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Feature Fusion to Improve YOLOv8 for Segmenting
and Classifying Aerial Images of Tree Crowns

Ziyi Sun , Bing Xue , Fellow, IEEE, Mengjie Zhang , Fellow, IEEE, and Jan Schindler

Abstract—Instance segmentation techniques based on convo-
lutional neural networks (CNNs) is a vital tool for accurately
identifying and segmenting individual tree crowns, which plays an
essential role in environmental monitoring and forest management.
In varied rural landscapes, canopy imagery often includes a mix
of tiny, small, and medium tree objects scattered across diverse
terrains, from standalone trees to densely clustered forest stands.
This variability poses significant challenges to traditional instance
segmentation methods. To achieve this, we introduce a new method
named YOLOv8-FF, which incorporates a feature fusion (FF) tech-
nique based on the YOLOv8 architecture. We first design a network
architecture based on YOLOv8 that is optimized for the charac-
teristics of our dataset, enabling effective segmentation of densely
distributed tiny and small tree crowns. Moreover, YOLOv8-FF
incorporates a FF mechanism that includes both cross-scale and
same-scale fusion methods, enhancing the model’s ability to inte-
grate information across different layers and scales, thereby im-
proving segmentation performance. We incorporate Sparse Large
Kernel Network, whose large convolution kernel can effectively
extract key features, helping the model capture richer and deeper
global information in the image. Experimental results on the tree
crown dataset demonstrate that YOLOv8-FF outperforms several
recent peer competitors, making it a promising tool for accurate
and efficient tree crown instance segmentation.

Index Terms—Instance segmentation, remote sensing, tree
crowns, tree species, YOLOv8.

I. INTRODUCTION

TREE crown segmentation plays an essential role in environ-
mental monitoring and forest management [1], facilitating

the implementation of more precise and effective management
strategies that significantly contribute to conservation efforts
and sustainable resource utilization. As artificial intelligence
revolutionizes instance segmentation in remote sensing imagery,
the development and adaptation of new Artificial intelligence
(AI) techniques in these areas become increasingly vital for
environmental monitoring, particularly for forest management.
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AI has significantly impacted computer vision, enabling ma-
chines to perceive, understand, and interpret visual information,
revolutionizing various fields including image classification, ob-
ject detection, and image segmentation. Instance segmentation
in remote sensing imagery is also experiencing rapid advance-
ments thanks to the emergence of artificial intelligence, partic-
ularly deep learning techniques. This task plays a crucial role
across various domains such as traffic monitoring [2], marine
management [3], and agriculture [4]. The main goal of instance
segmentation is to identify and segment individual objects. It sur-
passes pixel-level classification by discerning between different
object instances within the same category, assigning a unique
instance ID to each object. Instance segmentation of individual
tree crowns within the realm of remote sensing represents a sig-
nificant and practical application, contributing to tasks like forest
management [1], carbon storage estimation [5], biodiversity
modeling [6], canopy closure estimation [7], ecosystem service
modeling [8], and forest health description [9]. This article fo-
cuses on achieving instance segmentation of tree crowns in aerial
imagery, specifically detecting and delineating individual tree
crowns while classifying the tree species in a rural hill-country
area in the Greater Wellington region, Aotearoa New Zealand.

Nevertheless, achieving instance segmentation of individual
tree crowns in aerial imagery presents significant challenges,
primarily stemming from three factors: stand density, crown
characteristics, and background conditions [10]. First, dense
tree stands often result in canopy overlap and shadow casting,
complicating the detection of individual canopy edges. Second,
the intricate characteristics of tree crowns, including variations
in size, color, shape, and texture, pose difficulties for accurate
segmentation, especially considering the limited detail in aerial
images. This challenge is further exacerbated by the presence
of numerous small objects within the images, with some tiny
tree crowns occupying only a few pixels. Last, the surrounding
background can impact tree crown detection and segmentation
effectiveness. Particularly, short objects resembling trees, such
as shrubs, weeds, and grass, may be misidentified as trees (i.e.,
false positives) due to the absence of height distinction in aerial
imagery.

In recent years, deep convolutional neural networks (CNNs)
based algorithms have improved by leaps and bounds com-
pared to traditional algorithms in object detection and instance
segmentation. The current mainstream instance segmentation
algorithms are based on CNN models. The establishment of
some well-known benchmark datasets such as MS COCO [56]
and PASCAL VOC [11] has greatly promoted the development
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of instance segmentation. A large number of algorithms have
emerged, such as Mask R-CNN [12], Cascade R-CNN [14],
HTC [16], PANet [21], YOLACT [25], DETR [39], [40], [41],
and YOLO series [29], [30], [31], [32], [33]. However, most
of these CNN-based methods are proposed for natural image
scenes in benchmark datasets. Because CNN models rely heavily
on the characteristics of the data, it is not advisable to directly
employ existing methods for canopy instance segmentation. The
above problems make it necessary to design a new CNN-based
approach to addressing the instance segmentation task of indi-
vidual tree crowns in aerial imagery.

In object detection and instance segmentation, the YOLO
series [29], [30], [32], [33] has become a pivotal model, cel-
ebrated for its single-stage, real-time capabilities that efficiently
balance speed and accuracy. This is especially beneficial in tree
crown detection, where YOLO’s agility enables rapid processing
of forest imagery, crucial for accurately identifying individual
crowns [55]. Unlike two-stage methods like mask R-CNN,
which first generate region proposals before refining predictions,
YOLO operates in a single-shot manner. This direct approach
eliminates the need for a separate region proposal network,
streamlining the segmentation process and significantly speed-
ing up the analysis of aerial forest imagery. This rapid processing
capability is vital for improving the operational efficiency of
forest management and enhancing biodiversity modeling efforts.

YOLOv8 [33], as one of the latest iterations in the YOLO
series, offers significant improvements in accuracy and speed,
particularly for multiscale targets, making it well-suited for
segmenting tree crowns. YOLOv8 incorporates specialized net-
work head designed to detect objects of varying sizes—small,
medium, and large—facilitating precise feature extraction crit-
ical for diverse object sizes. In cases, where datasets do not
include all three size categories (small, medium, and large)
but predominantly consist of tiny to medium-sized objects,
standard models may underperform. This indicates a need for a
customized method. Consequently, there may be a necessity to
develop a new model tailored specifically for tasks like canopy
segmentation, where object sizes vary significantly.

In response to the above analysis, the overall goal of this
article is to introduce a new model designed to tackle the
issue of instance segmentation and tree species classification
for individual tree crowns. We propose a new method named
YOLOv8-FF, which builds on the YOLOv8 framework. First,
we develop a network design specifically tailored to the unique
characteristics of canopy data, aiming at accurately predicting
tiny, small, and medium objects. Following this, we introduce
a novel feature fusion (FF) mechanism designed to enhance
the representation of canopy features, ensuring richer and more
precise feature integration. Last, we incorporate the Sparse Large
Kernel Network (SLaK) module to improve the detection capa-
bilities for medium objects, which are particularly challenging
in dense forest imagery. In summary, the key contributions of
the proposed method can be outlined follows.

1) We developed a tailored version of YOLOv8, named
YOLOv8-FF, specifically designed to detect and segment
individual tree crowns in aerial imagery while also clas-
sifying tree species. This model harnesses YOLOv8’s

robust capabilities and is further optimized to address the
unique challenges of canopy data. YOLOv8-FF features
a modified network structure that excludes detection head
for large objects due to their rarity in canopy datasets
and introduces a new head for detecting tiny objects. This
refinement enables more precise detection across varying
object sizes, crucial for handling the diverse range of tree
crown dimensions in aerial forest imagery. Comparative
analyses with leading single-stage and two-stage segmen-
tation methods show that YOLOv8-FF outperforms its
counterparts in canopy detection and mask segmentation
while using fewer parameters.

2) In the feature extraction stage, we propose a new FF
mechanism that incorporates both same-scale and cross-
scale fusion techniques. This mechanism is designed to
aggregate and enhance canopy feature information more
effectively, facilitating improved segmentation accuracy
and richer feature representation.

3) The SLaK module is integrated into the YOLOv8-FF
framework, which enhances the model’s ability to capture
broader contextual information. This property is partic-
ularly beneficial for the accurate prediction of medium
objects, which allows the model to better understand and
interpret the spatial relationships and characteristics of
objects within a larger field of view.

II. RELATED WORK

In this section, we review the background of general in-
stance segmentation and instance segmentation for individual
tree crowns, and briefly revisit the principle of YOLOv8.

A. Instance Segmentation

Deep-learning based methods for instance segmentation are
typically divided into two primary categories: two-stage meth-
ods and single-stage methods. Two-stage methods, exemplified
by the Mask R-CNN [12] series, evolve from earlier two-stage
object detectors like Fast R-CNN [13]. Mask R-CNN extends
this approach by adding a parallel branch for mask prediction.
Enhancements to this model include Cascade R-CNN [14],
which boosts detection accuracy through a cascade of detectors,
and Hybrid Task Cascade (HTC) [16], which incorporates a
multitask, multistage cascaded architecture to improve spatial
context, significantly outperforming earlier models. Another
notable development is Mask Scoring R-CNN [15], which in-
troduces a mask scoring mechanism to assess the quality of
predicted instance masks. PANet [21] enhances feature informa-
tion flow via a bottom-up pathway, augmenting the architecture
inspired by Feature Pyramid Network (FPN) [22]. Despite their
effectiveness, two-stage methods often struggle with achieving
optimal processing speeds.

The single-stage approach is introduced to enable concurrent
detection and segmentation operations, thereby significantly
reducing reasoning time. For example, YOLACT [25] reframes
the instance segmentation task as generating a series of prototype
masks and forecasting mask coefficients for individual instances.
Based on the principles introduced in YOLACT, subsequent
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iterations of YOLO [29] like YOLOv5 [30], YOLOv7 [32],
and YOLOv8 [33] integrate both object detection and instance
segmentation within a unified pipeline. SOLO methods [27],
[28] contribute to instance segmentation by introducing grid-
based approaches that directly predict instance masks within
each grid cell. PolarMask [26] introduces a novel representation
of instance masks using polar coordinates, which offers advan-
tages in handling instances with irregular shapes or rotations.
CondInst [37] directly predicts instance masks within a single
unified framework by dynamically adjusting convolutional op-
erations based on instance-specific information.

B. Instance Segmentation for Individual Tree Crowns

CNN frameworks have demonstrated promising results in the
identification and segmentation of tree canopies. For instance,
Sani-Mohammed et al. [43] enhanced the Mask R-CNN frame-
work for detecting and segmenting standing dead trees within
dense mixed forests. Sun et al. [44] applied Mask R-CNN with
a ConvNeXt [23] backbone to segment tree crowns in urban
settings. Firoze et al. [46] developed an instance segmentation
framework that utilizes pixel content, shape, and self-occlusion,
augmented by a graph convolutional network to handle densely
packed trees. Similarly, Sun et al. [45] utilize Cascade R-CNN
for counting trees in a subtropical mega city by delineating
the canopies. Dersch et al. [47] combine Mask R-CNN with
DETR [39] to precisely delineate individual tree crowns us-
ing multispectral imagery and high-resolution lidar data. Zhou
et al. [48] implemented BlendMask [42], a hybrid of Mask
R-CNN and YOLACT, for multispecies individual tree crown
segmentation and classification. Straker et al. [55] introduced
a new approach using YOLOv5 for segmenting individual tree
crowns, tested on the autonomous AAV-based laser scanning
(AAV-LS) dataset For Instance. These techniques showcase the
adaptability of instance segmentation methods to the unique
challenges posed by tree crown imagery. However, many of them
involve complex architectures that result in slower inference
speeds. Moreover, it is still a challenging task to effectively
solve canopy instance segmentation in low resolution images
and complex environments with densely distributed and small
objects.

C. YOLOv8

The YOLO model [29] processes the entire input image to
directly predict the positions and bounding boxes of objects
at the output layer. In YOLO models [29], [30], [31], [32],
[33], the input image is divided into multiple grids, with each
grid cell responsible for predicting the position and confidence
level of objects within it. The YOLOv8 model [33] adopts
an anchor-free approach, estimating the center of an object
directly rather than predicting its distance from a predefined
anchor box. This anchor-free method reduces the number of
box predictions, thus accelerating the nonmaximum suppression
(NMS) process, a critical postprocessing step that eliminates
overlapping predictions. YOLOv8 is designed to accommodate
diverse project requirements through various models scaled to
different factors, including nano, small, medium, large, and

extra-large versions. The architecture of YOLOv8 comprises
three main components: the backbone, neck, and head, as de-
picted in Fig. 1. Compared to earlier YOLO versions [29], [30],
[31], [32], YOLOv8 offers enhanced inference speed without
sacrificing accuracy, making it the chosen baseline model for
this study. However, while YOLOv8 performs well in general
object detection tasks, its effectiveness in processing canopy
images, particularly in detecting tiny objects, is limited and
need be improved. To address this, we develop a new method
for individual tree crowns identification by improving upon the
YOLOv8 framework. This method aims to refine the model’s
capability to handle the specific challenges posed by tree crown
instance segmentation.

III. PROPOSED METHOD

In this section, the proposed method is illustrated and dis-
cussed in detail. First, the network design is described. Then, this
section introduced the proposed FF mechanism and the structure
of SLaK module.

A. Overview

The proposed method for instance segmentation of tree
crowns is constructed based on the XLarge version of YOLOv8,
i.e., YOLOv8x [33]. First, as shown in Fig. 2, YOLOv8-FF
introduces a tailored network design that is optimized to handle
the unique features present in canopy images. Subsequently, it
incorporates a new FF mechanism designed to effectively aggre-
gate and enhance the richness of feature information. Finally, the
SLaK module is employed to replace the bottleneck module in
the last C2f section of the head, which is expected to significantly
improve the prediction accuracy for medium objects and overall
efficiency.

Like its predecessor, YOLOv8, the YOLOv8-FF model main-
tains the “backbone-neck-head” architecture. The structure of
this model is illustrated in Fig. 3, comprising three primary com-
ponents: Backbone, Neck, and Head. The backbone serves as the
foundation, extracting features from the input image through a
series of convolutional layers that progressively decrease the
spatial dimensions while increasing the depth, or number of
channels. Key elements of the backbone include the Conv-BN-
SiLU (CBS), C2f, and Spatial Pyramid Pooling Fast (SPPF)
modules. The CBS module is used to extract features from the
input data, which consists of a convolution layer (Conv), batch
normalization (BN), and Sigmoid Linear Unit (SiLU) activation
function. The C2f module is an optimized version of the C2
module, which stands for the cross stage partial (CSP) Bottle-
neck [49] with two convolutions. The C2f module is a faster
implementation of the C2 module, which improves the execution
speed of the model while maintaining similar performance.
By utilizing residual connections, the C2f module enhances
feature representation and improves gradient propagation in the
network. SPPF is used to handle inputs of varying sizes and
enhance feature extraction by pooling and aggregating features
at multiple levels within the network, ensuring comprehensive
information capture.
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Fig. 1. Network framework of YOLOv8, which is mainly composed of three parts: backbone, neck, and head. Within the backbone, images are progressively
downsampled at different levels, designated as P2/4, P3/8, P4/16, and P5/32, corresponding to downsampled sizes by factors of 4, 8, 16, and 32, respectively.
YOLOv8 adopts PANet [21] as the FF network, which contains a top-down path and a bottom-up path. The two paths are displayed in the neck.

Fig. 2. Framework of the proposed method. The proposed FF mechanism consists of the blue and red connections in the neck. The blue connections aims to fuse
same-scale features, and the red connections aim to fuse cross-scale features.

Fig. 3. Network architecture of the proposed method YOLOv8-FF. Each module is labeled numerically to indicate its sequence within the network.

Following the backbone, the neck component employs a com-
bination of feature aggregation and concatenation techniques
to merge features from various scales effectively. This integra-
tion facilitates the capture of multiscale information, which is
crucial for accurate object prediction. The head of the network
is tasked with generating the final predictions, including three

specialized branches that handle the segmentation of tiny, small,
and medium tree canopies. This part uses convolutional layers to
predict bounding boxes, objectness scores, class probabilities,
and masks for detected objects. In addition, the head employs
a decoupled structure that separates the tasks of classifica-
tion, detection, and segmentation. It incorporates anchor-free
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techniques and utilizes distribution focal loss to optimize the
loss function.

B. Network Design

The network architecture of YOLOv8, illustrated in Fig. 1,
extracts multiscale features at different levels of the network.
These features are then directed to separate detection heads,
each calibrated to recognize objects at a particular scale. These
processed feature maps are downsampled by factors of 32, 16,
and 8, respectively, allowing the network to capture details at dif-
ferent resolutions. Upon analyzing tree crown characteristics in
our dataset, it was observed that large objects are very rare, with
the majority of crowns being medium or small. Moreover, many
crowns are very small or tiny, with some occupying less than
20 pixels in a 512 × 512 image. At the smallest downsampling
rate of 8 times, critical feature information for these tiny objects
is often lost, underscoring the challenge of maintaining accuracy
for smaller objects in aerial imagery. Our analysis concludes that
canopy data might not need large object detection, and separate
prediction is required for tiny tree crowns.

Given this data characteristic, our tailored network design
for YOLOv8 eliminates the detection of large objects, focusing
instead on enhanced detection capabilities for tiny, small, and
medium objects, as shown in Fig. 2. The design adjustments
directly address the predominant size categories, optimizing the
model for the most frequent cases while conservatively using
resources for the sparse category of large objects. This approach
enhances the model’s efficiency and effectiveness in segmenting
and identifying tree crowns in aerial imagery tailored to the
challenges posed by the dataset.

The network architecture is modified to accommodate these
requirements: the large object detection segment is removed,
streamlining the network for efficiency and relevance to canopy
data. A detection head for tiny objects is added, positioned
before the small object detection to prioritize processing of the
smallest crowns. This addition necessitates the integration of
an upsampling step, a concatenation, and a C2f module (layers
18–20 of Fig. 3) in the neck section before linking to the tiny
object detection head. Following this, a CBS module, another
concatenation, and a second C2f module (layers 21–24) are
strategically placed to bridge the tiny and small object detection
heads. This configuration ensures a fluid transition and effective
feature processing across the different scales of tree crowns in
the dataset.

C. Feature Fusion

The FF mechanism in YOLOv8 has been enhanced by adopt-
ing the PANet structure, which includes a top–down path, a
bottom–up path, and lateral connections. To enhance the model’s
capability for generating informative features, we develop a
new and lightweight FF mechanism into YOLOv8 and make
it YOLOv8-FF, as depicted in Fig. 2. This enhancement is
strategically located in the neck of the network, optimizing the
integration of features at this crucial juncture to enhance overall
model performance.

The proposed FF is divided into two main types: a cross-scale
fusion and a same-scale fusion. The cross-scale FF, represented
by the red connections in Fig. 2, aims to integrate features across
different resolutions, which is inspired by High-Resolution
Network (HRNet) [51]. It typically involves adjusting these
features to a common resolution before concatenation, which
is essential for effective multiscale feature integration. These
cross-scale connections encourage resolution alignment through
two complementary pathways: 1) when high-resolution fea-
ture maps are combined with lower-resolution counterparts, the
feature maps undergo strided convolution for downsampling,
ensuring semantic consistency while reducing spatial dimen-
sions; 2) when low-resolution features need to be integrated
with higher-resolution features, nearest neighbor upsampling is
applied to increase spatial dimensions while preserving con-
textual information. Similar to HRNet’s design philosophy, our
approach implements this cross-scale fusion process repeatedly
throughout the network as shown in Fig. 3, where multiple cross-
scale connections operate at different levels of the architecture.
This iterative fusion strategy creates a bidirectional informa-
tion exchange that progressively refines feature representations.
Through this process, semantic information from low-resolution
streams enhances feature discrimination at high resolutions,
while detailed spatial information from high-resolution streams
improves object localization at low resolutions, ultimately lead-
ing to more robust multiscale feature representations. As in-
dicated in Fig. 3, layer 3 is connected to layer 16, and layer
5 is connected to layer 13. The CBS module implements the
downsampling operation by setting the convolution kernel to 3,
the stride to 2, and the padding to 1. Low-resolution feature maps
are upsampled and then fused with high-resolution feature maps.
This is exemplified by the connections from layer 4 to layer 19
and from layer 6 to layer 16 through the upsampling processes
outlined in layers 10 and 11.

The same-scale FF, indicated by the blue connections, lever-
ages a strategy inspired by Bi-FPN [50]. This approach enhances
the utilization of features extracted directly from the backbone,
improving the network’s ability to handle features at similar
scales. Unlike Bi-FPN’s weighted fusion method, our model
employs a simpler approach by concatenating feature maps
directly, which simplifies the fusion process while maintain-
ing effectiveness. Specific implementations include connections
from layer 4 to layer 22 and from layer 6 to layer 25 as detailed
in Fig. 3. The integration of the proposed FF framework into
YOLOv8 enhances the model’s capability to process complex
tree crown imagery data, by effectively managing features across
different scales and resolutions.

D. SLaK

Detecting large objects aids in identifying medium objects as
well, because the process involves capturing expansive spatial
features crucial for accurately recognizing medium objects.
The removal of the large object detection head impacts the
performance of medium object detection to a certain extent.
Inspired by RepLKNet [52] and SLaK [53], which prove that
applying large convolutional kernels instead of a stack of small
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Fig. 4. Structure of SLaK in C2f-SLaK of the head. A layer is shown as kernel
size and output channels. C represents the number of channels in the input feature
map, dw represents the depthwise convolution.

kernels shows better performance, we incorporate the SLaK
module into the C2f module, renamed as C2f-SLaK and shown
in Fig. 3, in an attempt to improve the prediction performance
of medium objects by increasing the convolution kernel. The
structure of SLaK, as integrated into C2f-SLaK, is depicted in
Fig. 4. The SLaK module combines specialized convolutional
operations with Batch Normalization (BatchNorm) layers, post-
layer normalization (LayerNorm), and Gaussian Error Linear
Unit (GELU) [54] activation. GELU is a nonlinear activation
function defined as follows:

GELU(x) = x · Φ(x) (1)

where Φ(x) represents the cumulative distribution function of
the standard normal distribution, which can be expressed as
follows:

Φ(x) =
1

2

(
1 + erf

(
x√
2

))
(2)

where erf is the error function. This activation function provides
smooth scaling of both positive and negative inputs, improving
gradient flow during training.

The structure of SLaK is built based on the ConvNeXt [23]
block. SLaK modifies a large kernel by decomposing it into two
parallel rectangular kernels and retains a smaller convolutional
layer in parallel. This configuration helps in capturing a broader
receptive field while maintaining detail resolution. The outputs
from these three convolution layers, each followed by a Batch-
Norm layer, are summed to integrate the feature information
effectively. Given that the feature map input to C2f-SLaK is
derived from an image downsampled 32 times, the kernel sizes
for the depthwise convolution layers are set to 7 × 3, 3 × 7,
and 3 × 3, which are shown close-to-optimal for processing
lower resolution inputs. LayerNorm, a 1 × 1 convolution in-
creases the channel dimensions fourfold, followed by a GELU
activation function. Another 1× 1 convolution then restores the
dimensions to match the original input size. To ensure stability in
learning and performance, a residual connection is incorporated,
allowing for the flow of original features along with enhanced
features.

The integration of the SLaK module into YOLOv8 enhances
the network’s performance in detecting medium objects. By
employing large convolutional kernels that decompose into spe-
cialized, parallel configurations, SLaK effectively broadens the
receptive field. This allows the model to capture more contextual
information from the input images, thereby improving accuracy
in medium object detection.

IV. EXPERIMENT DESIGN

A. Datasets

Manaaki Whenua – Landcare Research, a Crown Research
Institute based in New Zealand, has contributed a manually
labelled dataset featuring aerial imagery with individual tree
crowns. The aerial survey were captured from a top–down
perspective in 2021, encompassing the rural hill-country of
Wairarapa within the Greater Wellington region, New Zealand.1

The imagery, provided at a 30-cm pixel resolution and presented
in 3-band (RGB) orthophotos, underwent tree species label-
ing through field-based mapping conducted by Spiekermann
et al. [60] in the specified study area. In a Geographic Infor-
mation System (GIS), polygon areas representing individual
tree species were manually outlined based on the tree crown
edges. This meticulous process resulted in the delineation of
38 601 tree objects. Areas where tree crowns lacked complete
annotation information (including individual crown boundaries
and species information) were manually excluded by experts,
who assigned zero values to the corresponding areas in both the
imagery and the label raster data. This careful exclusion ensures
that the model did not learn from inaccurate or incomplete data,
thereby maintaining the integrity and accuracy of the training
process.

A uniform grid with a tile size of 153.6 m, equivalent to
512× 512 pixels given the 30 cm resolution of the imagery, was
applied over the imagery and the study area. These tiles were
then randomly allocated into a training set, comprising 26 424
objects across 473 images, a validation set, comprising 7732
objects across 118 images, and a test set, containing 4445 objects
in 66 images. We train YOLOv8-FF on the training set and
evaluate its performance on the validation set at the end of each
epoch. Training concludes when specific termination criteria
are met, such as completing the number of training epochs
or not observing any improvement over 50 consecutive epochs
(early stopping). The early stopping condition is determined by
a weighted combination of performance metrics calculated on
the training set, specifically the AP and AP50 metrics. Here, AP
is assigned a weight of 0.9, and AP50 a weight of 0.1. In the
testing phase, the trained model is then evaluated on the test set
to assess its performance.

The dataset encompasses 28 297 tree crowns of six species
categories: conifers, kānuka, willow-poplar, eucalyptus, acacia,
and other natives (o.natives). The conifers category includes

1 Sourced from the LINZ Data Service and licensed by Greater Wellington
Regional Council for reuse under CC BY 4.0. Data link: https://data.linz.govt.
nz/layer/105727-wellington-03m-rural-aerial-photos-2021/.

https://data.linz.govt.nz/layer/105727-wellington-03m-rural-aerial-photos-2021/
https://data.linz.govt.nz/layer/105727-wellington-03m-rural-aerial-photos-2021/
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TABLE I
NUMBER OF TREE CROWNS AND INSTANCES PER CATEGORY

TABLE II
NUMBER OF SMALL, MEDIUM, AND LARGE OBJECTS IN THE CANOPY DATASET

various coniferous species like radiata, spruce, cedar, and Dou-
glas fir, totaling 4339 crowns. The kānuka category comprises
13661 Kunzea spp. crowns. Willow-poplar encompasses all
mapped poplar (Populus spp.) and willow (Salix spp.) canopies,
amounting to 5645 crowns. The eucalyptus category includes
1414 crowns of various eucalyptus species, such as Eucalyptus
globulus. The acacia category comprises 857 Acacia dealbata
crowns. The natives category contains 2381 crowns of native
species like totara (Podocarpus totara) and cabbage trees (Cordy-
line australis). Due to cropping, more instances may exist in the
dataset than the counted number of tree crowns. Table I provides
details on the number of tree crowns and instances per category.

In the COCO dataset, objects are categorized into small,
medium, and large based on their pixel area within their
mask [56]. Specifically, objects are considered small if their area
is less than 322 pixels, medium if the area is between 322 and 962

pixels, and large if the area exceeds 962 pixels. In our canopy
dataset, we further refine the classification of small objects: those
with an area smaller than 162 pixels are deemed tiny, while those
with an area between 162 and 322 pixels are classified as small.
In terms of real-world crown size, objects are categorized as tiny
if their area is less than 4.82 m2, small if their area is between
4.82 m2 and 9.62 m2, medium if the area is between 9.62 m2 and
28.82 m2, and large if the area exceeds 28.82 m2. A statistical
analysis of the canopy dataset reveals a predominance of tiny
(22382 instances), small (12456 instances), and medium (3757
instances) objects, with only six instances of large objects, as
detailed in Table II.

B. Comparison Methods

To evaluate the efficacy of the proposed approach, a compar-
ative analysis is conducted using 17 recent instance segmenta-
tion methods on a dataset of tree images. The peer competi-
tors encompass both two-stage and single-stage approaches.
Among the two-stage methods, seven prominent top–down
approaches are considered: Mask R-CNN [12], [64], Cascade

R-CNN [14], HTC [16], DetectoRS [17], MogaNet [18], pool-
former [19], Efficientformer v2 [20], and QueryInst [36]. In
addition, the single-stage category includes YOLACT [25], [65],
SOLOv2 [28], CondInst [37], RTMDet [38], YOLOv5 [30],
[55], YOLOv7 [32], YOLOv8 [33], [66], YOLOv9 [34], and
YOLOv10 [35].

For the two-stage methods, experiments are carried out with
two backbone structures, namely ResNet-101 2 and ResNeXt-
101 (64 × 4d variant3). These architectures are employed for
Mask R-CNN, Cascade R-CNN, HTC, and DetectoRS, follow-
ing the specifications outlined in their respective papers [12],
[14], [16], [17]. The implementation of the eight two-stage meth-
ods, YOLACT, SOLOv2, CondInst, and RTMDet is realized
using the MMDetection open-source detection toolbox [24].
Training of these nine methods is performed with pre-trained
backbone weights from the ImageNet dataset [57], aligning
with the MMdetection protocol. The YOLO models (YOLOv5,
YOLOv7, YOLOv8, YOLOv9, and YOLOv10) undergo train-
ing for an equivalent number of epochs as the proposed method
to facilitate a comprehensive and fair evaluation.

C. Parameter Settings

In the experiments, precision, recall, F1-score, and Average
Precision (AP) are selected as the main evaluation metrics [58],
[59], and they are defined as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-score =
2× Precision× Recall

Precision + Recall
(5)

AP =
1

10
(AP50 + AP55 + AP60 + · · ·+ AP95). (6)

where TP, FP, and FN represent the true positive, false positive,
and false negative counts, respectively. A prediction whose
Intersection over Union (IoU) value is greater than a predefined
threshold and correctly classified is considered a TP.

The high precision indicates that when the model predicts
a positive outcome, the more likely it is to be correct. The
high recall rate indicates that the model is good at capturing
all relevant instances of the positive class. The F1-score seeks
to find a balance between precision and recall by calculating the
harmonic mean of the two. In further analysis of the results, we
present detailed evaluations on precision, recall, and F1-score
metrics. To reduce the influence of relying on a single IoU thresh-
old, we analyze both the maximum and average values across
10 IoU thresholds, ranging from 0.50 to 0.95 in increments of
0.05. According to MS COCO [56], AP is defined as the average
AP under 10 IoU thresholds of 0.50:0.05:0.95, where AP is the
area under the Precision–Recall curve.

In addition, we follow MS COCO to report the evaluation re-
sults of AP50, AP75, APSmall, and APMedium indicators. AP50

2 101 indicates the number of convolutional layers
3 64× 4d means cardinality = 64 and bottleneck width = 4d.
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TABLE III
COMPARISON RESULTS WITH TWO-STAGE TOP–DOWN METHODS AND SINGLE-STAGE METHODS ON THE TEST DATASET.

and AP75 are calculated under specific thresholds, i.e., 0.50 and
0.75. APSmall and APMedium are used to evaluate the model’s
predictive performance for small and medium objects. Since
there are almost no large objects in the canopy dataset, APLarge

is not included in the experiments. For a thorough comparison,
we also assess the computational complexity, quantified by the
number of floating-point operations (FLOPs), and the number
of parameters of the models.

The experiments are conducted on Quadro RTX 6000 GPU
cards and implemented using the PyTorch framework. All
YOLO models are trained from scratch. The proposed method
is configured with a batch size of 4 and undergoes 1500 train-
ing epochs. As no pretrained weights are used, this extended
training duration ensures the weights converge and achieve
good performance [61]. The remaining hyperparameters of the
proposed method are set in accordance with the hyperparameter
configurations of YOLOv8 [33]. Training is conducted on a
single GPU, utilizing the SGD optimizer for adjustments. The
initial learning rate is set at 0.01, accompanied by a weight
decay of 0.0005 and a momentum of 0.937. During the training
process, image augmentation techniques include HSV augmen-
tation, image translation, image scale, image flip, and image
mosaic are adopted [33]. In addition, the loss function and
weight configurations for each component align with the settings
established in YOLOv8 [33].

V. RESULTS AND DISCUSSIONS

In this section, we first report experimental results, both quan-
titative and qualitative. We then introduce a series of ablation
studies for further analysis and discussions.

A. Main Results

1) Quantitative Results: Table III provides a comprehen-
sive overview of the experimental outcomes of YOLOv8-FF
alongside its selected peer competitors concerning object detec-
tion and instance segmentation performance, FLOPs, and the
number of parameters (Params). FLOPs are computed for an
input image size of 512 × 512. Box AP is employed to assess
the performance in the object detection task, while Mask AP is
utilized to evaluate instance segmentation performance.

In comparison to two-stage methods, the proposed method
YOLOv8-FF as a single-stage method exhibits significant ad-
vancements across multiple evaluation metrics. Particularly,
when contrasting with the best-performing two-stage method,
MogaNet, YOLOv8-FF demonstrates a remarkable improve-
ment, with a 9.5 increase in Box AP and an 7.4 increase in
Mask AP, surpassing MogaNet’s values of 18.4 forBox AP and
17.3 for Mask AP. This substantial enhancement underscores
the efficacy of YOLOv8-FF in accurately localizing objects
within tree images. Furthermore, YOLOv8-FF maintains effi-
ciency with fewer parameters and competitive FLOPs compared
to many two-stage methods.

Against single-stage methods, YOLOv8-FF outperforms
YOLACT, SOLOv2, CondInst, and RTMDet across all AP
metrics. In contrast to YOLO models, YOLOv5, YOLOv7,
YOLOv8, YOLOv9, and YOLOv10 have lower FLOPs, but their
general performance is not as good as YOLOv8-FF. Moreover,
the number of parameters of these models is higher than that
of YOLOv8-FF, except for YOLOv10. Concerning the baseline
model in terms of Box AP and Mask AP, YOLOv8-FF out-
performs YOLOv8 by 1.8 and 1.2, respectively. YOLOv8-FF
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Fig. 5. Confusion matrix obtained by YOLOv8-FF.

TABLE IV
INDIVIDUAL CLASS RESULTS OF YOLOV8-FF, INCLUDING BOX AP AND A

SERIES OF MASK AP SCORES

achieves the fourth best result in the APMask
M metric, only

0.6 points behind the baseline YOLOv8 model, 0.5 points be-
hind the YOLOv9 model, and 2.8 points behind YOLOv10.
Since removing large object detection from the baseline model
inevitably reduces the prediction performance for medium ob-
jects, due to the loss of broader spatial features. YOLOv8-FF
slightly increases FLOPs by about 86G compared to YOLOv8,
but the number of parameters of YOLOv8-FF is significantly
lower than that of YOLOv8 and most single-stage methods.

2) Tree Species Results: Fig. 5 presents the confusion ma-
trix for the prediction of different tree species achieved by
YOLOv8-FF, vividly illustrating the model’s ability to correctly
identify and differentiate between species. We present the perfor-
mance of individual class obtained by YOLOv8-FF in Table IV.
YOLOv8-FF particularly excels in detecting and segmenting the
eucalyptus class, achieving aBox AP of 38.5 and aMask AP of
34.4. In contrast, the kānuka class exhibits the lowest accuracy,
with aBox AP of 14.1 and a APMask

M of 12.3. This class notably
contains a large number of instances, reaching 17,776, and is
characterized by small crown sizes and a dense distribution,
as depicted in the penultimate image of Fig. 6. These factors
significantly increase the complexity of instance segmentation
for this class.

3) Qualitative Results: Fig. 6 displays the visual results of
YOLOv7, YOLOv8, and the proposed YOLOv8-FF across six

TABLE V
ACCURACY ASSESSMENTS OF YOLOV7 ON SIX TEST IMAGES

TABLE VI
ACCURACY ASSESSMENTS OF YOLOV8 ON SIX TEST IMAGES

TABLE VII
ACCURACY ASSESSMENTS OF YOLOV8-FF ON SIX TEST IMAGES

test images. These methods generally succeed in identifying
most tree crowns within the images. For the objects within the
blue boxes in the second image, YOLOv7 misclassifies them,
YOLOv8 misses one, and YOLOv8-FF correctly detected these
two objects. In the third and fourth images, YOLOv7 generates
several overlapping predictions as highlighted in the blue boxes,
whereas YOLOv8 and YOLOv8-FF produce more dispersed
results. The fifth image reveals that all three methods have
misclassification problems, and YOLOv7 misses some objects,
which also reveals the challenge of this problem and the need
for further research.

Tables V–VII detail the accuracy evaluations of YOLOv7,
YOLOv8, and YOLOv8-FF, respectively, using six test images.
These tables show a variety of performance metrics such as
the numbers of canopies, TPs, FPs, FNs, along with calculated
Recall, Precision, and F1-score, all determined under an IoU
threshold of 0.5. In images 3-6, the columns “Num of canopies,”
“Num of TPs,” “Num of FPs,” and “Num of FNs” contain
multiple numerical values (e.g., 105/35/19/2), representing the
counts of various categories in each image. YOLOv8-FF gener-
ally exhibits superior precision, recall, and F1-scores compared
to YOLOv7 and YOLOv8, particularly excelling in images 5
and 6. Although YOLOv7 has a higher recall rate on some
images, it produces many overlapping predictions, resulting in
lower precision than YOLOv8-FF on all images. Moreover,
YOLOv8-FF outperforms YOLOv8 in recall rate, except for
image 3, but YOLOv8-FF has higher precision.
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Fig. 6. Comparisons of the visual results of YOLOv7, YOLOv8, and the proposed method on the test dataset. The category information of the prediction results
can be judged by color: conifers, kānuka, willow-poplar, eucalyptus, acacia, and o.natives. All tree species are included in these six images. (a) Input. (b) YOLOv7.
(c) YOLOv8. (d) YOLOv8-FF. (e) Ground truth.
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TABLE VIII
ABLATION OF DESIGNED MODULES. P, R, AND F1 REFER TO PRECISION, RECALL, AND F1-SCORE.

Despite the promising results of YOLOv8-FF, variations in
performance across different images highlight challenges and
potential limitations in handling diverse environmental con-
ditions or varying canopy densities. The notable number of
false negatives for the “kānuka” category in image 5, across all
three models, underscores the complexity of segmenting densely
distributed, small tree crowns. This emphasizes the ongoing
challenges in crown instance segmentation, as explored in this
study.

B. Further Analysis

In this section, we examine the impacts of the individual con-
tributions made in this article, namely, the redesigned network
structure, the FF method, and the SLaK module, respectively.
The ablation results are displayed in Table III. Besides eval-
uating AP metrics, we also provide data on precision, recall,
and F1-score metrics. To minimize the impact of a single IoU
threshold, we compare both the maximum and average values
across ten thresholds ranging from 0.50 to 0.95 in increments
of 0.05. Typically, the highest values are achieved at the IoU
threshold of 0.5, as this setting allows more predictions to be
considered TPs compared to higher thresholds.

1) Network Design: The modified network architecture seg-
ments the canopy instance segmentation task by focusing on
tiny, small, and medium objects. To assess the validity of this ap-
proach, comparative experiments were conducted by altering the
network architecture of the baseline model, YOLOv8, to observe
its impact on performance. Throughout the ablation experiments
in this study, a consistent training setting was maintained. The
results, as shown in Table III, indicate that the new network
design, referred to as “+ p234,” improves performance in some
metrics. This model achieves a 0.2 increase inBox AP and a 0.2
rise in APS

Mask. However, removing the large object detection
component has led to a decline inAPM

Mask, suggesting the role
of large object detection in aiding medium object identification.

2) FF: An outstanding point of YOLOv8-FF is that the
FF stragety can flexibly aggregate cross-scale and same-scale
features at the same time, which improves the multiscale de-
tection capability of the model. A comparison of architecture
performance for FF mechanisms that include the cross-scale FF
(CS FF) and the same-scale FF (SS FF) alone, as well as the FF
mechanism that include both, is shown in Table III. Basically, the
proposed FF method leads to better performance. Specifically,
comparing the model “+p234,” The addition of either cross-scale

or same-scale FF brings significant performance improvements.
It is worth noting that both methods enhance the model’s pre-
diction of medium objects, making the models increase by 0.2
and 4.3 on APM

Mask. When combining the cross-scale and
the same-scale FF in the model, it brings greater improvement
compared to one alone. Moreover, the proposed FF is lightweight
and bring about a slight increase in FLOPs and the number of
parameters.

3) SLaK: SLak is integrated into the network to improve
the model’s feature extraction ability for medium objects by
expanding the receptive field. Integrating both FF mechanisms
individually already enhances the APMask

M metric, although
when these mechanisms are combined together, the metric de-
creases slightly, by approximately 2.0, compared to using CS
FF alone. The addition of SLaK to the model further improves
its performance, particularly increasing the APM

Mask by 1.2,
indicating a positive impact on the detection capabilities for
medium objects. Moreover, SLaK retains the advantages of
large convolutional kernels while reducing the overall param-
eter count by 3.1M, thus improving the model’s computational
efficiency.

These findings demonstrate the effectiveness of our proposed
method, YOLOv8-FF, which leverages structural modifications
and advanced modules to achieve superior performance in seg-
menting and classifying tree crowns in complex images.

C. Discussions

The study’s dataset required masking certain areas where
tree crowns lacked essential labels (individual crown masks and
species labels). Including these unlabeled regions in training
would risk the model developing incorrect associations and
patterns, which could diminish prediction accuracy on new data.

The introduction of YOLOv8-FF presents a meaningful en-
hancement in the instance segmentation task of tree canopies,
especially suitable for complex forest environments. This tai-
lored network architecture integrates FF techniques and the
SLaK, improving the model’s ability to handle multiscale data,
particularly for tiny, small, and medium objects. These improve-
ments not only increase the accuracy and effectiveness of remote
sensing tools for forest management and biodiversity studies,
but also support advanced applications like species classifica-
tion within segmented tree crowns, which is crucial for carbon
storage estimation and forest health monitoring.
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Unlike the adjustments in [67], [68], which include tiny
heads for detecting smaller objects, YOLOv8-FF uniquely omits
the detection head for large objects, building upon this basis.
This considerable departure from typical YOLO adaptations—
traditionally designed to enhance capabilities across all sizes—is
deliberately based on our dataset’s unique composition, which
primarily consists of tiny to medium canopies. This specific
adaptation proves particularly effective for our dataset’s needs,
offering a focused and effective solution for remote sensing chal-
lenges and showcasing how targeted changes based on data traits
can lead to substantial improvements. Moreover, Yi et al. [68]
and Wang et al. [69] employed Bi-FPN within the YOLOv8 and
YOLOv5 frameworks for remote sensing detection, focusing
exclusively on same-scale FF. In contrast, YOLOv8-FF expands
upon this by incorporating both same-scale and cross-scale fu-
sion, introducing a new concept that enhances feature extraction
capabilities across various scales. This adaptation also offers
fresh insights for detection and segmentation tasks in the field
of remote sensing. While previous methods, such as [70] applied
RepLKNet [52], have explored the use of large kernel convolu-
tions in YOLO models, the application of the SLaK structure
in YOLO models for tree crown instance segmentation remains
relatively unexplored. YOLOv8-FF introduces a new strategy
to employing large kernel convolutions within the YOLO ar-
chitecture, specifically tailored to enhance the segmentation of
tree canopies. By customizing YOLOv8-FF to the specific traits
of the dataset, the model’s technical capabilities are enhanced,
setting the stage for future advancements in environmental mon-
itoring and forest management using deep CNN models.

D. Limitations

The YOLOv8-FF model, while effective in detecting and seg-
menting various tree species, still faces several challenges. First,
the YOLOv8-FF model encounters challenges when dealing
with densely populated and small tree crowns, such as those of
the kānuka species. These conditions, characterized by overlap-
ping and closely situated canopies, complicate the identification
process and degrade performance. In addition, the proposed
method records a slightly lower APM

Mask metric compared
to the baseline YOLOv8 method. Despite some enhancements
achieved by incorporating the SLaK structure, this issue reveals
a trade-off between model specialization and overall accuracy.
These limitations emphasize the need for continued research in
the future work to enhance the robustness and adaptability of
the YOLOv8-FF model.

VI. CONCLUSION

The primary objective of this article was to enhance the
performance of YOLOv8 for the instance segmentation of in-
dividual tree crowns in aerial imagery. This goal has been
successfully achieved with the development of the YOLOv8-FF
method, which incorporates a redesigned network structure,
an innovative FF method, and the integration of the SLaK
module. By rethinking the network architecture to focus more
effectively on tiny, small, and medium objects, the model has
shown improved accuracy in recognizing tree crowns in aerial
images. The FF method introduced in YOLOv8-FF effectively

combines cross-scale and same-scale feature integrations, en-
hancing the model’s ability to capture detailed and relevant
features across different scales. In addition, the incorporation
of the SLaK module expands the model’s receptive field, partic-
ularly improving the detection of medium objects by utilizing
larger convolutional kernels while maintaining lower model
complexity. Experimental evaluations on the tree crown dataset,
in comparison with 17 contemporary models, demonstrate that
YOLOv8-FF consistently outperforms its competitors across
most metrics, including various AP metrics, precision, recall,
and F1-score. Notably, YOLOv8-FF achieves these results with
fewer parameters compared to the baseline YOLOv8 model.

Looking forward, while YOLOv8-FF significantly advances
the task of instance segmentation for tree crowns, challenges re-
main, particularly in segmenting objects with unclear boundaries
such as overlapping or closely situated multispecies canopies.
Future work will explore more sophisticated convolutional op-
erations and enhanced data augmentation techniques to further
improve the accuracy and efficiency of the model. In addition,
the impact of removing detection head for large trees or ob-
jects could be investigated to evaluate how this modification
affects performance. These advancements will aim to address
the current limitations in canopy instance segmentation in aerial
imagery.
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