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ABSTRACT With the rapid urbanization, vehicle management at construction sites has become crucial
for safety and logistics efficiency. However, License Plate Detection in such environments faces unique
challenges, such as simultaneous detection of dual plates and body plates, strong light reflections, and
muddy interferences. This paper constructs a license plate dataset, CSLPD, specifically for construction sites,
containing 1495 images and 2301 license plate instances, with double and body license plates accounting for
27.2% and 25.4%, respectively. To enhance detection performance in complex environments, this paper pro-
poses the GMH-YOLO model, which integrates an innovative Gated Multi-Head Attention mechanism into
the C3k2 module of YOLO11. This lightweight gating unit adaptively allocates feature channel resources,
effectively enhancing key information while suppressing background interference, making it particularly
suitable for detecting multiple license plate types and partially occluded plates in complex construction
site environments. Experimental results show that GMH-YOLO achieves 93.3% mAP@50 on the CSLPD
dataset, outperforming YOLO11 by 1.4%. For the challenging body license plate task, detection accuracy
improves from 81.3% to 87.2%, a 5.9% increase. The model maintains high real-time performance due to the
optimized gating mechanism. Comparative experiments with six attention mechanism integration schemes
confirm that the gated mechanism provides the best balance between feature extraction and computational
efficiency, offering a high-precision, efficient solution for intelligent license plate recognition at construction
sites.

INDEX TERMS License plate recognition, smart construction site, GMH-YOLO, CSLPD.

I. INTRODUCTION
With the rapid advancement of global urbanization, the
demand for intelligent management of construction sites has
become increasingly prominent. Construction site vehicle
management [1] plays a key role in ensuring construction
safety and improving logistics efficiency. As a critical com-
ponent, license plate recognition technology must address
unique challenges in construction site environments, despite
being widely deployed in Intelligent Transportation Systems
(ITS) [2] and access control management.

Recent object detection algorithms based on deep Convo-
lutional Neural Networks (CNNs) [3] have made significant
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progress in solving complex visual problems. Traditional
Automatic License Plate Recognition (ALPR) systems con-
sist of three main stages: License Plate Detection (LPD)
[4], Character Segmentation (CS) [5], and Optical Character
Recognition (OCR) [6]. License plate detection forms the
foundation of ALPR systems, directly affecting subsequent
module performance.

Construction site environments often face more complex
and unique conditions compared to urban traffic scenarios.
First, most construction sites feature harsh conditions, with
heavy dust particles continuously suspended in the air, sig-
nificantly reducing visibility and accumulating on license
plate surfaces, causing partial or complete character obscura-
tion. Second, construction sites experience extreme lighting
variations, causing severe glare on license plates, resulting
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in dramatic contrast differences even within a single image.
Furthermore, construction vehicles typically employ multi-
ple license plate modes simultaneously: standard regulatory
plates, auxiliary plates indicating vehicle type or function,
and large identifiers painted on vehicle bodies to maintain
visibility from multiple angles. The practicality of these
identification enhancements also increases the complexity
of detection, especially for body license plates with varying
dimensions, positions, and visual characteristics. Finally, the
continuous vibration and movement of both vehicles and
camera systems in active construction environments intro-
duce motion blur that further complicates accurate license
plate recognition.

In construction environments, real-time performance and
detection accuracy are equally important. On one hand, con-
struction site vehicle management requires systems capable
of processing information in real-time to ensure safety and
efficiency; on the other hand, speed without accuracy fails
to meet practical application requirements. Therefore, this
research aims to develop a solution that effectively addresses
these complex challenges while maintaining computational
efficiency.

Single-stage detection algorithms represented byYOLO [7]
have demonstrated high accuracy and real-time process-
ing capabilities in object detection. While versions such
as YOLOv5 [8], YOLOv7 [9], and YOLOv8 [10] have
achieved remarkable results in license plate detection, exist-
ing methods still show limitations in handling dual license
plate detection and vehicle license plate recognition within
complex construction environments.

To address these challenges, this study introduces the Con-
struction Site License Plate Dataset (CSLPD), specifically
designed for complex construction site scenes. The dataset
encompasses vehicle images with dual license plates and
body license plates, including instances of clear, blurred,
occluded, and defaced license plates, providing substantial
real-world data support for recognition tasks.

This paper also proposes the GMH-YOLO algorithm based
on YOLO11 [11], integrating an improved Gated Multi-
Head self-attention (GMHSA) mechanism. This solution
effectively addresses the key challenges of construction site
license plate recognition: For multiple co-existing license
plate types, the mechanism adaptively focuses on targets
of different scales and features through the multi-head; For
environmental interference issues, the gating mechanism
calculates feature importance weights, enhancing key fea-
ture representations while suppressing background noise and
interference information, improving model robustness under
complex conditions such as strong light reflection and dust
interference; To balance real-time performance and accuracy,
the gated attention mechanism adopts a lightweight design,
enhancing model representation capability while adding min-
imal computational overhead, ensuring the system meets
real-time requirements for practical applications.

The main contributions of this paper include:

First, our proposed gated multi-head attention mecha-
nism (GMH) optimizes the feature extraction process. GMH
adaptively calculates attention weights through a lightweight
gating unit, enabling the model to intelligently allocate
resources across different channels, differentially processing
key feature regions and background information. This mech-
anism is particularly suitable for handling standard license
plates and body license plates simultaneously present at con-
struction sites, as well as license plates partially obscured by
strong light and dust.

Second, we conduct extensive experiments demonstrat-
ing GMH-YOLO’s superior performance in construction site
license plate detection, achieving 93.3% mAP@50 (1.4%
higher than YOLO11), with vehicle body license plate
detection accuracy improving by 5.9% while maintaining
computational efficiency.

Finally, we provide comprehensive evaluation of six
improvementmethods based on the C3kmodule and attention
mechanisms, providing new insights into attention mecha-
nism applications in object detection.

The subsequent sections present related work and datasets
(Section II), detail the proposed model (Section III), dis-
cuss experimental results (Section IV), and conclude with
findings and future directions (Section V).

II. RELATED WORK
A. OBJECT DETECTION IN LICENSE PLATE RECOGNITION
In recent years, CNNs have been at the forefront of object
detection. Compared to traditional manual feature extraction
methods [12], [13], [14], deep learning offers abundant train-
ing data, higher efficiency, and greater flexibility. Detection
algorithms can generally be divided into two categories:
single-stage detection algorithms, such as SSD [15] and
YOLO, and two-stage detection algorithms, such as R-CNN
[16] and Faster R-CNN [17]. To ensure real-time detection,
the license plate recognition field often opts for faster and
lighter single-stage detection algorithms.

Luo and Liu [8] proposed a vehicle license plate recogni-
tion method based on an improved YOLOv5m and LPRNet
model. The K-means++ algorithm is used to improve the
matching between anchor frames and detection targets, and
the DIOU loss function is employed to enhance the NMS
method. Additionally, they removed the 20× 20 feature map
and designed a license plate recognition system based on
YOLOv5m-LPRNet, achieving both real-time performance
and stability.

In the study [18], the YOLO-World model was proposed
to address license plate detection across diverse scenarios in
various countries and regions. The model was tested on the
American datasets, including Stanford Cars Dataset, Used
Car Dataset, and Automobile Dataset, the Indian license
plate dataset Real-time Dataset, and the large Chinese dataset
CCPD. It achieved notable accuracy and real-time perfor-
mance across these datasets. Chung et al. [9] proposed the
YOLO-SLD model [17], an improved version of YOLOv7,
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which integrated the lightweight attention module SimAM
to develop SIMAM-ELAN and SIMAM-ELAN-H modules.
These modules considered the correlation between spatial
and channel factors, generating realistic three-dimensional
weights to improve the model’s convergence performance.
When tested on the large public CCPD dataset, the model
achieved an increase inmAP@50 by 0.47%. In the study [10],
the YOLOv8 model was utilized, and a specialized GUI
widget was developed specifically for YOLOv8. This wid-
get aimed to support developers in efficiently completing
YOLOv8 training and inference tasks, while also enhancing
development efficiency.

Moussaoui et al. [19] proposed a high-precision license
plate detection and recognition method by integrating
YOLOv8 and OCR techniques. Their system first employs
YOLOv8 to detect license plate regions in images, then
applies the k-means clustering algorithm, thresholding tech-
niques, and opening morphological operations to enhance the
image, making characters in the license plate clearer before
using OCR. The method achieved convincing results in both
detection and recognition performance, reaching accuracy
rates of 99% and 98%, respectively.

Recently, Ismail et al. [20] presented a dual-stage
approach for real-time license plate detection and recogni-
tion on mobile security robots. Their system combines the
YOLOv7x model for license plate detection with a vision
transformer-based recognizer (ViTLPR). ViTLPR utilizes
the self-attention mechanism to read character sequences
on license plates, without requiring character segmentation,
by directly treating license plate recognition as a sequence
labeling problem. Extensive experiments on their self-built
PGTLP-v2 dataset and five other benchmark datasets demon-
strated that their proposed ALPR system outperforms exist-
ing baseline methods while maintaining efficient inference
speed.

B. YOLO MODEL NETWORK
TheYOLO framework has evolved significantly through con-
tinuous innovations from the Ultralytics team and research
community. YOLOv5 integrates CSPNet [21] and Path
Aggregation Network (PAN) [22] concepts, employing the
CSP structure to optimize computational efficiency while
maintaining accuracy. YOLOv8 marks another significant
advancement with its C2f module replacing the traditional
C3module, coupled with a RepVGG-inspired [23] decoupled
head design and refined loss functions incorporating Variable
Focal Loss (VFL) and Distributed Focal Loss (DFL).

YOLO11 [11], the latest iteration from Ultralytics, intro-
duces several breakthrough improvements over YOLOv8.
The model incorporates C3k2 and C2PSA modules while
adopting YOLOv10’s [24] detection head principles.
Through the integration of Deep Separable Convolution
(DWConv), YOLO11 achieves enhanced performance in
complex scenes and small target detection while maintain-
ing a lightweight architecture. This balanced design makes

it versatile across platforms, from edge devices to high-
performance systems. Each component’s contribu-tion will
be analyzed in the experimental section.

As shown in Figure 1, YOLO11 is divided into three parts:
Backbone Network (Backbone), Neck Network (Neck) and
Head Network (Head). In the Backbone Network, YOLO11
introduces the C3k2 module, as shown in Figure 2. This
module is an improvement based on C2f, and the convolution
content of the C3 module can be controlled by setting True
or False. In addition, the Cross-stage Local Network with
Parallel Spatial Attention(C2PSA) module is added to the
end of the backbone network to enhance the spatial attention
mechanism.

In addition, the Neck still adopts the Path Aggregation
Network (PANet) structure, which enhances the context rep-
resentation ability of the model through multi-scale feature
fusion. It also improves the bottom-up feature propagation
path to provide more comprehensive and high-quality feature
information for the head network.

In the Head, YOLO11 uses DWConv to significantly
reduce the computational cost and number of parameters
while speeding up feature processing. The introduction of
DWConv not only improves the inference efficiency of the
model, but also further optimizes the accuracy of multi-scale
prediction. By outputting multi-level feature maps, the head
network enables YOLO11 to achieve new performance levels
in target detection in complex scenarios while maintaining a
lightweight design.

C. ATTENTION MECHANISM
1) ATTENTION MECHANISMS IN RELATED VISUAL TASKS
The challenges in license plate recognition in construc-
tion site environments, such as distinguishing targets from
complex backgrounds, handling partial occlusions, and
adapting to varying lighting conditions, are significantly
similar to the challenges in saliency detection and inter-
active image segmentation tasks. The innovative meth-
ods in these related fields provide valuable insights into
addressing license plate recognition challenges in complex
environments.

Chen et al. in [25] explored the issue of ‘‘feature spatial
independence,’’ pointing out that this is one of the root causes
of poor performance of saliency detectors in complex areas
(such as object boundaries). This observation inspires us to
consider: in the complex environment of construction sites,
is the blurred boundary problem in license plate detection also
derived from similar feature independence? This perspective
is valuable for addressing plates with similar textures, partial
occlusions, or uneven lighting.

Another related work is ‘‘Gaussian Dynamic Convolution
for Efficient Single-Image Segmentation’’ [26] proposed by
Sun et al., which is inspired by the human visual system and
simulates dynamic receptive field mechanisms. They point
out that traditional convolution operations are limited by fixed
receptive fields and struggle to adapt to feature extraction of
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FIGURE 1. Original YOLO11 overall framework.

targets at different scales. In construction site scenes, the scale
difference between standard license plates and body license
plates is significant, which is highly similar to the problem
solved by GDC. GDC can simultaneously capture features at
multiple scales by randomly selecting spatial sampling areas
from a Gaussian distribution to form dynamic convolution
kernels. This multi-scale feature capture capability is partic-
ularly valuable for scenarios that process different types of
license plates (standard plates, double plates, body plates)
simultaneously.

Although the GDC offers significant advantages in pro-
cessing multi-scale features, our research opted for an
attention mechanism-based approach rather than directly
adopting GDC. This is primarily because license plate detec-
tion in practical applications requires balancing real-time
performance and accuracy, while GDC’s random sampling
process would increase computational burden. Nevertheless,
the core concept of GDC—breaking the limitation of fixed
receptive fields in traditional convolution and establishing
more flexible feature extraction mechanisms, and it inspired
our subsequent design of the gated multi-head attention

module. Our GMH-YOLO draws on the concept of dynamic
feature aggregation, adaptively adjusting weights of differ-
ent features through a gating mechanism, enabling effective
detection of license plates at different scales while maintain-
ing computational efficiency.

2) ATTENTION MECHANISM IN OBJECT DETECTION
In object detection, attention mechanisms have yielded supe-
rior detection performance. For instance, In YOLO-SLD [9]
for license plate recognition, incorporating the lightweight
SimAM [27] module improved detection results compared to
the original version while maintaining a lightweight and effi-
cient model. In remote sensing image detection, Zhang et al.
[28] introduced a custom FFCA attention module to enhance
the extraction of shallow features and spatial information,
optimizing the model’s ability to extract features from targets
of different scales and significantly improving the prediction
of small targets. In the application ofmonitoring fish diseases,
Cai et al. [29] integrated the NAM module into YOLOv7’s
ELAN. By using channel and spatial attention modules, they
suppressed less significant features in the dataset, achieving
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FIGURE 2. C3k2 module diagram. (The left side represents C3k = True,
and the right side represents C3k = False).

more accurate and efficient detectionmethods. In papers [10],
[30], [31], the introduction of MHSA demonstrated high
accuracy, better robustness for detecting different targets, and
real-time performance.

For detecting multi-license plate identifiers (e.g., body
identifiers and standard plates) on construction site vehicles,
this study adopts MHSA as a feature enhancement mod-
ule. Compared to traditional attention mechanisms such as
CBAM and SimAM, MHSA offers the following significant
advantages.

Multi-Scale Target Processing. MHSA’s multi-head par-
allel mechanism allows simultaneous processing of targets at
different scales. In this task, vehicle body identifiers (focus-
ing on character shapes, spacing, and boundary features
while ignoring background color information) usually exhibit
greater scale variations than standard plates. Multiple atten-
tion heads can independently focus on features of different
scales, better adapting to such scale differences. In con-
trast, CBAM’s serial channel and spatial attention structure
processes features sequentially, making it less effective at
building associations between multi-scale targets.

Long-Range Dependency Modeling. MHSA’s multi-
head mechanism directly establishes long-range dependen-
cies. While SimAM excels in computational efficiency
and model simplicity, its variance-based adaptive feature
enhancement mechanism effectively highlights important
features. However, for tasks like detecting body identifiers
with subtle edge and character spacing features, SimAM’s
simplified attention calculation limits the model’s ability to
model complex relationships between multi-scale targets.
In comparison, MHSA’s multi-head mechanism simultane-
ously attends to multi-scale feature expressions, making it
more suitable for such complex scenarios.

FIGURE 3. Principle diagram of MHSA attention mechanism (the red part
indicates improvement over the original MHSA).

3) MHSA
Based on the foundational theory of Transformers,
Vaswani et al. first proposed the Multi-Head Self-Attention
mechanism (MHSA) [32], an innovative mechanism capa-
ble of performing attention calculations in different feature
spaces simultaneously. Unlike traditional attention mecha-
nisms, MHSA employs multiple parallel attention heads for
feature extraction, with each head focusing on different repre-
sentation subspaces, thereby achieving more comprehensive
feature representations. This mechanism demonstrates sig-
nificant advantages in vision tasks, especially in scenarios
requiring simultaneous handling of multiple spatial regions
and features at different scales.

Compared to the original MHSA, the improved ver-
sion (in Figure 3) removes the final linear fusion layer
and replaces the intermediate convolution operations with
lightweight Reshape operations. This effectively reduces the
model’s parameter count and inference latency while improv-
ing compatibility with the characteristics and performance
requirements of license plate recognition.

The working principle of the improvedMHSAmodule can
be described as follows: the input feature map X ∈RC×H×W

is processed through three different linear convolutions to
obtain Q(Query),K(Key)andV (Value), expressed as Q =

XWq,K = XWk,V = XW v, where Wq,Wk,W v are
learnable weight matrices. Given the number of feature sub-
spaces h, the feature map is reshaped into (h,C//h,H × W),
generating featuresQi, K i andV i for each head. Each head is
responsible for a different feature subspace and is represented
as:

headi= Attention(Qi,K i,V i) (1)

The Scaled Dot-Product Attention module is then applied,
which can be expressed as:

Attention(Wq,Wk,W v) = Softmax(
WqWT

k
√
dk

)V (2)
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In the formula above, the term dk represents the dimen-
sionality of the Query input, and WqW T

k calculates the

similarity between the Query and Key. The term 1
/√

dk
prevents the Softmax function from saturating (approaching
0 or very large values), ensuring smoother attention weight
distribution.

Finally, all heads are concatenated along the channel
dimension. The summary formula for MHSA is:

MultiHead (Q,K,V) = Concat(head1,· · · ,headn) (3)

III. PROPOSED METHOD
A. ANALYSIS OF C3K MODULE LIMITATIONS
The C3k module is a key component of YOLO11, designed
to enhance feature extraction capabilities through cross-stage
feature reuse. Inspired by the C3module in YOLOv5, it intro-
duces a variable k to control the size of the convolutional
kernel. Its basic structure consists of two parallel paths:
a direct path and a densely connected path. As shown in
Figure 4 below:

FIGURE 4. C3k module (when k=3).

Given an input feature map X ∈ RC×H×W, the processing
of the C3k module can be described as follows: The input is
first passed through two 1 × 1 convolutions, expressed as:
X1 = Conv1×1(X),X2 = Conv1×1(X) Here, X1 follows
the direct path: Y1 = X1 While X2 goes through a densely
connected path: Y2= Bottleneck(Bottleneck(Conv(X2))).

Finally, the output is computed as:
Y = Conv1×1(Concat(Y1,Y2)).

At the later stages of the Backbone, the focus should be on
extracting multiple features rather than simply compressing
themwith convolutions. However, the traditional C3kmodule
relies solely on conventional local convolution operations,
assigning the same weights to all channel features. This
approach fails to effectively distinguish and highlight critical
features, and it lacks the ability to integrate the surround-
ing contextual information of license plates. Consequently,
it struggles to capture the global information of vehicle body
license plates.

This limitation in feature processing poses a bottleneck to
further improving model accuracy. To address this, integrat-
ing attention mechanisms into the existing architecture offers
a viable approach to enhance the feature extraction capability
of the C3k module.

B. IMPROVEMENTS TO THE C3K2 MODULE
To address the limitations of the C3k module in fea-
ture extraction, this paper proposes a feature enhancement
strategy based on an improved Multi-Head Self-Attention
(MHSA). Through a systematic study of different atten-
tion mechanism integration schemes, six MHSA integration
methodswere designed and eachmethod is described in detail
below.

Serial Integration (Series-MHSA-C3K) is an intuitive
feature enhancement strategy that integrates the MHSA
module sequentially into the feature processing pipeline.
As shown in Figure 5(a), based on the C3k architecture,
the MHSA module is placed after the Bottleneck modules,
enhancing feature extraction capability through sequential
processing, followed by feature aggregation. This approach
is straightforward but may increase the computational depth
of the model.

Parallel Integration (Parallel-MHSA-C3K) [33] adopts
a dual-path architecture for parallel feature processing.
As shown in Figure 5(b), the input feature X2 is processed
through two independent paths: one path uses the traditional
Bottleneck structure for local feature extraction, while the
other path employs MHSA to capture global context, ulti-
mately achieving feature fusion. This design enables the
model to simultaneously acquire local details and global
semantic information.

Pyramid Integration (Pyramid-MHSA-C3K) [34] intro-
duces a feature pyramid structure to enhance multi-scale
feature representation. As shown in Figure 5(c), the
original Bottleneck module is removed, constructing a
dual-branch feature pyramid: one branch processes original-
scale features, while the other processes downsampled fea-
tures, implementing cross-scale feature aggregation through
upsampling and feature concatenation. This design enhances
the model’s adaptability to targets of different scales.

Residual Integration (Residual-MHSA-C3K) [35]
draws inspiration from ResNet’s skip connection mecha-
nism. As shown in Figure 5(d), hierarchical features are
first extracted through a serial approach, followed by the
introduction of residual connections with learnable weight
ω for adaptive residual mapping. This design effectively pre-
serves original feature information and mitigates the gradient
vanishing problem in deep networks.

Gating Integration (Gating-MHSA-C3K) [36] intro-
duces an adaptive gating mechanism for dynamic feature
selection. As shown in Figure 5(e), the mathematical expres-
sion for this method is:

GW = Sigmoid(Conv1×1(MHSA((Conv(X2)))

Y2= GW × Bottleneck(Bottleneck(Conv(X2))) (4)

where GW is a weight matrix of the same size as X2,
which is an adaptive coefficient obtained through a series of
transformations on the input feature X2; Conv1×1 denotes a
1×1 convolution operation used to adjust the feature channel
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FIGURE 5. Six methods for improving the C3k module.

dimensions; MHSA represents the multi-head self-attention
mechanism responsible for capturing global contextual infor-
mation in the features; the Sigmoid function maps the output
to the interval [0, 1], making it suitable as a weight coef-
ficient; Y2 is the feature output enhanced by the gating
mechanism, obtained through the element-wise product of the
gating weight and Bottleneck features.

This gating connection approach is lightweight, requiring
only three small modules to implement adaptive feature selec-
tion. This lightweight design enables the model to maintain
computational efficiency while adaptively adjusting attention
distribution according to the importance of input features,
effectively enhancing feature representation in key regions
while suppressing interference from irrelevant background
noise.

Dynamic Weight Integration (Dynamic-MHSA-C3K)
[37] employs a dedicated weight predictor for adaptive
feature fusion. As shown in Figure 5(f), features are
extracted through parallel paths: one path processed by
MHSA and the other by Bottleneck, with fusion weights
predicted by a lightweight weight predictor. Adopting a
squeeze-and-excitation structure, it models the channel-wise
feature importance, ultimately achieving dynamic feature
aggregation.

C. GMH-YOLO OVERVIEW
An in-depth comparison of the six improvement strategies
in the experimental section found that Gating Integration

(Gating-MHSA-C3K) achieved the best balance between
feature extraction capability and computational efficiency.
Particularly when handling challenging targets such as vehi-
cle bodies and license plates in construction site scenarios, its
adaptive gating mechanism excels in selecting and enhancing
effective features while suppressing background noise inter-
ference, resulting in more accurate license plate detection.

Based on this finding, the GMH-YOLO (Gating Multi-
Head Attention YOLO) model is proposed by replacing
the C3k in C3k2 withGating-MHSA-C3k. This model inte-
grates the gating attention mechanism into the C3k2 module.
The overall framework of GMH-YOLO is shown in Figure 6.

GMH-YOLO retains the YOLO11 foundational architec-
ture while incorporating a GMH-C3k into the Backbone.
In the Backbone, the model adopts a progressive feature pro-
cessing strategy characterized by ‘‘feature compression, pre-
liminary extraction, attention enhancement, and multi-scale
feature fusion.’’ First, feature compression is effectively
achieved through the Conv layer. Then, the C3K2F module is
used for preliminary feature extraction, enhancing the foun-
dational representational capacity of the features.

In the middle and later stages of the network, two GMH-
C3k modules (marked in red in Figure 6) are strategically
placed to adaptively enhance attention to features through the
gating mechanism. This significantly improves the model’s
ability to recognize challenging targets such as vehicle bodies
and license plates. Finally, multi-scale feature fusion and
spatial attention optimization are achieved through the SPPF,

89766 VOLUME 13, 2025



M. Li et al.: License Plate Recognition for Smart Construction Sites Based on GMH-YOLO

FIGURE 6. GMH-YOLO framework diagram(backbone and neck), red
modules indicate added parts, black modules indicate where the test is
added.

C2PSA modules, and PANet architecture, providing rich fea-
ture representations for detection tasks.

To validate the effectiveness of module placement, com-
parative experiments were also conducted by placing the
modules in other positions (as indicated by the black mod-
ules in the diagram). The experimental results demonstrate
that adding two GMH-C3k modules in the latter half of the
Backbone is the optimal configuration. This arrangement
ensures sufficient and appropriate feature extraction while
maintaining computational efficiency.

IV. EXPERIMENTAL
A. EXPERIMENT PLATFORM AND EVALUATION METRICS
In this study, experiments were conducted on a system
equipped with an Intel Core i7-12800H eight-core proces-
sor (base frequency 2.30 GHz, maximum turbo frequency
4.60 GHz) and an NVIDIA GeForce RTX 3060 GPU for
training and testing. For the software environment, GMH-
YOLO was implemented using Python 3.10.15 and the
CUDA-enabled PyTorch 2.5.1 framework. During the train-
ing phase, the model was trained on the previously segmented
CSLPD dataset and employed the pre-trained weights of
YOLO11n for transfer learning. The training process utilized
a multi-scale training strategy with a batch size of 8. The
initial learning rate was set to 0.01 and adjusted using a
cosine annealing scheduler. The optimizer was set to SGD,
the random seed was fixed at 0, and the model was trained for
300 epochs to ensure adequate learning of the dataset features
and to achieve optimal performance.

For evaluation metrics, given that the detected anchor
boxes do not require high precision as long as they fully
encompass the license plates, the detection accuracy for
license plates was assessed using mAP50, with mAP50-90
as a supplementary metric. To evaluate the model’s compu-
tational complexity and real-time capability, metrics such as
the number ofmodel parameters, GFLOPS, andGPS [38]
were employed.

B. DATASET
Construction site vehicle recognition presents distinct chal-
lenges due to environmental complexities such as dust,
uneven lighting, and wet surfaces. Construction vehicles typi-
cally feature multiple identification markers: standard license
plates, auxiliary plates indicating vehicle type (e.g., dump
trucks), and license information sprayed on vehicle bodies for
multi-angle visibility.

Existing license plate datasets, such as the Real-time
dataset [39] for highway monitoring and CCPD [40] for
parking management, do not adequately address construction
site-specific requirements. These datasets lack the unique
characteristics found in construction environments.

To bridge this gap, we developed the Construction Site
License Plate Dataset (CSLPD). Data collection was con-
ducted across three representative construction site types
(building, road, and hydraulic engineering). We utilized 720p
HD cameras (1280 × 720) deployed at critical license plate
detection areas such as site entrances and main vehicle pas-
sages. To capture multi-angle views, cameras were installed
at various heights (approximately 1.5, 3, and 5 meters) and
covered multiple shooting distances (5-30 meters) to ensure
data diversity. We captured images under various condi-
tions, including different time periods and weather types
(clear, rainy, and hazy). Special attention was paid to con-
struction site-specific factors like dust and concrete powder
that affect license plate recognition. The collected vehicle
types comprehensively covered common construction vehi-
cles, including concrete mixers, dump trucks, and other
engineering vehicles.

Data collection continued for approximately 20 days, uti-
lizing a combination of continuous video recording and
frame extraction at 60-frame intervals, initially obtaining over
5000 valid images. Considering the redundancy of similar
scene images, we established a filtering rule of ‘‘preserving
a maximum of 10 images for similar locations and vehicle
types,’’ and through rigorous manual screening, ultimately
retained 1495 high-quality and challenging images. Figure 7
shows examples of these images, illustrating the diversity
and complexity of our dataset. Professional annotators used
the LabelImg tool to precisely label yellow license plates,
blue license plates, and body-painted license plates follow-
ing the VOC dataset standard. We extended the standard
annotation format to include additional attributes for chal-
lenging conditions (as shown on the right side of Figure 8,
including high-speed, dust, strong light conditions and so
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FIGURE 7. Example of CSLPD dataset (red box indicates body license
plate, orange box indicates high speed, yellow box indicates dust impact,
blue box indicates strong light, and purple box indicates weak light).

FIGURE 8. The left figure shows the category statistics of license plates in
CSLPD, and the right figure shows the statistics of complex environments.

on), which allows us to better analyze and understand the
predicted results we obtain later. This multi-dimensional
annotation approach resulted in a comprehensive dataset con-
taining 2,301 license plate instances with rich contextual
information.

Given the relatively small size of dataset, the CSLPD
dataset was randomly divided into training, validation, and
test sets in a 7:1:2 ratio. Specifically, the training set contains
1,046 images, the validation set contains 150 images, and
the test set contains 299 images. During the division process,
we ensured that the distribution of different scene types (e.g.,
dual license plates, body license plates) was consistent across
the subsets to ensure the representativeness of the evaluation
results.

C. EXPERIMENTAL RESULTS
In our experimental approach, we carefully considered both
detection performance and computational efficiency. Current
license plate recognition models (such as YOLO-SLD, LPR-
Net) typically have a large number of parameters (as shown in
Table 4) and high GFLOPs, requiring costly computational
resources. Therefore, we adopted the lightweight YOLO11
as our foundational model, while referencing improvement
approaches from specialized license plate recognition models
as our baseline for comparison. Following the strategy used
in YOLO-SLD, we integrated CBAM and SimAM into the

C3k2 module for comparative experiments. The results are
shown in Table 1.
Compared to YOLO11, integrating different attention

mechanisms led to an increase in model parameters across
the board. Although the proposed GMH-YOLO increased
the parameter count by 4.2%, the optimized gating mech-
anism reduced GFLOPs by 0.1, demonstrating excellent
computational efficiency. In terms of real-time performance,
GMH-YOLO’s FPS decreased only slightly by 2.5% from
YOLO11’s 23.96 FPS to 23.36 FPS. Considering that vehi-
cles at construction sites move at limited speeds and follow
relatively fixed routes, this minimal frame rate difference
has negligible impact on actual monitoring effectiveness,
fully meeting the real-time monitoring requirements for con-
struction site vehicle management. Notably, while YOLO11-
SimAM’s FPS only decreased fromYOLO11’s 23.96 to 23.8,
its computational cost increased significantly with GFLOPs
rising from 6.4 to 6.7, and it showedmarkedly lower accuracy
in the critical vehicle body license plate detection task. In con-
trast, GMH-YOLO achieves the highest overall detection
accuracy (93.3% mAP@50) while maintaining ideal compu-
tational efficiency by reducing GFLOPs, offering significant
application advantages in computationally constrained con-
struction site intelligent monitoring systems that require high
accuracy.

A deeper analysis of performance metrics reveals that
YOLO11’s subpar performance in overall mAP@50 is pri-
marily due to its significant deficiency in detecting body
license plates, with related metrics at only 81.3%. In contrast,
GMH-YOLO achieved a remarkable breakthrough in this
challenging task, increasing the mAP@50 for body license
plate detection to 87.2%, a substantial improvement of 5.9%,
thereby driving a 1.4% increase in overall detection accu-
racy. While the models improved with CBAM and SimAM
performed well in detecting standard license plates, they
exhibited significant performance degradation in the critical
task of body license plate detection. Notably, in the CBAM
experiment, although the mAP@50 for blue license plates
improved slightly by 0.9%, the detection performance for
body license plates dropped sharply by 21.3%. These results
strongly validate the theoretical analysis in Section II regard-
ing the adaptability of different attention mechanisms in
complex scenarios.

D. CONTRASTING EXPERIMENT
To systematically evaluate the effectiveness of the different
improvement strategies proposed in Section III-B, we con-
duct comparative experiments on six attention mechanism
integration strategies (as shown in Table 2). The experimental
results demonstrate that GMH-YOLO not only maintains
high accuracy in standard license plate detection but also
achieves a significant breakthrough in the challenging task
of body license plate recognition.

We further investigated the impact of module configuration
on detection performance by designing a series of compar-
ative experiments, with results shown in Table 5. When
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TABLE 1. Baseline model comparison.

TABLE 2. Comparison of 6 improvement methods in MHSA.

TABLE 3. Ablation experiment of YOLO11.

the last two C3k modules in the Backbone were replaced
with GMH-C3k, the model achieved optimal performance.
This result has inherent logic: the latter part of the Backbone
is responsible for extracting higher-level semantic features.
Deploying Gating-MHSA at this stage can more effectively

TABLE 4. Test on CCPD Dataset.

integrate global contextual information while maintaining
sensitivity to local features through the gating mechanism.

To explore the effectiveness of the gating mechanism,
the configuration of two modules at the end of the Back-
bone was retained, and experiments were conducted using
the same six improvement strategies with SimAM (as
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TABLE 5. Exploration of increasing the number of different modules.

TABLE 6. Comparison of 6 improvement methods in SimAM.

shown in Table 6). The experimental results show that
although accuracy decreased compared to GMH-YOLO,
the improved Gating-SimAM achieved a 0.6% mAP@50
improvement over the original YOLO11. Moreover, Gating-
SimAM demonstrated more significant advantages in real-
time performance.

E. ABLATION EXPERIMENT
Tomore deeply analyze the contribution of keymodules in the
YOLO11 model, we conducted ablation experiments. For
the C2PSA module, we chose to remove it directly. As for
the C3k2 module, we reverted it to the YOLOv8 version,
replacing it with the C2f module for alternative processing.
The ablation results are shown in Table 3.

The experimental results demonstrate that both C2PSA
and C3k2 modules significantly impact model performance.
Removing the C2PSA module led to a 0.6% decrease in
mAP@50, indicating that this module effectively enhances

detection precision through its enhanced spatial attention
mechanism. Removal of the C3k2 module resulted in a
more substantial performance degradation (6.1% decrease
in mAP@50), validating its critical role in feature extrac-
tion. When both modules were removed simultaneously,
the mAP@50 declined by 7.6%, confirming the impor-
tance of these structural innovations to the YOLO11
framework.

F. CONFIRMATORY EXPERIMENT ON PUBLIC DATASET
To validate the generalizability and transferability of the
GMH-YOLO model, comparative experiments were con-
ducted on the public license plate dataset CCPD [40]. Due
to the current lack of public datasets specifically target-
ing construction site license plate recognition, we selected
the widely-used single license plate dataset CCPD for test-
ing, randomly sampling 20,000 images as test samples. The
results are shown in Table 4.
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FIGURE 9. YOLO11, YOLO11-SimAM and GMH-YOLO heatmap.

Experimental results demonstrate that YOLO11 series
models significantly improve computational efficiency while
reducing parameter count compared to the recently proposed
YOLO-SLD, while maintaining high detection accuracy.
Although our proposed GMH-YOLO model shows a slight
decrease in FPS compared to YOLO11 (approximately 0.08),
it achieves 92.1% mAP@[50:95], outperforming the base-
line YOLO11 model by 0.2%. These results verify that our
proposed attention mechanism not only excels in complex
construction site scenarios but also remains effective in gen-
eral license plate detection tasks, demonstrating excellent
cross-scenario adaptability.

G. VISUAL COMPARISON
To more intuitively demonstrate the improvements of GMH-
YOLO, Figure 9 presents attention heatmaps obtained
by visualizing feature maps from the detection head
and alpha-blending them with original images, compar-
ing YOLO11, YOLO11-SimAM, and GMH-YOLO. The
heatmap visualization clearly shows the precision of attention
focusing, with red areas representing high attention regions
and blue areas representing low attention regions.

Specifically, as shown in the third row, when process-
ing body license plates, GMH-YOLO demonstrates more
accurate and concentrated attention distribution compared
to YOLO11 and YOLO11-SimAM. In scenarios containing
both standard license plates and body license plates (as shown
in rows 1, 2, 4, and 5), GMH-YOLO maintains a high level

of attention to license plates of varying sizes. Its heatmaps
exhibit more balanced feature responses, as demonstrated
by the detection results in the second row, where the model
successfully detects distant body license plates that YOLO11
and YOLO11-SimAM failed to recognize. Furthermore, the
heatmaps reveal that GMH-YOLO shows clearer feature
responses in license plate boundary areas. This enhanced
boundary-awareness improves the positioning accuracy of
detection boxes, especially for body license plates with less
distinct boundaries.

Overall, the red highlighted areas in GMH-YOLO’s
heatmaps closely correspond to license plate positions,
validating the effectiveness of its attention mechanism. Com-
pared to YOLO11 and YOLO11-SimAM, GMH-YOLO’s
attention distribution is more focused, enabling the model
to better handle complex license plate recognition tasks
in construction site environments, particularly excelling in
detecting challenging body license plates. These visual-
ization results provide an intuitive explanation for GMH-
YOLO’s 5.9% performance improvement in body license
plate detection tasks, confirming the effectiveness of the
gated multi-head attention mechanism in enhancing the
model’s feature extraction capability.

H. EXPERIMENT RESULTS
Based on a comprehensive experimental analysis, GMH-
YOLO demonstrated significant performance advantages
in construction site license plate detection tasks. In terms
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of detection accuracy, the model achieved an mAP@50
of 93.3% on the CSLPD dataset, a 1.4% improvement
over the baseline model YOLO11. Notably, while main-
taining high recognition rates for standard license plates
(yellow plates: 99.5%, blue plates: 93.1%), GMH-YOLO
made breakthrough progress in the challenging body license
plate detection task, increasing the mAP@50 from 81.3% to
87.2%, a 5.9% improvement. Heatmap visualizations further
validated the model’s precise localization of key features in
license plate regions.

In terms of computational efficiency, the optimized gat-
ing mechanism design allowed GMH-YOLO to achieve a
good balance between performance improvement and com-
putational cost. Specifically, the model’s parameter count
increased by only 4.2%, while GFLOPs decreased from
6.4 to 6.3. Although FPS dropped slightly (from 23.96 to
23.36), it remains fully sufficient for real-time detection
requirements. Compared to existing mainstream attention
mechanisms for license plate, GMH-YOLO demonstrated
unique advantages in complex construction site scenarios.
For example, compared to CBAM, GMH-YOLO avoided
the significant drop in body license plate detection per-
formance observed when improving standard license plate
recognition rates; compared to SimAM, it achieved more
substantial performance improvements in the critical task of
body license plate detection while preserving a lightweight
model architecture.

Additionally, through theoretical analysis and experi-
mental validation of various improvement strategies, this
study confirmed the effectiveness of the gating attention
mechanism, providing valuable technical references and
improvement ideas for future research in related fields.
The experimental results show that GMH-YOLO not only
achieves a balanced performance across multiple metrics but
also makes significant breakthroughs in the most challenging
real-world application of body license plate detection.

V. CONCLUSION
This study addresses the specific challenges of license plate
detection in construction site environments by constructing
the CSLPD dataset and designing the GMH-YOLO model,
providing an efficient and reliable solution for construction
site license plate recognition. In terms of dataset develop-
ment, we constructed the CSLPD dataset specifically for
construction site scenarios, containing 1,495 images and
2,301 license plate instances. These data cover complex
scenes such as double license plates and body license plates,
as well as environmental factors unique to construction sites
such as strong lighting and dust interference, providing a
valuable data resource for related research.

We analyzed the limitations of the C3k module in pro-
cessing complex scenes from both theoretical and practical
perspectives, and proposed six different attention mecha-
nism integration strategies. Comparative experiments demon-
strated that the gating integration method achieved the
optimal balance between feature extraction capability and

computational efficiency. Based on this finding, we designed
the GMH-YOLOmodel, integrating a gated multi-head atten-
tion mechanism into the C3k2 module. Experimental results
verified the effectiveness of GMH-YOLO, achieving 93.3%
mAP@50 on the CSLPD dataset, an improvement of 1.4%
over the baseline model. While this improvement may seem
modest, it has significant implications in practical applica-
tions: for construction sites with 200 vehicles entering and
exiting daily, a 1.4% accuracy improvement means approx-
imately 3 fewer misidentifications per day, significantly
reducing the need for manual intervention in vehicle regis-
tration and minimizing traffic delays.

Notably, in the most challenging task of body license plate
detection, accuracy increased from 81.3% to 87.2%, a sub-
stantial improvement of 5.9%. This is particularly important
for complex construction site scenarios, especially when
mud contamination or strong light reflection makes standard
license plates difficult to recognize, where high-precision
detection of body license plates provides a crucial backup
identification pathway.

Furthermore, in terms of model deployment, GMH-
YOLO maintained excellent real-time performance while
improving detection accuracy. Despite a 4.2% increase in
parameter count to 2.70M, the innovative gating mech-
anism design actually reduced computational complexity,
decreasing GFLOPs from 6.4 to 6.3. In terms of inference
speed, FPS only decreased slightly from 23.96 to 23.36,
less than a 3% reduction. This computational efficiency
enables GMH-YOLO to run effectively on edge computing
devices. Its low power consumption characteristics make it
suitable for deployment in resource-constrained construction
site environments.

Despite these significant improvements, our model still
faces certain limitations. While the accuracy for body license
plates increased substantially to 87.2%, it still falls short
of application-level precision requirements for industrial
deployment, remaining a challenging area that requires fur-
ther research attention. Additionally, although the current
CSLPD dataset captures complex scenes specific to con-
struction sites, its sample size is relatively limited and
primarily focused on daytime conditions with good lighting.
The model’s performance in extreme weather conditions or
under complex lighting scenarios has yet to be thoroughly
evaluated. These limitations highlight the need for future
research to expand the dataset’s scale and diversity, partic-
ularly by incorporating samples under various environmental
challenges such as heavy snow, fog, rain, and nighttime
conditions.

In the future, we will focus on addressing the current
limitations of the model. We plan to expand the scale and
diversity of the CSLPD dataset by adding samples under
extreme weather conditions such as heavy snow, fog, and rain
to enhance the model’s robustness in adverse environments.
Meanwhile, we will explore more lightweight architectural
designs and specialized attention mechanisms aimed at fur-
ther improving detection accuracy. These research directions
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will further unlock the application potential of license plate
recognition technology in construction site management
and promote the digital transformation of the construction
industry.
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