscopy Dataset
Class Instances
Rod 1697
RBC/WBC 1056
Yeast 41
Miscellaneous 550
Single EPC 182
Small EPC Sheet 26
Large EPC Sheet 10
[ cryst
eryth leuko [ Spath
0\ |
(A) (8) (€) (1
o’ cast
/ mycete
epithn B : .
— =Y -
Al !
"
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FIGURE 1. Urine sediment particles from USE dataset.

specifically curated for the detection of various components
in urine sediment. This dataset is the largest urine sediment
dataset available online, making it a valuable resource for
research and development in the field. The USE dataset
comprises a total of 5,376 images categorized into seven dis-
tinct cell types: casts, crystals (cryst), epithelial cells (epith),
epithelial nuclei (epithn), erythrocytes (eryth), leukocytes
(leuko), and mycetes. Notably, all types of casts are grouped
into a single category. The dataset is divided into three subsets
at random: test, validation, and training sets, in order to
provide a thorough assessment. The training set constitutes
79% of the total images, amounting to 4,256 images. The test
set consists of 16% of the images, or 852 images, whereas the
validation set consists of 5% of the images, or 268 images.
The dataset annotations are in Pascal VOC format. The dis-
tribution of instances per cell category within the dataset is
presented at Table 1. Figure 1 demonstrates various particles
from USE dataset.

A clinical microscopy dataset [26] to develop a deep learn-
ing diagnostic test for urinary tract infection: Liou et al.
have presented a dataset that includes 300 images and 3,562
manually annotated urinary cells. These cells are catego-
rized into seven clinically significant classes. This dataset
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was enriched by the collection of unstained and untreated
urine samples from symptomatic UTI patients at a specialist
LUTS outpatient clinic in central London between April and
August 2022. Each image was annotated using ilastik for
binary semantic segmentation. The dataset is divided into
three primary folders (img, bin_mask, mult_mask), each of
which contains 300 files. It offers an exhaustive resource for
advanced machine learning applications in UTI diagnosis,
as it is the most recent dataset publicly available. This dataset
has been employed in our experiment to facilitate external
validation. The distribution of instances per cell category
within the dataset is presented at Table 1.

B. OVERVIEW OF THE PROPOSED FRAMEWORK

To guarantee that the results of the detection of particles in
urine sediment are both accurate and generalizable, several
significant phases are incorporated into the proposed frame-
work. Figure 2 demonstrates the summary of the proposed
framework. In order to improve the quality of the training
data, the dataset is initially preprocessed. Next, a variety
of cutting-edge YOLO (You Only Look Once) models are
implemented. These models are chosen for their balance of
speed and accuracy in object detection tasks. In order to
enhance the detection performance, an ensemble approach
is implemented. By combining the predictions of multiple
YOLO models, the variance and bias inherent in individual
models are reduced, leading to more robust and accurate
results. Diverse features and learning patterns that may be
overlooked by a single model are captured by this ensemble
method. In order to illustrate the models’ generalizability
across various datasets, external validation is implemented.
The trained models’ effectiveness in real-world scenarios is
evaluated by testing them on an independent dataset. Finally,
EigenCAM (Class Activation Mapping) is employed to pro-
vide interpretability to the model’s predictions. EigenCAM
identifies and emphasizes the specific areas in the input
images that have a major influence on the decision-making
process of the model.

C. DATASET PREPROCESSING

Some crucial steps were implemented during the data prepro-
cessing phase to prepare two distinct datasets for multiclass
object detection tasks. At first, the annotations of the Urine
Sediment Dataset (USE), which were initially formatted in
Pascal VOC, were converted to YOLO format in order to
comply with the specifications of the selected object detec-
tion models. The bounding box coordinates and class labels
were mapped from the Pascal VOC XML format to YOLO
format text files during this conversion procedure. Each anno-
tation was methodically modified to incorporate normalized
coordinates of the bounding boxes in regard to the image
dimensions and class indices which were encoded in a spe-
cific manner. Simultaneously, an alternate procedure was
implemented for the clinical microscopy dataset introduced
by Liou et al. [26], which provided binary and multiclass
segmentation masks instead of traditional bounding boxes.
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External Validation on

Ensemble Model
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Saved All Initial

Fine Tuning Best

Extracting
Bounding Box

Dataset” Model

Predictions

Ensembling

FIGURE 2. Summary of the proposed framework.

To facilitate multiclass object detection, this necessitated
explicitly deriving bounding boxes from the segmentation
masks. Furthermore, in order to guarantee optimal perfor-
mance and consistency across both datasets, all images were
uniformly resized to 640 x 640 pixels. The preprocess-
ing methods were crucial for preparing the datasets for
future training and evaluation, ensuring consistency with the
selected methodology and objectives of the study.

In addition to the above preprocessing steps, several image
enhancement techniques were explored to improve the qual-
ity of input data and potentially boost detection accuracy.
Histogram Equalization was applied to enhance the global
contrast of images by distributing pixel intensity values more
uniformly. Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE), a refined version of Histogram Equalization,
was also tested to improve local contrast while limiting noise
amplification. Similarly, Gamma Correction was employed to
adjust image brightness and enhance features in both darker
and lighter regions of the images. Although these techniques
were implemented and their effects evaluated, they were
not included in the final model due to a lack of significant
improvement in performance. However, their inclusion in the
preprocessing pipeline during initial experimentation under-
scored a thorough and systematic approach to optimizing the
input data.

These preprocessing methods were essential for preparing
the datasets for training and evaluation. They ensured consis-
tency with the selected methodology, while the exploration
of additional enhancement techniques, despite their exclusion
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Performing Model and
External Validation

Resize Images
640%x640

A Clinical Microscopy
Dataset

Pre-processing

from the final model, reflected a comprehensive effort to
refine the data and enhance model performance.

D. EXPERIMENTAL DETAILS

Following the preprocessing phase, several deep learning-
based object detection networks were trained on the
prepared USE dataset to develop robust models. The
networks utilized include YOLOvS5, YOLOvS, YOLOV9Y,
YOLOv10, RT-DETR and KD-YOLOX-ViT. By incorpo-
rating a mix of convolutional-based models like YOLO
and transformer-enhanced models like KD-YOLOX-ViT, this
experiment capitalizes on the strengths of both architectures.

1) YOLOV9

The YOLOvV9e [27] model was selected for detecting urine
sediments because of its advanced architecture along with
the cutting-edge functionalities that effectively handle usual
challenges in object detection using deep learning. YOLOV9,
is one of the most recent versions in the YOLO series, repre-
sents a substantial advancement in real-time object detection
through the incorporation of multiple key advancements that
enhance accuracy, and efficiency.

The YOLO series improved object detection by analyz-
ing full images in a single iteration through a convolutional
neural network (CNN). This has gone through a series of
improvements, progressing from YOLOv1 to YOLOvVS, with
each version including new ways to improve performance.
YOLOV9 advances upon this foundation by handling the
major issue of information bottleneck, which is common
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in deep neural networks as they become deeper and more
complex.

a: PROGRAMMABLE GRADIENT INFORMATION (PGl)
YOLOVY-e incorporates Programmable Gradient Informa-
tion (PGI) [28], an architecture specifically developed to
address the information loss that naturally occurs during the
propagation of data in deep neural networks. Architecture of
PGI is presented in Figure 3. PGI enables the generation of
dependable gradients by including an additional reversible
branch alongside the primary inference pathway. The pur-
pose of this auxiliary branch is to preserve the integrity of
important data features, so ensuring that gradients become
robust and informative during the whole training phase.
YOLOV9e successfully resolves the problem of unstable
gradients caused by information bottlenecks, especially in
deep networks. The reversible branch enhances the network’s
capacity to acquire accurate correlations between inputs and
targets, even in complicated settings, by providing additional
gradient paths. The PGI framework is smoothly incorporated
into the architecture of YOLOv9e, enabling the concurrent
optimization of gradient information, parameter learning, and
inference speed. By adopting this strategy, YOLOV9e is able
to achieve exceptional performance while minimizing the
computational expenses [29].

b: GENERALIZED EFFICIENT LAYER AGGREGATION
NETWORK (GELAN-E)

In addition to PGI, the Generalized Efficient Layer Aggre-
gation Network (GELAN-E) is an essential element of
YOLOv9e. GELAN-E integrates the concepts of Spatial
Pyramid Pooling (SPP) and Cross-Stage Partial Network
(CSPNet) [30], along with an improved version of the Effi-
cient Layer Aggregation Network (ELAN) [31]. GELAN-E
incorporates advanced layer aggregation techniques that have
been developed specifically to enhance feature extraction
while preserving computational efficiency. This is accom-
plished by dividing the input features into several paths
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that undergo individual processing before they are com-
bined again. The implementation of this dual-path tech-
nique not only accelerates the flow of gradients but also
improves the network’s capacity to capture and reuse fea-
tures across several layers. GELAN-E’s architecture incor-
porates spatial pooling operations that collect contextual
information at many scales, enabling YOLOv9-e to accu-
rately identify objects of different sizes and complexities.
GELAN-E combines the gradient efficiency of CSPNet with
the speed-focused design of ELAN, enabling YOLOv9e to
achieve a balance between depth and computational complex-
ity. This results in a model that is both remarkably accurate
and fast during inference [32]. Figure 4 represents the struc-
ture of GELAN.

(@) CSP-Net .. Split...

(b) ELAN

... Split .

... Split...

e

(ETTIT T

Partition !

(¢) GELAN

Module
(Optional)

FIGURE 4. Structure of generalized efficient layer aggregation network
(GELAN).

c: YOLOV9 ARCHITECTURE

The detailed architecture of YOLOV9 is shown in Figure 5.
Building on previous YOLO versions, especially YOLOV7,
YOLOV9 introduces several advancements to enhance feature
extraction, computational efficiency, and detection accu-
racy [33]. The Backbone is central to YOLOVY, designed
to balance extensive feature extraction and computational
performance. It processes high-resolution images effec-
tively without overloading resources. The Silence Block in
the Backbone transfers input images to subsequent mod-
ules unchanged, ensuring seamless processing. Convolution
Blocks, using 2D convolutions with Batch Normalization
and SiLU activation, extract crucial features while preserving
spatial dimensions through AutoPad. The RepNCSPELAN
Block combines multi-scale feature extraction with com-
putational efficiency, capturing intricate details critical for
high-precision applications. The ADown Block facilitates
down-sampling while preserving semantic and spatial details,
and the SPPELAN Block employs Spatial Pyramid Pooling
(SPP) for scale-invariant object representation.

The Neck refines features extracted by the Backbone for
accurate object detection. An Up-Sampling Layer aligns fea-
ture resolutions, and the Concatenation Layer combines high-
and low-resolution features for precise detection. Additional
RepNCSPELAN Blocks [34] in the Neck enhance feature
optimization for subsequent detection tasks.

The Auxiliary section improves training robustness and
gradient flow, critical for model convergence and accuracy.
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FIGURE 5. Architecture of YOLOV9.

CB-Linear Blocks generate feature maps at multiple scales,
capturing high-level semantic details, while the CB-Fuse
Block combines features from CB-Linear and ADown
Blocks. This fusion enhances feature richness, improving
interpretability and detection performance. The Auxiliary
section operates only during training but plays a pivotal role
in overall model optimization.

Finally, the Head of YOLOV9 executes the object detection
tasks by taking the refined features from the Neck and pro-
ducing the final predictions. The Detect Blocks in the Head
are tailored for detecting objects at different scales—small,
medium, and large—leveraging the refined features from the
Neck to output precise bounding box coordinates and class
predictions. This multi-scale approach ensures that the model
can accurately detect objects regardless of their size within
the image [35].

d: FINE-TUNING THE MODEL

The YOLOV9 model was fine-tuned to optimize its perfor-
mance for the multiclass object detection of urine sediment
types. The fine-tuning process involved selecting hyper-
parameters tailored to the dataset and task requirements.
Stochastic Gradient Descent (SGD) was employed as the
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optimizer with an initial learning rate of 0.01 and momentum
of 0.937 to ensure stable convergence.

The model was trained for 100 epochs with a batch size
of 8, incorporating image augmentations such as mosaic
(probability = 1.0), mixup (probability = 0.15), and hori-
zontal flipping (probability = 0.5) to enhance generalization.
Data augmentation parameters, including HSV (Hue = 0.015,
Saturation = 0.7, Value = 0.4) and image translation (£0.1),
were adjusted to simulate real-world variability in the dataset.

Bounding box regression and object detection thresholds
were fine-tuned with an IoU training threshold of 0.2 and
an anchor threshold of 5.0. Additionally, the warmup phase
spanned 3 epochs with an initial momentum of 0.8 and
a warmup learning rate of 0.1 for bias terms. These con-
figurations aimed to stabilize early training and optimize
convergence for effective multiclass detection.

This fine-tuning setup ensured the YOLOV9 model’s
robustness and adaptability for the given task, achieving a
balance between precision and computational efficiency.

e: LOSS FUNCTION
The YOLOV9 model uses a composite loss function that
integrates multiple components to optimize object detection
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performance. These components include the box loss, class
loss, and Distribution Focal Loss (DFL). Each component is
weighted with specific gain factors to balance the contribu-
tions of the individual losses during training.

Box Loss: The box loss is responsible for minimizing the
discrepancy between the predicted bounding box coordinates
and the ground truth annotations. This loss component is
crucial for ensuring accurate localization of objects within the
image. The box loss is weighted by a factor of 7.5, signifying
its strong contribution to the overall loss. A higher weight for
box loss emphasizes the importance of precise bounding box
predictions.

Class Loss: The classification loss ensures that the model
correctly classifies the objects within the predicted bounding
boxes. This loss is typically computed using Binary Cross-
Entropy (BCE) loss for each object class, where the model is
penalized for incorrect predictions and encouraged to assign
higher confidence to the correct class. The classification loss
is scaled by a factor of 0.5 to indicate its relative importance
in comparison to the box loss, balancing the model’s focus
between object localization and classification.

Distribution Focal Loss (DFL): The Distribution Focal
Loss (DFL) is introduced to refine bounding box regression
by improving localization accuracy, especially in challenging
cases where object boundaries may be difficult to predict.
This loss focuses on the distribution of offsets for the bound-
ing box, allowing the model to achieve better precision in
its localization. The DFL is weighted by a factor of 1.5,
emphasizing its role in fine-tuning bounding box predictions
and enhancing detection accuracy.

2) KD-YOLOX-VIT: KNOWLEDGE DISTILLATION IN YOLOX-VIT
The YOLOX-ViT model [36], which integrates knowl-
edge distillation (KD), represents a significant advancement
in object detection, especially for systems with limited
computational resources. By combining the YOLOX archi-
tecture with a Vision Transformer (ViT) layer [37], [38],
the model improves detection accuracy while maintaining
efficiency, especially in challenging environments such as
underwater scenes, where traditional convolutional neural
networks (CNNs) may not perform well. Knowledge distilla-
tion reduces the model’s size without sacrificing performance
by transferring knowledge from a larger teacher model
(YOLOX-L) to a smaller student model (YOLOX-Nano-
ViT). The distillation approach employs a combined loss
function, consisting of both hard loss (ground truth matching)
and soft loss (teacher-student output matching), ensuring that
the student model captures essential details from the teacher.

The YOLOX-ViT architecture includes a backbone for
feature extraction, a neck (FPN) for feature aggregation, and
a decoupled head for bounding box regression and classifica-
tion. The integration of the ViT layer between the backbone
and neck enhances the model’s ability to capture long-range
dependencies, which is an improvement over the original
YOLOX design. The knowledge distillation process unfolds
in two stages: the training of the YOLOX-L teacher model,
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followed by the training of the YOLOX-Nano-ViT student
model. During this phase, FPN outputs from both models
are compared, and the soft loss is minimized. Additionally,
by using an offline KD method, the training time is further
reduced as inference results from the teacher model are stored
and reused during the student’s training, eliminating the need
for real-time inference during each batch.

3) COMPARISON WITH OTHER STATE-OF-THE-ART MODELS
This study evaluates several state-of-the-art models to bench-
mark their efficiency in detecting and categorizing urine
sediment particles, providing a comparative context for the
proposed YOLOv9e model. RT-DETR-L [39], an advanced
real-time detection model, improves upon the Detec-
tion Transformer (DETR) framework. Its transformer-based
architecture effectively captures context and object rela-
tionships, making it well-suited for large-scale images and
high-speed applications. Incorporating multi-scale feature
extraction, dynamic head design, focal loss, and balanced
feature alignment, RT-DETR-L demonstrates resilience and
accuracy across diverse datasets and challenging scenarios.

The YOLOVS series balances efficiency and accuracy,
offering versions tailored to different computational con-
straints. YOLOvS5s, the most lightweight, prioritizes speed for
real-time applications at the expense of accuracy. YOLOvS5Sm
provides a middle ground, balancing speed and accuracy,
while YOLOvSx, the largest version, optimizes detection
for intricate or small objects. The series leverages CSP-
Darknet [40], for efficient feature extraction, PANet [41] for
effective feature propagation, and adaptive pooling [42], [43]
to enhance localization accuracy.

YOLOVS [44], developed by Ultralytics, represents a sig-
nificant advancement over YOLOvV3 and YOLOVS, excelling
in object detection, segmentation, and classification tasks.
It achieves improved mean Average Precision (mAP) with an
efficient architecture that reduces parameters while enhanc-
ing performance. Notable features include the C2f block for
enhanced feature representation, anchor-free object detec-
tion for reduced computational overhead, and upgraded 3 x
3 convolutions for efficiency. YOLOVS’s sophisticated loss
functions, such as CloU and DFL, improve precision, partic-
ularly for smaller objects. Augmentation techniques during
training further boost adaptability and accuracy.

E. EVALUATION MATRIX

Object detection models were evaluated using a range of per-
formance parameters, including precision, recall, and mean
Average Precision (mAP). These metrics are essential for
measuring the accuracy of the models in recognizing and
accurately locating objects in images. A standardized Inter-
section over Union (IoU) threshold of 0.5 to determine true
positive identifications was employed.

. TruePositive
Precision = — — (1)
True Positive + False Positive
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True Positive
Recall = — - 2
True Positive + False Negative

Precision is the percentage of positive predictions that are
correctly identified out of all positive predictions made by
the model. The proportion of correctly identified positive
predictions out of all actual positive instances in the dataset
is measured by recall.

Average Precision (AP) is calculated for a single class
by evaluating the precision-recall (PR) curve, which plots
precision against recall at different confidence thresholds.
The area under this PR curve represents the AP for that class.
Mathematically, the AP for a class ¢ can be expressed as:

1
AP, = / Precision (r) dr 3)
0

where, Precision (r) is the precision at recall , and the inte-
gral accumulates the precision across different recall levels.

Mean Average Precision (mAP) aggregates the AP values
across all classes to provide an overall performance measure.
If AP; denotes the Average Precision for class i and there are
N classes, mAP is computed as:

N
1
mAP = EAPI- )
=

mAP is frequently reported at a fixed IoU threshold, but
performance can vary significantly with different thresholds.
To address this, a more comprehensive evaluation involves
calculating mAP at multiple IoU thresholds. The mAP50-95
metric averages the mAP values computed at various thresh-
olds ranging from 0.5 to 0.95, with an increment of 0.05. This
provides a more nuanced view of model performance across
a spectrum of overlap criteria. Mathematically, mAP50-95 is
defined as:
0.95
mAPs—95 = -5 > mAP, ®)
t=0.5
where, mAP; represents the mean Average Precision calcu-
lated at IoU threshold t, and the summation averages these
values over the specified range. This approach ensures a
more robust evaluation by accounting for varying degrees of
object overlap and offers a balanced assessment of detection
accuracy.

F. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)

EigenCAM [45] has played a crucial role in improving
the interpretability of YOLOv9e model. It is essential for
understanding the decision-making processes of deep learn-
ing models as they become increasingly common. These
models, which are frequently intricate and undefined, neces-
sitate the use of tools to make the outcomes understandable.
EigenCAM, a technique developed by Muhammad et al.
in 2020, is quite beneficial in this particular application. The
method employs class activation maps (CAM) to visually
represent the main components of features acquired by con-
volutional layers. The outcome is the creation of heatmaps
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superimposed on the original images, which emphasize the
areas that have the greatest impact on the model’s predictions.
Unlike other systems like GradCAM [46], EigenCAM is
highly valued for its simplicity, as it does not necessitate any
re-training or changes. It conforms to human visual percep-
tion, enabling users to readily confirm whether the model’s
attention matches the human interpretation of significant
visual components.

G. ENSEMBLE-BASED DETECTION REFINEMENT

A further investigation was conducted to assess the possibil-
ities of merging predictions from the top-performing models
in order to improve the accuracy of detection. A close study of
the results from each model showed that their strengths often
worked well together, suggesting that using more than one
model together might produce better results. In order to do
this, two ensemble techniques were utilized with the objective
of enhancing the final predictions by utilizing the outputs of
both models. The goal was to combine the projected bounding
boxes from each model in a way that improves robustness
and accuracy, therefore creating a more dependable detection
method. Figure 6 illustrates the block diagram of the ensem-
bling method.

1) NON-MAXIMUM SUPPRESSION (NMS)

NMS is an approach used in object detection tasks to improve
final predictions by removing redundant and overlapping
bounding boxes. When used as an ensemble technique, NMS
helps merge predictions from multiple models, ensuring that
the final output consists of the most confident and non-
overlapping detections. The NMS process begins with a list
of detection boxes and their corresponding confidence scores.
The algorithm first identifies the bounding box with the high-
est confidence score, represented as m. This box is then added
to the final set of detections. Subsequently, the algorithm
evaluates the remaining bounding boxes, denoted as b;, and
eliminates any box that has an overlap with m exceeding a
predefined Intersection over Union (IoU) threshold, T;,. This
step is repeated iteratively, with the next highest-scoring box
being selected and the overlap check being conducted until
no boxes remain in the initial set [47].

{scorej, if loU (m, bj) < T,
scorej =

0, if IoU (m, bj) > T, ©

Here, score; is the confidence score of the bounding box b;. m
is the bounding box with the highest confidence score that has
been added to the final detection set. JoU (m, bj) measures
the overlap between m and b;. T, is the IoU threshold used
for suppressing overlapping boxes.

2) SOFT-NMS

Soft-NMS is an enhancement over traditional NMS that
aims to refine object detection by addressing the limitations
associated with the strict elimination of overlapping bound-
ing boxes. Unlike NMS, which discards overlapping boxes
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YOLOVYe Prediction

Input Image

KD-YOLOX-ViT
Prediction

NMS/ Soft-
NMS/ WBF _

BBOX
Reduction

Combined Prediction

FIGURE 6. Block diagram illustrating the methodology of the ensembling method using YOLOv9-e and KD-YOLOX-ViT.

based on a fixed threshold, Soft-NMS adjusts the confidence
scores of these boxes rather than completely removing them.
This approach helps preserve nearby objects that may be
close to each other, reducing the risk of false negatives.
The Soft-NMS algorithm operates by applying a decaying
function to the objectness scores of bounding boxes that over-
lap significantly with the highest-scoring box. Specifically,
it reduces the score of each overlapping box in proportion to
the degree of overlap, using a linear or Gaussian decay func-
tion. The effect of this adjustment is that boxes with minor
overlaps maintain higher confidence scores, while those with
substantial overlaps experience a more significant reduction
in their scores [48].

score;
loU(m, bj)*
scorej X exp (—M), if IoU (m bj) >Ts
= o
scorej, if loU (m, bj) < Ty

(N

Here, score; is the adjusted confidence score of the bounding
box b;. m is the bounding box with the highest confidence
score. loU (m, bj) measures the overlap between m and b;. T
is the Soft-NMS threshold for the overlap. ¢ is a parameter
that controls the extent of score reduction based on overlap.

3) WEIGHTED BOX FUSION (WBF)

To improve detection accuracy, Weighted Box Fusion (WBF)
was adopted as an ensemble strategy alongside tradi-
tional post-processing techniques such as Non-Maximum
Suppression (NMS) and Soft-NMS. In contrast to these
suppression-based methods that eliminate redundant detec-
tions, WBF aggregates multiple bounding boxes that
likely correspond to the same object by computing a
confidence-weighted average of their coordinates. This
fusion approach enables more comprehensive utilization of
the information provided by individual detectors, particularly
when predictions vary slightly in position and confidence.
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Initially, predicted bounding boxes are grouped into clus-
ters based on their Intersection over Union (IoU). Boxes with
an IoU exceeding a threshold 7}, (commonly set to 0.5) are
considered part of the same cluster. For each cluster, a fused
bounding box Byis computed using a weighted average:

n
Bf = ZW,‘ . B;
i=1

where B; represents the coordinates of the i bounding box in
the cluster, and w; is its associated weight. The weight w; is
determined based on the box’s confidence score s; and model
reliability score m;, and is defined as:

Si.m;
215 m
This formulation ensures that bounding boxes with higher
confidence and from more reliable models have greater
influence on the final fused output. By retaining and inte-
grating the spatial and score information of all contributing
detections, WBF yields more precise and stable localization
results, particularly in complex or cluttered scenes.

Wi =

H. EXPERIMENTAL SETUP

The experiments were carried out in a cloud-based comput-
ing environment specifically designed for high-performance
tasks. This setup was equipped with advanced GPUs that
facilitated efficient processing and analysis of large datasets.
The cloud infrastructure allowed for scalable and flex-
ible resource allocation, which was crucial for training
and evaluating our deep-learning model. Detailed techni-
cal specifications of this computing environment, including
the hardware and software configurations, are provided in
Table 2.

IV. RESULT AND ANALYSIS

A. INDIVIDUAL MODEL PERFORMANCE

Table 3 displays a performance analysis of different object
detection models using metrics such as precision, recall,
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TABLE 2. Experimental setup.

TABLE 4. Computational complexity analysis.

TABLE 3. Performance of different object detection models.

Model Precision Recall mAP50 mAP50-95
GELAN-C 0.867 0.879 0.913 0.617
GELAN-E 0.879 0.881 0.914 0.619
RT-DETR-L 0.649 0.682 0.7 0.41
YOLOv5s 0.768 0.796 0.824 0.485
YOLOvSm 0.798 0.808 0.85 0.513
YOLOv5x 0.806 0.818 0.852 0.52
YOLOvSI 0.789 0.843 0.852 0.526
YOLOv8x 0.806 0.825 0.858 0.523
YOLOvVY9e 0.885 0.881 0.922 0.623
YOLOv10x 0.829 0.86 0.887 0.581
KD_YQLOX_ 0.86 0.88 0.867 0.533
ViT

mAPS50 and mAP50-95. Out of all these models, RT-
DETR-L exhibits the lowest performance, with a mAP50
of 0.70 and a mAP50-95 of 0.410. On the other hand,
YOLOvV9e demonstrates superior performance, attaining a
mAP50 score of 0.922 and a mAP50-95 score of 0.623.
The mAP50 of YOLOv9e is approximately 31.4% more than
that of RT-DETR-L, while its mAP50-95 is 51.8% higher.
The YOLOv10x model, which is the second highest model,
achieves a mAP50 of 0.887 and a mAP50-95 of 0.581. Both
mAPS50 and mAP50-95 are 6.4% lower than the correspond-
ing values achieved by the YOLOv9e model. The YOLOv8x
model, ranked third in terms of performance, achieves a
mAP50 of 0.858 and a mAP50-95 of 0.523. The mAP50
of YOLOV8x is 7.2% lower than that of YOLOv9e, and its
mAP50-95 is 15.2% lower. However, it is worth noting that
YOLOV9e has a precision of 0.885 and arecall of 0.881 which
are also highest among all the models. KD-YOLOX-ViT
achieves a mAP50 of 0.866, which is slightly higher than
YOLOvV8x’s mAP50 of 0.858. Figure 7 illustrates the quali-
tative result across various models.

In addition to the performance analysis, it is important
to consider the computational complexity of the models
to understand their practicality in real-world applications.
Table 4 presents the computational complexity of the various
object detection models, including key metrics such as the
number of parameters, training time per epoch, inference time
per image, and GFLOPs (Giga Floating Point Operations).
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Component Specification #Params Tl:;l;:::: . Inference
13th Gen Intel® Core™ i7-13700KF @ 3.40 Model (07)) (seconds/ time GFLOPs
en Intel® Core™ i7- .
CPU GHz Per Epoch) (ms/Image)
GELAN-C 253 81 14.0 103.2
GPU NVIDIA RTX 4090 (24 GB VRAM) GELAN-E 67.3 182 14.9 1922
RT-DETR-L 32.8 128 53 108.0
RAM 64 GB DDRS YOLOv5s 9.1 16 1.3 23.8
Storage 2 TB SSD YOLOv5m 25.1 55 3 64.4
_ YOLOv5x 97.2 128 7.8 246.9
Operating 64-bit Microsoft Windows® 10 YOLOVSI 43.6 81 4.9 1654
system YOLOvS8x 68.2 130 74 258.2
Software Python 3.1, Torch 2.1.0, CUDA 11.8 YOLOv%e [ 694 197 20.2 244.9
environment YOLOv10x 31.7 128 6.6 171.1
Numpy, Pandas, Matplotlib, SciPy, OpenCYV, KD-
Other Python Pillow, Albumentations, Torchvision, scikit- YOLOX-ViT - 91 78 -
libraries
learn, Tensorboard

Among the models, YOLOV9e, with 69.4 million parameters,
is relatively large, which contributes to its increased training
time of 197 seconds per epoch. However, its performance
gains, such as a mAP50 score of 0.922, justify this additional
computational cost. In comparison, smaller models such as
YOLOVSs, which has only 9.1 million parameters, exhibit
faster training times (16 seconds per epoch) and lower infer-
ence times (1.3 ms/image), but with lower performance in
terms of mAP50 (0.824) and mAP50-95 (0.485). Despite the
relatively high computational cost, YOLOvV9e maintains a
competitive inference time of 20.2 ms/image, which is still
efficient compared to other high-performing models. When
considering GFLOPs, YOLOv9e requires 244.9 GFLOPs,
reflecting its high computational demand. Nonetheless, the
balance between computational complexity and detection
accuracy makes YOLOv9e a suitable model for scenarios that
prioritize both speed and performance.

Table 5 provides a detailed breakdown of the YOLOv9e
model’s performance across various categories of urine
sediment particles, highlighting precision, recall, mAP50,
and mAP50-95. Among the categories, erythrocytes (eryth)
achieved the highest precision at 0.955, reflecting the model’s
strongest accuracy in detecting this class. In contrast, casts
(cast) recorded the lowest precision at 0.793, indicating less
reliable detection for this category. When it comes to recall,
leukocytes (leuko) demonstrated the highest value at 0.943,
showcasing the model’s effectiveness in identifying this class
across the majority of instances. On the other hand, erythro-
cytes (eryth) had the lowest recall at 0.898, though this is
still relatively high. For mAP50, leukocytes (leuko) achieved
the highest score of 0.969, signifying exceptional overall
detection performance, while epithelial nucleus (epithn) had
the lowest mAP50 at 0.908, highlighting some challenges
in detecting this less frequent class. Figure 8 demonstrates
convergence curves of training process for YOLOvV9 model.

B. EXTERNAL VALIDATION

External validation is an essential process for evaluating the
robustness and generalizability of a deep learning model.
By evaluating the model’s performance on a separate dataset
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FIGURE 7. Individual model performance on sample test image. (A) Ground truth, (B) GELAN-E, (C) YOLOv5x, (D) YOLOv8X, (E) YOLOv9e,(F) YOLOV10x.

TABLE 5. Detailed analysis for each category of YOLOv9e.

that was not used for training, we can assess its ability to
make accurate predictions on new and unknown data. This is
crucial for assuring the reliability of the model across various
datasets and clinical environments. This procedure aids in
the identification of possible constraints or prejudices in the
model, guaranteeing that it is not excessively tailored to the
training data and can effectively apply to different datasets.
For external validation of the urine sediment detection
model, a clinical microscopy dataset was selected. This
dataset posed a new difficulty because the class labels dif-
fered from the labels of the training data obtained from the
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USE dataset. The training dataset included various classes,
which are cast, cryst (crystals), epith (epithelial cells), epithn

Category | Instances | Precision | Recall | mAP50 mA;;SO_ (epithelial nuclei), eryth (erythrocyte/RBC), leuko (leuko-
cast 545 0.793 0.771 0.843 0.568 cyte/WBC), and mycete. Conversely, the external validation
cryst 317 0.894 0.875 0.933 0.645 dataset had categories such as Rod, RBC/WBC, Yeast, Mis-
epith 972 0.851 0.903 0.926 0.656 cellaneous, Single EPC, Small EPC sheet, and Large EPC
epithn 77 0.869 0.909 0.908 0.525 h I d h . h 1d ith
eryth 3008 0.955 0.893 0.943 0632 sheet. In order t(.) synchronize the external dataset w.1t our
leuko 796 0.912 0.943 0.969 0.673 model, we reassigned the labels of the external validation

mycete 233 0.923 0.87 0.934 0.663 dataset. Specifically, we mapped RBC/WBC to eryth, and

merged Single EPC, Small EPC sheet, and Large EPC sheet
into epith. By reclassifying, we were able to utilize the trained
YOLOvV9e model on the external dataset. Nevertheless, the
first findings indicated a decline in performance in Table 6,
with an overall precision of 0.361, recall of 0.463, mAP50
of 0.375, and mAP50-95 of 0.21. The epith class demon-
strated a precision of 0.102, recall of 0.144, and mAP50 of
0.0662. On the other hand, the eryth class exhibited superior
performance, achieving a precision of 0.62, recall of 0.783,
and mAP50 of 0.683. The lower mAP can be attributed
to several factors. The epithelial cells in the USE training
dataset exhibited distinct characteristics compared to those
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FIGURE 8. Convergence curves for the training process of the YOLOv9 model.
in the clinical microscopy dataset, resulting in challenges in :_ABLE 6. PeffOfll_“?“Cle metrics f°fJ°L0V99 “f‘_odel beforehand after
accurately classifying them (Figure 9(A) and 9(B)). More- ine-tuning on clinical microscopy dataset in first approach.
over, the clinical microscopy dataset merged red blood cells — —
. . s e Initial Validation
(RBC) and white blood cells (WBC) into a unified category
(Figure 9(C) and 9(D)), while the training dataset considered Class | Imag | Instanc | Precisi | Reca | mAPS | mAPS
them as distinct categories, hence preventing precise detec- es es on I = 866 0-95
tion. Moreover, several occurrences identified as epith in the epith 300 570 0.102 | 0.144 B 0.0373
external dataset were mistakenly categorized as epithn which eryth
is demonstrated in Figure 9(E) and 9(F), most likely because (tbe/wb | 300 2590 0.62 | 0.783 | 0.683 | 0.384
the training dataset included the epithn class. )
To improve the model’s generalizability, the clinical Al 300 3160 0-361 | 0463 | 0.375 | 0.21
microscopy date'lset was utilized for flne-t.ur'nng. The; dataset After Fine-Tuning
was divided, with 20% allocated for training (60 images),
10% for validation (30 images), and 70% for testing (210 Class | 'mag | Instanc | Precisi | Reca | mAP5 | mAP5
images). Following fine-tuning, a significant improvement in . es es on L 0 0-95
N epith 210 412 0.87 [ 0913 | 0913 | 0.794
performance was observed. The test results post-tuning indi- eryth
cated an overall precision of 0.887, recall of 0.875, mAP50 (tbe/wb | 210 2111 0.904 | 0.837 | 0.885 | 0.556
of 0.899, and mAP50-95 of 0.675. The epith class achieved c)
All 210 2523 0.887 0.875 | 0.899 0.675

a precision of 0.87, recall of 0.913, mAP50 of 0.913, and
mAP50-95 of 0.794, while the eryth class demonstrated a
precision of 0.904, recall of 0.837, mAP50 of 0.885, and
mAP50-95 of 0.556.

The second approach to external validation involved adopt-
ing a distinct strategy to enhance the alignment between the
training USE dataset and the clinical microscopy dataset used
for validation. Table 7 demonstrates the result of second
approach. The first phase consisted of reorganizing the train-
ing dataset by merging the class labels to align with those
in the external dataset. To be more precise, the training set’s
classes epith (epithelial cells), eryth (erythrocytes/RBC), and
leuko (leukocytes/WBC) were combined into two classes:
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*Bold value indicates the best results.

epith and rbc/wbc. The merging was also performed to align
with the classes in the external dataset. In clinical microscopy
dataset, RBC/WBC was associated with eryth, and the sev-
eral epithelial cell classes (Single EPC, Small EPC sheet,
Large EPC sheet) were combined into a single epith class.
The external validation dataset then underwent preprocessing
employing Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) and Gamma correction techniques to improve
the quality of the images. The purpose of these preprocessing
procedures was to normalize the images and enhance the
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FIGURE 9. Difference between USE dataset and A Clinical Microscopy
dataset. (A) Epithelial cell from USE dataset, (B) Epithelial cell from A
Clinical Microscopy dataset, (C) RBC and WBC from USE dataset,

(D) RBC/WBC from A Clinical Microscopy dataset, (E) Epithelial cell
ground truth, (F) Model predicted epithelial cell as epithelial nuclei.

model’s capacity to generalize across diverse datasets. How-
ever, only images that had enough, and similar occurrences
were kept, resulting in a more polished dataset of 90 images.

When evaluated using this preprocessed dataset, the
YOLOv9e model attained a mean Average Precision
(mAP50) of 0.67, indicating a significant improvement of
78.67% compared to the initial approach (mAP50 = 0.375).
Although there was an improvement, the overall performance
was still below of the optimal level due to constant differ-
ences between the training and external validation datasets.
In order to overcome these restrictions, the model underwent
additional tuning. For this phase, the clinical microscopy
dataset was partitioned into three subsets: 20% (60 images)
for training, 10% (30 images) for validation, and 70% (210
images) for testing. In this instance, the fine-tuning pro-
cedure did not entail the removal of any images or the
employing of CLAHE and Gamma correction. The findings
following the fine-tuning process demonstrated a noteworthy
enhancement in the performance of the model, achieving
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an overall precision of 0.849, recall of 0.902, mAPS50 of
0.927, and mAP50-95 of 0.686. The epithelial class had a
precision of 0.797, recall of 0.939, mean average precision
at 50% overlap (mAP50) of 0.939, and mAP50-95 of 0.825.
On the other hand, the red blood cell/white blood cell class
attained a precision of 0.901, recall of 0.864, mAP50 of
0.915, and mAP50-95 of 0.548. The results were in line with
previous findings, suggesting that the model had effectively
adjusted to the external dataset without requiring any more
preprocessing.

TABLE 7. Performance metrics for YOLOv9e model before and after
fine-tuning on clinical microscopy dataset in second approach.

Initial Validation
Class Image | Instanc | Precisio | Reca | mAP5 | mAPS
S es n 11 0 0-95
epith 90 97 0.83 0454 | 0.663 0.485
rbcé wb | gg 1997 074 | 0718 | 0678 | 038
All 90 2094 0.785 0.586 0.67 0.432
After Fine-Tuning
Class Image | Instanc | Precisio | Reca | mAP5 | mAPS
s es n 11 0 0-95
epith 210 412 0.797 0.939 | 0.939 0.825
rbcé‘”b 210 2111 0901 | 0.864 | 0915 | 0.548
All 210 2523 0.849 0.902 | 0.927 0.686

*Bold value indicates the best results.

The thorough external validation approach indicates that
the YOLOv9e model for urine sediment analysis exhibits a
substantial level of robustness and generalizability to apply to
various environments. At first, the model’s effectiveness was
limited by differences in how classes were defined and the
features of the images in the training and external validation
datasets. However, by using systematic modifications such
as reclassifying training data, implementing sophisticated
preprocessing techniques, and fine-tuning the model, there
was a significant enhancement in predicting accuracy for both
epithelial and RBC/WBC categories. The model’s capacity to
adjust and improve its performance through these repetitive
improvements highlights its potential for stable utilization
in various clinical settings. The model’s performance con-
sistently aligns with the validation dataset, especially after
fine-tuning without any further preprocessing. This clearly
indicates that the YOLOv9e model is both robust and general-
ized for practical application in urine sediment identification.

It is important to note that the USE and clinical microscopy
datasets are inherently different, with variations in class def-
initions and image features. Fine-tuning was necessary to
adapt the model to the distinct characteristics of the exter-
nal dataset, and this process led to significant performance
enhancement. While this fine-tuning improves the model’s
ability to handle clinical data, it is crucial to clarify that
such fine-tuning does not fully confirm the model’s ability
to generalize to completely unseen datasets that were not part
of the training or fine-tuning process.
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FIGURE 10. YOLOvV9 EigenCAM visualization.

This validation highlights the model’s adaptability and its
promising potential for real-world applications, particularly
when fine-tuned for specific clinical environments. However,
to truly establish its generalization capability, further valida-
tion across additional, diverse, and previously unseen similar
datasets is necessary. These future studies will help compre-
hensively assess the model’s ability to function effectively
in real-world clinical practice beyond the datasets used for
training and fine-tuning.

C. INTERPRETABILITY

EigenCAM was utilized to improve the clarity of the deep
learning model’s predictions. The presented sample images
in Figure 10 illustrate the model’s particular focus on impor-
tant areas that are associated with sediments particles. The
EigenCAM outputs highlight the locations that have a sub-
stantial impact on the model’s detection process, while less
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important parts are shown by cooler shades. This inter-
pretability approach validates the efficiency of the model
in identifying significant features in the sediment samples,
while minimizing the influence of irrelevant areas. This fur-
ther strengthens the dependability of the detection outcomes.

D. RESULT OF ENSEMBLE METHOD

To determine their effect on object detection quality, the
performance of ensemble approaches integrating initial pre-
dictions of YOLOv8x, KD-YOLOX-ViT, and YOLOv9e
models was assessed. Table 8 and Figure 11 demonstrate
the overall performance of each model and their ensemble
results. Among the standalone models, YOLOvV8x achieved
a mAP50 of 85.8%, KD-YOLOX-ViT obtained a slightly
higher score of 86.7%, and YOLOv9e significantly outper-
formed both with a mAP50 of 92.2%, indicating its superior
object detection capability.
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FIGURE 11. Predictions on sample test images using different ensemble methods: (A) Input image, (B) Ground truth, (C) KD-YOLOX-ViT,(D) YOLOv9e,

(E) NMS, (F) WBF.

TABLE 8. Performance comparison of individual models and ensemble
methods.

Model Ensemble Method mAPS0 (%)
YOLOv8x 85.8
KD-YOLOX-ViT 86.7
YOLOv9e 92.2
YOLOVSx + KD- Soft-NMS 87.93
YOLOX-ViT NMS 88.33
WBF 91.1
YOLOv8x + Soft-NMS 92.33
YOLOv9e NMS 92.63
WBF 93.01
KD-YOLOX-ViT Soft-NMS 93.51
+YOLOV9e NMS 93.7
WBF 94.18

*Bold value indicates the best results.

When YOLOv8x was combined with KD-YOLOX-ViT,
a modest improvement was observed across all ensem-
ble techniques. Soft-NMS yielded a mAP50 of 87.93%,
while traditional NMS improved the performance to 88.33%.
The use of Weighted Box Fusion (WBF), which considers
both box coordinates and confidence scores for merging
predictions, further elevated the performance to 91.1%.
This demonstrates the benefit of combining complementary
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models even when their individual performance is lower.
The ensemble of YOLOv8x and YOLOv9e produced even
more notable results, with Soft-NMS achieving a mAP50
of 92.33% and NMS slightly surpassing that with 92.63%.
WBEF provided the best performance in this group at 93.01%,
confirming its effectiveness in refining overlapping predic-
tions. The highest detection performance was observed when
KD-YOLOX-ViT and YOLOv9e were combined. In this
setup, Soft-NMS achieved a mAP50 of 93.51%, NMS
reached 93.7%, and WBF produced the best result overall
with a mAP50 of 94.18%. This combination benefits from the
strengths of both models—KD-YOLOX-ViT’s transformer-
based architecture and YOLOv9e’s advanced backbone—
which together contribute to more robust and accurate object
detection.

Overall, the findings underscore the value of ensemble
learning in object detection tasks. Soft-NMS offers incre-
mental improvements by refining overlapping predictions,
while NMS provides stronger filtering through confident box
suppression. WBF consistently delivered the highest perfor-
mance across all model combinations by effectively merging
detections from multiple sources. Notably, the combination
of KD-YOLOX-ViT and YOLOV9e using WBF achieved
the highest mAP50 score of 94.18%, outperforming all
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other ensembles. This demonstrates the strength of integrat-
ing transformer-based architectures with advanced YOLO
backbones, further enhanced by the robust fusion capabil-
ities of WBF. These results highlight the effectiveness of
ensemble techniques in leveraging the diversity of individual
model predictions to boost detection accuracy and robust-
ness. The superior performance of the KD-YOLOX-ViT +
YOLOvV9e + WBF ensemble supports its recommendation
as the optimal strategy for improving object detection perfor-
mance in this study.

E. EXTARNAL VALIDATION USING ENSEMBLE METHOD
(YOLOV9E + KD-YOLOX-VIT + WBF)

To ensure consistency and fair comparison, the ensemble
model was evaluated using the same external validation strat-
egy as previously applied for YOLOv9e. Specifically, label
harmonization was performed by merging epith, eryth, and
leuko classes into two categories: epith and rbc/wbc, aligning
with the class definitions in the clinical microscopy dataset.
The dataset used for final testing consisted of 210 clinical
microscopy images without any additional preprocessing.

TABLE 9. External validation performance of ensemble method
(YOLOv9e + KD-YOLOX-ViT + WBF).

Class Images Instances mAP50
epith 210 412 0.9441
rbe/wbce 210 2111 0.9487
All 210 2523 0.9464

Table 9 presents the external validation result. The ensem-
ble model (YOLOv9e + KD-YOLOX-ViT with Weighted
Box Fusion) demonstrated superior performance. It achieved
a final mAP50 of 0.9464, showing improvement over the
individual models. Class-wise, the epith category attained
an average precision (AP) of 0.9441 with 412 ground
truth instances, while the rbc/wbc category reached an AP
of 0.9487 across 2111 instances. These results highlight
the ensemble model’s strong generalization capability and
robustness across heterogeneous clinical microscopy data.

F. ABLATION STUDY

The ablation study was performed in order to rigorously
assess the contribution of different components and method-
ologies to the overall performance of the urine sediment
detection model, offering insights into the influence of each
element on the accuracy of detection. This study is essential
for evaluating the efficacy of particular model configurations
and optimization methodologies.

1) IMPACT OF IMAGE ENHANCEMENT TECHNIQUE ON
MODEL PERFORMANCE

Table 10 provides information on a study that investigates
the impact of several image enhancement techniques on the
performance metrics of the YOLOv9e model. The evaluated
strategies include Histogram Equalization, CLAHE (Contrast
Limited Adaptive Histogram Equalization) combined with
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Gamma Correction, and a baseline scenario without any
enhancement. Applying Histogram Equalization yielded an
accuracy of 85.9% and a sensitivity of 87.0%, accompanied
by a mAP50 of 90.4% and a mAP50-95 of 59.1%. This
method, which enhances the difference in brightness levels
of an image by dispersing them, has significantly improved
the accuracy of detecting objects, especially in regions where
their characteristics were previously less clear. Nevertheless,
the comparatively lower mAP50-95 indicates that although
the model exhibited great performance at higher IoU thresh-
olds, it demonstrated poorer consistency across a wider
range of thresholds. On the other hand, when CLAHE and
Gamma Correction were used together, there were additional
enhancements, resulting in a precision of 86.8%, a recall
of 88.4%, and a mAP50 of 92.1%. The mAP50-95 also
improved to 60.0%. The combination of CLAHE, a technique
that improves image contrast by applying local histogram
equalization, and Gamma Correction, which adjusts image
brightness, resulted in a more balanced improvement. This
methodology enabled the model to continuously achieve high
performance across various detection thresholds.

TABLE 10. Performance comparison of YOLOv9e with different image
enhancement techniques.

Image Precisio Recal | mAP5 | mAP50
lﬁ‘}';i‘ﬁfﬁg‘lfe Model | " 00y | 1(%) | 0(%) | -95 %)
Histogram 859 | 870 | 904 | 59.1

Equalization
CLAHE and YOLOvV9
Gamma e 86.8 88.4 92.1 60.0
Correction
- 88.5 88.1 92.2 62.3

*Bold value indicates the best results.

However, the baseline model, without any improvements,
achieved the highest performance measures. It had a preci-
sion of 88.5%, a recall of 88.1%, a mAP50 of 92.2%, and
a mAP50-95 of 62.3%. This result indicates that although
improvement strategies can enhance some parts of model
performance, the default image quality and contrast may
already be optimal for YOLOV9e’s detection capabilities.
The better baseline scores indicate that the model’s structure
and training data are well-matched for the detection job,
reducing the necessity for extra improvement strategies in this
particular situation.

2) ENSEMBLE OF DIFFERENT MODELS

This study evaluated various combinations of top per-
forming models—YOLOv8x, YOLOv9e, YOLOvVI10x, and
KD-YOLOX-ViT—using ensemble methods such as Soft-
NMS, NMS, and WBE. As shown in Table 11, the results
indicate that WBF consistently outperformed the other two
ensemble strategies across most model combinations. For
example, the YOLOv10x and YOLOv9e ensemble achieved
93.3% with WBEF, surpassing the NMS and Soft-NMS
variants. Similarly, the YOLOv8x and KD-YOLOX-ViT
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combination reached 91.1% using WBF, compared to 87.93%
with Soft-NMS and 88.33% with NMS.

Among all combinations, the ensemble of KD-YOLOX-
ViT and YOLOv9e using WBF achieved the highest mAP50
of 94.18%, establishing it as the best-performing setup in this
study. According to these findings, WBF emerges as a supe-
rior ensemble technique due to its ability to merge bounding
boxes more effectively rather than suppressing them. More-
over, the complementary strengths of KD-YOLOX-ViT and
YOLOV9e in capturing fine-grained features and robust spa-
tial representations make this pairing particularly powerful.
Based on this comprehensive comparison, the KD-YOLOX-
ViT 4+ YOLOv9e ensemble with WBF is selected as the final
model for deployment.

TABLE 11. Performance comparison of different YOLO model
combinations using ensemble methods.

Model Combination Ensemble Method mAP50 (%)
YOLOVES + Soft-NMS 92.33
YOLOV9e NMS 92.63
WBF 93.01
VOLOVE Soft-NMS 90.24
YOLOv10x NMS 90.86
WBF 88.25
YOLOVSx + KD- Soft-NMS 87.93
YOLOX-ViT NMS 88.33
WBF 911
YOLOVION + Soft-NMS 92.3
YOLOWe NMS 92.53
WBF 93.3
KD-YOLOX-ViT + Soft-NMS 93.51
YOLOVYe NMS 93.7
WBF 94.18
YOLOv10x + KD- Soft-NMS 87.9
YOLOX-ViT NMS 88.33
WBF 89.30

*Bold value indicates the best results.

G. DISCUSSION, LIMITATIONS AND FUTURE WORK

The YOLOv9e and KD-YOLOX-ViT models were employed
for urine sediment detection, and a thorough external val-
idation process was carried out utilizing an entirely new
data set to assess the model’s adaptability for real-world
situations. This external validation process demonstrates the
model’s potential for real-world application, though it is
important to note that the validation was conducted on a
specific dataset that differs from those used during training.
While this indicates the model’s adaptability to some vari-
ations in data, further validation across a broader range of
previously unseen, similar real-world datasets is necessary
to fully assess its generalization capabilities and efficacy in
diverse clinical contexts. In order to improve the accuracy,
the YOLOvV9e model was combined with KD-YOLOX-ViT
using an ensemble technique. Weighted Box Fusion (WBF)
was utilized to refine the detection outcomes by merging
overlapping bounding boxes from different models based
on their confidence scores, rather than suppressing them.
This method preserves more useful information, leading
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to enhanced accuracy, reduced false positives, and over-all
more reliable detection results. The utilization of EigenCAM
yielded substantial benefits in regards to the interpretability
of the model. EigenCAM provided coherent insights into
the decision-making process by showing the specific regions
of the input images that influenced the model’s predictions.
This transparency allows for better understanding of how
the model interprets data, which can facilitate trust in the
model’s predictions and support diagnostic decisions in clin-
ical settings.

Notable performance metrics were achieved with the
YOLOvV9e model in this study. YOLOv9e had a mAP50
of 92.2%, indicating an impressive amount of accuracy in
identifying different sediment classes. The combination of
YOLOv9e and KD-YOLOX-ViT using WBF ensemble tech-
nique led to arise in the mAP50 to 94.18%. This improvement
highlights the efficacy of the ensemble method, which utilizes
the advantages of both models to attain higher performance.
The performance of the ensemble technique was evaluated
and compared with several state-of-the-art (SOTA) models
as indicated inTable 12. The findings reveal that this method
outperformed nearly all of the current models, with the excep-
tion of the YOLOX-based model (YUS-Net) [12], which
attained a higher mAP50 of 96.07%. While the YUS-Net
model, based on YOLOX, reports impressive mAP50 values
exceeding 99% for certain sediment classes such as “cast”,
“leukocyte”, and “mycete”’, and even 100% for ““cryst” and
“epithn”, these results seem unusually high and may not
fully represent the challenges faced in real-world clinical
microscopic sediment detection. Such near-perfect perfor-
mance is rarely observed in clinical microscopic sediment
detection tasks, where variability in image quality, lighting
conditions, and staining techniques often complicate model
accuracy. Furthermore, the YUS-Net study does not provide
sufficient evidence of the model’s generalization to diverse,
unseen clinical datasets. In contrast, our study presents a
more comprehensive evaluation that includes both the USE
dataset and an external clinical microscopy dataset. While our
reported mAP50 values (92.2% for YOLOv9e and 92.63%
for the ensemble model) are slightly lower, they reflect a more
realistic and generalized performance, especially when con-
sidering the model’s adaptability to different clinical settings.
The absence of external validation and the exceedingly high
results in the YUS-Net study raise concerns about the model’s
robustness and its practical applicability across a range of
real-world clinical environments.

Although the proposed approach did not achieve the max-
imum mAPS50, it still offers substantial improvements in
terms of its capacity to generalize and interpret results.
Unlike other SOTA models, which may lack extensive val-
idation and interpretability features, the YOLOv9e model
and YOLOv9e + KD-YOLOX-ViT + WBF was rigor-
ously validated with an external dataset and provided
interpretability through EigenCAM. This comprehensive
approach ensures that the proposed model’s predictions are
not only accurate but also transparent and reliable, making the
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TABLE 12. Performance comparison with the state-of-the-art methods.

Year Ref. Dataset Classes Method Performance
USE DenseNet with a Feature Pyramid Network . o
2018 [11] (5377 images) 7 classes (FPN) DFPN mAP: 86.9%
USE Faster R-CNN and Single Shot MultiBox . N
2018 [13] (5377 images) 7 classes Detector (SSD) mAP: 84.1%
Private Dataset Feature extractor: ResNet50 . o
2020 [15] (15360 images) 7 classes Detection: FPN mAP: 88.6%
USE . o
2023 [12], [17] (5377 images) 7 classes YOLOX-based model (YUS-Net) mAP: 96.07%
2023 [19] USE 7 classes YOLOVS with Evolutionary Genetic YOLOvVSI mAP: 85.8%
(5377 images) Algorithm (EGA) YOLOv5x mAP: 85.4%
USE
Proposed (5377 images), A 7 classes YOLOV9e + KD-YOLOX-ViT + WBF mAP: 94.18%
clinical microscopy
dataset (300 images)

proposed method robust and generalized for urine sediment
detection.

This study admits several constraints and limitations. The
biggest constraint is the slightly reduced accuracy in com-
parison to the top-performing model, however the accuracy
still stays competitive within the field. Furthermore, the size
of the external validation dataset employed in this study is
quite limited, which could affect the strength of the assertions
regarding generalizability. The use of the KD-YOLOX-ViT
model in the ensemble may contribute to performance vari-
ability, as it can affect the results based on the specific
properties of the datasets used. Future research should focus
on several key areas to build upon the findings of this study.
Increasing the size of the external validation dataset to include
a larger variety of samples would yield a more thorough eval-
uation of the generalizability of the model. A wider range of
models and the investigation of sophisticated ensemble tech-
niques may be included to improve performance even more.
Urine sediment detection systems could be made more trans-
parent and reliable by looking into alternate interpretability
strategies and combining them with other cutting-edge mod-
els. Furthermore, the utilization of the established techniques
on different clinical datasets and scenarios will provide an
evaluation of the flexibility and efficacy of the suggested
method in diverse contexts.

V. CONCLUSION

This study employed an advanced ensemble deep learning
framework, precisely the YOLOv9e + KD-YOLOX-ViT +
WBF model, to automate the identification and categorization
of urine sediment particles from microscopic images. Our
approach aims to meet the acute need for prompt and pre-
cise urinalysis, especially in situations where there is limited
availability of professional urology experts and equipment.
The ensemble model exhibited outstanding performance in
detecting various categories, indicating its ability to greatly
improve diagnostic accuracy and efficiency. Our research
shows that the model surpasses numerous cutting-edge tech-
niques, providing faster detection and higher classification
accuracy. The utilization of ensemble DL method in urine
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sediment research has great potential in optimizing clini-
cal workflows, facilitating early disease identification, and
ultimately enhancing therapeutic outcomes. The adoption of
such technologies in pediatric urology and broader urinalysis
could greatly reduce the workload of healthcare profession-
als, expedite diagnostic processes, and ensure timely medical
intervention. Continued refinement and application of these
techniques are essential for advancing diagnostic practices
and expanding access to high-quality care.
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