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ABSTRACT Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is an
emerging non-invasive molecular imaging technique offering significant potential for biomedical research
and clinical applications. However, CEST MRI data acquisition requires prolonged scanning times, as data
need to be collected at multiple frequency offsets to capture necessary information for accurate analysis
of biological compounds. Faster CEST MRI will improve molecular imaging, advancing biomedical
pre-clinical research studies and clinical applications. Thus, herein, we accelerate CEST MRI data
acquisition using a two-step approach. Firstly, we use an optimization algorithm to identify a set of optimal
sparse frequency offsets for data collection. Secondly, we apply a deep learning algorithm to reconstruct
the high-resolution CEST MRI Z-spectra from the low-resolution Z-spectra. CEST MRI data acquired on
adult mice brains (n = 19) were utilized. The optimization technique efficiently selected down to 10% of
the total frequency offset points, and the deep learning algorithm accurately reconstructed dense Z-spectra.
The performance metrics, root mean square errors (RMSE), mean absolute error (MAE), and Pearson’s
correlation were calculated for various Z-spectra reconstructions. The minimum, maximum, and average
RMSE values achieved when the lowest 10% of frequency offsets were used were 0.0065, 0.0133, and
0.0094, respectively. The proposed CEST MRI approach, involving optimal frequency offset selection
followed by deep learning reconstruction, achieves an acceleration by 10 times while maintaining high-
quality data. This approach expands the applications of CEST MRI, potentially advancing in vivo molecular
bioimaging for both basic science and clinical research.

INDEX TERMS Biomedical signal processing, computer vision, image reconstruction, machine learning,
artificial intelligence, magnetic resonance imaging, biomedical imaging, molecular imaging.

I. INTRODUCTION

Chemical exchange saturation transfer (CEST) based mag-
netic resonance imaging (MRI) is a promising non-invasive
and quantitative molecular imaging technique [1], [2], [3],
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[4], [5], [6]. CEST MRI is employed in both pre-clinical
and clinical applications, particularly for studying metabolic
processes, detecting lesions, and assessing microenvironment
properties such as pH and temperature [7], [8]. This
imaging technique offers a powerful method to detect diluted
molecules indirectly by capturing their saturation transfer to
the large water pool at distinct frequency offsets [13]. CEST
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MRI can capture compounds that include protons showing
an appropriate exchange rate with the bulk water [2]. These
compounds, such as glucose, amino acids, or metabolites,
can be naturally produced within the body or introduced
externally, such as contrast agents or drugs. Furthermore, this
imaging technique provides high specificity and excellent
spatial resolution for detecting target molecules.

A major limitation of CEST MRI is the long scan
time [14], [15], [16], [17], [18]. This challenge occurs
because MRI signals need to be acquired at multiple
saturation frequency offsets. The CEST acquisition time
increases proportionally with the number of frequency offsets
required to generate CEST contrast maps [13]. Typically,
an accurate multipool evaluation of CEST data requires a
densely sampled Z-spectrum over a broad frequency range,
resulting in a long scanning time. Therefore, reducing the
scan time by efficiently downsampling the frequency offsets
and reconstructing the Z-spectrum with deep learning or
other advanced techniques is highly desirable. Addressing
this challenge is essential for the advancement of CEST
MRI applications in biomedical investigations and clinical
applications.

To minimize the acquisition time, various state-of-the-
art deep learning methods have been proposed that reduce
the number of k-space lines sampled in the phase encoding
(PE) direction (Npg) [9], [10], [11], [12]. Combining such
approaches that reduce Npg and our approach to optimize the
number of frequency offsets (Nz), there may be a potential
to reduce the CEST MRI scan time multiplicatively. This is
because both Npg and N,z are directly proportional to the
acquisition time, given that the repetition time and the echo
train length are constant [12].

Furthermore, a variety of deep learning methods have been
suggested to speed up CEST data acquisition [13], [14],
[17], [19]. These methods reconstruct detailed Z-spectra or
contrast maps using limited frequency offsets. However, the
selection of optimal frequency offsets remains uncertain.
In this study, we tested different sets of frequency data to
identify the optimal frequency offsets for the reconstruction
of Z-spectra.

In our study, we propose a two-phase approach to address
the limitation of the long scan time required for CEST MRIL.
In the first phase, we employ the genetic algorithm (GA) as
the optimization algorithm. This approach provides a logical
framework to determine the most suitable frequency offset
points from the dense Z-spectra for data acquisition. In our
study, we deal with a relatively smaller search space size of
101 offsets, which is different from other typical complex
optimization problems, which may reach to search space size
of millions. Therefore, we sought an optimization algorithm
that would consider both diverse combinations of offsets from
a small search space and produce high accuracy. GA was
chosen and applied to select the optimal frequency offsets
down to 30, 20, and 10 offsets from a total of 101 frequency
offsets. Although GA has higher computational complexity
and slower convergence speed than other algorithms, such as
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simulated annealing (SA), it was used because it considers
diverse combinations of optimal solutions and is better at
converging to the global optima and avoiding local optima.
In contrast, SA may perform better when the search space
is large, such as the size of millions. Moreover, past studies
on GA and SA show that GA exhibits lower error when the
learning size is small [20].

The optimal frequency offsets were selected to minimize
errors in reconstructing dense Z-spectra. In the second phase,
we utilize supervised deep learning algorithms, including
autoencoder and U-Net models, to reconstruct CEST MRI
from the sparse data. Through this framework, we reconstruct
high-resolution Z-spectra from low-resolution Z-spectra.
The proposed framework was tested on in vivo mouse
brain CEST MRI data. Both the optimization algorithm
and the deep learning models were evaluated for their
accuracy in reconstructing Z-spectra. This approach develops
a high-performance optimization and Al-based CEST acqui-
sition scheme capable of reconstructing CEST MRI from
limited data.

Il. RELATED WORKS

Chemical exchange saturation transfer magnetic resonance
imaging (CEST-MRI) has emerged as a powerful tool,
offering a unique insight into the complex biochemical
processes [21], [22], [23]. Recently, CEST MRI-related
studies have been conducted to investigate the functionalities
of organs and tissues, as well as their significance in
advancing our understanding of health and diseases [24],
[25], [26], [27]. In these studies, special attention was given
to reducing the scan time of the CEST MRI by incorporating
the emerging Al technology [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19].

Xu et al. have proposed model model-based deep neural
network, CEST-VN, that takes undersampled k-space data
as input and outputs CEST source images [9]. In addition,
they proposed a specialized loss function specifically for
CEST images to quantify error. Liu et al. have developed
an unsupervised deep learning algorithm with enhanced hash
encoding [10]. They presented high acceleration factors for
CEST imaging compared to the current state-of-the-art deep
learning method, with experiments performed on various
datasets, including a phantom of fresh eggs, liver of mice,
and a human brain dataset. Yang et al. have presented a
deep learning reconstruction network with a multiple radial
k-space sampling strategy for CEST MRI [11]. The input to
the network model was three undersampled k-space data at
3 consecutive offsets, and the output was the reconstructed
image representing the central offset. Prabakaran et al. have
conducted a study on a deep learning based super-resolution
approach to reconstruct high-resolution CEST images, which
exhibited improved spatial resolution in terms of PSNR and
SSIM performance metrics [12].

The acceleration factor for these studies ranged from 2
to 37.5[9],[10], [11], [12]. This indicated that the researchers
could reconstruct the CEST images from k-space data
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undersampled by factors ranging from 2 to 37.5. The fun-
damental difference between these acceleration approaches
and our approach is that we focus on optimizing the number
of frequency offsets (N,p) to accelerate CEST imaging.
Furthermore, these approaches may work collaboratively
to contribute to the common objective of reducing the
acquisition time.

Cheema et al. have introduced a method to reduce CEST
acquisition time by utilizing down-sampled Z-spectrum with
deep learning to construct CEST maps [13]. In this method,
the optimal frequency offsets were detected by utilizing
the “Fisher offsets” based on parameters of Lorentzian
functions for multi-pool CEST contrast fitting. Then, a U-Net
was trained with down-sampled CEST images collected
from 18 volunteers. The conventional multi-pool models
produced unsatisfactory results (structural similarity index
[SSIM] < 0.2, peak SNR < 20, and Pearson r < 0.1),
whereas the proposed U-Net fitting method successfully
processed the down-sampled images to quantify the CEST
data [13]. Although Cheema et al.’s work has contributed
to reducing the CEST acquisition time by utilizing Fisher’s
Offsets to select the optimal frequencies, the criterion for the
selection of optimal frequency offset points was not fully
exploited. For instance, it is unknown if the method can
select less than 15 out of 53 (28.3%) Z-spectrum offsets.
In our research work, we reduce the CEST acquisition
time by selecting up to 10% of the total frequency
offset points. These efforts more efficiently reduce CEST
acquisition time compared to the method proposed by
Cheema et al.

Chen et al. have conducted a deep learning-based study
to reduce the scan time while preserving the accuracy
of multi-pool CEST MRI of patients with Parkinson’s
disease [14]. An updated 1-D, U-Net (termed as Z-spectral
compressed sensing (CS)) was utilized to reconstruct the
dense Z-spectra with sparse frequencies. The results obtained
from simulations and the in vivo rat brain testing proved the
validity and high precision of the prediction of Parkinson’s
disease while maintaining the scan time in an acceptable
range (can be reduced up to 33%) compared to classical
methods [14].

Liu et al. have developed a technique to expedite
the Z-spectral acquisition process by incorporating deep
learning-driven reconstruction and uniquely designed
k-space sampling trend along with a frequency-offset-
dependent (FOD) function [15]. To improve spatial and
frequency domains individually, a convolutional neural
network (CNN) was upgraded with a partially separable
(PS) function. The integrated FOD sampling and PS network
achieved the best reconstruction function, outperforming
other classical sampling techniques in both retrospective and
prospective tests [15].

Yang et al. have introduced a method to overcome the
constraint of extended saturation time to approach the steady
state of the CEST effect by employing a deep learning
oriented quasi-steady-state (QUASS) estimation from non-

VOLUME 13, 2025

steady-state CEST [16]. They have designed a hybrid
structure of Long short-term memory (LSTM) - Attention
network to enhance the prediction accuracy. The proposed
framework has outrun QUASS CEST prediction compared to
other deep-learning techniques such as multilayer perceptron,
recurrent neural network, LSTM, gated recurrent unit, and
BiLSTM [16].

Each of the researchers mentioned above has contributed to
expediting the Z-spectral acquisition process by employing
deep learning-based reconstruction techniques [14], [15],
[16]. Although they have utilized sparse frequencies to
reconstruct Z-spectra, they have not taken a systematic
approach to choose the best set of optimal frequency
points. In our study, this crucial aspect was addressed by
utilizing an optimization algorithm to identify the optimal
sparse frequency offsets from dense Z-spectra, enabling the
reconstruction of high-resolution CEST MRI, which would
outperform the previously proposed methods by Liu et al.,
Chen et al., or Yang et al. [14], [15], [16].

Perlman et al. have developed a technique for fast
and quantitative CEST MR fingerprinting recreation and
data acquisition by employing an automated machine
learning-based method termed AutoCEST [18]. The Auto-
CEST framework was evaluated by using different chemical
exchange models to acquire data on in vivo mouse brains.
The evaluation results confirmed the ability to automatically
create enhanced CEST/MT data acquisition and rapid recon-
struction into quantitative interchange parameter maps [18].

Xiao et al. have presented a novel approach to reconstruct
dense Z-spectra to reduce the scan time from the experimental
images at sparse frequency offsets through a new sequence-
to-sequence (seq2seq) model [19]. Experimental results
proved the better efficiency and accuracy of the new seq2seq
network in reconstructing the dense CEST images compared
to the conventional seq2seq network [19].

The discussed literature confirms the unique and potential
research angle on reducing the CEST MRI data acquisition
time through the incorporation of Al technology. Each study
offers a distinct perspective on the issue of lengthy scan
times associated with CEST MRI, which helps to provide
a broader understanding of this research problem. It is
worth mentioning that these studies have made commendable
efforts to reduce CEST MRI acquisition time and have
made valuable contributions to the field of brain health and
diseases.

Although the reviewed literature has made a remarkable
contribution to accelerate CEST MRI data acquisition, very
few have focused specifically on the selection of optimal
frequency offset points. Through our proposed study, the
challenge of prolonged scan times for CEST MRI data acqui-
sition is addressed in two phases. Initially, the optimal set of
sparse frequencies is acquired by employing an optimization
algorithm, the genetic algorithm. In the second phase, a high-
resolution Z-spectra is reconstructed with the support of deep
learning, especially by utilizing the autoencoder and U-Net
models. Therefore, the proposed approach to address this
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challenge is novel and efficient compared to the reviewed
literature, and it will make an impact in advancing molec-
ular imaging, benefiting biomedical studies, and clinical
applications.

lll. METHODS

The acquisition time for CEST MRI (74) as mentioned by
Prabakaran et al. [12] is shown in Equation 1, where TR is
the repetition time, ETL is the echo train length and Npg is
the number of k-space lines sampled in the phase encoding
direction.

_ TR - Npg

Th = — - N, 1
A ETL offs (1

Our approach aims to optimize the frequency offsets (N,)
to reduce the acquisition time (T4 ) described in the following
subsections.

A. DATASETS

1) DATA ACQUISITION

The study involved in vivo mice dataset (n = 19). In the study,
C57BL/6 male mice aged 6 months were used. Mice brains
were scanned on a 7 T Bruker PharmaScan system. Before
scanning, the mice were anesthetized with isoflurane carried
by oxygen, and their breathing was monitored throughout
the experiment. To provide anatomical reference, each scan
session started with T2-weighted imaging. To optimize
By uniformity, Bruker’s MAPSHIM protocol was run at the
beginning of the experiment to homogenize the magnetic
field in the entire brain region. CEST data were acquired on
two brain slices using a RARE sequence and a continuous
RF saturation pulse with power = 2 uT, and length =
2 s. The frequency range was set from —5 to 5 ppm with
a step = 0.2 ppm. The total number of frequency offsets
was 51.

2) MOTION, BO FIELD DRIFT AND WASSR ESTIMATION
Long acquisitions are susceptible to motion artifacts. Our
method substantially reduces scan time, making it more
robust than traditional CEST MRI. To mitigate By field
drift, we employ localized shimming, which effectively
improves field homogeneity. In our study, we used Bruker’s
MAPSHIM method for whole-brain shimming in mice. For
By correction, we acquire high-resolution WASSR scans
(5 minutes) before CEST MRI to establish an accurate By
field map. To further ensure correction accuracy, WASSR
results are cross-validated using Lorentzian fitting of the
direct water saturation signal from the CEST scan. This
dual approach enhances reliability in compensating for By
inhomogeneities.

3) PRE-PROCESSING

After the data acquisition from the MRI machine, By cor-
rection was carried out using WASSR [28] and linearly
interpolated to 101 frequency offsets. Image segmentation
was performed to remove non-brain tissue from the acquired

89970

4D CEST MRI images of the mouse brain. The By correction
and brain segmentation were performed using MATLAB
and Medical Image Processing, Analysis, and Visualization
(MIPAV) tools, respectively. After these operations, the 4D
in vivo dataset for a single mouse subject is represented in
Equation 2 as M4p,. o and B represent x and y coordinates
of the pixel location in an acquired brain slice y at frequency
offset ¢.

Mapy(e, B, v, &),
where «, 8 € {x and y coordinates of the pixel},

yel{l,2}, ¢e{l, ...,101}. 2)

In addition, the intensity of a pixel at location («, ) in a
brain slice y, acquired at frequency offset ¢, is represented
by the function P(e, B, y, ¢).

Dataset A. For the mice dataset (n = 19), 38 dense Z-spectra
were obtained by averaging all pixel values across the entire
slice for each frequency offset. Later, the Z-spectra dataset
was augmented using two methods.

Dataset A’. The first method added additive white Gaussian
noise, with a mean of O and a standard deviation of 0.01,
to each Z-spectra value in the first 30 Z-spectra of Dataset
A, which consists of a total of 38 Z-spectra. The remaining 8
Z-spectra were separated without augmentation for testing.
The dataset was augmented 100 times. The dataset consisted
of 3000 total rows of Z-spectra values.

Dataset B. In the second method, the dataset was augmented
using sub-samples of pixels across the frequency offsets for
each brain slice. The range was set as [800:50:1550] as
the number of pixels in the sub-samples. The sub-samples
started with 800 pixels and increased up to 1550 pixels
in increments of 50. A total of 16 sub-samples allowed
to augment the dataset from 38 to 608 sets of Z-spectra
values: (38 x 16) = 608. This dataset was divided into
training and testing sets, containing 480 and 128 Z-spectra,
respectively.

We obtained three different sets of datasets using these
methods. We trained separate deep-learning reconstruction
models using each dataset. These diverse datasets aimed
to study the adaptation of deep learning models to diverse
Z-spectra values. This was also an effort to enhance the
generalizability of the deep learning model for reconstructing
diverse Z-spectra.

4) EVALUATION

The optimization algorithm and the supervised deep learning
methods were evaluated on mouse datasets. The optimiza-
tion algorithm was evaluated based on the accuracy of
reconstructed Z-spectra using the optimal frequency offset
points selected by the optimization algorithm. The genetic
algorithm is a promising optimization technique for the
study [29]. Likewise, the deep learning model was tested
based on the reconstruction accuracy of Z-spectra. The
sparse Z-spectra were used as input to the model, and
the dense Z-spectra were generated as output. The root
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FIGURE 1. Proposed methodology shows (1) the optimization of
frequency offset points followed by (2) deep learning-based
reconstruction of high-resolution MRI data. In method (1), the genetic
algorithm optimization selects the optimal frequency offsets based on
the best fitness score, corresponding to accurate Z-spectra
reconstruction. In method (2), the dense Z-spectra are reconstructed
using the optimal frequency offsets.

mean square errors (RMSE), mean absolute error (MAE),
and Pearson’s correlation were used as the measurement
metrics.

B. ARCHITECTURE

The system architecture consists of two main steps as
shown in Figure 1. First, the selection of optimal frequency
offset points, and second, deep learning reconstruction. The
genetic algorithm was used as the optimization algorithm,
which selects the optimal frequency offset points. In our
experiment, each dense Z-spectra was of dimension 1 x
101 and was inputted to the genetic algorithm to select p
percent of the total frequency offset points. Consequently,
a sparse Z-spectrum was obtained based on the optimal
frequency offset selection. Later, the deep learning models
based on autoencoder and U-Net architectures were used
to reconstruct the dense Z-spectra. The autoencoder model
architecture consisted of an upsampler and downsampler,
whereas U-Net consisted of an additional layer, a skip
connection. Initially, the autoencoder model was used to
train with fewer datasets compared to the larger dataset
used to train the U-Net model. The U-Net model was more
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complex in terms of architecture. However, both models were
tested with various datasets, and their performances were
evaluated.

C. IMPLEMENTATION OF THE METHOD

1) SPARSE FREQUENCY OFFSETS OPTIMIZATION

The optimal sparse frequency offsets were obtained using
the genetic algorithm, which selects the best set of sparse
frequency offsets that result in the minimum error while
reconstructing the dense Z-spectra. The genetic algorithm
took the number of sparse frequency offsets, dense Z-spectra
values, populations, mutation rate, and maximum generations
as the input parameters. The populations were a set of
numerous non-optimal frequency offset points. The algorithm
was run to output the population with the best fitness
score. Each population contained chromosome values that
correspond to the sparse frequency offset points. The fitness
score is based on the reconstruction loss, and the algorithm
operated in a closed loop, minimizing the loss each time it
ran. Equation 2 represents the selection of optimal frequency
offset points Foprima from the set of total frequency offset
points Fy.

Foptimal = arg min  L(Fselected) 3)

Fielected EFN
where L(Felected) 18 the loss function. Fejecteq 1S the probable
set of optimal frequency offsets. The objective is to minimize
the loss function, i.e., to keep the Z-spectra reconstruction
error as low as possible. Algorithm 1 shows the steps to select
the optimal set of frequency offset points.

Algorithm 1 Selection of Optimal Frequency Offsets

Data: In vivo MRI mice dataset Myp, acquired at
frequency offsets ¢ and slices y.
Result: Set of optimal frequency offset points Foptimal-

1 Specify the inputs: (a) the number of optimal frequency
offsets p to be selected, (b) dense Z-spectra Zg;

2 Specify the inputs to the genetic algorithm: (a) p and Z,
(b) population as the set of numerous non-optimal
frequency offset points, (c) mutation rate, (d) maximum
generations;

3 Specify the desired fitness score f ;

4 while (fitness_score > f;) do

5 Run genetic algorithm optimization and calculate

the fitness score based on the Z-spectra

reconstruction error using loss function L(Fselected);

6 if (fitness_score < f;) ||(no progress in loss value) then
7 Select chromosome values Fejected from the
| population that correspond to Foptimal-

2) DEEP LEARNING RECONSTRUCTION

The next step involved the reconstruction of the high-
resolution Z-spectra using autoencoder and U-Net models.
The models were trained with sparse Z-spectra values on
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FIGURE 2. (a) The architecture of the 1D autoencoder model with 6 convolutional layers, 2 max-pooling layers, and 2 upsampling layers. The input to the
model is sparse masked Z-spectra values. Input passes through the encoder, bottleneck, and decoder layers. The final output of the decoder is dense
Z-spectra. In our case, N = 101 represents 101 frequency offsets. (b) The architecture of the 1D U-Net model 1. It has the same number of convolutional,
max-pooling, and upsampling layers as the autoencoder model. In addition, this model has skip connections that have the potential to pass detailed
features such as small shifts in Z-spectra. (c) The architecture of the 1D U-Net model 2. It has 10 convolutional, 2 max-pooling, 2 upsampling layers, and
2 skip connections. The model architecture is more complex than the autoencoder and the U-Net model 1. These three models are used to study diverse

dense Z-spectra reconstructions.

TABLE 1. Training details for all deep learning models used in the study.

Description Value
Training Data Optimal frequency offsets (10%, 20% and 30%) and dense
Z-spectra
Epochs Between 250 and 500 for different models
Batch Size Between 5 and 25 for different models
Validation Split 0.2
Compute Resources | JupyterLab version 4.0, facilitated by the Swan cluster,
operated by the Holland Computing Center (HCC) (re-
quested 8 cores, 32 GB RAM)

optimal frequency offset points and their corresponding
dense Z-spectra values. During testing, the models were
provided with low-resolution Z-spectra as input, and they
predicted the corresponding high-resolution Z-spectra. The
study performed experiments using 10%, 20%, and 30%
of the total frequency offset points. In each experiment,
the model was tested with multiple low-resolution Z-spectra
inputs, and the performance metrics were calculated after the
prediction of high-resolution Z-spectra.

3) TRAINING

We performed supervised training on the autoencoder model
at first. The model architecture is shown in Figure 2(a).
Likewise, we also performed supervised training on the
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U-Net models. In the case of the U-Net models, the
concatenation layers were present to facilitate passing
the feature maps from the encoder to the decoder. This
mechanism likely aids in reconstructing dense Z-spectra
accurately, as the skip connections enable the passing of
detailed features, which may include small shifts in Z-spectra.
The U-Net architectures used are shown in Figure 2(b) and
Figure 2(c). The datasets were accumulated in a CSV file for
training. It consisted of optimal frequency offset points and
the corresponding dense Z-spectra. Autoencoder and U-Net
models were trained on diverse datasets. Datasets were based
on the in vivo datasets with and without augmentations. The
training was performed using the Adam optimizer and mean
absolute error loss function. A callback function reduced
the learning rate if the validation loss did not improve. The
minimum learning rate was set to 107, More training details
are shown in Table 1.

D. STATISTICAL ANALYSIS

First, we analyze the genetic algorithm optimization test
results and later performances of the autoencoder and
U-Net models. We use RMSE to observe the reconstruction
accuracy of the Z-spectra. To gain further insights into the
reconstruction results, we calculate MAE, which is less

VOLUME 13, 2025
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FIGURE 3. Genetic algorithm (GA) optimization was performed for M D 30 different in vivo dense Z-spectra, with the number of optimal offsets to be
selected set to p D 10% (10 out of 101). Finally, the best set of optimal frequency offsets was selected based on reconstruction performance. The same

method was later applied, considering 20% and 30% offsets.

TABLE 2. Optimal frequency offsets selected by the optimization
algorithm.

P %o Optimal Frequency Offsets (ppm)

10% | -4.8,-3.8,-3.2,-0.7,-0.1,0.0,0.1, 1.1, 3.5, 4.5

20% | -5.0,-4.7,-4.2,-37,-3.1,-2.5,-1.7, -1.0, -0.6, -0.2, -0.1, 0.0, 0.1, 1.1, 1.3,
2.1,2.2,29,3.9,4.9
30% | -4.9,-4.2,-3.4,-3.3,-3.2,-2.6,-2.5,-2.1,-1.2,-0.9,-0.8,-0.5, -0.4, -0.1, 0.0,
0.1,0.2,05,0.7,1.1,1.2,1.3,1.4,2.6,3.1,3.2,3.5,4.2,4.9,5.0

sensitive to outliers than the RMSE, and calculate Pearson
correlation to assess how well the shape of the reconstructed
Z-spectra was retained.

IV. RESULTS

A. OPTIMAL OFFSETS SELECTION AND Z-SPECTRA
RECONSTRUCTION

Result 1. The optimizations were performed on dense
Z-spectra obtained from the 15 in vivo mice datasets, each
containing 2 brain slices. 30 dense Z-spectra were obtained by
calculating an average of the pixels across all the frequency
offsets for each slice. The optimizations were performed indi-
vidually on all these dense Z-spectra. The genetic algorithm
optimization gave 30 unique sets of optimal frequency offsets
for each Z-spectra. A set of frequency offsets was chosen as
optimal, which, when used to reconstruct its original dense
Z-spectra, resulted in a minimum reconstruction error. This
approach is demonstrated in Figure 3.

Our selection of optimal frequency offset points ranged
from 10% to 30% with a step of 10. The genetic algorithm
selected the optimal frequency offsets for these three
percentage groups. The algorithm was run to calculate the
fitness score based on Z-spectra reconstruction error using
the loss function. In our case, we used, spline interpolation as
the initial reconstruction method, and the loss function was
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RMSE. The optimization terminated either when the desired
loss was achieved or when there was no progress between the
current and previous loss value.

10%. The optimization algorithm operated several times
to select the optimal 10% frequency offset points from
the 101 frequency offset points. Finally, the algorithm
successfully selected the optimal frequency offsets, which,
when used to reconstruct the dense Z-spectra, resulted in a
minimum RMSE of 0.0127.

20%. Likewise, the genetic algorithm selected 20% of the
total frequency offset points. When reconstructing the dense
Z-spectra, this set of frequency offset points resulted in a
minimum RMSE of 0.0070.

30%. The percentage of selection was set to 30%. When
used to reconstruct the dense Z-spectra produced a minimum
RMSE of 0.0036. Table 2 presents the optimal frequency
offset sets corresponding to p = 10%, 20%, and 30%.

Dataset A: This dataset consisted of dense Z-spectra,
created by calculating the average of all pixel values across
the entire slice for each frequency offset. It contained 30 sets
of Z-spectra for the train and 8 sets of Z-spectra for the test.
In other words, 19 in vivo mice datasets were divided into
groups of 15 and 4 for testing. Dataset A’: This dataset was
based on the augmentation using additive white Gaussian
noise as mentioned in Section III. Dataset B: This dataset
was based on the augmentation using sub-samples of pixels
across the frequency offsets for each slice as mentioned
in Section III. The reconstruction models (autoencoder,
U-Net model 1, and U-Net model 2) shown in Figure 2(a),
Figure 2(b), Figure 2(c) were trained and tested using three
different datasets (Dataset A, Dataset A’ and Dataset B).

Result 2. The autoencoder model was trained with Dataset
A’, 10 % of optimal frequency offsets, and tested with
multiple Z-spectra as shown in Figure 4 and Figure 5. During
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FIGURE 4. Result of the first four test Z-spectra reconstruction by autoencoder models, trained using 10%, 20%, and 30% of
optimal offsets and Dataset A; respectively. We noted the improvement in the reconstruction based on RMSE, while optimal
frequency offsets were increased from 10% to 30%. However, in the case of Test Z-spectrum 1 and 3, the best performance was
achieved when reconstructed with 20% optimal offsets, implying that data acquisition could be stopped in cases that meet a
certain threshold value measuring the quality of reconstruction.
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FIGURE 5. Result of the last four test Z-spectra reconstruction by autoencoder models, trained using 10%, 20%, and 30% of optimal
offsets and Dataset A, respectively. Like the first four test Z-spectra, we noted the improvement in the reconstruction based on RMSE,
while optimal frequency offsets were increased from 10% to 30%. However, for Test Z-spectrum 5, the same performance was
achieved with both 20% and 30% optimal offsets, suggesting that data acquisition could have been halted at 20% without the need
for additional data at the 30% offsets.
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the test, the low-resolution Z-spectra data with 10 frequency
offsets were input to the autoencoder model to reconstruct
the high-resolution Z-spectra with 101 frequency offsets.
The minimum RMSE was 0.0065, the maximum RMSE was
0.0133, and the average RMSE was 0.0094 across the 8 test
Z-spectra samples.

Result 3. The autoencoder model was trained with Dataset
A’. However, 20 % of optimal frequency offsets were selected
and tested with multiple Z-spectra as shown in Figure 4 and
Figure 5. During the test, the low-resolution Z-spectra data
with 20% frequency offsets were input to the autoencoder
model to reconstruct the high-resolution Z-spectra with
101 frequency offsets. The minimum RMSE was 0.0055, the
maximum RMSE was 0.0090, and the average RMSE was
0.0064. It should be noted that the complexity of the deep
learning model used for Result 3 was the same as for Result 2,
but more optimal frequency offsets were involved. This
resulted in better reconstruction performance. We pointed out
that the performance improved by 15.38% for the minimum
RMSE, by 32.33% for the maximum RMSE, and by 31.91%
for the average RMSE compared to Result 2.

Result 4. The autoencoder model was trained with Dataset
A’. However, 30 % of optimal frequency offsets were
selected, and tested with multiple Z-spectra as shown in
Figure 4 and Figure 5. During the test, the low-resolution
Z-spectra data with 30 frequency offsets were input to
the autoencoder model to reconstruct the high-resolution
Z-spectra with 101 frequency offsets. The minimum RMSE
was 0.0047, the maximum RMSE was 0.0086, and the aver-
age RMSE was 0.0059. Once again, the same autoencoder
model was used as in Results 2 and 3, and the optimal
frequency offsets were increased from 20% to 30%. We noted
that the performance improved by 14.54% for the minimum
RMSE, by 4.44% for the maximum RMSE, and by 7.81%
for the average RMSE compared to Result 3. However,
when optimal offsets increased from 20% to 30%, some
reconstruction performances either degraded or remained
identical. These results implied that data acquisition could be
stopped in cases that meet a certain threshold value measuring
the quality of reconstruction. This would ultimately help
optimize the acquisition time for CEST MRI by avoiding data
collection at those offsets that do not further aid in improving
the quality of reconstruction.

B. COMPARISON OF FREQUENCY OFFSETS SELECTION
APPROACHES

In this comparative study, we considered the 11 frequency
offsets selected by Xiao et al. in their research work [19].
Moreover, 10 frequency offsets were selected by a
pseudo-random number generator (PRNG), and 10 optimal
frequency offsets were selected by GA. We utilized four
test datasets, each containing two brain slices, which gave
a total of 8 Z-spectra by averaging the pixels across offsets.
We tested three selection approaches with those 8 Z-spectra.
We used the pre-trained U-Net model 2 to reconstruct
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TABLE 3. RMSE observed during the reconstruction of various Z-spectra
using different offset selection approaches: 10% optimal offsets selected
by GA, 11% offsets selected by Xiao et al., and 10% offsets selected by
PRNG.

Test Z-spectrum GA Xiao et al. PRNG
Test Z-spectrum 1 | 0.0085 0.0076 0.0112
Test Z-spectrum 2 | 0.0081 0.0108 0.0121
Test Z-spectrum 3 | 0.0105 0.0090 0.0114
Test Z-spectrum 4 | 0.0125 0.0076 0.0159
Test Z-spectrum 5 | 0.0077 0.0085 0.0082
Test Z-spectrum 6 | 0.0097 0.0093 0.0127
Test Z-spectrum 7 | 0.0060 0.0089 0.0058
Test Z-spectrum 8 | 0.0100 0.0077 0.0069

RMSE Analysis

Minimum RMSE | 0.0060 0.0076 0.0058
Maximum RMSE | 0.0125 0.0108 0.0159

Average RMSE 0.0091 0.0086 0.0105

(Red color marks the best performances for the respective tests.)

the dense Z-spectra and compared the results based on
reconstruction performance measured by RMSE.

From Table 3, we see that only 10% of the optimal offsets
were used in the case of the GA selection approach, yet
we obtained performance comparable to that of the offsets
selected by Xiao et al. The average RMSE for the three
approaches (Xiao et al., GA, and PRNG) was 0.0086, 0.0091,
and 0.0106, respectively. In the case of PRNG, it also
produced good performance, but the average RMSE was
lower than that of the other two approaches. Figure 6 shows
the reconstruction performance of test Z-spectrum 2 using
three frequency offset selection approaches, while further
details of the other tests can be found in Table 3.

C. STATISTICAL RESULTS AND ANALYSIS

Result 5. The in-depth analysis of the dense Z-spectra recon-
struction results considered the calculation of three metrics:
RMSE, MAE, and Pearson correlation. We considered the
percentage of selected optimal frequency offset points (10%
to 30%), and the deep learning models (autoencoders) trained
on Dataset A and Dataset A’. Figure 7 presents the box
plots that compare the reconstruction performances of models
across different optimal frequency offsets.

Analysis of Figure 7. In Figure 7(a), RMSE values
are seen as relatively higher compared to MAE values in
Figure 7(b). This was because RMSE was more sensitive to
large reconstruction errors than MAE. However, MAE gave
an idea of the average Z-spectra reconstruction performance
across various optimal frequency offsets. In the case of, 7(c),
Pearson correlation showed how well the model predicted
the Z-spectra in terms of shape rather than focusing on exact
magnitudes of errors. Most of the Pearson correlations for
Z-spectra reconstructions were close to 1. This meant that the
shape of Z-spectra was retained very well.

Result 6, 7 and 8. The plots in Figure 8, Figure 9, and
Figure 10 compare the RMSE of Z-spectra reconstructions
produced by various models trained on Dataset A, Dataset A’
and Dataset B. Specifically, these figures compare the RMSE
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FIGURE 7. Plots compare the reconstruction performance of autoencoder models on three metrics: root mean square (RMSE), mean absolute error (MAE),
and Pearson correlation. (a) RMSE across different optimal frequency offsets (10%, 20%, 30%) for autoencoder models trained with Dataset A and
Dataset A. (b), (c) MAE and Pearson Correlation across the same offsets. We observed that models reconstructed Z-spectra with very low errors across
various optimal frequency offsets, and performance improved when optimal frequency offsets were increased. Moreover, it was inferred that the

autoencoder model trained with augmented data showed better performance.

of Z-spectra reconstructions produced by autoencoder and
U-Net models with 10%, 20%, and 30% of frequency offsets,
respectively.

Result 6 and analysis of Figure 8. The results cor-
respond to 9 different training configurations on Dataset
A. Each model was trained using p = 10%, 20%, and
30% of the optimal frequency offsets and tested across
three different models. As shown in Figure 8, the RMSE
results for these 9 configurations are presented. For all
configurations, the performance improved as the model
complexity and percentage of optimal frequency offsets
were increased. However, the models tended to achieve
comparable performances when more optimal frequency
offsets were used during reconstructions. As an example,
when 30% of optimal frequency offsets were considered,
the U-Net model 2 showed the best performance, but the
performance was comparable to the autoencoder and U-Net
model 1.

Result 7 and Analysis of Figure 9. It shows the results
of 9 different combinations like Figure 8, and therefore,
9 different trainings on Dataset A’ were performed to
achieve these results. The performance improved when the
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percentage of optimal frequency offsets was increased. The
autoencoder model performed best across all three sets of
optimal frequency offsets. Nonetheless, the reconstruction
performances of U-Net models were still satisfactory and
comparable to the autoencoder model. It should be noted
that all 9 models were tested with the same 8 in vivo
Z-spectra test samples to have a better analysis of the
reconstruction performances. Unlike the results involving
10% offsets shown in Figure 8, the performance of the
autoencoder was comparable to that of U-Net 1 and U-Net
2, as shown in Figure 9.

This finding indicates that, in the case of 10% offsets, the
performance improved specifically for the autoencoder mod-
els upon augmenting the dataset, whereas the performance of
the U-Net 1 and U-Net 2 models remained similar. This can be
observed by analyzing Figure 8 and Figure 9. Results indicate
that trade-offs exist among datasets, model architecture, and
the percentage of optimal frequency offsets.

From these results, we concluded that the training and
testing performance improved upon augmenting Dataset
A for lower percentages of frequency offsets, such as
10%. It was the autoencoder model that showed the best

89977



IEEE Access

A. Bhattarai et al.: Advancing In Vivo Molecular Bioimaging With Optimal Frequency Offset Selection

RMSE Box Plots for Z-Spectra - Dataset A

0.018 Autoencoder
U-Net 1
0.016 T —— U-Net 2
0.014
w O
0.012 .
[24 g
0.010 J. ° ° . ° .
I |
0.008 B m _1—_ 4,
0.006 L J_ - T .
0.004

10% Offsets 20% Offsets

—— Median ® Individual Observations

30% Offsets

A Mean O  Outliers

FIGURE 8. The figure compares the performances of three models:
Autoencoder, U-Net model 1, and U-Net model 2, by showing the box plot
of RMSE for reconstructed dense Z-spectra (using 10%, 20%, and 30%
optimal frequency offsets) from models trained on Dataset A. The U-Net
model 2 showed the best performance, but the performance was
comparable to the autoencoder and U-Net model 1.
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FIGURE 9. The figure compares the performances of three models:
Autoencoder, U-Net model 1, and U-Net model 2, by showing the box plot
of RMSE for reconstructed dense Z-spectra (using 10%, 20%, and 30%
optimal frequency offsets) from models trained on Dataset A. It was
inferred that data augmentation mostly benefited the performance of the
autoencoder model, particularly for the 10% offsets experiments.

performance. To get further insights, the comparison of
the performance of the autoencoder model before and after
the augmentation was shown in Figure 7 and discussed in
Result 5.

Result 8 and analysis of Figure 10 and 11. It shows
9 training results on Dataset B. Dataset B was obtained
through augmentation using subsamples as mentioned in
Section III. There were 128 diverse in vivo dense Z-spectra
samples to test the reconstruction performances of the
models. Compared to previous results on Dataset A and
Dataset A’, this result provided insights into the relationship
between the complexity of the model’s architecture, the
number of optimal frequency offsets, and the nature of the
datasets.
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FIGURE 10. Figure compares the performances of three models
(Autoencoder, U-Net model 1, and U-Net model 2) by presenting box plots
of RMSE for reconstructed dense Z-spectra (using 10%, 20%, and 30%
optimal frequency offsets) from models trained on Dataset B. The U-Net
model 2 demonstrated the best performance and was able to effectively
adapt to diverse Z-spectra reconstructions, particularly when the
percentage of frequency offsets was 30%.
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FIGURE 11. Distribution of RMSE values for 128 in vivo Z-spectra
reconstructed using the U-Net 2 model with 30% of the optimal frequency
offsets. U-Net model 2 showed a tighter range of RMSE values. This
indicated that the model performed better in the 30% frequency offset
experiments.

As shown in Figure 10, the reconstruction performance
improved when the percentage of optimal frequency offsets
was increased. Moreover, the reconstruction performance
improved in all cases as the model complexity increased,
except for the U-Net model 1, where performance degraded
slightly in the case of 10% of the optimal frequency offsets.
Compared to the results obtained for Dataset A and Dataset
A’ in Figure 8 and Figure 9, the reconstruction performance
on Dataset B based on RMSE was relatively lower. It should
be noted that the Z-spectra in Dataset B were more diverse
compared to the Z-spectra in Dataset A and Dataset A’
because these datasets were formed from the sub-samples
started with 800 pixels and increased up to 1550 pixels in
increments of 50. Moreover, models trained with Dataset
B were tested with 128 diverse Z-spectra, compared to
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FIGURE 12. Reconstruction of the MTR maps at 3.5 ppm using fully reconstructed CEST MRI from sparse data, based on various
frequency offset selection approaches. The maps were obtained from the fully reconstructed data, which were generated using 10%
offsets selected by PRNG, 11% offsets selected by Xiao et al., and the optimal 10% and 30% offsets selected by our approach.

In addition, the difference map, reference map, and evaluation based on PNSR, MAE, and SSIM are presented. It was inferred that our
approach performs comparably to the empirical approach (Xiao et al.) and outperforms PRNG. Further, the reconstruction quality

improved notably as we increased to the optimal 30% offsets.

8 Z-spectra for Dataset A and Dataset A’. This likely explains
the relatively lower performance of the models on Dataset B.

Figure 10 shows that all three models (autoencoder,
U-Net 1, and U-Net 2) with 30% of optimal frequency
offsets demonstrated impressive performance. In comparison,
the U-Net model 2 showed slightly better performance.
To gain further insights into this performance, we plotted
the distribution of the RMSE. Figure 11 illustrates the
distribution of RMSE values, with the x-axis representing
RMSE and the y-axis representing the frequency of occur-
rences, obtained from reconstructing 128 dense Z-spectra
using the U-Net model 2. The minimum RMSE was 0.0051,
the maximum RMSE was 0.0113, and the average RMSE
was 0.00798 across the 128 in vivo reconstructed Z-spectra
samples. U-Net model 2 exhibited a narrower range of RMSE
values. This suggested that the model performed better in the
30% frequency offset experiments.

D. MAGNETIZATION TRANSFER RATIO MAPS

We reconstructed magnetization transfer ratio (MTR) maps
at 3.5 ppm using fully reconstructed CEST MRI data derived
from sparse data. U-Net Model 2 was used to reconstruct
the full CEST MRI data from sparse data. Those sparse
data represented fully sampled CEST MRI collected at
limited frequency offsets. Various sets of sparse frequency
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offsets were selected using different approaches. Those
approaches were 10% offsets selected by PRNG, 11% offsets
selected by Xiao et al. [19], and the optimal 10% and 30%
offsets selected by our approach. We compared the rebuilt
MTR maps based on these frequency selection approaches.
The peak signal-to-noise ratio (PSNR), the mean absolute
error (MAE), and the structural similarity index measure
(SSIM) were calculated for each reconstructed MTR map
and compared using a bar graph, as shown in Figure 12.
From the bar graph, it was observed that our approach, which
considered 10% optimal offsets, performed comparably to
the empirical approach of Xiao et al., which selected 11%
offsets. In addition, our approach outperformed the PRNG
approach that selected random offsets 10%. Please note that
our approach, different from Xiao et al.’s approach, offers
a systematic methodology as an optimization framework
to seek and identify efficient frequency offsets. Moreover,
we observed that the reconstruction quality, measured by
PSNR, MAE, and SSIM, improved notably as the optimal
offset percentage increased to 30%.

V. DISCUSSION

The objective of this research was to develop a systematic
method to improve the efficiency of CEST MRI by reducing
data acquisition time. This was achieved by optimizing the
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selection of frequency offset points, followed by deep learn-
ing Z-spectra reconstruction. Results show that the optimiza-
tion algorithm, such as the genetic algorithm, could select
optimal frequency offset points down to 10% of the total
frequency offsets. Furthermore, the Z-spectra reconstruction
using those optimal frequency offset points with autoencoder
and U-Net models trained on various datasets resulted in a
lower reconstruction error. This supports our hypothesis that
the two-step procedure involving optimization followed by
deep learning reconstruction improves the efficiency of CEST
MRI data acquisition.

While previous studies by Cheema et al. show that
frequency offsets can be optimized to as low as 28.30% (15
out of 53) using their approach of Fisher information gain
analysis [13], our findings indicate that it can be reduced
up to 10%. Further, Chen et al. selected 25.54% (13 out of
51) frequency offsets to reconstruct rat brain dense Z-spectra
using their proposed approach of Z-spectral compressed
sensing to obtain the best results with a minimum RMSE of
0.0049 [14]. However, our findings indicate we can achieve
RMSE as low as 0.0065 using only 10% of optimal frequency
offsets to reconstruct mice brains Z-spectra.

These findings have significant implications for the
development of an efficient CEST MRI method, particularly
in reducing data acquisition time, thus expanding the
applications of the method. Consequently, faster CEST MRI
acquisition would advance in vivo molecular bioimaging for
basic science and clinical research as well as for clinical
theranostic applications.

The limitation of the study was that limited in vivo
CEST MRI data were used as scan data were expensive to
acquire. However, augmentation was performed to enhance
the training performance of deep learning models. The
models were tested using both augmented and original in vivo
mice brain Z-spectra, and the results were compared. For
optimization, spline interpolation was utilized to reconstruct
the dense Z-spectra and assess the reconstruction error. Our
findings suggested that the deep learning reconstruction
later significantly reduced the reconstruction error. Such
observation was potentially due to optimal frequency offsets
selection by the genetic algorithm.

Future studies should consider more in vivo CEST MRI
datasets, including both healthy and disease groups. This may
require a more robust optimization technique to select optimal
frequency offsets and complex deep-learning reconstruction
models for adapting to diverse Z-spectra.

In summary, this study concludes that the optimal selection
of frequency offsets followed by deep learning reconstruction
is a promising approach for addressing limitations associated
with extended time requirement for CEST MRI data acqui-
sition, laying the groundwork for efficient in vivo molecular
bioimaging.

VI. CONCLUSION
The research aimed to investigate a systematic method to
optimize CEST MRI data acquisition, providing insights
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into the selection of optimal frequency offsets to reconstruct
accurate dense Z-spectra. Our findings indicate that the
percentage of optimal selection of frequency offsets can reach
a lower value than the current state-of-the-art considers, and
can achieve acceptable reconstruction accuracy. This study
paves a strong foundation for the development of a more
efficient CEST MRI method, expanding its applications in
both pre-clinical and clinical research. This study offers
meaningful insights but is limited by the use of a small
amount of in vivo CEST MRI data due to the high cost of
acquisition. However, an effort was made to augment the
data. Future research would be built on this platform, and a
larger sample size would be utilized for adapting to diverse
Z-spectra. Such an approach would help to develop a more
generalizable system to optimize the selection of frequency
offsets and reconstruct high-quality Z-spectra, ultimately
enhancing basic science and clinical studies and related
applications.
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