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Abstract— The inherent spatial mismatch between
satellite-derived and ground-observed near-surface soil moisture
(SM) data necessitates cautious interpretation of point-to-pixel
comparisons. Although data-driven upscaling of point-scale SM
may enable statistically sound comparisons, the uncertainty
across a spatial domain was less explored in previous studies.
This gap underscores the need of addressing the spatial
prediction uncertainties when extrapolating SM information
to a broader spatial scale. Accordingly, this study presents a
spatial prediction approach integrating machine learning (ML)
and spatiotemporal fusion, which enables the characterization
of SM variability at the Landsat satellite footprint. Spatially
clustered SM from 28 in situ stations was extrapolated to a
100 × 100 km area at 100 m resolution over a cross-validation
(CV) period (2016–2019) and an independent test period
(2020–2021). The area of applicability (AOA), which represents
the spatial extent within which a prediction model is considered
reliable, was determined for two ML models: random forests
(RFs) and extreme gradient boosting (XGB). The AOA of RF
and XGB models encompassed 43.1% and 41.5% of the study
area, respectively. The spatial SM predictions were further
evaluated against multiple independent datasets, including field
campaign data, in situ SM from different networks, and satellite
retrievals. Specifically, RF-predicted SM achieved a spatial
R of 0.62–0.64 against field campaign data, temporal R of
0.84–0.91 against network-recorded data, and spatiotemporal R
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of 0.87 against SM active passive (SMAP) L2 data during the
CV period. SM predictions within the AOA showed markedly
lower uncertainties, which were further validated across an
extended area (300 × 300 km) with diverse physiographic
conditions. Overall, this study demonstrated the use of AOA in
delineating the statistically reliable spatial extent for ML-based
SM predictions.

Index Terms— Area of applicability (AOA), Landsat, machine
learning (ML), soil moisture (SM), spatial prediction, upscaling.

I. INTRODUCTION

SOIL moisture (SM) is vital to global water, energy, and
biogeochemical cycles [1], influencing the distribution

of water and radiation at the land–atmosphere interface [2],
[3]. Spatiotemporal SM datasets have been extensively devel-
oped and explored through remote sensing techniques [4],
[5]. The remotely sensed SM data is typically acquired
from microwave sensors, such as the Microwave Imaging
Radiometer with Aperture Synthesis (MIRAS) on board the
Soil Moisture and Ocean Salinity (SMOS) [6], the Advanced
Scatterometer (ASCAT) on board the series of Meteorological
Operational (METOP) satellites [7], and the L-band radiometer
on board the Soil Moisture Active Passive (SMAP) [8]. Alter-
natively, the simulations can be obtained from land surface
models (LSMs) embedded in data assimilation systems that
incorporate the remotely sensed SM [9], often from retrospec-
tive reanalyses such as European Centre for Medium-Range
Weather Forecasts (ECMWF)’s fifth-generation climate reanal-
ysis (ERA5) [10] and the National Aeronautics and Space
Administration (NASA)’s Modern-Era Retrospective analysis
for Research and Applications (MERRA) land data prod-
ucts [11]. These data have played a crucial role in studying
SM dynamics within terrestrial environments.

An accurate evaluation of satellite-derived or model-
estimated SM values is usually dependent on comparisons
against in situ SM measurements [12], [13]. At a farming
or catchment scale, there is a necessity to enhance the com-
prehension and application of in situ SM observations. This
knowledge is often accumulated and refined over time by
farm operators, while it can be supplemented through the
deployment of SM sensors or networks. Some well-known
SM ground networks, such as the Terrestrial Environmental
Observatories (TERENO) [14], U.K. Cosmic-ray SM Observ-
ing System (COSMOS-UK) [15], the Australian Cosmic-Ray
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Neutron Soil Moisture Monitoring Network (CosmOz) [16],
and the OzNet Hydrological Monitoring Network [17], play
a pivotal role in evaluating SM from model simulations or
satellite retrievals. However, the representativeness of ground
measurements is constrained to a specific area and their distri-
bution is typically sparse [18], [19]. The inherent mismatch in
spatial support therefore necessitates a cautious interpretation
of point-to-pixel comparisons. Researchers have consistently
questioned how to effectively align the footprints between
in situ data and spatial grids. As a result, extensive investi-
gations into upscaling techniques have been undertaken [20].

Previous studies have implemented diverse approaches to
upscale in situ SM data to the spatial resolution of satel-
lite footprints, primarily leveraging regression models while
incorporating remotely sensed predictor variables. The Mod-
erate Resolution Imaging Spectroradiometer (MODIS)-derived
apparent thermal inertia (ATI) approach [20] is a representa-
tive semiphysical upscaling approach that ensures consistency
between upscaled SM estimates and local hydrometeorolog-
ical characteristics. Concurrently, empirical methodologies,
encompassing both geostatistical techniques and machine
learning (ML) algorithms, have been extensively investi-
gated, such as the spatiotemporal regression block kriging
(STRBK) [21], least absolute shrinkage and selection oper-
ator (LASSO) [22], and random forests (RFs) [23]. Despite
their methodological diversity, most methods impose stringent
requirements on the quantity and spatial arrangement of SM
sensors. Furthermore, these studies exhibited limitations in
validation methodology, lacking evaluations against indepen-
dent datasets (e.g., field campaign) and assessment of spatial
representativeness of models. Consequently, extant upscaling
approaches typically demonstrated site specificity with limited
transferability across broader spatial domains [22]. A detailed
comparison can be found in Table IV in the Discussion
Section.

Specifically, the discussion around uncertainty magnitude
within the spatial prediction remains limited. The majority of
studies have been confined to localized conditions, specifically
upscaling in situ SM at the precise geolocation of satellite pix-
els, and have primarily concentrated on cross-validation (CV)
metrics, which are inadequate for comprehensively capturing
the error distribution across a spatial domain. Considering
that all upscaling strategies inherently carry non-negligible
errors [19], and are potentially influenced by spatial autocorre-
lation [24], it is crucial to assess the spatial distribution of error
magnitudes and extrapolate the applicability of SM prediction
at a relatively broader spatial scale. Given the scarcity of
independent validation data for spatial prediction results in
both space and time, emerging spatial analysis tools can play
a pivotal role in quantifying such spatial uncertainty [25], [26].

The area of applicability (AOA) metric [25] describes
the spatial region where a prediction model is expected to
maintain CV performance. This performance is learned from
a spatially distributed training data that is usually collected
from field sampling and/or ground stations. The AOA metric
has been employed to determine the reliable spatial predic-
tion extents for multiple geophysical variables, including soil
properties [27], [28], soil organic carbon [29], and LST [30].

However, relatively little attention has been given to its use
in SM prediction [31]. Results from field campaigns have
consistently shown that variations in local topography, veg-
etation, and soil can systematically influence the relative bias
of localized SM conditions when compared to broader-scale
areal averages [19], [32]. The implementation of AOA can
consequently help identify the reliable prediction area by
accounting for the spatial variation of these predictor variables.
Additionally, it is advisable to assess model performance
against independent data sources, such as field campaigns
or other networks [23]. These complementary assessments
provide valuable context for interpreting the AOA metrics.

To enhance the extrapolation of spatial uncertainty, another
area that requires improvement is the resolution of predictor
variables used in spatial SM prediction. Previous studies have
often relied on regression relationships between point-scale
SM and predictor variables with coarse-to-moderate resolu-
tion. However, given the marked spatial variation in SM, the
information provided by predictor variables at such resolutions
(e.g., 1 km for MODIS) may not be directly applicable in
building regression relationships with point-scale SM data.
Matching the resolution of predictor variables to a level
comparable to ground measurements is therefore expected to
improve the quantification of spatiotemporal dynamics of SM.
Moreover, as efforts have evolved to the production of fine
resolution (equivalent to or finer than 1 km) SM estimates
(e.g., [33], [34], [35], [36]), there is a growing need to quantify
the error dynamics of SM at fine resolution (e.g., 100 m).
It holds promise for capturing the intricate variations in SM
across fields, leading to more accurate assessments of spatial
uncertainty.

Given the above, the objectives of this study are the fol-
lowing: 1) to spatially predict SM at 100 m resolution with
daily frequency in an agricultural region using data-driven
approaches; 2) to conduct multifold spatial CV to assess
the performance of two alternate ML models during 2016–
2019; 3) to determine AOA of the employed models based
on spatial CV performance and feature importance during
2016–2019; and 4) to evaluate the spatial SM prediction
against independent data from field campaigns, additional
monitoring networks, and satellite retrievals during both a CV
period (2016–2019) and independent test period (2020–2021),
to complement the AOA metric.

II. STUDY AREA AND DATA

Table I summarizes the data used in this study, including
in situ SM measurements, gridded predictor variables, and
independent SM datasets. The OzNet SM measurements were
used as the response variable in the ML-based spatial predic-
tion. The gridded predictor variables represent the multiscale
physical processes that align with recent findings on the impor-
tance of precipitation, vegetation, and temperature controls on
SM variability across landscapes [37].

1) MODIS Products and Landsat-Resolution Products:
This captures surface energy balance and vegetation
water stress through albedo, normalized difference veg-
etation index (NDVI), LST, and ET.
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TABLE I
SUMMARY OF DATA USED IN THIS STUDY

2) ANUClimate: This quantifies atmospheric water flux
components through air temperature (T air), solar radi-
ation (Srad), vapor pressure deficit (VPD), and precipi-
tation.

3) DEM-S and the Soil and Landscape Grid of Australia
(SLGA): They represent the underlying hydrological
controls on water redistribution and retention.

The point-scale SM observations acquired by the
hydraprobe data acquisition system (HDAS) were used
to evaluate the spatial pattern of the predicted SM. The
independent in situ SM observations from CosmOz and
OzFlux networks and SM retrieval from the SMAP mission
were jointly used to evaluate the temporal dynamics of the
spatial SM prediction.

A. Study Area and In Situ Measurements

The Yanco agricultural region was designated as the study
area (Fig. 1). Yanco is situated within the Murrumbidgee
Catchment, with a Mediterranean climate that is representa-
tive for the majority of agricultural regions in southeastern
Australia (i.e., hot dry summer and cool moist winter). Fig. 1
shows the following: (a) the land cover information in 2021
[49]; (b) a Landsat true-color composite image acquired on
October 13, 2020; (c) a map of cropland extent produced
by the United States Geological Survey (USGS); and (d)
the smoothed digital elevation model (DEM-S) [44]. The
annual total precipitation in this region averages approximately
400 mm. The in situ SM data were collected from the OzNet
Hydrological Monitoring Network [17] between January 1,
2016 and December 31, 2021. OzNet site locations are indi-
cated as black squares in Fig. 1(a) and detailed in Table II. The
OzNet sites were categorized into four groups to facilitate a
fourfold spatial CV (Table II). Moreover, two spatial clusters,
where OzNet sites have a relatively dense distribution, were
chosen, referred to as cluster A [Fig. 1(e)] and cluster B
[Fig. 1(f)], respectively.

TABLE II
SUMMARY OF THE SITE INFORMATION FROM OZNET. THE “FOLD”

COLUMN REPRESENTS THE NUMBERED GROUP OF THE FOURFOLD
SPATIAL CV. THE “CLUSTER” COLUMN REPRESENTS THE SPATIAL

CLUSTER WHERE THE SITES ARE LOCATED. COSMOZ-YANCO
AND OZFLUX-YANCO ARE LOCATED WITHIN THE

CLUSTER B REGION (SEE FIG. 1) BUT THEY
WERE NOT INCLUDED IN THE TRAINING

Two field campaigns were conducted in the coleambally
irrigation area (CIA) in 2019 [47] and 2021 [48], respectively.
The spatial coverage of the field campaigns spans
146.07◦E–146.11◦E and 34.70◦S–35.73◦S (Fig. 1(e);
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Fig. 1. (a) Land cover information of the Yanco agricultural region (highlighted in the dashed rectangle within the state of NSW) in 2021 [49]. (b) Landsat
true-color composite image acquired on October 13, 2020. (c) USGS cropland extent [50]. (d) DEM-S [44]. (e) and (f) Zoomed land cover and true-color
images for cluster A and B, respectively. The black dots, purple circle, and red triangle indicate in situ sites from OzNet, CosmOz, and OzFlux, respectively.
The study area spans 146.00◦E–147.00◦E and 34.30◦S–35.30◦S (100 × 100 km). The cluster A spans 146.06◦E–146.16◦E and 34.67◦S–34.77◦S (10 ×

10 km), with the field campaign in the coleambally irrigation area (CIA; [51]) covering 146.07◦E–146.11◦E and 34.70◦S–34.73◦S (4 × 3 km). Cluster
B spans 146.25◦E–146.35◦E and 34.92◦S–35.02◦S (10 × 10 km). The AOA assessment is also extended to a broader region (144.50◦E–147.50◦E and
33.00◦S–36.00◦S; 300 × 300 km) surrounding the Yanco agricultural region. See Fig. A1 for more details about the extended area.

4 × 3 km), which was included within cluster A. Additionally,
in situ SM data were collected from two other SM monitoring
networks to facilitate independent evaluations, including the
following: 1) the CosmOz [16] and 2) Australian and New
Zealand Flux Research and Monitoring (OzFlux) [38], shown
as a purple dot and a red triangle in Fig. 1(a) and (f).

The study domain is also extended to a mosaic of six
Landsat tiles (path: 092–093, row: 083–085). The extended
area spans 144.50◦E–147.50◦E and 33.00◦S–36.00◦S (300 ×

300 km; Fig. 1). See Fig. A1 for more details.

B. Gridded Predictor Variables

1) MODIS Data: The MODIS products have been exten-
sively used in moderate-resolution land surface monitor-
ing [52]. The 500 m resolution daily nadir bidirectional
reflectance distribution function adjusted reflectance (NBAR)
product (MCD43A4; version 6.1) [39] and the 1 km res-
olution daily LST product (MOD11A1; version 6.1) [40]
were collected over January 1, 2016–December 31, 2021.
The 500 m daily albedo and NDVI were derived from the
surface reflectance bands of MCD43A4 dataset. The MODIS
albedo was calculated using the Liang method [53]. These two
collections were acquired from NASA’s Earthdata Search plat-
form (https://search.earthdata.nasa.gov/search; accessed April
28, 2025).

2) Landsat-Resolution Data: The Landsat 8 mission pro-
vides data from visible to thermal infrared bands, with a spatial
resolution ranging from 30 to 100 m. The 30 m resolution
16-day Landsat 8 NBAR product (version 3.0.0) [41] was
collected for the period spanning January 1, 2016–December
31, 2021. With the application of the bidirectional reflectance
distribution function (BRDF), it ensures consistency with the
MCD43A4 product. The 30 m resolution 16-day albedo and

NDVI were derived using its surface reflectance bands. The
Landsat albedo was calculated using the Liang method [53].
The 100 m resolution 16-day Landsat LST was retrieved using
a split-window algorithm [54]. A 30 m resolution monthly
CSIRO MODIS reflectance-based scaling evapotranspiration
(CMRSET; version 2.2) Landsat actual evapotranspiration
(ETa) product [42] was also collected between January 1,
2016 and December 31, 2021. The Landsat 8 data for Australia
is publicly available from the Digital Earth Australia (DEA;
https://dea.ga.gov.au/; accessed April 28, 2025).

3) ANUClimate: ANUClimate (version 2.0) is a climatic
dataset spanning the Australian continent, comprising gridded
daily and monthly climate variables at a spatial resolution
of 0.01◦ [43]. This dataset was generated by interpolating
Australia’s national point climate data using trivariate thin
plate smoothing spline functions [55], which account for
spatial variations in longitude, latitude, and enhanced eleva-
tion. The average air temperature (T air), incoming shortwave
radiation (Srad), VPD, and precipitation were collected during
January 1, 2016–December 31, 2021 to serve as predictor
variables, all of which have a spatial resolution of 1 km and
daily frequency.

4) Static Data: The elevation and soil data were col-
lected as static predictor variables. Specifically, the Australian
Smoothed Digital Elevation Model (DEM-S; version 1.0)
[44] was collected, which eliminates the impacts of ground
vegetation and has undergone a smoothing process to mitigate
the influence of noise, with a spatial resolution of 1 arcsecond
(approximately 30 m). The available water capacity (AWC),
clay, sand, and silt data were acquired from the (SLGA;
version 2.0) collection [45], [46]. Their spatial resolution is
3 arcsecond (approximately 90 m) and the depth of soil data
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used herein is 0–5 cm, consistent with the near-surface layer
of SM.

C. Observed and Retrieved SM

1) Hydraprobe Data Acquisition System: HDAS is an
integrated spatial data acquisition tool functioning within a
mobile GIS environment [56]. HDAS was utilized to col-
lect SM data during the P-band radiometer inferred SM
(PRISM) field campaigns in CIA in 2019 and 2021 [47],
[48]. Throughout the campaigns, routine HDAS measure-
ments were conducted across regular grids spaced at 50 m
intervals to capture the spatial distribution of near-surface
SM (approximately 5 cm). The acquired near-surface HDAS
SM data spans September 30, 2019–October 18, 2019 and
March 8, 2021–March 26, 2021. The HDAS data is avail-
able at https://prism.monash.edu/index.html (accessed April
28, 2025).

2) SM Active Passive: The SMAP mission was launched
by NASA in 2015 and measures L-band microwave brightness
temperature at 1.4 GHz [8]. The L2 product (version 6) was
collected between January 1, 2016 and December 31, 2021,
which provides radiometer SM derived from level 1 obser-
vations and ancillary information. It has an original spatial
resolution of 36 km and a temporal revisit frequency of 2–
3 days. The data is gridded at the 9 km Equal Area Scalable
Earth-2 (EASE2) grids using the Backus–Gilbert interpolation
method. The data is publicly available from the National Snow
and Ice Data Center (https://nsidc.org/data/smap; accessed
April 28, 2025).

III. METHODOLOGY

Fig. 2 presents the experimental design in four key steps.
First, a nearest neighbor method was utilized to resample all
predictor variables to 0.001◦ resolution grids under the World
Geodetic System 1984 (WGS84) datum. Concurrently, a spa-
tiotemporal fusion was implemented between MODIS and
Landsat data to downscale MODIS albedo, NDVI, and LST
to a 100 m resolution with daily frequency (Section III-A).
Second, the ML models were trained using point-scale SM
from 28 OzNet sites between 2016 and 2019 as the response
variable, with the collected predictor variables serving as input
features. The performance of two ML models, specifically the
RFs and extreme gradient boosting (XGB), were compared
through a fourfold spatial CV and a cross-cluster (CC) val-
idation to assess the transferability of the spatial prediction
approach while considering regional nuances (Section III-B).
Third, the AOA metrics of RF and XGB models were deter-
mined based on their respective performance and feature
importance in CV and CC (Section III-C). Fourth, the spatial
SM prediction within AOA was evaluated against multiple
independent datasets, including data from field campaigns,
CosmOz and OzFlux networks, and SMAP SM retrievals
(Section III-D).

A. Spatiotemporal Fusion

The implementation of spatiotemporal fusion is to address
the resolution mismatch between key geophysical indicators

Fig. 2. Experimental design. The “steps” polygons correspond to
Sections III-A–III-D.

and surface characteristics in SM prediction. While MODIS
products (>500 m) provide frequent data essential for cap-
turing daily surface dynamics, their spatial resolution is
insufficient to characterize field-scale heterogeneity in SM.
Through fusion with Landsat data (30–100 m), it achieves
daily estimates of these predictor variables at resolutions
commensurate with underlying soils (90 m) and topographic
features (30 m).

The enhanced spatial and temporal adaptive reflectance
fusion model (ESTARFM) [57] has been extensively applied
to generate fine-resolution surface reflectance [51], [57] and
demonstrated an exceptional performance in fusing surface
reflectance. Furthermore, an unbiased variant (ubESTARFM)
[58] has demonstrated more effectiveness in fusing LST data.
Hence, ESTARFM was implemented to fuse MODIS and
Landsat surface reflectance data (i.e., albedo and NDVI), while
ubESTARFM was implemented to fuse MODIS and Landsat
LST data, to generate daily 100 m estimates of these predictor
variables. The formula of ESTARFM is given as follows:

F(xw/2, yw/2, tp) = F(xw/2, yw/2, t0)

+

N∑
i=1

Wi × Vi × (C(xi , yi , tp)

− C(xi , yi , t0)) (1)

where F(xw/2, yw/2, t0) is the central pixel (xw/2, yw/2) of the
fine-resolution image within a search window at time t0; tp is
the prediction time; N is the number of similar pixels within
the search window; Wi is the weight of the ith similar pixel; Vi

is a regression coefficient between the chosen fine- and coarse-
resolution pixels; and C(xi , yi ) is the pixel at the location
(xi , yi ) of a coarse-resolution image. For ubESTARFM, a local
bias correction step is implemented to the central and similar
fine-resolution pixels within the search window. For more
details, please see [57], [58].

B. ML-Based Spatial Prediction

ML models and algorithms have been well established and
applied in geoscience and remote sensing [59]. Two widely
recognized ML models were employed, namely the RFs [60]
and the XGB [61], to perform a comparative study. These
ensemble algorithms have demonstrated robust performance
in capturing nonlinear relationships in environmental data,
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particularly in SM estimation applications [62]. RF’s bootstrap
aggregation mechanism provides protection against overfitting,
while XGB’s gradient boosting framework offers complemen-
tary strengths in handling complex feature interactions. Both
ML approaches offer built-in feature importance assessment
capabilities, enabling systematic quantification of predictor
variable contributions—a critical requirement for implement-
ing AOA. They can also be interpreted using the shapley
additive explanations (SHAPs), which provide insights into
the average marginal contribution of a feature value across all
possible coalitions [63], [64]. The methodological selection
balances algorithmic sophistication, interpretability, computa-
tional efficiency, and prediction accuracy.

1) Fourfold Spatial CV: A “leave-seven-sites-out” CV strat-
egy was performed to assess the fitting performance of the ML
models between 2016 and 2019. The 28 OzNet sites were
randomly divided into fourfolds. In each fold, seven sites
were reserved for validation purposes, while the remaining
21 sites were utilized for training the models. Specifically,
each fold contains one site outside both clusters and six sites
with close neighbors (Fig. 1 and Table II). The specifics of
each fold are outlined in the “fold” column of Table II. This
approach was chosen to ensure that the trained model captures
the spatiotemporal distribution of SM data across a relatively
large spatial domain.

2) CC Validation: The validation strategy was expanded
beyond random selection of sites by conducting a CC valida-
tion. This approach was crucial due to the spatial clustering
of OzNet sites (Fig. 1), necessitating an evaluation of model
performance using a “leave-cluster-out” approach commonly
employed in spatial ML applications [65]. Details regarding
each cluster (i.e., A and B) can be found in the “cluster”
column of Table II. The cluster A and B, each of which
contains 12 OzNet sties, were employed reciprocally for a CC
validation. Specifically, sites within cluster A were utilized
for training while sites within cluster B were utilized for
validation, and vice versa.

C. Area of Applicability

The AOA metric [25] serves as a tool to evaluate the
spatial extent within which an ML model can be reliably
applied. In spatial prediction studies, ML models are typically
trained using spatially distributed data obtained from ground
stations. However, the model needs to make prediction in
new geographic areas, which may possess different feature
combinations and relationships to those present in the model
training data. AOA delineates the area where the model can
apply relationships learned from training data, ensuring that
the estimated CV performance remains valid. It begins with
a standardization procedure that ensures equivalent scaling
across all predictor variables through the implementation of
z-score normalization

X s
i, j =

X i, j − X̄ j

σ j
(2)

where X s
i, j denotes the standardized value of the j th predictor

variable for the i th observation (i.e., X i, j ); and X̄ j and σ j

represent the arithmetic mean and standard deviation of the

Fig. 3. Illustration of the binary determination of AOA using the RF model
based on a fourfold spatial CV.

j th predictor variable, respectively. Furthermore, ML mod-
els reveal differential predictive power across variables [66].
To incorporate this heterogeneity, an importance-weighted
standardization is implemented

X sw
i, j = w j X s

i, j (3)

where w j is the weight derived from the variable importance
for the j th predictor variable. The Euclidean distance between
a given prediction location k and a training location i in the
predictor variable space can be expressed as follows:

d(k, i) =

√√√√ p∑
j=1

(
X sw

k, j − X sw
i, j

)2 (4)

where d denotes the Euclidean distance and p is the number
of predictor variables. The minimal distance is then given as
follows:

dk = argi min(d(k, i)). (5)

The dissimilarity index (DI) for a given prediction location
(i.e., DIk) is defined as follows:

DIk = dk/d̄ (6)

where d̄ is the arithmetic mean value of all pairwise distances
between training data. The DI for training instances should
be computed following a CV, where distances are calculated
to the nearest training point outside the instance’s validation
fold. The value of DI ranges from 0 to ∞, where DIk = 0
represents the prediction location k that has no dissimilarity
(i.e., identical characteristics) with a training location (Fig. 3).

The outlier-removed maximum DI is used as a threshold to
determine a binary AOA, which is given as follows:

AOAk =

{
1, if DIk ≤ DIQ3 + 1.5 × DIIQR

0, if DIk > DIQ3 + 1.5 × DIIQR
(7)

where Q3 and IQR denote the third quartile and interquartile
range of a boxplot, respectively. When AOAk = 1, it represents
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the characteristics of predictor variables at location k that are
considered similar to those of training data (Fig. 3), thus the
prediction model is considered applicable at location k.

The exhibition of DI estimations and AOA determinations
was advocated in conjunction with the prediction of ML mod-
els [25]. These metrics can help encapsulate spatial constraints
and zones of reliable prediction for ML models, thereby
complementing the traditional validation metrics and prevalent
estimates of uncertainty. For more details, please see [25].

D. Evaluation Metrics

Bias, unbiased root mean squared error (ubRMSE), and
Pearson correlation coefficient (R) were used to evaluate the
performance of spatiotemporal fusion and ML models, which
are respectively given as follows:

Bias =

∑N
i=1(yi − xi )

N
(8)

ubRMSE =

√∑N
i=1((yi − ȳi ) − (xi − x̄ i ))2

N
(9)

R =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(10)

where yi denotes the time series of estimated data; xi denotes
the time series of reference data; ȳi and x̄ i are the mean values
of the estimated and reference data, respectively; and N is the
number of observations of the time series.

IV. RESULTS

A. Evaluation of Downscaled Predictor Variables

Fig. 4 shows the downscaled performance of (a) albedo, (b)
NDVI, and (c) LST versus MODIS data during January 1,
2016–December 31, 2019 using binned density scatterplots.
The validation employed a point-based comparison strategy,
where both MODIS and downscaled data were extracted
at precisely matched OzNet monitoring locations (n =

14 118) through coordinate-based spatial matching. Down-
scaled albedo had a bias of 0, ubRMSE of 0.03, and R
of 0.76, with values clustering around 0.2. NDVI showed a
slight negative bias of −0.02, ubRMSE of 0.08, and R of
0.87, with values mostly between 0.2 and 0.3. LST had a
bias of 0.17 K, ubRMSE of 1.14 K, and R of 0.99, with
values concentrated around 290 K and 305–315 K. Overall,
the downscaled predictor variables demonstrated consistency
with MODIS data, as evidenced by the established metrics
and concentration patterns on the 1:1 line as observed in the
scatterplots.

Fig. 5 provides an illustrative example from April 2,
2017 showcasing the spatial comparison between MODIS
data and downscaled predictor variables. Fig. 5(g)–(i) presents
downscaled patterns of predictor variables across the entire
study area, demonstrating consistency with MODIS data but
exhibiting sharpened features in comparison [Fig. 5(a)–(c)].
Upon closer examination of a zoomed area [Fig. 5(j)–(l)], the
downscaled predictor variables revealed enhanced details that
are more visually discernible compared to the MODIS data

[Fig. 5(d)–(f)]. Notably, features such as the vegetated areas
[observed in Fig. 5(k)] are more distinct in the downscaled pre-
dictor variables. In general, the spatiotemporal fusion enabled
a better capture of spatial details of predictor variables at the
field scale, offering improved visualization and representation
of the landscape.

B. Evaluation of Model Performances

Fig. 6 presents boxplots of (a) bias, (b) ubRMSE, and (c)
R for a fourfold spatial CV of RF and XGB models, respec-
tively, between January 1, 2016 and December 31, 2019.
The median bias was approximately 0.00 m3/m3 for RF
and −0.01 m3/m3 for XGB, with bias values ranging from
−0.05 to 0.05 m3/m3 for both models. The median ubRMSE
was around 0.05 m3/m3 for both models, with values between
0.03 and 0.12 m3/m3. The median R was approximately
0.79 for RF and 0.78 for XGB, with RF showing slightly
better performance. These metrics indicate that both models
performed comparably in estimating SM contents across the
OzNet sites.

Fig. 7 presents boxplots of bias, ubRMSE, and R for
the CC validation of (a)–(c) RF and (e)–(f) XGB model,
respectively, between January 1, 2016 and December 31, 2019.
In cluster A, RF and XGB had similar performance, with
median bias, ubRMSE, and R values of about −0.02 m3/m3,
0.08 m3/m3, and 0.70, respectively (Fig. 7; cluster A columns).
In cluster B, RF slightly outperformed XGB with median bias,
ubRMSE, and R values of 0.05 m3/m3, 0.05 m3/m3, and 0.71,
respectively, compared to XGB’s 0.06 m3/m3, 0.06 m3/m3,
and 0.68 (Fig. 7; cluster B columns). When trained on data
from both clusters A and B, both models captured SM patterns
outside these clusters (Fig. 7; remaining 4 sites columns), with
RF (XGB) showing bias, ubRMSE, and R values of 0.02
(0.01) m3/m3, 0.05 (0.05) m3/m3, and 0.78 (0.80), respectively.
In summary, these boxplots showcase the spatial transferability
of the ML models, demonstrating the capability of both models
to maintain consistent performance across different spatial
clusters within a distance of roughly 20 km (see Fig. 1).

Fig. 8 shows the violin plots of SHAP values of six most
important predictor variables of (a)–(c) RF model and (d)–
(f) XGB model between January 1, 2016 and December 31,
2019 for all sites, cluster A, and cluster B, respectively. For
all sites, both models identified albedo, VPD, NDVI, ET, LST,
and DEM as the top predictor variables, though their order dif-
fered [Fig. 8(a)–(d)]. In cluster B for RF [Fig. 8(c)] and cluster
A for XGB [Fig. 8(e)], these predictor variables remained
most important. However, for RF in cluster A [Fig. 8(b)]
and XGB in cluster B [Fig. 8(f)], Srad emerged as a new
predictor, ranking fifth and sixth, respectively. The color-coded
normalized feature values (yellow to purple) reveal each pre-
dictor variable’s contribution: moderate to high VPD and LST
generally contribute to the reduction of predicted SM values,
while high ET and NDVI would contribute to the increase.
Conversely, the values of albedo, DEM, and Srad exhibited
more variability and lacked specific trends in predicting SM
values. Overall, while predictor rankings varied by region,
the most important predictor variables generally remained
consistent. These variations highlight the models’ reliance on
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Fig. 4. Binned density scatterplots of (a) albedo, (b) NDVI, and (c) LST between January 1, 2016 and December 31, 2019 (excluding training dates of
spatiotemporal fusion).

Fig. 5. Spatial comparison between MODIS and downscaled predictor
variables on April 2, 2017. (a)–(c) MODIS albedo, NDVI, and LST, respec-
tively. (d)–(f) Zoomed windows of MODIS predictor variables spanning
146.25◦E–146.35◦E and 34.92◦S–35.02◦S (i.e., cluster B). (g)–(i) Downscaled
albedo, NDVI, and LST, respectively. (j)–(l) Zoomed windows of downscaled
predictor variables covering the same zoomed area with (d)–(f).

regional land cover and landscape characteristics, influencing
the importance and impact of specific predictor variables.

Fig. 9 presents a Spearman correlation matrix illustrating
the pairwise relationships for all predictor variables used
in this study. Notable observations include strong negative
correlations between clay and silt/sand content, and strong
positive correlations among LST, T avg, VPD, and Srad, reflect-
ing their interconnected nature. NDVI demonstrated moderate
negative correlations with LST, albedo, T avg, VPD, and Srad.
Conversely, ET demonstrated moderate positive correlations
with LST, NDVI, T avg, VPD, and Srad. This matrix identified
potential collinearities among predictors, thereby complement-
ing the feature importance as given by SHAP values.

Fig. 6. Boxplots of (a) bias, (b) ubRMSE, and (c) R for a fourfold spatial CV
of RF and XGB models, respectively, between January 1, 2016 and December
31, 2019. The details of sites included in each fold are given in Table II. The
scatters represent the metrics of individual sites.

Fig. 7. Boxplots of bias, ubRMSE, and R for the CC validation of (a)–(c) RF
and (e)–(f) XGB model, respectively, between January 1, 2016 and December
31, 2019. Metrics within cluster A were derived from models trained using
data within cluster B, and vice versa. Metrics for the remaining four sites (see
Fig. 1 and Table II) were derived from models trained using data from both
clusters A and B. The details of sites included in each cluster are given in
Table II. The scatters represent the metrics of individual sites.

C. AOA of Spatial SM Predictions

Fig. 10 shows the spatial distribution of the median DI
(with values exceeding five masked out) and AOA based on
CV and CC for (a)–(d) RF and (e)–(h) XGB, respectively,
between January 1, 2016 and December 31, 2019. Both
models showed low DI in the western region, regardless of
CV or CC validation [Fig. 10(a)–(g)]. However, DI increased
drastically in the eastern area due to no training sites and
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Fig. 8. Violin plots of SHAP values of six most important predictor variables
of (a)–(c) RF and (d)–(f) XGB between January 1, 2016 and December 31,
2019 for all sites, cluster A, and cluster B, respectively. The predictor variables
are displayed in the order of importance.

Fig. 9. Spearman correlation matrix of the pairwise relationships for the full
spectrum of 13 predictor variables.

distinct landscape patterns (see Fig. 1). The DI thresholds
for AOA determination were 0.64 (CV) and 0.87 (CC) for
RF [Fig. 10(a)–(c)], almost double those for XGB, which
were 0.34 (CV) and 0.44 (CC) [Fig. 10(e)–(g)]. AOA for RF
(XGB) based on CV was 43.1% (41.5%), while for CC it
was 25.4% (26.9%). Predictor variables within the determined
AOA were deemed comparable to those used in training.
It is expected that spatial SM prediction within AOA can
demonstrate comparable performance metrics to that of the
CV (see Fig. 6) and CC (see Fig. 7). The CV approach (using
21 sites each time) also demonstrated capability to effectively
expand AOA compared to CC (using 12 sites each time).

Fig. 11 provides spatial examples of predicted SM using
RF and XGB models on February 1, 2017 (austral summer)
and August 1, 2017 (austral winter) for the entire study
area, and zoomed areas based on CV or CC, respectively.
AOA was displayed as the western area within the black
boundaries [Fig. 11(a), (f), (k), and (p)], covering both spatial

Fig. 10. Spatial distribution of median DI (with values exceeding five
masked out) and AOA based on performance of CV and CC for (a)–(d) RF
and (e)–(h) XGB, respectively, between January 1, 2016 and December 31,
2019. The derived DI and AOA had an identical temporal frequency with the
spatial SM prediction (i.e., daily). DI was composited using its median values,
and AOA was composited using its majority values (i.e., >50%). Threshold
values indicate the maximum permissible DI for reliable predictions, and area
percentages represent the proportion of the study region within the AOA.
Black rectangles indicate the cluster locations. The mask value of 5 was
empirically determined to optimize visualization clarity while maintaining
representation of all relevant DI gradients that influence AOA delineation.

Fig. 11. Spatial examples of predicted SM using RF (a)–(e); (k)–(o) and XGB
(f)–(j); (p)–(t) models on February 1, 2017 (austral summer) and August 1,
2017 (austral winter) for the study area (first column), zoomed areas based
on CV (second and fourth columns), and zoomed areas based on CC (third
and fifth columns), respectively. AOA was displayed as the western area of
the black boundaries, encompassing both spatial clusters.

clusters. On February 1, 2017 (austral summer), predicted SM
values were relatively dry (0.1–0.2 m3/m3), with both models
yielding similar results [Fig. 11(a)–(f)], though XGB showed
slightly higher SM values. Zoomed areas derived from CV and
CC also appeared visually comparable [e.g., Fig. 11(b), (c),
(g), and (h)]. On August 1, 2017 (austral winter), predicted
SM values were higher (0.2–0.5 m3/m3) and more variable,
especially in the eastern regions outside AOA [Fig. 11(k)–(p)].
These disparities can be attributed to both models learning
only from data within the AOA, rendering conditions outside
the AOA as “unknown space” and thus more uncertain. The
results within zoomed areas, derived from both CV and CC,
also exhibited greater variability [e.g., Fig. 11(l), (m), (q),
and (r)]. In summary, this detailed visualization highlights
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Fig. 12. Spatial examples of HDAS SM and predicted SM using RF and XGB on October 2, 2019 and October 4, 2019 (CV period) and March 8, 2021 and
March 10, 2021 (test period), respectively. The first column shows the interpolated HDAS SM at 100 m resolution grids. The black polygons within second,
third, fifth, and sixth columns from left are derived from the spatial extent of HDAS SM. The fourth and seventh columns from left are scatterplots of predicted
SM derived from CV and CC, using RF and XGB, against HDAS SM, respectively.

the capability of AOA in assessing the reliability of predicted
SM at the field scale. The observed variations in SM across
landscapes underscore the importance of considering regional
nuances in training strategies for accurate and context-specific
predictions.

D. Evaluations Against Independent Data

The AOA metric indicated that the RF and XGB mod-
els were anticipated to reliably predict the SM dynamics
within approximately 43.1% and 41.5% of the study region,
respectively, as determined by CV metrics. To validate AOA,
both models were assessed against independent data from
field campaigns, CosmOz, OzFlux, and SMAP. Fig. 12 shows
the spatial examples of HDAS SM collected during field
campaigns and predicted SM using the RF and XGB models
on October 2, 2019 and October 4, 2019 (within the CV
period) and March 8, 2021 and March 10, 2021 (within the
test period), respectively. The 4 × 3 km field campaign area
was within the AOA (see Figs. 1–10). Both models captured
the spatial patterns of wet regions. For RF, predictions from
CV and CC were nearly identical (Fig. 12, second to fourth
columns), but both underestimated SM in wet regions. For
XGB, CV predictions had higher values than CC (Fig. 12,
fifth–seventh columns) and better matched HDAS reference
grids (Fig. 12, first column). In summary, both the RF and
XGB models demonstrated capabilities to capture the correct
spatial patterns of SM within the HDAS field campaign area,
with the XGB model based on CV providing the closest
prediction to HDAS SM values.

Table III details bias, ubRMSE, and R metrics for spatial
SM prediction against HDAS SM on specific field campaign

dates in September to October 2019 (within the CV period)
and March 2021 (within the test period). Both models main-
tained stable mean bias values of 0.04–0.05 m3/m3 in both
periods. The ubRMSE of both models even reduced within
the test period, with mean values of 0.06 m3/m3 compared
to 0.08–0.09 m3/m3 within the CV period. The most marked
difference was in R performance. The CV-based RF consis-
tently showed better or comparable R values (0.60–0.62) than
CV-based XGB (0.53–0.58). The CC-based RF also performed
slightly better (0.64–0.65) than CC-based XGB (0.62–0.64).
In summary, both the RF and XGB models demonstrated
comparable performances in bias and ubRMSE within both
the CV and test periods. However, RF showed more robust
R performance with moderate values (0.60–0.65), while XGB
exhibited more variability (0.53–0.64).

Figs. 13 and 14 present the time series of predicted SM
(both CV and CC), CosmOz and OzFlux SM, and rain-
fall throughout the CV period (2016–2019) and test period
(2020–2021), respectively. In the CV period, the temporal
variations of RF based on CV and CC were visually identical,
exhibiting high agreement with CosmOz SM [R = 0.91;
Fig. 13(a)] and OzFlux SM [R = 0.84–0.85; Fig. 13(c)].
As a comparison, the temporal variations of CV-based XGB
differed from those based on CC. The R performance of XGB
ranged from 0.86 to 0.90 against CosmOz SM [Fig. 13(b)]
and was 0.85 against OzFlux SM [Fig. 13(d)], respectively,
indicating its sensitivity to training samples.

In the test period, the temporal variations of SM predicted
by RF based on CV and CC remained visually similar, exhibit-
ing moderate agreement with CosmOz SM [R = 0.74–0.75;
Fig. 14(a)] and OzFlux SM [R = 0.61–0.63; Fig. 14(c)]. Com-
paratively, the temporal variations of SM predicted by XGB
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TABLE III
METRICS OF BIAS, UBRMSE, AND R OF SPATIAL SM PREDICTION AGAINST HDAS SM ON SPECIFIC FIELD CAMPAIGN DATES IN SEPTEMBER TO

OCTOBER IN 2019 (WITHIN CV PERIOD) AND MARCH IN 2021 (WITHIN TEST PERIOD). THE METRICS ARE BASED ON PIXELWISE COMPARISONS

Fig. 13. Time series of predicted SM (both CV and CC), CosmOz and
OzFlux SM, and rainfall during the CV period (2016–2019). The unit of SM
herein is wetness (unitless), which is different with that of OzNet and HDAS
SM (m3/m3). This is because CosmOz only provides normalized SM data
ranging between 0 and 1. (a) CozmOz (RF). (b) CosmOz (XGB). (c) OzFlux
(RF). (d) OzFlux (XGB).

based on CV still diverged from those based on CC. The R
performance of SM predicted by XGB was 0.70–0.71 against
CosmOz SM [Fig. 14(b)] and was 0.59–0.66 against OzFlux
SM [Fig. 14(d)], respectively. In summary, these temporal met-
rics indicated that RF exhibited slightly better agreement with
independent SM time series and displayed more robustness
irrespective of variations in training sample numbers.

Fig. 15 presents the spatial distribution of bias, ubRMSE,
and R of SM predicted by the RF and XGB models against
SMAP L2 data. The evaluation covers the entire study area,
cluster A, and cluster B, spanning both the CV period
[2016–2019; Fig. 15(a)–(r)] and test period [2020–2021;
Fig. 15(s)–(aj)], respectively. Spatial bias and ubRMSE for
both models were comparable in both periods, ranging from
−0.02 to 0.00 m3/m3 and 0.06 to 0.07 m3/m3, respectively.
Notably, during the CV period, the spatial SM prediction
showed a negative bias (approximately −0.03 m3/m3) and

Fig. 14. Same with Fig. 13 but for the test period (2020–2021). (a) CozmOz
(RF). (b) CosmOz (XGB). (c) OzFlux (RF). (d) OzFlux (XGB).

lower ubRMSE (<0.06 m3/m3) within AOA compared to pos-
itive bias (0–0.03 m3/m3) and higher ubRMSE (>0.06 m3/m3)
outside AOA [Fig. 15(a), (b), (d), and (e)]. Regarding the
spatial R performance, SM predicted by RF demonstrated
slightly better agreement with SMAP data, with a median
value of 0.87 [Fig. 15(c)], compared to XGB prediction with
a median value of 0.86 [Fig. 15(f)] within the CV period.
However, in the test period, both models achieved relatively
moderate R agreement (0.75) with SMAP SM. Unlike bias
and ubRMSE, the R performance within AOA did not show
marked differences compared to areas outside the AOA.
In summary, these findings highlight the capability of AOA
in delineating a spatial extent conducive to reliable prediction,
particularly evident in bias and ubRMSE metrics.

V. DISCUSSION

Upscaling emerges as an attractive strategy to reconcile the
spatial mismatch between point-scale data and satellite-derived
SM grids [21], [22], [23], [67]. However, previous studies were
often restricted to localized conditions and have overlooked the
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Fig. 15. Spatial distribution of bias, ubRMSE, and R of SM predicted by the
RF and XGB models against SMAP L2 for the entire study area, cluster A, and
cluster B within CV period [2016–2019; (a)–(r)] and test period [2020–2021;
(s)–(aj)], respectively. The spatial SM prediction was aggregated to 0.1◦

(∼10 km) resolution grids. AOA was displayed as the western area of the
black boundaries, encompassing both spatial clusters.

quantification of spatial uncertainty in SM estimates. In this
study, a data-driven approach was introduced to spatially
predict SM at a 100 m resolution in an Australian agricultural
region. The AOA of two ML models was determined, both of
which covered roughly 40% of the study region, and evaluated
against multiple independent datasets. A few discussion points
are summarized as follows.

A. Further Assessment of AOA

The spatial pattern of AOA, as shown in Fig. 10, exhibited
noticeable sensitivity to land cover and topographic features.
To fully explore the spatial characteristics of AOA in SM
prediction, a further assessment using an extended region in
2019 was conducted. The extended AOA analysis, encompass-
ing a broader spatial extent beyond the primary study area,
demonstrates alignment with natural landscape boundaries
(Fig. 16), particularly evident in the correspondence between
AOA delineation and cropland extent shown in Fig. A1(a)
and (b). This alignment is further reinforced by the distinct
gradient in DI values that traces the transition from agricultural
to nonagricultural lands. The spatial validation against SMAP
L2 retrievals substantiates the AOA’s effectiveness (Fig. 17),
particularly evident in capturing the spatial area with relatively
lower bias [Fig. 17(a)], compared to positive/negative values in
peripheral zones. This spatial coherence between AOA delin-
eation and error structure demonstrates the metric’s capacity
to identify domains where the model’s characteristics remain
consistent with the training conditions, thereby providing a
quantitative basis for constraining prediction reliability across
heterogeneous landscapes. The DI distributions for both CV

Fig. 16. Spatial distribution of median DI (with values exceeding five
masked out) and AOA based on performance of CV and CC for (a)–(d) RF
and (e)–(h) XGB for the extended region, respectively, between January 1,
2019 and December 31, 2019. The explanations of AOA and DI are the same
as in Fig. 10. Black and dashed rectangles indicate the cluster locations and
the primary study area, respectively. The detailed spatial information of the
extended area can be found in Fig. A1.

Fig. 17. Spatial distribution of bias, ubRMSE, and R metrics of SM
predicted by the RF and XGB models against SMAP L2 for the extended
region in 2019, respectively. The spatial SM prediction was aggregated to 0.1◦

(∼10 km) resolution grids. AOA was displayed as the black polygons filled
with dashed lines, encompassing the primary study area (dashed rectangle)
and both spatial clusters (solid rectangles). The detailed spatial information
of the extended area can be found in Fig. A1. (a) Median: 0.01. (b) Median:
0.05. (c) Median: 0.78. (d) Median: 0.02. (e) Median: 0.04. (f) Median: 0.77.

and CC validation approaches are constrained by these land-
scape features, with threshold values systematically higher in
regions of homogeneous land cover and gentle topography
(see Figs. 16–18 and A1). This systematic correspondence
between AOA boundaries and model performance metrics
validates the capability of AOA to identify reliable prediction
zones based on landscape characteristics, while simultaneously
highlighting the challenges of extrapolating SM predictions
across distinct landscape units.

A quantitative analysis was also conducted to characterize
surface properties within and outside the AOA boundaries,
enabling the assessment of the model’s applicability across dis-
tinct physiographic domains. Fig. 18 presents the distribution
of normalized DEM (DEMnorm), normalized AWC (AWCnorm),
clay, sand, and area equipped for irrigation (Food and Agricul-
ture Organization) [68] for the regions (a) within AOA and (b)
outside AOA. Regions with higher elevation and steeper slopes
[Fig. 18(b)] may experience different precipitation patterns
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Fig. 18. Violin plots of normalized DEM (DEMnorm), normalized AWC
(AWCnorm), clay, sand, and area equipped for irrigation [68] for the regions
(a) within AOA and (b) outside AOA. The red dots within the violins represent
the median, with the decimal numbers at the bottom indicating the numeric
values. The analysis is restricted to the primary study area (Fig. 1; 100 ×

100 km) that exhibits comparable pixel distributions within and outside AOA
boundaries.

and runoff behaviors compared to low-lying, flat regions
[Fig. 18(a)], thereby impacting the spatial distribution of SM.
The flat region within AOA had more intensive irrigation activ-
ities [Fig. 18(a)], with the normalized irrigation area (0.21)
being seven times of that outside AOA (0.03). These irrigation
activities are likely to homogenize SM patterns within AOA
through reduced subpixel heterogeneity, making them more
consistent and predictable. While explicit incorporation of irri-
gation factors remains methodologically challenging due to the
complex interplay between management practices and natural
hydrological processes, the AOA metric effectively captures
these anthropogenic influences through their manifestation in
predictor variables and resulting SM patterns. Additionally,
the AOA pattern provided clear insights into the regional
heterogeneity within the study area (as illustrated in Fig. 1).
Unlike the regions within AOA, the eastern region, marked
by more rugged and varied topography, was demonstrated to
have higher uncertainty (as in comparison against SMAP L2;
Fig. 15). The heterogeneity in the eastern region introduces
variability in microclimates and soil properties, posing chal-
lenges for the ML models to generate reliable SM prediction.
The regional differences highlighted by the AOA suggest the
need for localized calibration of spatial prediction models
to account for spatial heterogeneity. Furthermore, the land
cover heterogeneity can also be an important factor to be
considered in future efforts [13], as AOA delineates regions
where environmental conditions are considered similar with
those represented in the training dataset. The degradation of
ML model performance across heterogeneous regions can be
attributed to insufficient representation of specific multivariate
environmental conditions, consistent with recent findings [13]
that site representativeness improves with increased land cover
homogeneity. Future studies should incorporate explicit land
cover similarity metrics as auxiliary variables to enhance
model interpretation across diverse physiographic domains.

The ML modeling processes leveraged the SHAP
method [63], [64], which offered an avenue for gaining
insights into the underlying principles governing SM inter-
actions with various predictor variables from a data-driven
perspective. The implementation of SHAP integrated with the
underlying model structures: RF’s ensemble averaging mech-
anism across independently constructed trees versus XGB’s

sequential gradient boosting approach optimizing residual
errors. These intrinsic algorithmic architectures, through which
the two models construct feature–response relationships, are
reflected in the observed differential ranking patterns of pre-
dictor variables between RF and XGB models. Specifically,
these differences manifested in the violin plots’ distribution
morphologies, with RF exhibiting more symmetrical contribu-
tion patterns [Fig. 8(a)–(c)] compared to XGB’s pronounced
multimodality and wider contribution ranges [Fig. 8(d)–(f)].
Despite the algorithmic variations in SHAP value distributions,
both models identified consistent dominant predictor variables
(i.e., albedo, DEM, ET, LST, NDVI, and VPD) in the spatial
CV [Fig. 8(a)–(d)], though their ranking orders exhibited
nuances within different clusters characterized by varying
environmental conditions.

Regarding the absence of soil texture variables (i.e., clay,
sand, and silt) among the most important predictor variables,
several factors may contribute to this phenomenon. First, there
is a covarying relationship between AWC and soil texture
data, leading to redundant information that may reduce the
importance of soil texture predictor variables in ML models.
Second, since this study focused on the top 0–5 cm of soil, the
homogeneity of soil mapping for AWC and texture within this
shallow depth range across the study areas, particularly within
the AOA envelope, could diminish the distinct contribution of
soil texture variables. Third, given the spatiotemporal vari-
abilities inherent in SM dynamics, static soil texture data may
not adequately capture the dynamic nature of SM variations
over time, leading to their lower importance compared to
the dynamically sensed predictor variables. If the objective
was to predict long-term mean SM, static soil texture data
might prove more contribution, as they reflect the overall
capacity of a soil type to hold moisture. However, when
modeling seasonal and interannual variability, the signal from
static soil texture data is likely overwhelmed by the covarying
predictors that capture dynamic changes. Finally, considering
that the training data clusters cover small areas, it is plausible
that the soil properties are relatively homogeneous within
these clusters, further reducing the distinct contribution of soil
texture variables in the models.

B. Strengths and Prospects

Traditional SM upscaling approaches encompass a spec-
trum of spatial interpolation methodologies, from simple
geometric interpolators such as arithmetic averaging [19]
and Thiessen polygons [69], to distance-weighted techniques
including inverse distance weighting [70] and various kriging
implementations [71]. While these methods effectively utilize
point-scale SM measurements, they operate independently of
auxiliary remote sensing data that could potentially enhance
spatial predictions. More recently, physically based approaches
incorporating ATI, derived from the relationship between LST
dynamics and soil thermal properties [20], have emerged
as complementary techniques. However, current upscaling
methodologies face several fundamental challenges. Geosta-
tistical methods such as kriging, while highly effective near
observation points, require densely distributed training data



4505019 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

TABLE IV
OVERVIEW OF REPRESENTATIVE SM UPSCALING STUDIES. STUDIES ARE ORDERED CHRONOLOGICALLY BY YEAR OF PUBLICATION

to establish reliable spatial dependence structures and assume
stationarity in their underlying covariance functions. When
applied beyond the range defined by the variogram model
or with limited data availability, kriging essentially becomes
an extrapolator, producing uniform predictions that may not
accurately reflect true spatial variability. Additionally, these
methods demonstrate limited capacity in capturing nonlinear

relationships across heterogeneous landscapes where multiple
environmental factors influence SM distributions. Table IV
summarizes various representative SM upscaling studies from
diverse ground networks.

Conversely, the proposed data-driven approach herein, dis-
tinguished by its AOA delineation, advances beyond these
constraints. The AOA metric employs standardized predictor
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variables, importance-weighted Euclidean distances, and
outlier-removal thresholds to establish prediction reliability
bounds. This approach captures complex, nonlinear patterns
in predictor variables while providing quantitative metrics
for prediction reliability—capabilities not readily available
in traditional geostatistical frameworks. The effectiveness of
AOA is evidenced by the alignment between AOA boundaries
and validation metrics against SMAP retrievals (remarkably
lower bias and ubRMSE within AOA), particularly in regions
where traditional interpolation methods would be constrained
by their inherent assumptions about spatial dependence
structures.

The incorporation of diverse predictor variables enhanced
its potential for application at a broader scale. Burton et al.
[73] demonstrated the effectiveness of ML-based approaches
in spatially predicting point-scale eddy covariance flux data
across a continental scale. While acknowledging the inherent
differences between SM and carbon flux data (e.g., greater
spatiotemporal variabilities in SM), this study suggested a
viable prediction approach of SM at larger geographic extent
or higher temporal frequency. However, when dealing with
large spatial extents, the representativeness and applicability of
the relationship between in situ SM measurements and predic-
tor variables for successful prediction remain uncertain [13].
Ensuring the robustness of these relationships across diverse
landscapes and climatic conditions is critical for the success of
spatial prediction efforts. Careful consideration of the selection
and evaluation of predictor variables is crucial for improving
the generalizability and reliability of SM prediction at broader
scales [74]. Apart from data sourced from polar-orbiting
platforms (i.e., MODIS herein), it is also worth considering
data obtained from geostationary platforms, such as Himawari-
8/9 [75] and Fengyun-4A [76]. These geostationary platforms
present opportunities to monitor more detailed subdaily vege-
tation and phenology dynamics [77], LST variations [78], and
gross primary productivity [79]. Integrating data from such
platforms can help enhance the diurnal predictive capability
of ML models. Nevertheless, the choice of predictor variables
should undergo iterations of assessment to ensure the relia-
bility and accuracy of the prediction results [74]. Accurately
quantifying the contribution of essential predictor variables not
only improves the operational efficiency of this approach but
also aids in reducing computational resources, making it more
practical for widespread use in larger-scale SM assessments.

The proposed approach integrated spatiotemporal fusion
with ML models to spatially predict in situ SM measurements,
achieving a spatial resolution of 100 m. This resolution,
closely approximating the point scale, is particularly well-
suited for agricultural applications, allowing for the effective
capture of landscape heterogeneity. However, the adoption of
spatiotemporal fusion techniques could introduce additional
uncertainties. These uncertainties arise from the reliance on
regression coefficients derived from coarse-resolution image
pairs, leading to concerns about their applicability at finer
resolutions. While internal bias correction steps for LST
data have been employed to mitigate such errors [58], quan-
tifying the temporal variations of surface reflectance data
(albedo and NDVI), particularly in heterogeneous agricultural

regions, remains challenging. The inherent complexities of
these regions can introduce variability that may not be fully
captured or corrected by existing methods, emphasizing the
need for careful consideration and potential refinement of
fusion techniques in such environments.

Several critical aspects warrant attention and potential
refinement in future studies. First, the reliability and repre-
sentativeness of in situ SM measurements could influence the
accuracy of the spatial prediction results [13]. The quality of
in situ data is contingent on sensor calibration, monitoring
techniques, and adherence to network standards. Meanwhile,
the spatial prediction approach also relies on the spatial
representativeness of the selected clusters for CV. Inadequate
capturing of variability in land cover, soil types, or topography
within these clusters may hinder the generalization of results to
other regions. External factors, such as climate extremes, can
also impact data continuity, as exemplified by the discontinuity
caused by the 2019 wildfires in Australia affecting the OzNet
network. Second, the transferability of this approach requires
careful consideration. Achieving success in spatial predic-
tion within one region or cluster does not guarantee similar
performance in areas with distinct environmental conditions.
The efficacy of this approach may vary when applied to
regions characterized by different land cover types, climatic
regimes, or soil characteristics. Future research should focus
on evaluating the adaptability of these approaches in diverse
environments, including vegetated or arid regions. Third and
finally, the challenge of insufficient validation sites poses a
potential limitation. In regions with a sparse distribution of
in situ measurement sites or an uneven distribution among
clusters, the robustness of CV results may be compromised.
This issue is particularly pronounced in the southern hemi-
sphere like Australia, where nonagricultural regions lack
adequate representation, further complicating the application
of this approach. Efforts to address these limitations and refine
the methodology should be a priority in future research.

VI. CONCLUSION

Previous SM upscaling studies were often restricted to local-
ized conditions and overlooked the quantification of spatial
uncertainty in SM estimates. This study introduced a spatial
prediction approach that integrates ML and spatiotemporal
fusion, while implementing the AOA metric to assess the
prediction capabilities of two ML models. Point-scale SM
from 28 OzNet sites was extrapolated to a 100 × 100 km area
at 100 m resolution with daily frequency, spanning both a CV
period (2016–2019) and a test period (2020–2021). The AOA
metrics of two ML models, RF and XGB, were determined
based on their spatial CV performance and feature importance.

The AOA of RF and XGB covered 43.1% and 41.5%
of the study area, respectively, with an expected ubRMSE
of 0.05 m3/m3 and an R of 0.78. The spatial SM predic-
tion delineated by AOA was then evaluated against multiple
independent datasets (HDAS, CosmOz, OzFlux, and SMAP
L2). The results indicated that RF-predicted SM demon-
strated more robustness and better agreement with independent
data. Specifically, during the CV period, RF-predicted SM
achieved mean R values of 0.62–0.64 against HDAS SM,
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Fig. A1. (a) Land cover information of the extended area [49]. (b) USGS
cropland extent [50]. (c) DEM-S [44]. The spatial extent of the extended area
spans 144.50◦E–147.50◦E and 33.00◦S–36.00◦S (300 × 300 km).

0.84–0.91 against independent SM networks, and 0.87 against
SMAP L2 data, respectively. Notably, spatial SM prediction
within AOA showed lower uncertainties against SMAP L2
compared to areas outside AOA, which was further assessed
across an extended spatial domain (Fig. A1).

In summary, this study offered a reliable approach for
extrapolating point-scale SM data to match the resolution of
Landsat satellite footprint, influenced by regional nuances in
predictor variables. Future research directions may explore the
variability of AOA by examining diverse predictor variables,
and assess the transferability of the proposed approach across
various environmental conditions and land cover types.

APPENDIX
ILLUSTRATION OF THE EXTENDED REGION

The extended area comprises a mosaic of six Landsat tiles
(path: 092–093, row: 083–085) to evaluate westward extensi-
bility of AOA. Fig. A1 presents (a) land cover classification
information; (b) USGS cropland extent dataset differentiating
between irrigated and rainfed agricultural systems; and (c)
elevation gradients ranging from 0 to 400 m. The domain
encompasses a physiographic transition from the agricultural
core in the east (146.0◦E–147.0◦E) to predominantly nona-
gricultural regions in the west (145.0◦E–146.0◦E), providing
a test case for assessing AOA performance across distinct
landscape boundaries.
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