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ABSTRACT

This paper provides a comprehensive literature review on the application of
digital twins (DTs) and the development of artificial intelligence (AI), big data,
and building information management (BIM). Driven by the Internet of Things
(IoT), big data analytics, and AL the DT technology has become a transformative
force in Industry 4.0. It enables real-time simulation, analysis, and optimization
of industrial systems throughout their lifecycle, leading to significant improve-
ments in operational efficiency and decision-making processes. This review ex-
plores the various applications, challenges, and prospects of DTs in the
aerospace, manufacturing, construction, and power industries. The key challenges
discussed include data management, model complexity, cybersecurity, and
standardization. This review highlights the importance of addressing these
challenges to realize the full potential of the DT technology in various industries
while emphasizing the need for high-quality data, accurate modeling, robust
security measures, and standardized evaluation criteria. As the DT technology
continues to evolve, it will play a key role in advancing smart, resilient, and ef-

ficient industrial systems.

1 Introduction

The human industry is becoming increasingly large-
scale, systematic, and complex, such as large equipment
manufacturing, aerospace, and construction. Industrial
technology has shown a trend of high integration and
complexity in pursuit of higher efficiency. Accordingly,
increasingly complex industrial equipment faces a rela-
tively high probability of failure, and the evaluation of
its performance and expected lifetime will become in-
creasingly complex [1]. Therefore, how to efficiently re-
alize the design, manufacturing, testing, operation,
maintenance, fault diagnosis, condition assessment, and
life prediction of complex industrial equipment in this
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context has become a challenge for modern industrial
technology [2]. With the emergence of technologies
such as the Internet of Things (IoT), cloud computing,
and integrated multidomain and multiscale modeling, a
new solution, digital twin (DT) technology, has emerged
to address the above industrial technology challenges
[3-5].

The DT technology originated from the concept of
“digital equivalence to physical products” proposed by
Grieves [6]. In 2006, Hribernik et al. [7] proposed the
concept of “product avatars”, which is similar to the
concept of DTs. The concept of product avatars aims to
create an information management architecture that
supports bidirectional information flow from a product-
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centric perspective. National Aeronautics and Space Ad-
ministration (NASA) introduced the term DT in 2012
[8]. After more than a decade of development, the concept
of the DT technology has become increasingly clear,
that is, the establishment of a DT mirror image through
an information technology (IT) platform to simulate
physical entities, processes, or systems. The formation
of the DT technology is inextricably linked to the devel-
opment of the IoT [9]. The IoT uses its terminal compo-
nents to collect data for feedback and forms a digital
simulation on an informatization platform through
wireless transmission, cloud computing, artificial intelli-
gence (AI), machine learning, big data analysis, and
other means [10]. Since data collection and feedback
are performed in real time, the digital simulation gener-
ated on the informatization platform will constantly
change according to the actual situation and present the
real situation of the simulated object [11-13].

The DT technology has rapidly advanced due to the
development of key technologies such as multidomain
and multiscale integrated modeling, state evaluation,
blending data-driven and physical models, data acquisi-
tion and transmission, and cloud computing and edge
computing [14]. Its essence lies in the integration and
comprehensive application of various composite tech-
nologies to address issues emerging in the industrial
equipment domain [15]. Multiphysics modeling and
multiscale modeling are important for high-fidelity
modeling of DTs and simplify the contradiction between
the virtual model and the complex behavior of physical
objects [16]. Data-driven modeling, especially machine
learning, provides an alternative approach by learning
the relationship between inputs and outputs, enabling
models to estimate system behavior without explicit
physical principles [17].

For DTs, real-time data acquisition and transmission
of the status of the target object are important. Real-
time data acquisition primarily demands a broad range
covering all aspects of the target object, such as temper-
ature, pressure, and vibration, all of which must be pre-
cisely captured through sensors [18]. A stable, reliable,
and fast data transmission system ensures that data col-
lected by distributed sensors can reach the information
platform in real time and be used for digital model con-
struction and updates [19]. Cloud and edge computing
platforms are essential for ensuring that each complex
functional step can be accomplished, improving compu-
tational performance and flexibility [20].

DTs have diverse applications, from aerospace to
manufacturing. In aerospace engineering, the DT tech-
nology is used to improve the efficiency and safety of
aircraft design, testing, and operation [21-24]. It enables
real-time monitoring and maintenance planning, en-
hancing decision-making processes [25-27]. In manu-
facturing, DTs optimize production processes, enhance

quality control, and enable predictive maintenance,
leading to increased operational efficiency and reduced
costs [28-31]. The integration of AI, big data, and
building information management (BIM) with DTs has
further expanded their potential [32-35]. Al and big data
analytics enhance the ability to process and analyze
large volumes of data generated during the lifecycle of a
building, optimizing design, construction, and opera-
tional strategies [36-38]. BIM enables the creation of
accurate virtual models of buildings, facilitating collab-
oration among stakeholders and ensuring efficient proj-
ect management [39, 40]. The DT technology in power
transmission systems enables real-time monitoring,
analysis, and optimization, improving reliability and ef-
ficiency. It supports predictive maintenance, reduces
downtime, and enhances system performance [41].

The development of the DT technology faces key
challenges such as data management, model complexi-
ty, cybersecurity, and standardization [42], which are
critical to address for widespread adoption and success
across industries [43]. This paper provides a compre-
hensive review of the applications, challenges, and future
prospects of DTs, particularly in traditional industries
such as aerospace, manufacturing, construction, and
power transmission. These sectors, owing to their reliance
on complex systems, are well suited to benefit from the
integration of DT technologies. The innovation and con-
tribution of this paper lie in its focus on traditional in-
dustries where DTs have achieved significant maturity.
By concentrating on these domains, the paper highlights
the role of DT in improving operational efficiency and
integrating with emerging technologies such as the IoT,
Al and big data. Additionally, the paper offers valuable
insights into overcoming the challenges of data manage-
ment, model complexity, cybersecurity, and standard-
ization, providing practical recommendations for real-
world industrial applications.

2 Key technologies for DT

The ability of the DT technology to realize the digital
simulation of physical entities, processes, or systems is
indispensably linked to the development of key tech-
nologies such as multidomain and multiscale integrated
modeling, state evaluation blending data-driven and
physical models, data acquisition and transmission, and
cloud computing and edge computing [44]. Its essence
lies in the integration and comprehensive application of
various composite technologies to address issues emerg-
ing in the industrial equipment domain.

2.1 Multiphysics and multiscale modeling

Modeling is the core part of DT and requires a thorough
understanding of the physical properties and their inter-
actions. Therefore, multiphysical field and multiscale
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modeling are important for high-fidelity modeling of
DTs [45]. A key issue that should be addressed in DT
modeling is to simplify the contradiction between the
virtual model and the complex behavior of physical ob-
jects. One compromise is to use a modular approach to
achieve flexible modeling. Negri et al. [46] suggested
incorporating black-box modules in the main simulation
model. A functional mock-up interface (FMI) standard is
used for the black-box modules, creating functional
mock-up units (FMUs), as shown in Fig. 1. The various
behavioral models of the DT are activated only when
needed and interact with the main simulation model
through a standard interface. To achieve balance, engi-
neers should determine which components are critical
to system functionality and determine the modeling level
of each component before creating a DT model of a
complex system. As a result, high-fidelity DT models
can be created on the basis of different modeling levels.

2.2 Data-driven modeling

Although significant progress has been made in the
fields of multiphysics and multiscale modeling, develop-
ing accurate and reliable numerical physical models for
objects with complex mechanical structures is still a major
challenge. Relying only on analytical physical models of
target objects to assess the state of complex objects cannot
yield accurate results. Therefore, data-driven approach-
es, especially machine learning, can be utilized [47-50].
Machine learning models provide an alternative approach
by learning the relationship between inputs and out-
puts, enabling these models to estimate system behavior
without explicit physical principles [51-53]. For exam-
ple, neural networks can predict possible future failures
by learning data from machines under normal operation
and failure conditions (Fig. 2) [48]. Moreover, real-time
simulation ensures that the DT reflects the real-time

General case

state of the physical object or system, including real-
time data integration and dynamic simulation, to update
the model under new data inputs and simulate its future
behavior. Model validation and calibration are critical
steps to ensure that DT is accurate and reliable. Comparing
the model’s predictions with actual observations all-
ows for assessing its accuracy, and if necessary, adj-
ust the model’s parameters to enhance its predictive
capabilities.

2.3 Data acquisition and transmission

For DTs, real-time data acquisition and transmission
of the status of the target object are important [54].
Real-time data acquisition and transmission demand
two main aspects. First, the acquisition range must be
broad, covering all aspects of the target object, such as
temperature, pressure, and vibration, all of which must
be precisely captured through sensors. Second, a stable,
reliable, and fast data transmission system is needed to
ensure that the data collected by distributed sensors can
reach the information platform in real time, which is
used for digital model construction and updates. With
the rapid progression of technology, swift advancements
in sensor capabilities and the implementation of new
transmission technologies have laid a solid foundation
for the development of the DT technology [55]. For ex-
ample, with highly integrated microelectromechanical
system (MEMS) sensors and narrowband IoT (NB-IoT)
technology (Fig. 3) in the communication field, these
novel data sensors and transmission technologies can
achieve high integration and low-cost large-scale appli-
cations [56].

2.4  Cloud and edge computing

DTs apply technologies such as sensor data collection,
IoT, and multiphysical field multiscale modeling, there-
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Fig. 1 FMUs in the application case (PLC: programmable logic controller) [46].
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Fig. 2 Artificial neural network (i, j, and k: the neuron indic-
es; m, n, and I the maximum number of neurons; W;: the
weights between the input and hidden layers; W,;: the weights
between the hidden and output layers). Reproduced with per-
mission from Ref. [48], © Elsevier B.V. 2021.

fore, DTs rely on high-performance computing platforms
to ensure that each complex functional step can be ac-
complished. To improve computational performance,
the DT technology is guaranteed from two main aspects.
First, it widely applies cloud computing technology that

is based on distributed computing, relies on cloud server
resources, and flexibly mobilizes computing resources
according to the size of the computing demand (Fig. 4)
[57]. Second, it relies on the development of edge com-
puting, which is a platform that integrates networks,
computing, storage, and applications and is able to carry
out computing services in close proximity to the side of
things or data sources. Moreover, edge computing can
also be combined with cloud computing, which can access
the historical data of edge computing [58].

3 DTs in aerospace and manufacturing

3.1 Aerospace engineering

In the field of aerospace engineering, the DT technology
is widely used as an innovative approach to improve
the efficiency and safety of the design, testing, and op-
eration of aircraft. By creating a virtual replica of an
aircraft, engineers are able to simulate various flight
and environmental conditions within a risk-free virtual
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environment, thereby optimizing design, predicting and
preventing potential issues, and improving maintenance
strategies. Throughout the lifecycle of an aircraft, DT
can receive and analyze data collected from its sensor
network in real time, providing instantaneous insights
into system performance and health, thereby supporting
more intelligent decision-making. For example, during
flight, DTs can be used to monitor the structural integrity
and performance of various systems of aircraft, predict
potential failures, and assist in determining the root
cause when failures occur. On the ground, maintenance
teams can utilize DTs to plan and simulate maintenance
operations, ensuring that the actions taken are maximized
for safety and efficiency. Moreover, DTs also support
more efficient training and preparedness, as pilots and
ground personnel can practice and test various scenarios
within a simulated virtual environment without the
need for expensive and complex physical simulators.
For over a decade, DTs have been evolving in the
aerospace industry. NASA pioneered the definition of
DT within the realm of aerospace in 2010 and constructed
a development roadmap for them [59], which under-
scored their strategic importance to USA space sciences
and the air force. By 2035, NASA aimed to develop DTs
for spacecraft that could adapt and manage comprehen-
sive mission arrays. Simultaneously, the USA air force
has achieved an array of inventive discoveries through
feasibility studies of DTs. DTs have evident applications
in feasibility analysis, fleet administration, and diagnos-
tics and forecasting during flight [60]. Additionally, in
the 2010s, DT-driven intelligent manufacturing emer-
ged as a trending trajectory for Industry 4.0 [61].
Prominent aerospace original equipment manufacturers

(OEMs), including Boeing, Airbus, and GE, initiated
their respective DT initiatives. These globally dominant
aerospace OEMs anticipate DT to dynamically refine de-
sign and manufacturing processes, enhancing product
quality and dependability while curtailing costs and op-
timizing time efficiency.

The application of DTs in aerospace continues to be a
prominent topic within the academic community, with
numerous scholars innovating across various facets.
Meyer et al. [62] explored the implementation and ad-
vancement of DTs in various sectors, emphasizing their
ability to reflect and predict the status of assets, particu-
larly in the aerospace context. An internal project within
the German Aerospace Center (DLR) is established,
which collaborates with several institutes across IT and
aviation engineering to explore methodologies and tech-
nologies for DT. Three use cases are defined to demon-
strate DT capabilities and uncover new development op-
portunities, with a particular focus on using DTs as a re-
search tool in the research of aircraft use cases. The
project addresses numerous IT-related issues and moves
toward a common vision for the DT technology, with
the next steps involving the implementation and
demonstration of prototypes across the defined use cas-
es. This paper presents an overview of the project’s results
and developments, aiming to digitally map aircraft and
their components.

Zhang et al. [63] proposed a digital thread-based
modeling DT framework (Fig. 5) to manage industrial
production sites, particularly focusing on the intricate
assembly environment of the aircraft assembly process,
through the mapping of physical entities to virtual
spaces. Addressing the limitations of existing DT modeling
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Fig. 5 Framework of the digital thread-based DT model. Reproduced with permission from Ref. [63], © The Society of Manufacturing

Engineers. Published by Elsevier Ltd. 2022.
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methods, which lack provisions for data flow and intrinsic
intermodule interaction, this framework amalgamates
the strengths of both DTs and digital threads. Enhanced
data management within the framework seeks to augment
the controllability and traceability of the manufacturing
process and product quality. The implementation of the
framework is demonstrated via a case study of the aircraft
assembly process, revealing its potential to increase effi-
ciency through comparative analysis.

3.2 Manufacturing

DTs are expanding in manufacturing and can benefit
manufacturing operations at different levels. Notably,
with process-based DT, companies can achieve production
visibility and planning to improve operational agility,
increase throughput, and optimize process efficiency
across the supply chain [64]. Specific use cases include
production monitoring, asset monitoring and machine
diagnostics, visual job description support, predictive
maintenance, shop floor performance improvement,
process optimization, etc. [65]. The application of DTs
in the manufacturing industry is divided into three
main categories: product DTs, production DTs, and
equipment DTs throughout the entire product lifecycle
management (PLM).

3.2.1 Product design DT

In the product design phase, generic DTs are utilized
for the creation of three-dimensional (3D) digital models
of the product, accurately recording various physical
parameters of the product and presenting them in a visual
manner [66]. Through simulation and emulation, the
performance and behavior of the product under various
external conditions are validated, ensuring that product
adaptability is verified during the design phase. Compared
with traditional manufacturing methods, which require
the production of a batch of physical prototypes to vali-
date product adaptability and performance, the product
cycle is significantly shortened, and design verification
costs are substantially reduced.

3.2.2 Production DT

During the manufacturing phase of a product, the
main objective of production DT is to ensure that products
can be produced efficiently, with high quality and at a
low cost. The primary entities designed, simulated, and
verified are the production systems, which encompass
manufacturing processes, manufacturing equipment,
manufacturing workshops, and management control
systems [45]. DTs can expedite product introduction
times, enhance the quality of product designs, reduce
production costs, and accelerate product delivery. Virtual
production lines established through digital means,
which highly integrate DT of the product itself with
production equipment and processes, among other
forms of DT, enhance collaborative efficiency.

3.2.3 Equipment DTs

In the manufacturing process, certain equipment or
devices are essential, and any malfunction or damage to
this equipment often leads to significant losses to the
production line. Equipment DTs, through the establish-
ment of DT models of equipment, monitor the real-time
operational status of equipment. By utilizing historical
data, real-time data, and operational data of the equip-
ment and combining it with big data analysis and mining
techniques, equipment operation can be optimized, pre-
dictive maintenance and care can be conducted, un-
planned downtime risks for key production equipment
can be minimized, and the lifespan of key equipment
can be extended.

The employment of DTs in manufacturing has captured
significant academic interest, with notable innovations
emerging in recent years. Bolender et al. [67] explored
in depth the ability of DTs to represent, control, predict,
and optimize the behavior of cyber-physical production
systems (CPPSs) in diverse and complex environments.
They recognize the challenges posed by CPPSs, such as
differences in behavior due to different deployments,
configurations, and environmental factors, and highlight
the need for expert human operators to be skilled in
modifying CPPS configurations. The authors aim to en-
hance the adaptability of DTs in such scenarios, leading
them to propose a modeling framework for adaptive
manufacturing that supports the modeling of domain-
specific cases and specifies rules for case similarity and
case-based reasoning in modular DTs. They assert that
by leveraging explicitly modeled domain expertise, the
automatic configuration of DTs can optimize manufac-
turing time, minimize waste, and significantly contribute
to more sustainable manufacturing practices.

Friederich et al. [68] introduced a novel approach to
adopting DTs in smart factories, acknowledging the piv-
otal role they played in enhancing productivity, reducing
costs, and energy consumption, especially amid the
challenges of swiftly changing customer demands and
shorter product life cycles (Fig. 6). In light of the limita-
tions of traditional modeling and simulation methods in
such dynamic contexts, they propose a unique, generic
data-driven framework that automatically generates
simulation models, forming the foundation for DTs in
intelligent manufacturing environments. By utilizing ad-
vancements in machine learning and process mining
techniques, their innovative framework minimizes, de-
fines, or possibly eliminates the necessity for expert
knowledge in extracting corresponding simulation mod-
els, a concept they exemplify through a detailed case
study.

4 DT in the construction industry

4.1 Development of Al, big data, and BIM

Al, big data, and BIM are intertwined technologies
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Fig. 6 Generic data-driven framework for automated generation of simulation models as the basis for DT for smart factories [68].

that collectively enhance the planning, design, construc-
tion, and management of buildings and infrastructure.
Al has the ability to process and analyze data in a way
that can predict outcomes, automate processes, and op-
timize solutions in the realm of building management.
It can be applied in various aspects of BIM, such as au-
tomating design processes, enhancing project schedul-
ing, predicting maintenance requirements, and optimiz-
ing energy consumption, thereby adding a layer of intel-
ligence and automation to building management.

Big data refer to the enormous volumes of data gener-
ated during the lifecycle of a building, which can be
structured or unstructured. It includes analyzing large
datasets to uncover patterns, correlations, trends, and
insights that are important for making informed deci-
sions. In the context of BIM, big data analytics can be
used to analyze data from various stages of the building
lifecycle to optimize design strategies, improve opera-
tional efficiency, and enhance the overall performance
of buildings.

BIM is a sophisticated approach to managing the entire
lifecycle of a building, from its initial design and con-
struction to its eventual demolition, via comprehensive
and digital 3D models. It is not just a type of software
or technology but rather an integrative process that fa-
cilitates the sharing of valuable information among ar-
chitects, engineers, construction professionals, and other
stakeholders throughout the building’s lifecycle. BIM
enables the creation of accurate virtual models of build-
ings, which can be used for planning, design, construc-
tion, and operational purposes, ensuring that all parties
involved have a unified understanding and can make in-
formed decisions regarding the construction and man-
agement of the building. BIM encompasses the entire
process of creating and managing information about a
building during its entire lifecycle. When infused with
Al and big data, BIM transforms into a more potent
tool. AI algorithms can analyze the big data derived
from BIM models and operational data to unearth insights
that are previously difficult or impossible to ascertain.
These insights can then be used to enhance the design,

construction, and operational management of buildings,
ensuring that they are not only constructed and managed
more efficiently but also that they perform optimally
throughout their lifecycle.

Together, Al, big data, and BIM form a robust frame-
work that enhances the capabilities of architects, engi-
neers, and construction professionals. This integrated
approach ensures that buildings are designed, construct-
ed, and managed in a way that is not only efficient and
cost-effective but also sustainable and future-proof,
thereby aligning with the objectives of smart, adaptive,
and sustainable urban development.

Researchers are currently deepening their research in
Al, big data, and BIM. For example, Lokshina et al. [69]
addressed the relatively slow adoption of digital trans-
formation in the architecture, engineering, and con-
struction (AEC) industry, highlighting BIM as a pivotal
technology that could usher the industry in the digital
era by enhancing collaboration and communication
among stakeholders through information and communi-
cation technologies (ICTs). They explore the integration
of IoT designs and services into the BIM process, identi-
fying potential security concerns arising from the imple-
mentation of the IoT in a modular environment with
numerous interdependencies. To mitigate these con-
cerns, this paper proposes a system design that uses
blockchain technology to secure and control frameworks
that integrate IoT and BIM technologies, exemplifying
its application through a smart museum while asserting
the generic and versatile applicability of the design in
various building categories, such as university renovation
projects.

Yang et al. [70] studied the intersection of BIM and
Al in the construction industry, particularly focusing on
addressing existing challenges in intelligent construction
technology in China, especially concerning structural
damage monitoring during bridge construction (Fig. 7).
Recognizing limitations in classical neural network al-
gorithms predominantly used in prior research, this
study introduces innovative improvement measures,
substantiates their efficacy through practical arithmetic
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examples, and integrates the improved neural network
recognition algorithm into the BIM framework to ade-
quately recognize and assess bridge structural damage.
This integration not only enhances the intelligence level
of the BIM system but also offers insights for progressing
intelligent construction technology, which is especially
pertinent to bridge construction monitoring.

4.2 DTs in BIM

Integrating DT within BIM represents an innovation
that melds physical buildings and structures with their
digital counterparts to facilitate enhanced decision-mak-
ing and management across the entire lifecycle of a
building. In the sphere of BIM, DTs enable the creation
of a precise virtual model of a building, allowing engineers
and architects to conduct visual simulations and analyses
during the design and construction phases, thereby as-
sisting in optimizing designs and pinpointing potential
issues. DT can synchronize the real-time data of a build-
ing, including structural, environmental, and operational
data, to perform continuous monitoring and analysis
throughout its entire lifecycle, subsequently increasing
operational efficiency and maintenance management.
The incorporation of DTs into BIM can augment collab-
oration among all stakeholders (such as architects, engi-
neers, contractors, and operators) by sharing real-time,
accurate building data, ensuring that decisions at each
stage are based on precise and timely information.
Moreover, DTs not only play a role during the design
and construction phases of a building but also provide
vital input during the operational phase through predic-
tive maintenance and optimizing building performance,
thereby reducing operational costs and enhancing the
overall efficacy of the building.

Research on DT applications in BIM in a more digital
and intelligent direction. Delbriigger et al. [71] provided
an in-depth analysis of the growing role of BIM in asset
management during the operation and maintenance pha-
ses in AEC industries. They discussed the latest research

trends and the influence of industry standards on BIM.
While acknowledging BIM’s significant contributions,
the authors highlight its limitations in terms of informa-
tion depth and analytical power, especially in the oper-
ation and maintenance stages. To address these gaps,
they propose a new approach that integrates DT, which
leverages AI, machine learning, and data analytics to
create dynamic models that can continuously learn from
and update them on the basis of various data sources.

With the rapid development of AI, computer vision
technology has been widely used in image recognition,
facial recognition, intelligent monitoring, and other
fields. Some researchers have used computer vision
technology for the combination of DTs and BIM. Zhou
et al. [72] introduced a pioneering computer vision DT
scheme that employed BIM and used camera videos as
input, navigating through challenges related to dimen-
sions, coordinate systems, and object inconsistencies be-
tween BIM and camera videos. The proposed DT frame-
work uses a unique method that combines object detection
with 3D object estimation networks to determine object
positions and orientations. It includes theorems and
lemmas for calculating 3D coordinates in the building
coordinate system (BCS) on the basis of detected two-di-
mensional (2D) positions. Additionally, the approach
features cold-start and run-time object matching
schemes to resolve discrepancies between camera
footage and BIM. The performance of the proposed ap-
proach is substantiated through real-world experiments,
which demonstrate precise location error metrics, and
notably, it first explores a DT scheme atop BIM via com-
puter vision, potentially sparking further intelligent
studies in smart buildings that jointly utilize computer
vision and BIM.

Chen et al. [73] developed a technical framework
aimed at facilitating defect DTs by synergistically inte-
grating robotics, Al, and BIM, addressing the global issue
of aging buildings and infrastructure and the imperative
of adept management and renovation (Fig. 8). This
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framework creates a system that connects physical defects
with their digital representations in a virtual environ-
ment, improving defect information modeling by enabling
the quick and efficient capture of precise and current as-
damaged data. A case study involving a 10-story resi-
dential building in Hong Kong, China demonstrated the
framework’s effectiveness in matching defects on the
basis of location, geometry, and size. This approach also
has potential for broader applications, such as matching
facility defects on a street block or even at the city lev-
el, which can aid urban renewal initiatives.

4.3 DTs in infrastructure assessment

In the global context of aging infrastructure, regular
monitoring, assessment, and maintenance are important
[74-78]. The DT method has been utilized in infrastruc-
ture assessment for many years. The synergistic combi-
nation of DTs and sensor monitoring techniques provides
multifaceted applications. This integrated approach
takes advantage of real-time data collection and compu-
tational modeling to provide a comprehensive view of
structural integrity. For example, vibration sensors can
continuously monitor vibration and motion within an
infrastructural component. These real-time monitoring
data can be fed into the DT model to replicate the physical
characteristics and behavior of the infrastructural com-
ponent in a virtual environment. Rojas-Mercedes et al.
[79] presented a comprehensive approach to generating
seismic fragility curves for a precast reinforced concrete
bridge equipped with a vibration-based structural
health monitoring (SHM) system located near an active
seismic fault in Dominican Republic. Given that the
bridge serves as a critical lifeline to several local com-
munities and is built to outdated construction standards
ill-suited for seismic resilience, the SHM system is es-
sential for assessing its structural integrity and seismic
performance. The authors effectively combine data from
the SHM system with computational models to produce

fragility curves, offering quantitative measurements of
expected damage and probabilistic estimates for exceed-
ing various states of failure as functions of seismic in-
tensity. The authors employ a DT model of the bridge,
developed via finite element (FE) analysis and data
from the SHM system, as a predictive tool for minimizing
modeling uncertainties and enhancing the accuracy of
the fragility curves. The proposed DT was applied to
conduct nonlinear incremental dynamic analysis (IDA)
by utilizing ground motions tailored to the seismic fault
and site specifics. The analysis revealed that, considering
the highest expected acceleration with a 2% chance of
surpassing within 50 years, there is a 62% likelihood of
the structure sustaining significant damage.

Ye et al. [80] conducted an exploratory study over
two years, aiming to create a DT of bridges for SHM by
leveraging interdisciplinary collaboration between civil
engineers and statisticians. Their research focused on
three key areas: real-time data management via physics-
based approaches, data-driven approaches, and the inte-
gration of these methods to develop a comprehensive
DT framework for railway bridges in Staffordshire, UK.
Fidler et al. [81] augmented an existing fiber optic
strain-based bridge SHM system with additional sensors
measuring deck rotation and axle positions to enhance
infrastructure asset management. They designed and
implemented a system that integrates real-time data into
a DT with back ends for analysis and overcame challenges
such as synchronizing timestamps from multiple sensors
during a time-limited overnight installation. Lin et al.
[82] presented a novel DT-based methodology for as-
sessing the seismic collapse performance of large-span
cable-stayed bridges under the influence of strong
earthquakes. This study investigated a scaled physical
model of a large-span cable-stayed bridge with ac-
celerometer sensors and employed linear and nonlinear
model updating techniques to create a DT model on the
basis of a FE model from the original design documents.
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Subsequently, seismic fragility analysis was performed
via IDA method to generate collapse fragility curves for
three different FE models.

Muhit et al. [83] explored the issue of managing aged
masonry arch bridges through DTs in Europe. Many
bridges in Europe are more than a century old and are
subject to operational constraints or closures due to in-
creased traffic loads. The authors introduce a compre-
hensive framework for creating DTs of these bridges to
facilitate more informed decision-making for their repair
and maintenance. The authors describe the process of
obtaining dynamic characteristics, including the natural
frequency and modal shape, through ambient vibration
tests via accelerometers. A Bayesian method is applied
for identifying structural modal properties within specific
time windows. By integrating 3D geometry derived
from photogrammetry with these modal properties, the
authors develop a high-fidelity numerical model that
can be continuously calibrated with real-world data
(Fig. 9). This framework offers a promising approach
for managing aged masonry arch bridges and uses ad-
vanced real-time monitoring and data-driven methods
to enhance the assessment of damage accumulation
over time. Using fiber optic sensors can be another way
to collect real-time data and update DT models. For ex-
ample, Febrianto et al. [84] investigated DTs incorpo-
rating fiber optic strain sensors. Using a case study of a
27.34-m-long steel railroad bridge in Staffordshire, UK,
fitted with fiber Bragg grating sensors at several loca-
tions, the authors used the statistical FE method (stat-
FEM) to combine real-world data with a physically
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based model, considering uncertainties in the sensor
readings, applied loads, and model errors. The method
provides convincing results that effectively predict the
“real” system response in the form of strain distributions
on the two main I-girders of the bridge during train pas-
sage. The study revealed that varying the number of
sensors (40, 20, and 10) and their sampling rates did
not significantly affect the precision of the strain predic-
tions of the statFEM, as indicated by negligible differences
in the 95% confidence intervals. This shows that the
statFEM can reduce the cost of sensor networks while
maintaining data interpretability, even if the dataset is
reduced or incomplete. This suggests that the statFEM
can generate reasonable strain distribution predictions
at points lacking direct sensor measurements, thus ex-
panding its application to long-term SHM.

Lei et al. [85] presented a DT system for the health
monitoring of bridges that used a high-speed demodula-
tion system grounded in dual long-period fiber gratings.
This study stands out for its fiber grating-based damage
self-diagnosis system, which facilitates strain distribution
and impact load monitoring. Employing advanced infor-
mation recognition methods, the system adeptly localizes
impact loads. The authors address the inherent challenges
of dealing with complex and high-volume data by im-
plementing essential data cleaning techniques, including
the transformation of data into dimensionless form and
the handling of missing values. Furthermore, they analyze
and construct a DT k-nearest neighbors (KNN) model
specifically designed for the monitoring and management
of bridge transition construction. The system architecture
is comprehensive, featuring multiple privilege login
modes, a display of BIM models, geographic informa-
tion, and meteorological data. Additionally, the platform
allows for the modification and analysis of data and
even includes email warning functions. Figure 10 displays
the software modules of the DT bridge health and struc-
tural safety monitoring system. Liu et al. [86] developed
a real-time, updatable DT model that is based on BIM.
Using machine learning algorithms to intelligently inter-
pret strain distributions, they introduced an automated
method for identifying, locating, quantifying, and visu-
alizing cracks that addressed the inefficiencies and inac-
curacies of manually interpreting distributed fiber optic
sensor data, as shown in Fig. 11. The model serves as a
real-time visualization interface for monitoring cracks,
with data continuously provided by distributed fiber optic
sensors. The authors validated their method by conduct-
ing laboratory tests on concrete beams, achieving highly
accurate crack monitoring.

In addition to sensing technologies, drone inspection
can be combined with DT modeling, as it provides accu-
rate and comprehensive information on the health con-
dition of the infrastructure surface. Yoon et al. [87] de-
veloped a DT model incorporating drone monitoring in
response to the urgent need for periodic inspections of
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aging bridges. Typically, drone inspections map only ex-
ternal damage and do not address seismic performance.
The authors propose a comprehensive two-phase meth-
od that integrates drone-based inspections into a DT
framework followed by a seismic fragility analysis. This
model is updated with bridge conditions sourced from
drone inspections, translating observed damage into a
quantifiable damage index that reflects reductions in
structural stiffness. Using this recalibrated DT, the seismic
fragility analyses are run with varying earthquake sce-
narios. Their method, which was tested on an in-service
prestressed concrete box bridge, demonstrated a notable
difference in the seismic fragility curves of a deteriorated
bridge compared with an intact bridge. Benzon et al.
[88] introduced a method for constructing an operational
DT for expansive infrastructures that used drone-captured
images. Central to this study is the DT’s ability to virtually
mirror the real-world structure and evolve in tandem
with the structure’s physical alterations throughout its
life span. Validating their approach on a wind turbine
transition piece, the authors adeptly harnessed over 500

red—green-blue (RGB) drone images and multiple light
detection and ranging (LiDAR) scans to craft a detailed
3D geometric rendition. This digital construct was then
juxtaposed with the original design to identify and
quantify manufacturing inconsistencies and tolerances.
Leveraging Al, the methodology proficiently identified
and categorized paint defects from the images, subse-
quently mapping them onto the 3D model. This offers
the opportunity for real-time updates to DT on the basis
of periodic inspections. The paper thoughtfully delineates
the core technologies underpinning this DT concept. Im-
portantly, while the focus here is on wind turbines, the
authors emphasize the method’s broader applicability
across industries such as aerospace, marine, transporta-
tion, and other substantial infrastructure domains.

5 DTs in the power industry
In contemporary power transmission systems, the in-

corporation of the DT technology is gradually emerging
as a pivotal innovative practice, fundamentally esteemed
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for enabling the simulation, analysis, and optimization
of the actual transmission system in real time without
necessitating direct intervention in the physical system.
The integration of a spectrum of advanced technologies,
including IoT, big data, Al, and DTs, achieves real-time
or near-real-time monitoring, analysis, and control of
transmission systems. This technology provides a highly
accurate and flexible virtual platform for the design, op-
eration, and maintenance of transmission systems. On
this platform, engineers and decision-makers can simulate
various operational scenarios, validate different control
strategies, predict future system behaviors, analyze po-
tential risks and issues, and formulate corresponding
optimization strategies and solutions [89]. For example,
during the design phase of transmission lines, engineers
can simulate different design schemes and operating pa-
rameters in a virtual environment via the DT technology
to ascertain their performance and efficacy in practical
applications. In the operational phase, real-time data
monitoring and analysis, realized through the DT, can
assist operators in comprehending the operational status
of the transmission system instantaneously, identifying,
and preempting potential failures and risks, and opti-
mizing operational strategies to increase system reliability
and economic benefits [90]. In the maintenance phase,
the application of the DT technology can aid maintenance
personnel in accurately gauging the aging and wear status
of the transmission system and predicting potential fail-
ures and risks, thereby actualizing predictive mainte-
nance, increasing the precision and efficiency of mainte-
nance, and reducing maintenance costs and risks. Fur-
thermore, the DT technology can also assist decision-
makers in executing more precise energy dispatching
and management to navigate the complex and volatile
electricity demand and market environment [91]. In
conclusion, the application of the DT technology in
transmission systems not only facilitates the elevation of
the intelligence level of system design, operation, and
maintenance but also provides robust assurance for the
stable, safe, and efficient operation of power systems.
This method merits more extensive and profound research
and application in future power transmission systems.
In summary, the DT system operates by using its syn-
chronization capabilities to set initial parameters and
enable dynamic data interaction, effectively replicating
the behavior and environment of physical entities on an
information-based platform. The system allows for pro-
jections and predictions that are impractical in the real
world, utilizing its autonomous features. With its inter-
active function, the system can adjust and monitor the
operational states of physical entities in real time. Addi-
tionally, DT’s sharing feature supports joint simulations
of multiple components. Building a digital transmission
system with the DT technology is a gradual process
beginning with localized and small-scale applications.

Currently, this technology is mainly used in transmission
and distribution systems for inspection, maintenance,
and power system operation optimization.

5.1 Inspection and maintenance

Inspection and maintenance in the context of power
transmission and distribution systems are critical to en-
suring reliability, efficiency, and safety in the delivery
of electricity from generation points to end-users. Robust
inspection protocols include systematic examination of
various components and subsystems, including trans-
formers, transmission lines, and substations, to identify
potential vulnerabilities, such as wear and tear, or
anomalies that might impede optimal functionality.
Moreover, maintenance practices, which may be either
preventive or corrective, encompass a range of activities
aimed at preserving the condition of the equipment and
infrastructure or restoring it to a state in which it could
perform its required function. Both aspects are crucial
in mitigating the risks of system failure, minimizing un-
planned downtimes, and thereby guaranteeing a stable
and continuous power supply while also prolonging the
lifespan of the assets within the system. Furthermore,
advances in technology enable the incorporation of
smart solutions, such as the use of DTs, to enhance tra-
ditional inspection and maintenance processes by pro-
viding precise and real-time data and facilitating predic-
tive maintenance strategies.

Many researchers have begun to focus on this point
and have made numerous innovations. Gauce et al. [92]
explored the digital transformation of essential engi-
neering maintenance processes, with an emphasis on in-
specting medium-voltage overhead distribution net-
works. They employed the DT technology for 3D modeling
and analysis, utilizing photogrammetry and aerial scan-
ning data (Fig. 12). The proposed approach, which sup-
ports remote operation and relies on data-driven solutions
for objective and cost-effective outcomes, was applied
to the Latvian medium-voltage overhead distribution
network with support from the Latvian distribution sys-
tem operator JSC “Sadales Tikls”. This paper outlines
practical applications of these data-driven methods for
various infrastructure management processes, such as
scheduled and unplanned inspections and vegetation
management processes, providing a pathway toward en-
hanced automation and economic efficiency in mainte-
nance and inspection tasks. Liu et al. [93] addressed the
shortcomings of traditional methods for evaluating the
status of power transmission and transformation equip-
ment, such as delays and poor data quality, by developing
a DT system for this equipment. By integrating and re-
fining sensor data according to the operational charac-
teristics of the equipment and applying big data analysis
and data mining techniques, they achieved differentiated
status evaluation, precise fault diagnosis, and status pre-
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Fig. 12 Fragment of an aerial laser scanning power line [92].

diction. This paper also explored the use of the DT tech-
nology in online status evaluation for transformers, dis-
cussing aspects such as data management, model devel-
opment, and the future potential of DTs for monitoring
key power transmission and transformation equipment.
Zhou et al. [94] emphasized the importance of accurately
assessing the status of power transformers, which were
important components in power grids, to improve man-
agement and ensure safe and stable operations. Howev-
er, they noted that it is difficult to accurately describe
asset attributes via a single monitoring system. Given
the growing interest in the DT technology across various
sectors and its limited application in power systems,
this paper introduces a method for transformer state as-
sessment via DTs. This method requires the characteristics
of multiple heterogeneous systems to be combined to
construct a comprehensive asset attribute index, and
sample data from various sources are obtained and la-
beled. The labeled data are then used to guide decision-
making in state evaluation, with the DT model’s sample
data compared to those of physical systems to improve
the accuracy of state assessments in the actual system.

5.2 Optimizing the operation of power systems

The DT technology plays a pivotal role in optimizing
the operation of power systems, establishing a high-fi-
delity virtual model of physical electrical power sys-
tems, which not only enables engineers to simulate and
test various operational scenarios and strategies without
impacting the actual system but also provides a real-
time, dynamic platform for monitoring, analyzing, and
optimizing system operation. On this virtual platform,
the actual system’s operational data are synchronized in
real time with DT, allowing operators to comprehend
the system’s operational status and performance instan-
taneously, thereby enhancing the system’s reliability
and efficiency. Moreover, the DT technology also lends
support for the long-term planning and optimization of
electrical power system operations; for example, by sim-
ulating various operational and investment strategies,
operators can analyze and determine the most economical
and reliable system upgrade and expansion plans.

Several case studies have been conducted in this field.
For example, Tomin et al. [95] explored the burgeoning
realm of the DT technology in the context of urban electric
grids, articulating its potential in bolstering the flexibili-
ty, consumption optimization, and reduction of energy
losses in urban electrical networks by enabling the sim-
ulation and testing of various operational scenarios
without impacting actual systems. In 2019, Irkutsk Sci-
entific Center of The Siberian Branch of the Russian
Academy of Sciences initiated a project to install smart
power meters for more detailed monitoring of power
consumption in a district of Irkutsk. The collected data
were intended to create DT of the district’s electrical
network. They also proposed DT concept based on rein-
forcement machine learning, which allowed the creation
of an accurate digital model of the electrical network,
as depicted in Fig. 13. This model enables bidirectional
automatic data exchange for modeling, optimization,
and control, synchronizing all network information and
updating on the basis of system changes and feedback
on control actions. Andryushkevich et al. [96] proposed
a method for developing DTs of power systems, using
the energy supply of a localized research and development
(R&D) facility as an example. They introduce a six-layer
architecture for DT and describe its prototype software,
which includes an ontological model, a digital single-
line diagram, electronic documentation, master data,
load measurement data, and mathematical simulations.
The authors address challenges in ontological modeling
of the prosumer infrastructure, including customer load

RL agent Ly Power
policy (m,) | grid

Default | Xt
policy (17,)

Fig. 13 Architecture of the DT for a power grid through RL
(ANM: active network management; x;: state observed by the
digital twin; d: control action; u: actions other than control
action; r;: rewards) [95].
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and small-scale generation, using web ontology language
(OWL) for a machine-readable DT representation. They
also optimized the configuration of a hybrid power supply
system with renewable energy sources on the basis of
the developed DT. Arrafio-Vargas et al. [97] presented a
modular framework for power system DTs (PSDTs) de-
signed to advance future power grids by enhancing net-
work monitoring, operation, and planning across the in-
dustry. They noted that current DT frameworks are limited
to specific power system components, applications, or
users. Their proposed framework is flexible, robust, and
cost-effective, with a modular design that allows expan-
sion beyond individual components, facilitating the in-
tegration of multiple services and users without disrupting
existing modules. Each module can be independently
developed, modified, or replaced, enabling more ad-
vanced, specialized, and multidomain applications for
power system operations and planning. The authors il-
lustrate the initial development of a PSDT via a real-
time compatible model of Australian National Electricity
Market, which serves as a foundation for various modules
within DT. They demonstrated potential applications,
such as renewable energy integration and “what-if” sce-
narios, via the electromagnetic transient (EMT) model,
highlighting the anticipated future uses of PSDTs.

6 Challenges and future of DT

Currently, the DT technology, which is supported by
avariety of emerging technologies, has great development
prospects and value realization capabilities, is being fo-
cused on, studied, and practically applied in many in-
dustry fields, including military and civilian fields, and
has achieved a series of studies and practical results.
However, the development of the DT technology is cur-
rently facing many challenges [98]. The following are
the current challenges and research hotspots in the ap-
plication of DTs in various industries.

6.1 Management of data

Data management is a foundational element of DTs,
serving as the critical link between physical systems and
their virtual counterparts. Three key aspects enhance
the quality and sophistication of DTs from a data per-
spective: data perception, data communication, and data
analysis.

In terms of data perception, advanced sensor tech-
nologies are essential for capturing accurate and real-
time data from physical environments. Tao et al. [99]
emphasized the importance of integrating high-precision
sensors and deploying sensor networks to improve data
collection capabilities. They discussed strategies such as
using IoT devices and implementing redundant sensing
to increase reliability and reduce data gaps. Similarly,
Fuller et al. [98] highlighted challenges in data acquisi-

tion, noting that existing sensing equipment often failed
to meet the stringent requirements of DT systems. This
shortfall can lead to inaccuracies in the virtual models,
affecting their ability to replicate physical behaviors ac-
curately. With respect to data communication, efficient
and reliable transmission of data between the physical
system and the DT is important. Leng et al. [65] discussed
issues such as excessive latency and data noise that
could hinder real-time synchronization. They proposed
solutions such as implementing high-speed communica-
tion networks such as fifth-generation mobile communi-
cation (5G) and enhancing data transmission protocols
to reduce latency and improve data integrity. These
measures aim to achieve low-latency and high-accuracy
data exchanges, which are essential for responsive DT
operations. In the realm of data analysis, Qi et al. [100]
explored how integrating big data technologies and Al
could continuously optimize analytical algorithms. By
leveraging machine learning and predictive analytics,
DTs can process vast amounts of data to identify pat-
terns, predict future states, and make informed deci-
sions. This integration enhances the ability of DTs to
adapt to changing conditions and improves overall system
performance.

6.2 Model development

Model development is a critical but challenging com-
ponent in the development of DTs across various indus-
tries. The physical systems contain a large number of
devices, people, and assets, where the large amount of
data and complex data dimensions pose great challenges
for twin modeling. For example, the modeling of equip-
ment in various industries requires solving the complex
problem of building full-scale multiphysics field coupled
models [101], just as the modeling of industrial equipment
suffers from a large amount of data, structural complex-
ity, and special operating conditions [102]. Throughout
the DT model construction process, it becomes critical
to combine existing expert empirical knowledge with
data-driven modeling techniques to improve model ac-
curacy. In addition, ensuring the symbiosis of virtual
and physical systems in DTs is imperative so that the
model and physical systems are always synchronized in
complex, changing, and unstable operating environ-
ments. Tao et al. [4] noted that most existing modeling
technologies and tools focus on model construction,
with insufficient options for subsequent aspects. There
is a lack of a system or standard of technologies and
tools to guide the use of technologies and tools in various
modeling aspects. The technologies and tools used in
the same modeling aspect are not strongly related, and
the technologies or tools used in different modeling as-
pects are also fragmented and lack continuity.

Furthermore, maintaining synchronization between
DTs and their physical counterparts is essential for ac-
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curate real-time representation. Cimino et al. [30] ex-
amined the challenges posed by complex and unstable
operational environments, which could lead to discrep-
ancies between the physical system and its DT. They
emphasized the need for continuous data updates and
adaptive algorithms to ensure that DT remained an ac-
curate reflection of the physical system over time.

6.3 Cybersecurity of DTs

DT will be the core part of future digitization in various
sectors and possibly of the subsequently developed DT
systems, so information and physical security issues will
be a considerable challenge in the future. Cyberattacks
against DTs could lead to a range of problems, such as
data leakage, system failure, and poor decision-making,
which in turn could lead to more serious societal problems
[103]. Information-physical security issues can arise
from both internal and external sources, such as external
malicious cyber-attacks and internal system operational
failures. Establishing accurate security monitoring
mechanisms, building strong protection mechanisms
against external malicious attacks, and developing effec-
tive fault tolerance mechanisms to ensure normal opera-
tion in the event of information physical security problems
are all issues that must be considered.

Sadeghi et al. [104] detailed how cyberattacks on IoT
systems could lead to societal repercussions, such as dis-
ruptions in critical infrastructure and services. They
stressed the necessity of implementing robust security
frameworks that included threat detection, response
strategies, and regular security assessments. Masi et al.
[105] introduced a specific architectural view, called
the cyber security view, in system representation. Thus,
a cybersecurity DT is derived as part of the security design
practices for industrial automation and control systems
used in critical infrastructures. This DT allows cyberat-
tacks to be simulated and countermeasures to be devel-
oped. Mustofa et al. [106] discovered that distributed
denial-of-service (DDoS) attacks had a greater impact
on the IT systems of DT-based organizations than did
malware attacks, particularly in terms of attack propa-
gation, operational performance, reliability, and re-
silience. These findings have practical applications, al-
lowing DT-based organizations to pinpoint high-risk cyber
threats, assess and forecast IT performance during actual
cyber incidents, and formulate proactive measures to in-
crease network security.

6.4  Establishment of standards for DTs

There is also the challenge of establishing suitable,
accurate, and quantifiable evaluation systems for the
degree of twinning for current and future DT projects
across various industries to develop standards. It is nec-
essary to combine the characteristics of DTs with com-
prehensive and quantifiable project evaluation systems

proposed by standardization organizations, industry as-
sociations, or other authoritative organizations. In addi-
tion to the above evaluation standards, in the future ap-
plication of DTs, it is necessary to establish universal
implementation standards, including hardware, commu-
nication technologies and protocols, AI technologies,
and universal visualization platforms, in conjunction
with the universal standards for DTs [107]. In addition
to the physical information security issues described in
Section 6.3, DTs may have several security operational
issues that necessitate the establishment of maintenance
standards to standardize operations and ensure hardware
and software security and data security.

Kritzinger et al. [64] emphasized the need for com-
prehensive evaluation criteria developed by standard-
ization bodies and industry associations. Such criteria
should include performance metrics, data quality stan-
dards, and benchmarking tools to objectively assess the
effectiveness of DT systems. Schleich et al. [108] high-
lighted the importance of establishing universal imple-
mentation standards related to hardware, communication
protocols, Al algorithms, and visualization platforms.
Standardized hardware components and interfaces ensure
compatibility and ease of integration across different
systems. Adopting common communication protocols
facilitates seamless data exchange, while standardizing
Al algorithms enhances the transparency and repro-
ducibility of analytical processes.

7 Summary and conclusions

The DT technology has demonstrated significant po-
tential in transforming various industries by enabling
real-time simulation, analysis, and optimization of com-
plex systems. The integration of DTs with AI, big data,
and BIM has opened new avenues for innovation and ef-
ficiency across sectors such as aerospace, manufactur-
ing, construction, and power transmission systems. This
review highlights the diverse applications and benefits
of DTs, as well as the challenges that need to be addressed
for their widespread adoption. Key challenges include
data management, model development, cybersecurity,
and the establishment of standardized evaluation crite-
ria. Addressing these challenges is important for realizing
the full potential of the DT technology and ensuring its
successful implementation in Industry 4.0. Future R&D
efforts should focus on enhancing data quality, improving
model accuracy, ensuring robust cybersecurity mea-
sures, and developing universal standards to facilitate
the broader application of DTs. As these challenges are
overcome, the DT technology is poised to play an im-
portant role in the evolution of smart, resilient, and effi-
cient industrial systems.

This paper provides a comprehensive review of the
application of DTs in traditional industries such as
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aerospace, manufacturing, construction, and power
transmission. However, it is important to acknowledge
certain limitations. This paper focuses primarily on the
application of DTs in certain traditional industries and
does not cover emerging fields such as healthcare and
new energy. Additionally, owing to the rapid pace of
technological development, the paper may not capture
the latest advancements in some areas. As DTs continue
to evolve, future research should consider expanding
the scope to include more industries and newer
innovations.
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