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CADFormer: Fine-Grained Cross-Modal Alignment
and Decoding Transformer for Referring Remote

Sensing Image Segmentation
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Abstract—Referring remote sensing image segmentation
(RRSIS) is a challenging task, aiming to segment specific target
objects in remote sensing images based on a given language expres-
sion. Existing RRSIS methods typically employ coarse-grained uni-
directional alignment approaches to obtain multimodal features,
and they often overlook the critical role of language features as
contextual information during the decoding process. Consequently,
these methods exhibit weak object-level correspondence between
visual and language features, leading to incomplete or erroneous
predicted masks, especially when handling complex expressions
and intricate remote sensing image scenes. To address these
challenges, we propose a fine-grained cross-modal alignment and
decoding Transformer, CADFormer, for RRSIS. Specifically, we
design a semantic mutual guidance alignment module (SMGAM) to
achieve both vision-to-language and language-to-vision alignment,
enabling comprehensive integration of visual and textual
features for fine-grained cross-modal alignment. Furthermore,
a textual-enhanced cross-modal decoder (TCMD) is introduced
to incorporate language features during decoding, using refined
textual information as context to enhance the relationship between
cross-modal features. To thoroughly evaluate the performance
of CADFormer, especially for inconspicuous targets in complex
scenes, we constructed a new RRSIS dataset, called RRSIS-HR,
which includes larger high-resolution remote sensing image patches
and semantically richer language expressions. Extensive experi-
ments on the RRSIS-HR dataset and the popular RRSIS-D dataset
demonstrate the effectiveness and superiority of CADFormer.

Index Terms—Cross-modal alignment, referring image segmen-
tation (RIS), remote sensing.

I. INTRODUCTION

IN recent years, with the rapid development of Earth ob-
servation techniques, the combination of remote sensing

and deep learning has become a popular research topic [1],
[2]. Deep learning has made significant progress in various
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remote sensing tasks, including image captioning [3], visual
question answering [4], semantic segmentation [5], [6], [7],
image recognition [8], [9], [10], visual grounding [11], etc.
Despite these advancements, the task of referring remote sensing
image segmentation (RRSIS) remains an area of exploration.
It combines computer vision and natural language processing,
aiming to segment the target objects described by a natural
language expression in remote sensing images. Compared to
traditional remote sensing semantic segmentation and remote
sensing instance segmentation [12], RRSIS is more flexible,
allowing users to extract specific target objects of interest from
images based on their needs. It holds great potential in various
fields such as land use classification [13], disaster response [14],
military intelligence generation [15], environmental monitor-
ing [16], and agricultural production [17].

Since RRSIS is an emerging task in the field of RS, there has
been relatively little exploration in this area. Yuan et al. [18]
first introduced the concept of RRSIS and proposed the first
RRSIS dataset, RefSegRS, along with a language-guided cross-
scale enhancement module (LGCE), which aims to improve
segmentation performance on small and sparsely distributed
objects. Furthermore, to address the issue of complex spatial
scales and orientations in remote sensing image scenes, Liu
et al. [19] proposed the rotated multiscale interaction network
(RMSIN) and constructed a large-scale RRSIS dataset, called
RRSIS-D, based on the remote sensing visual grounding dataset
RSVG [20]. The proposed RRSIS-D dataset is a new large-scale
benchmark for RRSIS tasks and fully advances the research
of RRSIS. However, we observe that the referring target ob-
jects in the remote sensing images of the RRSIS-D dataset are
quite salient, and the referring text descriptions are relatively
simple and brief, as shown in Fig. 2(b). This may decrease
the challenge of the RRSIS task, allowing some RIS methods,
which perform well on natural images, to still yield good re-
sults on the RRSIS-D dataset, even outperforming some RRSIS
methods. This drives us to consider whether RRSIS models
can still effectively segment inconspicuous targets from very
high-resolution remote sensing images with complex language
expressions. Therefore, we built a new RRSIS dataset based on
the RSVG-HR dataset [21], named RRSIS-HR. The RRSIS-HR
dataset consists of seven object categories and contains 2650
image-text-label triplets. Compared to the RRSIS-D dataset, the
remote sensing images in RRSIS-HR have higher resolution
and cover larger regions with complex backgrounds and less

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3732-4354
https://orcid.org/0009-0006-2714-636X
https://orcid.org/0000-0002-6127-4801
mailto:liumaofu@wust.edu.cn
mailto:jx@wust.edu.cn
mailto:natezhangxk@gmail.com
https://github.com/zxk688/CADFormer
https://github.com/zxk688/CADFormer


14558 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

(a)

(b)

Fig. 1. Motivation of the proposed approach. The input remote sensing
image-text pair is from our proposed RRSIS-HR dataset. (a) Existing RRSIS
methods use coarse-grained unidirectional alignment from vision to language
and a simple standard decoder. (b) Our proposed CADFormer uses semantic
mutual guidance alignment and a TCMD.

prominent objects. Furthermore, the language expressions in
RRSIS-HR are longer, more complex and semantically richer,
frequently describing multiple object categories, detailed spatial
relationships, and contextual information, as shown in Fig. 2(b).
The increased linguistic and visual complexity poses substantial
challenges for cross-modal learning and computation [22], [23].

Previous RRSIS methods [18], [19] follow the basic archi-
tectural strategy in Fig. 1(a), which adopts simple pixel-word
attention [24] to align language and visual features, directly
integrating original language features derived from BERT [25]
into multiscale visual features throughout the alignment process.
In this process, visual features are progressively refined under
the guidance of original language features, while language fea-
tures remain fixed throughout. This represents a coarse-grained
alignment strategy from vision to language that neither utilizes
visual context to refine language representations nor incor-
porates linguistic feedback to enhance visual comprehension,
ultimately failing to establish a dynamic cross-modal feedback
loop. Ideally, with pixel-word vision-language alignment, lan-
guage and visual features should exhibit high feature similarity
when referring to the same object [26]. However, achieving
this alignment is not straightforward because language expres-
sions can be highly complex and diverse. When confronted
with high-resolution remote sensing image scenes and longer,
semantically richer language expressions, these methods exhibit
weak object-level correspondence and often struggle to produce
optimal segmentation results. In addition, these methods only
consider the alignment and interaction between language and
visual features during the multimodal feature fusion process.
During the decoding phase, cross-modal features are gradually
decoded using a simple segmentation head [24], [27] to produce
the final prediction. However, the importance of text guidance
during the decoding process is often overlooked, which may lead

to the loss of crucial fine-grained details and suboptimal segmen-
tation results due to the lack of explicit semantic constraints in
refining region boundaries and resolving ambiguities.

To address the challenges mentioned above, we propose
CADFormer, a novel RRSIS method from the perspective of
fine-grained cross-modal alignment and decoding, as shown in
Fig. 1(b). Specifically, we introduce a semantic mutual guid-
ance alignment module (SMGAM) to enhance semantic rele-
vance between cross-modal features. This module performs both
language-guided vision alignment and vision-guided language
alignment, fully integrating visual and language features from
the perspective of mutual guidance alignment. In this process,
the two modalities guide each other and dynamically adjust.
Visual features are progressively refined guided by language,
while language features are simultaneously adjusted guided by
vision, dynamically adapting to different visual content. This ap-
proach differs from previous methods [18], [19], [27] that relied
solely on semantic features derived from BERT [25] throughout
the alignment process. Through this mechanism of mutual guid-
ance and collaborative adaptation between modalities, SMGAM
achieves strong object-level correspondence between visual and
language features for fine-grained cross-modal alignment. In
addition, we design a textual-enhanced cross-modal decoder
(TCMD), which accepts the refined multiscale visual features
and language features as input and leverages a Transformer
decoder for further processing. The refined language features
are used as contextual information to guide the model in pro-
cessing the refined multiscale visual features, thus enhancing
the interaction between cross-modal features and ensuring more
accurate predicted segmentation masks. In summary, the main
contributions of this article are as follows.

1) We propose a novel RRSIS method named CADFormer
for handling complex remote sensing image scenes with
semantically richer language expressions. Specifically, the
SMGAM enhances the semantic relevance between visual
and language features by modeling their mutual dependen-
cies and achieves fine-grained cross-modal alignment. In
addition, the TCMD leverages refined language features
as contextual guidance for decoding and segmentation,
resulting in more accurate predictions.

2) We construct a new RRSIS benchmark, RRSIS-HR,
which contains high-resolution remote sensing images
with fine-grained language expressions, posing challenges
for RRSIS methods in handling complex scenes.

3) We conduct extensive experiments on the RRSIS-HR and
RRSIS-D datasets. The experimental results show that our
proposed method, CADFormer, outperforms the majority
of existing RRSIS methods, demonstrating the effective-
ness of CADFormer and its superiority in handling high-
resolution remote sensing image scenes with fine-grained
language expressions.

II. RELATED WORK

A. Referring Image Segmentation

Referring image segmentation (RIS) aims to segment specific
target objects in images based on natural language expressions,
making it a typical multimodal task that has gained increasing
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Fig. 2. Typical examples of our proposed RRSIS-HR datasets and public RRSIS-D datasets. (a) RRSIS-HR dataset. The red, blue, and green fonts in the language
expressions represent categories, absolute positions, and relative position relationships, respectively. (b) RRSIS-D dataset.

attention. Early RIS research [28] focused on using convo-
lutional neural networks (CNNs) and long short-term mem-
ory (LSTM) networks to extract visual and language features,
respectively, and then simply fused these features through
concatenation to generate the final predictions. Subsequent
work improved this process by using recurrent neural net-
works (RNNs) [29], [30], or dynamic networks [31] to pro-
gressively refine segmentation masks. The emergence of Trans-
former [32] architectures and attention mechanisms revolution-
ized RIS methods by providing significant fusion capabilities for
multimodal integration. For example, CMSA [33], BRINet [34],
and VLT [35] leverage crossmodal self/interactive attention to
deeply fuse language and visual features, capture longrange
dependencies, and produce query vectors that precisely retrieve
target information from images. To promote cross-modal in-
tegration, LAVT [24] introduced a language-aware attention
mechanism into the image encoding process, assisting early
fusion of cross-modal features and improving segmentation
accuracy. Recently, VPD [36] explored semantic information in
diffusion models for RIS, while RefSegformer [37], ReLA [38],
and DMMI [39] focused on improving model robustness with
the proposal of the generalized RIS task. In the generalized RIS
task, a referring expression can refer to an arbitrary number of
target objects, including multiple targets or even no target at all.
However, unlike natural images where isolated and prominent
subjects dominate, the expansive coverage of remote sensing
images inevitably captures densely clustered small-scale targets
with multiscale spatial distributions, which are frequently ob-
scured by cluttered backgrounds. These inherent characteristics

not only amplify the technical challenges for precise localiza-
tion, but also limit the generalization capability of existing RIS
methods in achieving satisfactory performance.

B. Referring Remote Sensing Image Segmentation

In recent years, RIS tasks in the domain of remote sensing have
attracted significant attention from researchers. Research in this
field is still in its early stages and remains relatively scarce. Yuan
et al. [18] first introduced the RIS task into the remote sensing
domain by constructing the first RRSIS dataset, RefSegRS, and
proposing the LGCE module to adaptively fuse deep and shallow
visual features, thereby improving the segmentation of small and
scattered objects. Liu et al. [19] proposed the RMSIN, based on
the LAVT [24] framework, to address scale and rotation vari-
ations in remote sensing images by jointly modeling intrascale
and cross-scale image-text interactions. They also introduced a
large-scale RRSIS-D dataset, further advancing RRSIS research.
To explicitly address the domain gap between vision and lan-
guage, DANet [40] introduced an explicit alignment strategy to
narrow inter-domain affinity distributions, along with a reliable
proxy alignment module to enhance multimodal perception and
suppress noisy interference. Recently, FIANet [27] decoupled
referring expressions into object-specific and spatial location
texts and integrated them with visual features through a fine-
grained image-text alignment module to obtain more discrim-
inative multimodal representations. However, these methods
uniformly employ the original semantic features extracted by
BERT [25] to interact with multiscale visual features throughout
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the alignment and fusion process, and some approaches [18],
[19] omit textual features during the decoding phase. In contrast,
our CADFormer method incorporates cross-modal alignment
across four stages. Throughout this process, we progressively
obtain refined language features and refined visual features
based on semantic mutual guidance, which serve as input for
subsequent stages. We fully leverage language features, thereby
establishing a robust object-level correspondence between vi-
sual and language features.

III. NEW BENCHMARK

A. RRSIS-HR Dataset Construction

We introduce a new RRSIS dataset, named RRSIS-HR.
Inspired by SAM [41] and RMSIN [19], we adopt a semi-
automatic method, using bounding boxes and SAM to generate
pixel-level segmentation masks, significantly reducing the cost
of manual annotation. Specifically, we follow the steps below to
construct the RRSIS-HR dataset.

1) Step 1: We collect remote sensing images, referring text
descriptions, and corresponding visual grounding bound-
ing boxes from the RSVG-HR [21] dataset. By leveraging
the bounding boxes provided by the RSVG-HR dataset
and the bounding box hinting function of SAM, we obtain
preliminary pixel-level masks for all referring target ob-
jects in the dataset. However, due to the significant domain
gap between natural images and remote sensing images,
SAM may generate unsatisfactory segmentation masks
when applied to partial images, requiring refinement and
optimization.

2) Step 2: To obtain more accurate fine-grained pixel-level
segmentation masks, we optimize the masks generated by
SAM in Step 1 through manual verification. First, three
annotation experts in the field of remote sensing, drawing
on their expertise, developed a set of annotation stan-
dards. Following the standards, they carefully examined
the masks generated by SAM, identifying and filtering
out problematic masks. Subsequently, each annotator used
the image segmentation semi-automatic annotation tool
to optimize the problematic masks. This process includes
refining boundaries, adjusting sizes, correcting errors, and
resolving occlusion issues. When initial corrections are
uncertain, a consensus process is triggered. This process
involves independent review and cross-checking by three
annotators and discussion among multiple experts to make
a final decision. Through this human–computer collabora-
tive semi-automatic annotation method, we achieve high-
precision mask annotations while significantly reducing
the cost of manual annotation.

3) Step 3: Finally, to improve the compatibility of RRSIS-HR
with various RIS models, we convert the annotation format
to the RefCOCO dataset [42] format for later use.

B. Data Analysis

Through the semi-automatic annotation method, we have
successfully constructed the RRSIS-HR dataset, which consists

of 2650 image-text-mask triplets and includes seven object
categories. Each remote sensing image has a size of 1024×
1024 pixels, containing varying scales and details, and covers
an area ranging from 0.06 km2 to 25 km2 [43]. The average
length of the language descriptions is 19.6 words, with a min-
imum of 6 words and a maximum of 41 words. Specifically,
a language expression contains one or more object categories,
which requires RRSIS models to accurately identify target ob-
jects from more object categories. Fig. 2 shows some visual
examples of RRSIS-HR and RRSIS-D datasets. Compared to the
RRSIS-D dataset, although the RRSIS-HR dataset is not large
in scale, it contains higher-resolution remote sensing images,
with longer and more complex language expressions, making
it a challenging dataset that includes complex remote sensing
scenes for RRSIS methods.

IV. METHODOLOGY

A. Overview

The framework of our proposed CADFormer is illustrated
in Fig. 3. It mainly consists of three parts: the image and
text encoders, the SMGAM, and the TCMD. Given an im-
age I ∈ RH×W×3 and a language expression E ∈ {ei}, i =
{0, 1 . . . N}, where H and W denote the height and width of
the input image, respectively, and N represents the length of
the language expression. We utilize the Swin Transformer [44]
as the visual backbone network to extract multiscale visual
features from the input image. The visual features at each stage
are denoted asVi ∈ RHi×Wi×Ci , i ∈ {1, 2, 3, 4}, whereHi,Wi,
and Ci represent the number of height, width, and channel of
the feature map from the ith stage, respectively. In addition,
we use BERT [25] as the text encoder to extract language
features represented as L1 ∈ RN×Ct , where N and Ct denote
the length of the sentence and the channel number, respectively.
The language features from different stages and the multiscale
visual features are progressively fed into the SMGAM. This
module aligns cross-modal semantics and generates enhanced
visual and linguistic representations. The enhanced visual and
linguistic representations are then fed into the TCMD to predict
pixel-level segmentation masks. We will introduce each module
in detail as follows.

B. Semantic Mutual Guidance Alignment Module

In prior works [18], [19], [24], cross-modal alignment was
limited to a coarse-grained unidirectional alignment from vision
to language. The language features fused at each stage were
directly derived from the initial sentence features extracted
by BERT [25]. We consider this a coarse-grained alignment
strategy that does not fully exploit the potential of language
features. When the language expressions increase in length and
complexity, existing approaches often encounter challenges in
accurately distinguishing and localizing target objects across
multiple categories. To address the challenge, we propose
the SMGAM, which comprises two submodules, namely the
language-guided vision-language alignment (LGVLA) submod-
ule and the vision-guided language-vision alignment (VGLVA)
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Fig. 3. Overview of our proposed CADFormer framework. The model first aligns multiscale visual features and text features progressively through the SMGAM.
Then, the refined text features are used as contextual information to query the refined multiscale visual features in the TCMD, retrieving and aggregating target
object information to generate the prediction results.

(a) (b)

Fig. 4. Illustration of the proposed SMGAM. (a) LGVLA Submodule.
(b) Vision-Guided Language-Vision Alignment Submodule.

submodule, as shown in Fig. 4. Both submodules take multiscale
visual features Vi and stage-specific language features Li as
input. The LGVLA submodule produces refined visual features
V ′i , while the VGLVA submodule produces refined language fea-
tures L′i. Through a four-stage semantic mutual guidance align-
ment process, progressively refined visual and language features
are obtained, achieving fine-grained cross-modal alignment. We
will describe these two submodules in detail as follows.

1) Language-Guided Vision-Language Alignment: During
the stage i, the LGVLA submodule takes the language features
Li and visual features Vi as input, as shown in Fig. 4(a).

To better adapt to subsequent alignment tasks, visual features
Vi are first passed through a projection layer, where they are
mapped into a new feature space. The projection layer consists
of a 1× 1 convolutional layer followed by a GELU activation
function, denoted as Proj(·). The process can be formulated
as: V̂i ←− Proj(Vi). Next, the language features interact with
the visual features through a multihead attention [32] layer. For
cross-modal interaction at each stage, the multihead attention
layer performs cross-attention to obtain enhanced visual repre-
sentations, where the visual features act as the query, and the
language features serve as the key and value. Although the key
and value are both derived from the language features, they are
projected into different feature spaces through separate learn-
able transformations. Specifically, the attention layer initially
calculates the similarity between the visual features and the
language features through a scaled dot-product operation, which
aligns each visual element with each language element. This
computation results in a cross-modal similarity matrix M i

vl that
quantifies the relevance and interaction strength between the two
modalities. The formulation is as follows:

M i
vl = Softmax

(
V̂iW

i
q ·
(
LiW

i
k

)T
√
Ci

)
(1)

where W i
q and W i

k are the linear projections. Each of them is
implemented as a 1× 1 convolution with Ci output channels.
Subsequently, we utilize the similarity matrix M i

vl to integrate
object-relevant details from the visual features into the language
features and then multiply the result with the projected visual
features, yielding language-guided visual features Ai

vl. The
resulting features Ai

vl are further processed through another
projection layer, followed by a language gate [24] to produce
the refined visual features. The process is specifically described
as follows:

Ai
vl = M i

vlLiW
i
v ⊗ V̂i (2)

V ′i = Gate
(
Proj

(
Ai

vl

))
(3)

Gate(x) = MLP(x)⊗ x (4)
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where W i
v is the linear projection implemented as a 1× 1

convolution,⊗ denotes element-wise multiplication andProj(·)
represents the projection layer, which consists of a 1× 1 convo-
lutional layer followed by a GELU activation function. Gate(·)
refers to a language gate and x is its input variable. MLP is a
two-layer perceptron. The first layer is a linear layer followed
by a ReLU activation function, while the second layer is a linear
layer followed by a Tanh activation function. Subsequently, the
refined visual features V ′i generated by the LGVLA submodule
are merged with the original input features Vi. After passing
through the next stage of the Swin Transformer layer, they are
transformed into visual features for the next stage. The process
can be described as follows:

Vi+1 = SwinStagei+1 (V
′
i + Vi) (5)

where SwinStagei denotes the ith stage of the Swin Trans-
former [44], which primarily consists of downsampling oper-
ations and MLP layers.

2) Vision-Guided Language-Vision Alignment: Similar to
the LGVLA submodule, the VGLVA submodule also takes lan-
guage features and visual features from different stages as input
and progressively performs cross-modal interactions between
the two modalities. However, unlike the LGVLA submodule,
the VGLVA submodule performs a different process and focuses
on enhancing the language features through a series of iterative
refinements guided by the visual context, as shown in Fig. 4(b).
Specifically, the module employs the multihead attention [32]
mechanism to iteratively align and refine the language features
based on visual information. The output refined language fea-
tures iteratively interact with the visual features of subsequent
stages and this process continues until the refined language
features have fully engaged with the multiscale visual features
across all stages. During the ith stage, the language features
first pass through a projection layer consisting of a linear layer
followed by a GELU activation function, denoted as Proj(·).
The process is described as follows: L̂i ←− Proj(Li). Subse-
quently, the multihead attention layer performs cross-attention
to complete the cross-modal interaction between language and
visual features, where the language features serve as the query,
while the visual features act as the key and value, which are pro-
jected into different feature spaces through separate projection
transforms. Specifically, the attention layer initially calculates
the similarity between each language element and each visual
element through a scaled dot-product operation to obtain the
cross-modal similarity matrix M i

lv as follows:

M i
lv = Softmax

(
L̂iW

i
q ·
(
ViW

i
k

)T
√
Ci

)
(6)

where W i
q and W i

k are the linear projection matrices. Each of
them is implemented as a 1× 1 convolution with Ci output
channels. Then, we utilize this similarity matrixM i

lv to integrate
object-relevant information from the language features into the
visual features and multiply the result by the projected language
features to obtain vision-guided language features. The resulting
output is then passed through a projection layer, followed by a
gate network similar to the language gate [24], to produce the

refined language features. This gate network is still denoted as
Gate(·). The process is described as follows:

Ai
lv = M i

lvViW
i
v ⊗ L̂i (7)

L′i = Gate
(
Proj

(
Ai

lv

))
(8)

where W i
v is the linear projection implemented as a 1× 1

convolution,⊗ denotes element-wise multiplication. Gate(·) is
a gate network with the same computation as equation (4), con-
sisting of MLP [44] followed by multiplication. After that, the
refined language features generated by the VGLVA submodule
are merged with the input features Li and transformed into the
language features for the next stage, serving as the input for the
subsequent SMGAM stage. The process is described as follows:

Li+1 = Li + L′i. (9)

The refined language features obtained at the final stage are
denoted as L5.

C. Textual-Enhanced Cross-Modal Decoder

Previous works [18], [19], [24], [27] used only refined mul-
tiscale visual features as input during mask prediction, without
fully leveraging the language features. These methods typically
perform cross-modal interaction only before decoding, limiting
their ability to further utilize language information during the
decoding process. As a result, fine-grained details crucial for
accurate segmentation may be lost. Furthermore, the lack of
deep interaction between the semantic details in the language
features and the visual features hinders the ability of the model to
effectively distinguish between different categories or precisely
segment specific target objects within the same category.

In contrast, our TCMD utilizes refined multiscale visual
features and refined language features L5 as input for mask
prediction. The introduction of language features enables the
model to focus on important information about the target objects
at each stage of the decoding process, thereby enhancing its
ability to capture fine-grained details. Specifically, the refined
language features serve as contextual information to gradually
guide the feature decoding process, retrieving and aggregating
target object information from the refined visual features. This
process incorporates a multilayer interaction mechanism of the
Transformer decoder [32], where visual features are first re-
shaped as a sequence and aligned in dimensions with language
features. Subsequently, the two modalities are fused through
the Transformer decoder, where the self-attention mechanism
dynamically incorporates contextual language information to
enhance the semantic representation of visual features. Overall,
through progressively integrating visual and language features
across decoding layers, TCMD enables the model to capture
the fine-grained relationships between modalities more accu-
rately, thereby enhancing its understanding of complex scenes
and improving the quality of mask prediction. Specifically,
our decoding process follows a top–down approach, integrat-
ing refined multiscale visual features with refined language
features, as shown in Fig. 5. In Fig. 5, the light blue rectan-
gles of varying sizes represent refined multiscale visual fea-
tures V ′i with different dimensions and we denote them as
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Fig. 5. Illustration of the proposed TCMD. MH Attention denotes the multihead attention layer. ARC denotes the adaptive rotated convolution. The light blue
rectangles of varying sizes represent refined multiscale visual features with different dimensions.

V ′i ∈ R(H
′/2i−1)×(W ′/2i−1)×C ′i , i ∈ {1, 2, 3, 4}, where H ′/2i−1,

W ′/2i−1, and C ′i represent the number of height, width and
channels of the feature map. The overall decoding process can
be described as follows:

Y4 = V ′4 (10)

Yi = Transformer (Seg ([Yi+1;V
′
i ]) , L5) , i = {2, 3} (11)

Y1 = Seg ([Y2;V
′
1]) (12)

where [; ] represents the concatenation operation along the chan-
nel dimension. Before concatenation, bilinear interpolation is
applied to ensure spatial consistency between the feature maps.
Seg(·) consists of two 3× 3 convolutional layers, batch nor-
malization, and ReLU activation functions to enhance the non-
linearity of the segmentation feature space. In addition, one of
the 3× 3 convolutional layers is replaced by an adaptive rotated
convolution layer [19] to leverage directional information in the
feature space, thereby eliminating redundancy and improving
the accuracy of boundary details.Transformer(·) represents the
Transformer decoder layer. The final feature map is projected
into two class score maps using a 1× 1 convolution. Finally,
bilinear interpolation is employed to upsample the results to
match the resolution of the input image.

D. Loss Function

In remote sensing images, the scarcity of target pixels com-
pared to the abundance of background pixels creates a notable
class imbalance. This imbalance can lead traditional cross-
entropy loss functions to bias the model towards learning back-
ground features, ultimately reducing the effectiveness of target
region detection. To address this issue, we adopt a combined
loss function consisting of cross-entropy loss and Dice loss as
our training objective

L = λ · Lcross-entropy

(
Y, Ŷ

)
+ (1− λ) · Ldice

(
Y, Ŷ

)
(13)

where λ is the hyperparameter that balances the two loss func-
tions, set to 0.9. Ŷ represents the predicted results, andY denotes
the ground truth.

V. EXPERIMENTS

A. Implementation Details

1) Experiment Settings: We use PyTorch to implement our
method. Similar to previous methods [18], [19], during the
experiments, we use the Swin Transformer [44] as the visual
backbone, pretrained on ImageNet22 K, and the base BERT
model from HuggingFace’s library [45] as the text encoder. We
employ the AdamW optimizer with a weight decay of 0.01 and
an initial learning rate of 0.00005, with the learning rate decaying
according to a polynomial schedule. The batch size is set to 2,
and each model is trained for 40 epochs on an NVIDIA GeForce
RTX 3090 GPU. During both training and testing phases, all
images are resized to 480× 480 pixels.

2) Evaluation Metrics: Following the prior research [18],
[19], [24], we use mean intersection over union (mIoU), overall
intersection over union (oIoU), and Precision@X (Pr@X) as
evaluation metrics. Precision@X refers to the percentage of test
samples for which the IoU between the predicted result and the
ground truth exceeds a threshold X. It is used to evaluate the
accuracy at a specific IoU threshold and reflects the method’s
performance in object localization. The mIoU and oIoU can be
formulated as follows:

mIoU =
1

M

∑
t

It/Ut (14)

oIoU =
∑
t

It/
∑
t

Ut (15)

where t is the index of the image-language-label triplets and M
represents the size of the dataset. It and Ut are the intersection
and union areas of predicted and ground-truth regions.

3) Compared Methods: To evaluate the effectiveness of our
proposed CADFormer, we compared it with several state-of-
the-art methods of RIS for both natural images and remote
sensing images on the test sets of RRSIS-D and RRSIS-HR. The
results of the different methods are shown in Tables II and III,
respectively. For a fair comparison, we reimplemented some of
the state-of-the-art methods, including LAVT [24], LGCE [18],
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TABLE I
DETAIL OF THE RRSIS-HR DATASET

RMSIN [19], and FIANet [27], with a total of 40 training epochs
for both RRSIS-D and RRSIS-HR. For some earlier released
methods, we used the results reported in RMSIN [19].

B. Dataset

We conducted experiments on two datasets, including the
publicly available RRSIS-D dataset and the RRSIS-HR dataset
constructed by us. Detailed information about these datasets is
as follows.

1) RRSIS-D: The RRSIS-D dataset is built on the DIOR-
RSVG [20] dataset and contains 20 object categories. The dataset
contains a total of 17 402 image-language-label triplets, with
12 181 for training, 1740 for validation, and the remaining 3481
for testing, which is a large benchmark. The image size in this
dataset is 800× 800 pixels with spatial resolutions ranging from
0.5 to 30 m. The average length of the language expressions is
6.8 words. Some visual examples of the RRSIS-D dataset are
shown in Fig. 2(b).

2) RRSIS-HR: The RRSIS-HR dataset contains very high-
resolution remote sensing images and longer, semantically richer
language expressions. Specifically, the dataset contains 2650
image-language-label triplets and 7 object categories in to-
tal. The training set has 2118 triplets, the validation set has
268 triplets, and the remaining 264 triplets are in the test set.
Each remote sensing image has a size of 1024× 1024 pixels,
containing varying scales and details, and covers an area ranging
from 0.06 km2 to 25 km2. The average length of the language
descriptions is 19.6 words, with a minimum of 6 words and a
maximum of 41 words. More detailed information about the
RRSIS-HR dataset can be found in Table I, and some visual
examples are shown in Fig. 2(a).

C. Results and Analysis

Table II presents the overall results of different methods
on the RRSIS-D dataset. It can be observed that our method
achieves the best performance across multiple evaluation met-
rics, including mIoU, oIoU, and precision scores from Pr@0.5
to Pr@0.8. Notably, our method outperforms the second-best
RMSIN by 1.42% in mIoU, 0.59% in oIoU, and 1.98% in
Pr@0.5, and 1.78% in Pr@0.6. This result suggests that our
method achieves strong segmentation performance at low and
medium overlap thresholds. However, its performance at the
stricter Pr@0.9 threshold is less competitive, potentially due to
the limitations of the model in capturing high-precision details,
as it prioritizes overall segmentation accuracy. Fig. 6 shows

the visual segmentation results of different methods on the
RRSIS-D test set, along with the corresponding IoU scores.
It can be observed that, compared to the model RMSIN [19],
our CADFormer exhibits superior segmentation performance
across various remote sensing scenes. Specifically, our method
produces more accurate pixel-level segmentation masks with
higher IoU scores for different ground objects at various scales
while significantly reducing misclassification errors.

We further evaluated our proposed method on the RRSIS-
HR dataset. Considering the complexity of the dataset, we
selected several state-of-the-art RRSIS methods and LAVT [24]
as comparison models. The results are shown in Table III. It
can be observed that our method achieves the best performance
across all metrics. Specifically, our CADFormer outperforms
the second-best RMSIN [19] by 10.98% in Pr@0.6, 11.01% in
mIoU, and 7.32% in oIoU. Fig. 7 shows the visual segmentation
results of different methods on the RRSIS-HR test set, along with
the corresponding IoU scores. For better clarity, we marked the
approximate locations of the target objects with yellow boxes in
the first row of the original images. In addition, we highlighted
the clearly incorrect predicted areas with yellow circles. As
can be seen, our method CADFormer demonstrates superior
segmentation performance by more accurately segmenting the
target objects in complex remote sensing scenes. For instance,
in the first column of Fig. 7, RMSIN [19] not only predicts
the target object, but also mistakenly predicts other nonspecific
category objects, as indicated by the yellow circles. In the third
and fourth columns, RMSIN incorrectly predicts the storage tank
on the right and the roundabout in the middle, respectively. In
contrast, our CADFormer correctly predicts the target objects
specified by the language expressions, which aligns with the task
requirements of RRSIS. The quantitative and qualitative results
on the RRSIS-HR test set indicate that when the resolution of
the remote sensing images is very high, and the target objects are
hidden in complex backgrounds with more complex language
expressions, previous RRSIS methods fail to deliver satisfac-
tory performance. However, our CADFormer can achieve ac-
curate target segmentation, demonstrating its effectiveness and
superiority.

D. Ablation Study

We conducted ablation experiments on the test sets of both
the RRSIS-HR and RRSIS-D datasets to verify the effectiveness
of the core modules in our method.

1) Effectiveness of SMGAM and TCMD: To evaluate the ef-
fectiveness of our proposed SMGAM and TCMD, we performed
ablation studies on all combinations of SMGAM and TCMD, as
illustrated in Table IV. The first row presents the experimental
results of the model using traditional cross-modal alignment in
LAVT [24], without SMGAM and TCMD, which only reaches
60.05% and 39.48% mIoU on the RRSIS-D and RRSIS-HR
datasets, respectively. As can be seen in the second row, the
introduction of SMGAM improves the mIoU by 2.34% on the
RRSIS-D dataset and by 7.16% on the RRSIS-HR dataset. In
the third row, we add TCMD for the base model. The results
indicate that the introduction of TCMD leads to improvements
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TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE RRSIS-D TEST SET

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE RRSIS-HR TEST SET

Fig. 6. Qualitative comparisons of different methods on the RRSIS-D test set. From top to bottom: original image, predictions by RMSIN, predictions by
CADFormer, ground truth, and language expressions.
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Fig. 7. Qualitative comparisons of different methods on the RRSIS-HR test set. From top to bottom: original image, predictions by RMSIN, predictions by
CADFormer, ground truth, and language expressions. Yellow boxes indicate the approximate location of the target objects, while yellow circles highlight obvious
incorrect predictions.

TABLE IV
ABLATION STUDIES ON THE SMGAM AND TCMD

in Pr@0.6, mIoU, and oIoU. The fourth row shows the complete
model, our CADFormer. Although the value of oIoU is slightly
lower by 0.07% compared to the second row, this complete
model outperforms the base model without SMGAM and TCMD
in all metrics. Specifically, the value of mIoU improved by
3.72% and 15.23% on the two datasets, respectively. These
results demonstrate that our proposed SMGAM and TCMD are
effective in improving the overall segmentation capability and
play a crucial role in handling complex scenes.

2) SMGAM Analysis: To comprehensively assess the impact
of two submodules in SMGAM, we conducted ablation studies

TABLE V
ABLATION STUDIES ON TWO SUBMODULES OF SMGAM

on the test set of the RRSIS-HR dataset. As shown in Table V, the
base model lacking VGLVA and LGVLA submodules exhibits
significant performance degradation, achieving only 37.17%
mIoU. When only the VGLVA submodule is used, the mIoU
metric improves to 41.48%. The results indicate that the in-
troduction of VGLVA brings 4.31% gains for the base model
in mIoU. In contrast, the LGVLA submodule alone yields a
more substantial improvement, boosting the mIoU by 12.06%.
These results indicate that while the LGVLA module plays
a more prominent role, the VGLVA module also contributes
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(a) (b)

Fig. 8. TCMD module analysis, where OAD denotes the OAD, and LCGE
represents that the model uses the standard decoder in LGCE. (a) Comparison
on the RRSIS-D test (b) Comparison on the RRSIS-HR test.

critically to the cross-modal alignment process. The synergistic
interaction between the two modules leads to optimal model
performance, validating the importance of the semantic mutual
guidance alignment approach.

3) TCMD Module Analysis: To further demonstrate the ef-
fectiveness of the proposed TCMD, we compared it with two
existing decoders: the oriented-aware decoder (OAD) in RM-
SIN [19] and the standard segmentation decoder in LGCE [18].
We utilize the two decoders to replace the TCMD, respectively,
maintaining the integrity of the remaining components within
the CADFormer model. Fig. 8 presents the comparative ex-
perimental results of using different decoders, where Fig. 8(a)
and (b) demonstrate the performance of the model on the test
sets of the RRSIS-D and RRSIS-HR datasets, respectively. The
experimental results indicate that our proposed TCMD method
outperforms the other two decoders, which not only validates the
importance of incorporating language features at the decoding
stage, but also confirms the effectiveness of our proposed TCMD
module.

E. Discussion and Analysis

1) Limitations: Although our CADFormer can effectively
model and reason based on language expressions involving
complex relationships, it still exhibits certain failure cases. There
are primarily three types of failure cases, as illustrated in Fig. 9.
The first type is shown in the first column. When the target object
shares similar visual features with the background, it is challeng-
ing to accurately delineate the boundary of the target object.
The second column presents the second type. The ambiguity,
imprecision, and complexity of the language expressions may
cause confusion. For instance, the phrase “a baseball field on
the bottom” is ambiguous. In the given image, multiple baseball
fields are present, and a distracting baseball field located at
the bottom better matches the phrase than the intended target,
making it easier for the model to misidentify the object. As
shown in the third column, when the language expression refers
to multiple targets, the model occasionally segments only a
single instance. We argue that specialized methods are necessary
for multiobject segmentation tasks, similar to the generalized
RIS [39] task. We believe that multiobject segmentation based on

Fig. 9. Failure cases of our method on the RRSIS-HR test set. The approximate
area around the target object is enlarged and indicated with yellow boxes in the
first row.

TABLE VI
COMPUTATIONAL COMPLEXITY COMPARISON OF DIFFERENT METHODS

language expressions in the remote sensing domain will become
one of the major research directions in the future.

2) Efficiency and Complexity: To evaluate the computational
efficiency and complexity, we report the floating point operations
(FLOPs), the number of parameters (Params), and inference time
(in seconds) per image on the test set of RRSIS-HR, as shown
in Table VI. From the table, it can be observed that CADFormer
has a higher computational cost in terms of FLOPs and Params
compared to the other models. This is due to the additional
complexity introduced by the fine-grained cross-modal align-
ment mechanism and the TCMD. However, this higher compu-
tational complexity also leads to superior model performance, as
demonstrated in other experimental sections where CADFormer
outperforms other models in multiple performance metrics. In
addition, we demonstrate through ablation studies that each
newly introduced module contributes to the final performance
of the model. Regarding inference time, CADFormer requires
0.1446 s, which is slightly higher than RMSIN [19] (0.1264 sec-
onds) and FIANet [27] (0.1365 s), but the increase is minimal and
falls within a reasonable and acceptable range, without causing
significant impact on practical applications.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Qualitative results of CADFormer on the same image with different
language expressions. (a) Input image. (b) Input image with magnified detail.
(c) Ground Truth for (d) and (e). (d) Result with short language expression.
(e) Result with long language expression. (f) Result with multiobjective language
expression.

3) Different Language Expressions: To explore the impact
of different language expressions, we conduct additional exper-
iments by feeding the same image with three types of language
expressions, i.e., short language expression, long language
expression, and multiobjective language expression, to our
trained model, as shown in Fig. 10. For the short language ex-
pression, the model achieves strong segmentation performance
with an IoU score of 0.8845, as shown in Fig. 10(d). Short
descriptions are simple and direct, allowing the model to focus
more effectively on key image regions, resulting in more accu-
rate segmentation. When using the long language expression,
the segmentation performance of the model slightly decreases,
with an IoU score of 0.8243, as shown in Fig. 10(e). Long
descriptions provide richer contextual details, which can help
disambiguate target objects in complex scenes. However, they
can also introduce irrelevant information, hindering segmenta-
tion accuracy. As shown in Fig. 10(f), for the multiobjective
language expression, the model attempts to segment multiple
targets but struggles with precision. This limitation arises be-
cause our dataset contains few multiobjective annotations and
the model architecture is not optimized for such tasks. Future
work should explore dedicated datasets and model designs for
multiobject segmentation.

VI. CONCLUSION

In this article, we propose CADFormer, a novel RRSIS
method based on semantic mutual guidance alignment and a
TCMD, which excels at segmenting specific target objects in
complex remote sensing scenes. Specifically, SMGAM aims to
enhance the semantic correlation between visual and language
features and achieve fine-grained cross-modal alignment, gen-
erating refined multiscale visual and refined language features

based on semantic mutual guidance. In TCMD, we use the re-
fined language features as contextual information to retrieve and
aggregate referential object information from refined multiscale
visual features, achieving precise segmentation. Besides, a new
RRSIS dataset based on very high-resolution remote sensing
images with longer, semantically richer language expressions is
constructed to evaluate the performance of the existing RRSIS
methods and our proposed methods in complex remote sens-
ing scene understanding. Experimental results on two RRSIS
datasets demonstrate that our CADFormer outperforms the ma-
jority of existing RRSIS methods. In addition, when dealing
with complex scenes and language expressions, our method
can generate fine-grained segmentation results. From the exper-
iments, we find that semantic mutual guidance alignment facil-
itates fine-grained cross-modal alignment, while incorporating
text features during the decoding process effectively improves
segmentation accuracy. Future work could focus on developing
a generalized RIS approach for remote sensing images, which
can match multiple targets or no target based on language
expressions.
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