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This  paper  provides  a  comprehensive  literature  review  on  the  application  of
digital twins (DTs) and the development of artificial intelligence (AI), big data,
and building information management (BIM). Driven by the Internet of Things
(IoT), big data analytics, and AI, the DT technology has become a transformative
force in Industry 4.0. It enables real-time simulation, analysis, and optimization
of industrial systems throughout their lifecycle, leading to significant improve-
ments in operational efficiency and decision-making processes. This review ex-
plores  the  various  applications,  challenges,  and  prospects  of  DTs  in  the
aerospace, manufacturing, construction, and power industries. The key challenges
discussed  include  data  management,  model  complexity,  cybersecurity,  and
standardization.  This  review  highlights  the  importance  of  addressing  these
challenges to realize the full potential of the DT technology in various industries
while  emphasizing  the  need  for  high-quality  data,  accurate  modeling,  robust
security measures, and standardized evaluation criteria. As the DT technology
continues to evolve, it will play a key role in advancing smart, resilient, and ef-
ficient industrial systems.

 

  
1    Introduction

The  human  industry  is  becoming  increasingly  large-
scale, systematic, and complex, such as large equipment
manufacturing,  aerospace,  and  construction.  Industrial
technology  has  shown  a  trend  of  high  integration  and
complexity in pursuit of higher efficiency. Accordingly,
increasingly complex industrial equipment faces a rela-
tively high probability of failure, and the evaluation of
its  performance  and  expected  lifetime  will  become  in-
creasingly complex [1]. Therefore, how to efficiently re-
alize  the  design,  manufacturing,  testing,  operation,
maintenance, fault diagnosis, condition assessment, and
life  prediction  of  complex  industrial  equipment  in  this

context  has  become  a  challenge  for  modern  industrial
technology  [2].  With  the  emergence  of  technologies
such  as  the  Internet  of  Things  (IoT),  cloud  computing,
and integrated multidomain and multiscale modeling, a
new solution, digital twin (DT) technology, has emerged
to  address  the  above  industrial  technology  challenges
[3–5].

The  DT  technology  originated  from  the  concept  of
“digital  equivalence  to  physical  products” proposed  by
Grieves [6].  In 2006, Hribernik et  al.  [7] proposed the
concept  of “product  avatars”,  which  is  similar  to  the
concept of DTs. The concept of product avatars aims to
create  an  information  management  architecture  that
supports bidirectional information flow from a product-
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centric perspective. National Aeronautics and Space Ad-
ministration  (NASA)  introduced  the  term  DT  in  2012
[8]. After more than a decade of development, the concept
of  the  DT  technology  has  become  increasingly  clear,
that is, the establishment of a DT mirror image through
an  information  technology  (IT)  platform  to  simulate
physical  entities,  processes,  or  systems.  The  formation
of the DT technology is inextricably linked to the devel-
opment of the IoT [9]. The IoT uses its terminal compo-
nents  to  collect  data  for  feedback  and  forms  a  digital
simulation  on  an  informatization  platform  through
wireless transmission, cloud computing, artificial intelli-
gence  (AI),  machine  learning,  big  data  analysis,  and
other  means  [10].  Since  data  collection  and  feedback
are performed in real time, the digital simulation gener-
ated  on  the  informatization  platform  will  constantly
change according to the actual situation and present the
real situation of the simulated object [11–13].

The  DT  technology  has  rapidly  advanced  due  to  the
development  of  key  technologies  such  as  multidomain
and  multiscale  integrated  modeling,  state  evaluation,
blending data-driven and physical models, data acquisi-
tion  and  transmission,  and  cloud  computing  and  edge
computing  [14].  Its  essence  lies  in  the  integration  and
comprehensive  application  of  various  composite  tech-
nologies  to  address  issues  emerging  in  the  industrial
equipment  domain  [15].  Multiphysics  modeling  and
multiscale  modeling  are  important  for  high-fidelity
modeling of DTs and simplify the contradiction between
the virtual model and the complex behavior of physical
objects [16].  Data-driven modeling,  especially machine
learning,  provides  an  alternative  approach  by  learning
the  relationship  between  inputs  and  outputs,  enabling
models  to  estimate  system  behavior  without  explicit
physical principles [17].

For  DTs,  real-time  data  acquisition  and  transmission
of  the  status  of  the  target  object  are  important.  Real-
time data acquisition primarily demands a broad range
covering all aspects of the target object, such as temper-
ature, pressure, and vibration, all of which must be pre-
cisely captured through sensors [18]. A stable, reliable,
and fast data transmission system ensures that data col-
lected by distributed sensors can reach the information
platform in real time and be used for digital model con-
struction and updates [19].  Cloud and edge computing
platforms  are  essential  for  ensuring  that  each  complex
functional step can be accomplished, improving compu-
tational performance and flexibility [20].

DTs  have  diverse  applications,  from  aerospace  to
manufacturing.  In  aerospace  engineering,  the  DT  tech-
nology  is  used  to  improve  the  efficiency  and  safety  of
aircraft design, testing, and operation [21–24]. It enables
real-time  monitoring  and  maintenance  planning,  en-
hancing  decision-making  processes  [25–27].  In  manu-
facturing,  DTs  optimize  production  processes,  enhance

quality  control,  and  enable  predictive  maintenance,
leading to increased operational efficiency and reduced
costs  [28–31].  The  integration  of  AI,  big  data,  and
building  information  management  (BIM)  with  DTs  has
further expanded their potential [32–35]. AI and big data
analytics  enhance  the  ability  to  process  and  analyze
large volumes of data generated during the lifecycle of a
building,  optimizing  design,  construction,  and  opera-
tional  strategies  [36–38].  BIM  enables  the  creation  of
accurate virtual models of buildings, facilitating collab-
oration among stakeholders and ensuring efficient proj-
ect management [39, 40]. The DT technology in power
transmission  systems  enables  real-time  monitoring,
analysis, and optimization, improving reliability and ef-
ficiency.  It  supports  predictive  maintenance,  reduces
downtime, and enhances system performance [41].

The  development  of  the  DT  technology  faces  key
challenges  such  as  data  management,  model  complexi-
ty,  cybersecurity,  and  standardization  [42],  which  are
critical to address for widespread adoption and success
across  industries  [43].  This  paper  provides  a  compre-
hensive review of the applications, challenges, and future
prospects  of  DTs,  particularly  in  traditional  industries
such  as  aerospace,  manufacturing,  construction,  and
power transmission. These sectors, owing to their reliance
on complex systems, are well suited to benefit from the
integration of DT technologies. The innovation and con-
tribution of this paper lie in its focus on traditional in-
dustries  where DTs have achieved significant  maturity.
By concentrating on these domains, the paper highlights
the  role  of  DT in  improving  operational  efficiency  and
integrating with emerging technologies such as the IoT,
AI, and big data. Additionally, the paper offers valuable
insights into overcoming the challenges of data manage-
ment,  model  complexity,  cybersecurity,  and  standard-
ization,  providing  practical  recommendations  for  real-
world industrial applications. 

2    Key technologies for DT

The ability of the DT technology to realize the digital
simulation  of  physical  entities,  processes,  or  systems is
indispensably  linked  to  the  development  of  key  tech-
nologies such as multidomain and multiscale integrated
modeling,  state  evaluation  blending  data-driven  and
physical models, data acquisition and transmission, and
cloud computing and edge computing [44].  Its  essence
lies in the integration and comprehensive application of
various composite technologies to address issues emerg-
ing in the industrial equipment domain. 

2.1    Multiphysics and multiscale modeling

Modeling is the core part of DT and requires a thorough
understanding of the physical properties and their inter-
actions.  Therefore,  multiphysical  field  and  multiscale
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modeling  are  important  for  high-fidelity  modeling  of
DTs  [45].  A  key  issue  that  should  be  addressed  in  DT
modeling  is  to  simplify  the  contradiction  between  the
virtual model and the complex behavior of physical ob-
jects. One compromise is to use a modular approach to
achieve  flexible  modeling.  Negri  et  al.  [46]  suggested
incorporating black-box modules in the main simulation
model. A functional mock-up interface (FMI) standard is
used  for  the  black-box  modules,  creating  functional
mock-up units (FMUs), as shown in Fig. 1. The various
behavioral  models  of  the  DT  are  activated  only  when
needed  and  interact  with  the  main  simulation  model
through a standard interface. To achieve balance, engi-
neers  should  determine  which  components  are  critical
to system functionality and determine the modeling level
of  each  component  before  creating  a  DT  model  of  a
complex  system.  As  a  result,  high-fidelity  DT  models
can be created on the basis of different modeling levels. 

2.2    Data-driven modeling

Although  significant  progress  has  been  made  in  the
fields of multiphysics and multiscale modeling, develop-
ing accurate and reliable numerical physical models for
objects with complex mechanical structures is still a major
challenge. Relying only on analytical physical models of
target objects to assess the state of complex objects cannot
yield accurate results. Therefore, data-driven approach-
es, especially machine learning, can be utilized [47–50].
Machine learning models provide an alternative approach
by  learning  the  relationship  between  inputs  and  out-
puts, enabling these models to estimate system behavior
without explicit physical principles [51–53]. For exam-
ple, neural networks can predict possible future failures
by learning data from machines under normal operation
and failure conditions (Fig. 2) [48]. Moreover, real-time
simulation  ensures  that  the  DT  reflects  the  real-time

state  of  the  physical  object  or  system,  including  real-
time data integration and dynamic simulation, to update
the model under new data inputs and simulate its future
behavior.  Model  validation  and  calibration  are  critical
steps to ensure that DT is accurate and reliable. Comparing
the  model’s  predictions  with  actual  observations  all-
ows  for  assessing  its  accuracy,  and  if  necessary,  adj-
ust  the  model’s  parameters  to  enhance  its  predictive
capabilities. 

2.3    Data acquisition and transmission

For  DTs,  real-time  data  acquisition  and  transmission
of  the  status  of  the  target  object  are  important  [54].
Real-time  data  acquisition  and  transmission  demand
two  main  aspects.  First,  the  acquisition  range  must  be
broad, covering all aspects of the target object, such as
temperature, pressure, and vibration, all of which must
be precisely captured through sensors. Second, a stable,
reliable, and fast data transmission system is needed to
ensure that the data collected by distributed sensors can
reach  the  information  platform  in  real  time,  which  is
used  for  digital  model  construction  and  updates.  With
the rapid progression of technology, swift advancements
in  sensor  capabilities  and  the  implementation  of  new
transmission  technologies  have  laid  a  solid  foundation
for the development of the DT technology [55]. For ex-
ample,  with  highly  integrated  microelectromechanical
system  (MEMS)  sensors  and  narrowband  IoT  (NB-IoT)
technology  (Fig.  3)  in  the  communication  field,  these
novel  data  sensors  and  transmission  technologies  can
achieve high integration and low-cost large-scale appli-
cations [56]. 

2.4    Cloud and edge computing

DTs apply technologies such as sensor data collection,
IoT, and multiphysical field multiscale modeling, there-
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Fig. 1   FMUs in the application case (PLC: programmable logic controller) [46].
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fore, DTs rely on high-performance computing platforms
to ensure that  each complex functional  step can be ac-
complished.  To  improve  computational  performance,
the DT technology is guaranteed from two main aspects.
First, it widely applies cloud computing technology that

is based on distributed computing, relies on cloud server
resources,  and  flexibly  mobilizes  computing  resources
according to the size of the computing demand (Fig. 4)
[57]. Second, it relies on the development of edge com-
puting,  which  is  a  platform  that  integrates  networks,
computing, storage, and applications and is able to carry
out computing services in close proximity to the side of
things  or  data  sources.  Moreover,  edge  computing  can
also be combined with cloud computing, which can access
the historical data of edge computing [58]. 

3    DTs in aerospace and manufacturing
 

3.1    Aerospace engineering

In the field of aerospace engineering, the DT technology
is  widely  used  as  an  innovative  approach  to  improve
the efficiency and safety of the design, testing, and op-
eration  of  aircraft.  By  creating  a  virtual  replica  of  an
aircraft,  engineers  are  able  to  simulate  various  flight
and environmental  conditions within a risk-free virtual

 

 
Fig. 2   Artificial neural network (i, j, and k: the neuron indic-
es; m, n,  and l:  the  maximum  number  of  neurons; Wij:  the
weights between the input and hidden layers; Wkj: the weights
between the hidden and output layers). Reproduced with per-
mission from Ref. [48], © Elsevier B.V. 2021.
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Fig.  3   Internal  data  transmission in  NB-IoT network (SIM:  subscriber  identity  module;  IP:  internet  protocol;  App.:  application;
UDP: user datagram protocol; ERP: enterprise resource planning; BS: base station; C-SGN: critical IoT serving gateway node) [56].
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environment, thereby optimizing design, predicting and
preventing potential issues, and improving maintenance
strategies.  Throughout  the  lifecycle  of  an  aircraft,  DT
can  receive  and  analyze  data  collected  from  its  sensor
network  in  real  time,  providing  instantaneous  insights
into system performance and health, thereby supporting
more  intelligent  decision-making.  For  example,  during
flight, DTs can be used to monitor the structural integrity
and performance of  various systems of  aircraft,  predict
potential  failures,  and  assist  in  determining  the  root
cause when failures occur. On the ground, maintenance
teams can utilize DTs to plan and simulate maintenance
operations, ensuring that the actions taken are maximized
for  safety  and  efficiency.  Moreover,  DTs  also  support
more  efficient  training  and  preparedness,  as  pilots  and
ground personnel can practice and test various scenarios
within  a  simulated  virtual  environment  without  the
need for expensive and complex physical simulators.

For  over  a  decade,  DTs  have  been  evolving  in  the
aerospace  industry.  NASA  pioneered  the  definition  of
DT within the realm of aerospace in 2010 and constructed
a  development  roadmap  for  them  [59],  which  under-
scored their strategic importance to USA space sciences
and the air force. By 2035, NASA aimed to develop DTs
for spacecraft that could adapt and manage comprehen-
sive  mission  arrays.  Simultaneously,  the  USA  air  force
has  achieved an array of  inventive  discoveries  through
feasibility studies of DTs. DTs have evident applications
in feasibility analysis, fleet administration, and diagnos-
tics  and forecasting  during flight  [60].  Additionally,  in
the  2010s,  DT-driven  intelligent  manufacturing  emer-
ged  as  a  trending  trajectory  for  Industry  4.0  [61].
Prominent aerospace original equipment manufacturers

(OEMs),  including  Boeing,  Airbus,  and  GE,  initiated
their respective DT initiatives. These globally dominant
aerospace OEMs anticipate DT to dynamically refine de-
sign  and  manufacturing  processes,  enhancing  product
quality and dependability while curtailing costs and op-
timizing time efficiency.

The application of DTs in aerospace continues to be a
prominent  topic  within  the  academic  community,  with
numerous  scholars  innovating  across  various  facets.
Meyer et al.  [62] explored the implementation and ad-
vancement of DTs in various sectors, emphasizing their
ability to reflect and predict the status of assets, particu-
larly in the aerospace context. An internal project within
the  German  Aerospace  Center  (DLR)  is  established,
which collaborates with several institutes across IT and
aviation engineering to explore methodologies and tech-
nologies for DT. Three use cases are defined to demon-
strate DT capabilities and uncover new development op-
portunities, with a particular focus on using DTs as a re-
search  tool  in  the  research  of  aircraft  use  cases.  The
project addresses numerous IT-related issues and moves
toward  a  common  vision  for  the  DT  technology,  with
the  next  steps  involving  the  implementation  and
demonstration of prototypes across the defined use cas-
es. This paper presents an overview of the project’s results
and developments, aiming to digitally map aircraft and
their components.

Zhang  et  al.  [63]  proposed  a  digital  thread-based
modeling  DT  framework  (Fig.  5)  to  manage  industrial
production  sites,  particularly  focusing  on  the  intricate
assembly environment of the aircraft assembly process,
through  the  mapping  of  physical  entities  to  virtual
spaces. Addressing the limitations of existing DT modeling

 

 
Fig. 5   Framework of the digital thread-based DT model. Reproduced with permission from Ref. [63], © The Society of Manufacturing
Engineers. Published by Elsevier Ltd. 2022.
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methods, which lack provisions for data flow and intrinsic
intermodule  interaction,  this  framework  amalgamates
the strengths of both DTs and digital threads. Enhanced
data management within the framework seeks to augment
the controllability and traceability of the manufacturing
process and product quality. The implementation of the
framework is demonstrated via a case study of the aircraft
assembly process, revealing its potential to increase effi-
ciency through comparative analysis. 

3.2    Manufacturing

DTs are expanding in manufacturing and can benefit
manufacturing  operations  at  different  levels.  Notably,
with process-based DT, companies can achieve production
visibility  and  planning  to  improve  operational  agility,
increase  throughput,  and  optimize  process  efficiency
across the supply chain [64]. Specific use cases include
production  monitoring,  asset  monitoring  and  machine
diagnostics,  visual  job  description  support,  predictive
maintenance,  shop  floor  performance  improvement,
process  optimization,  etc.  [65].  The  application  of  DTs
in  the  manufacturing  industry  is  divided  into  three
main  categories:  product  DTs,  production  DTs,  and
equipment  DTs  throughout  the  entire  product  lifecycle
management (PLM). 

3.2.1    Product design DT
In the product design phase, generic DTs are utilized

for the creation of three-dimensional (3D) digital models
of  the  product,  accurately  recording  various  physical
parameters of the product and presenting them in a visual
manner  [66].  Through  simulation  and  emulation,  the
performance and behavior of the product under various
external conditions are validated, ensuring that product
adaptability is verified during the design phase. Compared
with traditional manufacturing methods,  which require
the production of a batch of physical prototypes to vali-
date product adaptability and performance, the product
cycle  is  significantly  shortened,  and design verification
costs are substantially reduced. 

3.2.2    Production DT
During  the  manufacturing  phase  of  a  product,  the

main objective of production DT is to ensure that products
can be produced efficiently,  with high quality and at a
low cost. The primary entities designed, simulated, and
verified  are  the  production  systems,  which  encompass
manufacturing  processes,  manufacturing  equipment,
manufacturing  workshops,  and  management  control
systems  [45].  DTs  can  expedite  product  introduction
times,  enhance  the  quality  of  product  designs,  reduce
production costs, and accelerate product delivery. Virtual
production  lines  established  through  digital  means,
which  highly  integrate  DT  of  the  product  itself  with
production  equipment  and  processes,  among  other
forms of DT, enhance collaborative efficiency. 

3.2.3    Equipment DTs
In  the  manufacturing  process,  certain  equipment  or

devices are essential, and any malfunction or damage to
this  equipment  often  leads  to  significant  losses  to  the
production line.  Equipment DTs,  through the establish-
ment of DT models of equipment, monitor the real-time
operational  status  of  equipment.  By  utilizing  historical
data, real-time data, and operational data of the equip-
ment and combining it with big data analysis and mining
techniques, equipment operation can be optimized, pre-
dictive  maintenance  and  care  can  be  conducted,  un-
planned  downtime  risks  for  key  production  equipment
can  be  minimized,  and  the  lifespan  of  key  equipment
can be extended.

The employment of DTs in manufacturing has captured
significant  academic  interest,  with  notable  innovations
emerging in recent years. Bolender et al. [67] explored
in depth the ability of DTs to represent, control, predict,
and optimize the behavior of cyber-physical production
systems (CPPSs)  in  diverse  and complex  environments.
They recognize the challenges posed by CPPSs, such as
differences  in  behavior  due  to  different  deployments,
configurations, and environmental factors, and highlight
the  need  for  expert  human  operators  to  be  skilled  in
modifying CPPS configurations. The authors aim to en-
hance the adaptability of DTs in such scenarios, leading
them  to  propose  a  modeling  framework  for  adaptive
manufacturing  that  supports  the  modeling  of  domain-
specific cases and specifies rules for case similarity and
case-based  reasoning  in  modular  DTs.  They  assert  that
by leveraging explicitly  modeled domain expertise,  the
automatic  configuration  of  DTs  can  optimize  manufac-
turing time, minimize waste, and significantly contribute
to more sustainable manufacturing practices.

Friederich et al. [68] introduced a novel approach to
adopting DTs in smart factories, acknowledging the piv-
otal role they played in enhancing productivity, reducing
costs,  and  energy  consumption,  especially  amid  the
challenges  of  swiftly  changing  customer  demands  and
shorter product life cycles (Fig. 6). In light of the limita-
tions of traditional modeling and simulation methods in
such dynamic contexts,  they propose a  unique,  generic
data-driven  framework  that  automatically  generates
simulation  models,  forming  the  foundation  for  DTs  in
intelligent manufacturing environments. By utilizing ad-
vancements  in  machine  learning  and  process  mining
techniques,  their  innovative  framework  minimizes,  de-
fines,  or  possibly  eliminates  the  necessity  for  expert
knowledge in extracting corresponding simulation mod-
els,  a  concept  they  exemplify  through  a  detailed  case
study. 

4    DT in the construction industry
 

4.1    Development of AI, big data, and BIM

AI,  big  data,  and  BIM  are  intertwined  technologies
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that collectively enhance the planning, design, construc-
tion,  and  management  of  buildings  and  infrastructure.
AI has the ability to process and analyze data in a way
that can predict outcomes, automate processes, and op-
timize  solutions  in  the  realm of  building  management.
It can be applied in various aspects of BIM, such as au-
tomating  design  processes,  enhancing  project  schedul-
ing, predicting maintenance requirements, and optimiz-
ing energy consumption, thereby adding a layer of intel-
ligence and automation to building management.

Big data refer to the enormous volumes of data gener-
ated  during  the  lifecycle  of  a  building,  which  can  be
structured  or  unstructured.  It  includes  analyzing  large
datasets  to  uncover  patterns,  correlations,  trends,  and
insights  that  are  important  for  making  informed  deci-
sions.  In  the  context  of  BIM,  big  data  analytics  can  be
used to analyze data from various stages of the building
lifecycle  to  optimize  design  strategies,  improve  opera-
tional  efficiency,  and  enhance  the  overall  performance
of buildings.

BIM is a sophisticated approach to managing the entire
lifecycle  of  a  building,  from its  initial  design  and  con-
struction to its eventual demolition, via comprehensive
and digital  3D models.  It  is  not  just  a type of  software
or technology but rather an integrative process that fa-
cilitates  the sharing of  valuable  information among ar-
chitects, engineers, construction professionals, and other
stakeholders  throughout  the  building’s  lifecycle.  BIM
enables the creation of accurate virtual models of build-
ings, which can be used for planning, design, construc-
tion, and operational purposes, ensuring that all parties
involved have a unified understanding and can make in-
formed  decisions  regarding  the  construction  and  man-
agement  of  the  building.  BIM  encompasses  the  entire
process  of  creating  and  managing  information  about  a
building  during  its  entire  lifecycle.  When  infused  with
AI  and  big  data,  BIM  transforms  into  a  more  potent
tool.  AI  algorithms  can  analyze  the  big  data  derived
from BIM models and operational data to unearth insights
that  are  previously  difficult  or  impossible  to  ascertain.
These insights can then be used to enhance the design,

construction, and operational management of buildings,
ensuring that they are not only constructed and managed
more  efficiently  but  also  that  they  perform  optimally
throughout their lifecycle.

Together, AI, big data, and BIM form a robust frame-
work  that  enhances  the  capabilities  of  architects,  engi-
neers,  and  construction  professionals.  This  integrated
approach ensures that buildings are designed, construct-
ed, and managed in a way that is not only efficient and
cost-effective  but  also  sustainable  and  future-proof,
thereby aligning with the objectives of smart, adaptive,
and sustainable urban development.

Researchers are currently deepening their research in
AI, big data, and BIM. For example, Lokshina et al. [69]
addressed  the  relatively  slow adoption  of  digital  trans-
formation  in  the  architecture,  engineering,  and  con-
struction (AEC) industry,  highlighting BIM as  a  pivotal
technology  that  could  usher  the  industry  in  the  digital
era  by  enhancing  collaboration  and  communication
among stakeholders through information and communi-
cation technologies (ICTs). They explore the integration
of IoT designs and services into the BIM process, identi-
fying potential security concerns arising from the imple-
mentation  of  the  IoT  in  a  modular  environment  with
numerous  interdependencies.  To  mitigate  these  con-
cerns,  this  paper  proposes  a  system  design  that  uses
blockchain technology to secure and control frameworks
that  integrate  IoT  and  BIM  technologies,  exemplifying
its application through a smart museum while asserting
the  generic  and  versatile  applicability  of  the  design  in
various building categories, such as university renovation
projects.

Yang  et  al.  [70]  studied  the  intersection  of  BIM and
AI in the construction industry, particularly focusing on
addressing existing challenges in intelligent construction
technology  in  China,  especially  concerning  structural
damage monitoring during bridge construction (Fig. 7).
Recognizing  limitations  in  classical  neural  network  al-
gorithms  predominantly  used  in  prior  research,  this
study  introduces  innovative  improvement  measures,
substantiates their efficacy through practical arithmetic
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Fig. 6   Generic data-driven framework for automated generation of simulation models as the basis for DT for smart factories [68].
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examples,  and  integrates  the  improved  neural  network
recognition  algorithm  into  the  BIM  framework  to  ade-
quately  recognize  and assess  bridge  structural  damage.
This integration not only enhances the intelligence level
of the BIM system but also offers insights for progressing
intelligent  construction  technology,  which  is  especially
pertinent to bridge construction monitoring. 

4.2    DTs in BIM

Integrating  DT  within  BIM  represents  an  innovation
that  melds  physical  buildings  and structures  with  their
digital counterparts to facilitate enhanced decision-mak-
ing  and  management  across  the  entire  lifecycle  of  a
building. In the sphere of BIM, DTs enable the creation
of a precise virtual model of a building, allowing engineers
and architects to conduct visual simulations and analyses
during  the  design  and  construction  phases,  thereby  as-
sisting  in  optimizing  designs  and  pinpointing  potential
issues. DT can synchronize the real-time data of a build-
ing, including structural, environmental, and operational
data,  to  perform  continuous  monitoring  and  analysis
throughout  its  entire  lifecycle,  subsequently  increasing
operational  efficiency  and  maintenance  management.
The incorporation of DTs into BIM can augment collab-
oration among all stakeholders (such as architects, engi-
neers,  contractors,  and operators)  by sharing real-time,
accurate  building  data,  ensuring  that  decisions  at  each
stage  are  based  on  precise  and  timely  information.
Moreover,  DTs  not  only  play  a  role  during  the  design
and construction  phases  of  a  building  but  also  provide
vital input during the operational phase through predic-
tive maintenance and optimizing building performance,
thereby  reducing  operational  costs  and  enhancing  the
overall efficacy of the building.

Research on DT applications in BIM in a more digital
and intelligent direction. Delbrügger et al. [71] provided
an in-depth analysis of the growing role of BIM in asset
management during the operation and maintenance pha-
ses in AEC industries. They discussed the latest research

trends and the influence of  industry standards on BIM.
While  acknowledging  BIM’s  significant  contributions,
the authors highlight its limitations in terms of informa-
tion depth and analytical power, especially in the oper-
ation  and  maintenance  stages.  To  address  these  gaps,
they propose a new approach that integrates DT, which
leverages  AI,  machine  learning,  and  data  analytics  to
create dynamic models that can continuously learn from
and update them on the basis of various data sources.

With  the  rapid  development  of  AI,  computer  vision
technology has been widely used in image recognition,
facial  recognition,  intelligent  monitoring,  and  other
fields.  Some  researchers  have  used  computer  vision
technology  for  the  combination  of  DTs  and  BIM.  Zhou
et al. [72] introduced a pioneering computer vision DT
scheme that  employed BIM and used camera videos  as
input,  navigating  through  challenges  related  to  dimen-
sions, coordinate systems, and object inconsistencies be-
tween BIM and camera videos. The proposed DT frame-
work uses a unique method that combines object detection
with 3D object estimation networks to determine object
positions  and  orientations.  It  includes  theorems  and
lemmas  for  calculating  3D  coordinates  in  the  building
coordinate system (BCS) on the basis of detected two-di-
mensional  (2D)  positions.  Additionally,  the  approach
features  cold-start  and  run-time  object  matching
schemes  to  resolve  discrepancies  between  camera
footage and BIM. The performance of the proposed ap-
proach is substantiated through real-world experiments,
which  demonstrate  precise  location  error  metrics,  and
notably, it first explores a DT scheme atop BIM via com-
puter  vision,  potentially  sparking  further  intelligent
studies  in  smart  buildings  that  jointly  utilize  computer
vision and BIM.

Chen  et  al.  [73]  developed  a  technical  framework
aimed at  facilitating  defect  DTs  by  synergistically  inte-
grating robotics, AI, and BIM, addressing the global issue
of aging buildings and infrastructure and the imperative
of  adept  management  and  renovation  (Fig.  8).  This

 

 
Fig. 7   AI-based BIM for intelligent structural damage recognition [70].
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framework creates a system that connects physical defects
with  their  digital  representations  in  a  virtual  environ-
ment, improving defect information modeling by enabling
the quick and efficient capture of precise and current as-
damaged  data.  A  case  study  involving  a  10-story  resi-
dential building in Hong Kong, China demonstrated the
framework’s  effectiveness  in  matching  defects  on  the
basis of location, geometry, and size. This approach also
has potential for broader applications, such as matching
facility defects on a street block or even at the city lev-
el, which can aid urban renewal initiatives. 

4.3    DTs in infrastructure assessment

In  the  global  context  of  aging  infrastructure,  regular
monitoring, assessment, and maintenance are important
[74–78]. The DT method has been utilized in infrastruc-
ture assessment for many years. The synergistic combi-
nation of DTs and sensor monitoring techniques provides
multifaceted  applications.  This  integrated  approach
takes advantage of real-time data collection and compu-
tational  modeling  to  provide  a  comprehensive  view  of
structural  integrity.  For  example,  vibration  sensors  can
continuously  monitor  vibration  and  motion  within  an
infrastructural  component.  These  real-time  monitoring
data can be fed into the DT model to replicate the physical
characteristics and behavior of the infrastructural com-
ponent  in  a  virtual  environment.  Rojas-Mercedes  et  al.
[79] presented a comprehensive approach to generating
seismic fragility curves for a precast reinforced concrete
bridge  equipped  with  a  vibration-based  structural
health monitoring (SHM) system located near an active
seismic  fault  in  Dominican  Republic.  Given  that  the
bridge serves  as  a  critical  lifeline  to  several  local  com-
munities and is built to outdated construction standards
ill-suited  for  seismic  resilience,  the  SHM  system  is  es-
sential  for  assessing  its  structural  integrity  and  seismic
performance. The authors effectively combine data from
the SHM system with computational models to produce

fragility  curves,  offering  quantitative  measurements  of
expected damage and probabilistic estimates for exceed-
ing  various  states  of  failure  as  functions  of  seismic  in-
tensity.  The authors  employ a DT model  of  the bridge,
developed  via  finite  element  (FE)  analysis  and  data
from the SHM system, as a predictive tool for minimizing
modeling  uncertainties  and  enhancing  the  accuracy  of
the  fragility  curves.  The  proposed  DT  was  applied  to
conduct  nonlinear  incremental  dynamic  analysis  (IDA)
by utilizing ground motions tailored to the seismic fault
and site specifics. The analysis revealed that, considering
the highest  expected acceleration with  a  2% chance of
surpassing within 50 years, there is a 62% likelihood of
the structure sustaining significant damage.

Ye  et  al.  [80]  conducted  an  exploratory  study  over
two years, aiming to create a DT of bridges for SHM by
leveraging  interdisciplinary  collaboration  between civil
engineers  and  statisticians.  Their  research  focused  on
three key areas: real-time data management via physics-
based approaches, data-driven approaches, and the inte-
gration  of  these  methods  to  develop  a  comprehensive
DT framework for railway bridges in Staffordshire, UK.
Fidler  et  al.  [81]  augmented  an  existing  fiber  optic
strain-based bridge SHM system with additional sensors
measuring  deck  rotation  and axle  positions  to  enhance
infrastructure  asset  management.  They  designed  and
implemented a system that integrates real-time data into
a DT with back ends for analysis and overcame challenges
such as synchronizing timestamps from multiple sensors
during  a  time-limited  overnight  installation.  Lin  et  al.
[82]  presented  a  novel  DT-based  methodology  for  as-
sessing  the  seismic  collapse  performance  of  large-span
cable-stayed  bridges  under  the  influence  of  strong
earthquakes.  This  study  investigated  a  scaled  physical
model  of  a  large-span  cable-stayed  bridge  with  ac-
celerometer sensors and employed linear and nonlinear
model updating techniques to create a DT model on the
basis of a FE model from the original design documents.

 

 
Fig. 8   Technical framework that integrates robotics, AI, and BIM for defect DTs (UAV: unmanned aerial vehicle; UGV: unmanned
ground vehicle; SfM: structure from motion) [73].
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Subsequently,  seismic  fragility  analysis  was  performed
via IDA method to generate collapse fragility curves for
three different FE models.

Muhit et al. [83] explored the issue of managing aged
masonry  arch  bridges  through  DTs  in  Europe.  Many
bridges in Europe are more than a century old and are
subject to operational constraints or closures due to in-
creased  traffic  loads.  The  authors  introduce  a  compre-
hensive framework for creating DTs of these bridges to
facilitate more informed decision-making for their repair
and  maintenance.  The  authors  describe  the  process  of
obtaining dynamic characteristics, including the natural
frequency and modal shape, through ambient vibration
tests  via  accelerometers.  A  Bayesian  method is  applied
for identifying structural modal properties within specific
time  windows.  By  integrating  3D  geometry  derived
from photogrammetry with these modal properties, the
authors  develop  a  high-fidelity  numerical  model  that
can  be  continuously  calibrated  with  real-world  data
(Fig.  9).  This  framework  offers  a  promising  approach
for  managing  aged  masonry  arch  bridges  and  uses  ad-
vanced  real-time  monitoring  and  data-driven  methods
to  enhance  the  assessment  of  damage  accumulation
over time. Using fiber optic sensors can be another way
to collect real-time data and update DT models. For ex-
ample,  Febrianto  et  al.  [84]  investigated  DTs  incorpo-
rating fiber optic strain sensors. Using a case study of a
27.34-m-long steel railroad bridge in Staffordshire, UK,
fitted  with  fiber  Bragg  grating  sensors  at  several  loca-
tions,  the  authors  used  the  statistical  FE  method  (stat-
FEM)  to  combine  real-world  data  with  a  physically

based  model,  considering  uncertainties  in  the  sensor
readings,  applied loads,  and model  errors.  The method
provides  convincing  results  that  effectively  predict  the
“real” system response in the form of strain distributions
on the two main I-girders of the bridge during train pas-
sage.  The  study  revealed  that  varying  the  number  of
sensors  (40,  20,  and  10)  and  their  sampling  rates  did
not significantly affect the precision of the strain predic-
tions of the statFEM, as indicated by negligible differences
in  the  95%  confidence  intervals.  This  shows  that  the
statFEM  can  reduce  the  cost  of  sensor  networks  while
maintaining data interpretability,  even if  the dataset  is
reduced  or  incomplete.  This  suggests  that  the  statFEM
can  generate  reasonable  strain  distribution  predictions
at  points  lacking  direct  sensor  measurements,  thus  ex-
panding its application to long-term SHM.

Lei  et  al.  [85]  presented  a  DT  system for  the  health
monitoring of bridges that used a high-speed demodula-
tion system grounded in dual long-period fiber gratings.
This study stands out for its fiber grating-based damage
self-diagnosis system, which facilitates strain distribution
and impact load monitoring. Employing advanced infor-
mation recognition methods, the system adeptly localizes
impact loads. The authors address the inherent challenges
of  dealing  with  complex  and  high-volume  data  by  im-
plementing essential data cleaning techniques, including
the transformation of data into dimensionless form and
the handling of missing values. Furthermore, they analyze
and  construct  a  DT k-nearest  neighbors  (KNN)  model
specifically designed for the monitoring and management
of bridge transition construction. The system architecture
is  comprehensive,  featuring  multiple  privilege  login
modes,  a  display  of  BIM  models,  geographic  informa-
tion, and meteorological data. Additionally, the platform
allows  for  the  modification  and  analysis  of  data  and
even includes email warning functions. Figure 10 displays
the software modules of the DT bridge health and struc-
tural safety monitoring system. Liu et al. [86] developed
a real-time,  updatable  DT model  that  is  based on BIM.
Using machine learning algorithms to intelligently inter-
pret  strain distributions,  they introduced an automated
method for identifying,  locating,  quantifying,  and visu-
alizing cracks that addressed the inefficiencies and inac-
curacies of manually interpreting distributed fiber optic
sensor data, as shown in Fig. 11. The model serves as a
real-time  visualization  interface  for  monitoring  cracks,
with data continuously provided by distributed fiber optic
sensors. The authors validated their method by conduct-
ing laboratory tests on concrete beams, achieving highly
accurate crack monitoring.

In addition to sensing technologies,  drone inspection
can be combined with DT modeling, as it provides accu-
rate and comprehensive information on the health con-
dition of the infrastructure surface. Yoon et al. [87] de-
veloped a DT model incorporating drone monitoring in
response to  the urgent  need for  periodic  inspections  of

 

 
Fig.  9   Workflow  of  masonry  arch  bridge  DT  development
(FEM: finite element model; OMA: operational modal analysis;
SFEA: simplified finite element analysis; DAQ: data acquisition
system;  SSI:  synchronous  serial  interface; f:  modal  frequency;
φ: mode shape) [83].
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aging bridges. Typically, drone inspections map only ex-
ternal damage and do not address seismic performance.
The authors propose a comprehensive two-phase meth-
od  that  integrates  drone-based  inspections  into  a  DT
framework followed by a seismic fragility analysis. This
model  is  updated  with  bridge  conditions  sourced  from
drone  inspections,  translating  observed  damage  into  a
quantifiable  damage  index  that  reflects  reductions  in
structural stiffness. Using this recalibrated DT, the seismic
fragility  analyses  are  run  with  varying  earthquake  sce-
narios. Their method, which was tested on an in-service
prestressed concrete box bridge, demonstrated a notable
difference in the seismic fragility curves of a deteriorated
bridge  compared  with  an  intact  bridge.  Benzon  et  al.
[88] introduced a method for constructing an operational
DT for expansive infrastructures that used drone-captured
images. Central to this study is the DT’s ability to virtually
mirror  the  real-world  structure  and  evolve  in  tandem
with  the  structure’s  physical  alterations  throughout  its
life  span.  Validating  their  approach  on  a  wind  turbine
transition piece, the authors adeptly harnessed over 500

red–green–blue  (RGB)  drone  images  and  multiple  light
detection and ranging (LiDAR) scans to craft a detailed
3D geometric rendition. This digital construct was then
juxtaposed  with  the  original  design  to  identify  and
quantify  manufacturing  inconsistencies  and  tolerances.
Leveraging  AI,  the  methodology  proficiently  identified
and  categorized  paint  defects  from  the  images,  subse-
quently  mapping  them  onto  the  3D  model.  This  offers
the opportunity for real-time updates to DT on the basis
of periodic inspections. The paper thoughtfully delineates
the core technologies underpinning this DT concept. Im-
portantly, while the focus here is on wind turbines, the
authors  emphasize  the  method’s  broader  applicability
across industries such as aerospace, marine, transporta-
tion, and other substantial infrastructure domains. 

5    DTs in the power industry

In contemporary power transmission systems, the in-
corporation of the DT technology is gradually emerging
as a pivotal innovative practice, fundamentally esteemed

 

 
Fig. 10   Software modules of the DT bridge health and structural safety monitoring system [85].

 

 
Fig. 11   Crack visualization method using fiber optic sensors and DTs. Reproduced with permission from Ref. [86], © Elsevier Ltd.
2023.
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for  enabling  the  simulation,  analysis,  and  optimization
of  the  actual  transmission  system  in  real  time  without
necessitating direct intervention in the physical system.
The integration of a spectrum of advanced technologies,
including IoT, big data, AI, and DTs, achieves real-time
or  near-real-time  monitoring,  analysis,  and  control  of
transmission systems. This technology provides a highly
accurate and flexible virtual platform for the design, op-
eration,  and  maintenance  of  transmission  systems.  On
this platform, engineers and decision-makers can simulate
various operational scenarios, validate different control
strategies,  predict  future system behaviors,  analyze po-
tential  risks  and  issues,  and  formulate  corresponding
optimization strategies and solutions [89]. For example,
during the design phase of transmission lines, engineers
can simulate different design schemes and operating pa-
rameters in a virtual environment via the DT technology
to ascertain their performance and efficacy in practical
applications.  In  the  operational  phase,  real-time  data
monitoring  and  analysis,  realized  through  the  DT,  can
assist operators in comprehending the operational status
of the transmission system instantaneously, identifying,
and  preempting  potential  failures  and  risks,  and  opti-
mizing operational strategies to increase system reliability
and economic benefits [90]. In the maintenance phase,
the application of the DT technology can aid maintenance
personnel in accurately gauging the aging and wear status
of the transmission system and predicting potential fail-
ures  and  risks,  thereby  actualizing  predictive  mainte-
nance, increasing the precision and efficiency of mainte-
nance,  and  reducing  maintenance  costs  and  risks.  Fur-
thermore,  the  DT  technology  can  also  assist  decision-
makers  in  executing  more  precise  energy  dispatching
and  management  to  navigate  the  complex  and  volatile
electricity  demand  and  market  environment  [91].  In
conclusion,  the  application  of  the  DT  technology  in
transmission systems not only facilitates the elevation of
the  intelligence  level  of  system  design,  operation,  and
maintenance but also provides robust assurance for the
stable,  safe,  and  efficient  operation  of  power  systems.
This method merits more extensive and profound research
and application in future power transmission systems.

In summary, the DT system operates by using its syn-
chronization  capabilities  to  set  initial  parameters  and
enable dynamic data interaction,  effectively replicating
the behavior and environment of physical entities on an
information-based platform. The system allows for pro-
jections and predictions that are impractical in the real
world, utilizing its autonomous features. With its inter-
active function,  the system can adjust  and monitor  the
operational states of physical entities in real time. Addi-
tionally, DT’s sharing feature supports joint simulations
of multiple components. Building a digital transmission
system  with  the  DT  technology  is  a  gradual  process
beginning  with  localized  and  small-scale  applications.

Currently, this technology is mainly used in transmission
and  distribution  systems  for  inspection,  maintenance,
and power system operation optimization. 

5.1    Inspection and maintenance

Inspection  and  maintenance  in  the  context  of  power
transmission and distribution systems are critical to en-
suring  reliability,  efficiency,  and  safety  in  the  delivery
of electricity from generation points to end-users. Robust
inspection  protocols  include  systematic  examination  of
various  components  and  subsystems,  including  trans-
formers, transmission lines, and substations, to identify
potential  vulnerabilities,  such  as  wear  and  tear,  or
anomalies  that  might  impede  optimal  functionality.
Moreover,  maintenance practices,  which may be either
preventive or corrective, encompass a range of activities
aimed at preserving the condition of the equipment and
infrastructure or restoring it to a state in which it could
perform  its  required  function.  Both  aspects  are  crucial
in mitigating the risks of system failure, minimizing un-
planned downtimes,  and thereby guaranteeing  a  stable
and continuous power supply while also prolonging the
lifespan  of  the  assets  within  the  system.  Furthermore,
advances  in  technology  enable  the  incorporation  of
smart solutions, such as the use of DTs, to enhance tra-
ditional  inspection  and  maintenance  processes  by  pro-
viding precise and real-time data and facilitating predic-
tive maintenance strategies.

Many  researchers  have  begun  to  focus  on  this  point
and have made numerous innovations. Gauce et al. [92]
explored  the  digital  transformation  of  essential  engi-
neering maintenance processes, with an emphasis on in-
specting  medium-voltage  overhead  distribution  net-
works. They employed the DT technology for 3D modeling
and analysis, utilizing photogrammetry and aerial scan-
ning data (Fig. 12). The proposed approach, which sup-
ports remote operation and relies on data-driven solutions
for  objective  and  cost-effective  outcomes,  was  applied
to  the  Latvian  medium-voltage  overhead  distribution
network with support from the Latvian distribution sys-
tem  operator  JSC “Sadales  Tīkls”.  This  paper  outlines
practical  applications  of  these  data-driven  methods  for
various  infrastructure  management  processes,  such  as
scheduled  and  unplanned  inspections  and  vegetation
management processes, providing a pathway toward en-
hanced automation and economic efficiency in mainte-
nance and inspection tasks. Liu et al. [93] addressed the
shortcomings  of  traditional  methods  for  evaluating  the
status of power transmission and transformation equip-
ment, such as delays and poor data quality, by developing
a DT system for this equipment.  By integrating and re-
fining sensor  data  according to  the operational  charac-
teristics of the equipment and applying big data analysis
and data mining techniques, they achieved differentiated
status evaluation, precise fault diagnosis, and status pre-
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diction. This paper also explored the use of the DT tech-
nology in online status evaluation for transformers, dis-
cussing aspects such as data management, model devel-
opment, and the future potential of DTs for monitoring
key power transmission and transformation equipment.
Zhou et al. [94] emphasized the importance of accurately
assessing the status of power transformers,  which were
important components in power grids, to improve man-
agement and ensure safe and stable operations. Howev-
er,  they  noted  that  it  is  difficult  to  accurately  describe
asset  attributes  via  a  single  monitoring  system.  Given
the growing interest in the DT technology across various
sectors  and  its  limited  application  in  power  systems,
this paper introduces a method for transformer state as-
sessment via DTs. This method requires the characteristics
of  multiple  heterogeneous  systems  to  be  combined  to
construct  a  comprehensive  asset  attribute  index,  and
sample  data  from various  sources  are  obtained  and  la-
beled. The labeled data are then used to guide decision-
making in state evaluation, with the DT model’s sample
data compared to those of physical systems to improve
the accuracy of state assessments in the actual system. 

5.2    Optimizing the operation of power systems

The DT technology plays a pivotal role in optimizing
the  operation  of  power  systems,  establishing  a  high-fi-
delity  virtual  model  of  physical  electrical  power  sys-
tems, which not only enables engineers to simulate and
test various operational scenarios and strategies without
impacting  the  actual  system  but  also  provides  a  real-
time,  dynamic  platform for  monitoring,  analyzing,  and
optimizing  system  operation.  On  this  virtual  platform,
the actual system’s operational data are synchronized in
real  time  with  DT,  allowing  operators  to  comprehend
the system’s operational status and performance instan-
taneously,  thereby  enhancing  the  system’s  reliability
and efficiency. Moreover, the DT technology also lends
support for the long-term planning and optimization of
electrical power system operations; for example, by sim-
ulating  various  operational  and  investment  strategies,
operators can analyze and determine the most economical
and reliable system upgrade and expansion plans.

Several case studies have been conducted in this field.
For example, Tomin et al. [95] explored the burgeoning
realm of the DT technology in the context of urban electric
grids, articulating its potential in bolstering the flexibili-
ty,  consumption  optimization,  and  reduction  of  energy
losses in urban electrical networks by enabling the sim-
ulation  and  testing  of  various  operational  scenarios
without impacting actual systems. In 2019, Irkutsk Sci-
entific  Center  of  The  Siberian  Branch  of  the  Russian
Academy of Sciences initiated a project to install smart
power  meters  for  more  detailed  monitoring  of  power
consumption in a district of Irkutsk. The collected data
were  intended  to  create  DT  of  the  district’s  electrical
network. They also proposed DT concept based on rein-
forcement machine learning, which allowed the creation
of  an  accurate  digital  model  of  the  electrical  network,
as depicted in Fig. 13. This model enables bidirectional
automatic  data  exchange  for  modeling,  optimization,
and control, synchronizing all network information and
updating  on  the  basis  of  system changes  and  feedback
on control actions. Andryushkevich et al. [96] proposed
a  method  for  developing  DTs  of  power  systems,  using
the energy supply of a localized research and development
(R&D) facility as an example. They introduce a six-layer
architecture for DT and describe its prototype software,
which  includes  an  ontological  model,  a  digital  single-
line  diagram,  electronic  documentation,  master  data,
load measurement data, and mathematical simulations.
The authors address challenges in ontological modeling
of the prosumer infrastructure, including customer load

 

 
Fig. 12   Fragment of an aerial laser scanning power line [92].

 

 
Fig. 13   Architecture of the DT for a power grid through RL
(ANM:  active  network  management; xt:  state  observed by  the
digital  twin; dt:  control  action; ut:  actions  other  than  control
action; rt: rewards) [95].
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and small-scale generation, using web ontology language
(OWL) for a machine-readable DT representation. They
also optimized the configuration of a hybrid power supply
system  with  renewable  energy  sources  on  the  basis  of
the developed DT. Arraño-Vargas et al. [97] presented a
modular  framework for  power system DTs (PSDTs)  de-
signed to advance future power grids by enhancing net-
work monitoring, operation, and planning across the in-
dustry. They noted that current DT frameworks are limited
to  specific  power  system  components,  applications,  or
users. Their proposed framework is flexible, robust, and
cost-effective, with a modular design that allows expan-
sion  beyond individual  components,  facilitating  the  in-
tegration of multiple services and users without disrupting
existing  modules.  Each  module  can  be  independently
developed,  modified,  or  replaced,  enabling  more  ad-
vanced,  specialized,  and  multidomain  applications  for
power  system operations  and planning.  The  authors  il-
lustrate  the  initial  development  of  a  PSDT  via  a  real-
time compatible model of Australian National Electricity
Market, which serves as a foundation for various modules
within  DT.  They  demonstrated  potential  applications,
such as renewable energy integration and “what-if” sce-
narios,  via  the  electromagnetic  transient  (EMT)  model,
highlighting the anticipated future uses of PSDTs. 

6    Challenges and future of DT

Currently,  the DT technology,  which is  supported by
a variety of emerging technologies, has great development
prospects and value realization capabilities, is being fo-
cused  on,  studied,  and  practically  applied  in  many  in-
dustry fields, including military and civilian fields, and
has  achieved  a  series  of  studies  and  practical  results.
However, the development of the DT technology is cur-
rently  facing  many  challenges  [98].  The  following  are
the current challenges and research hotspots in the ap-
plication of DTs in various industries. 

6.1    Management of data

Data  management  is  a  foundational  element  of  DTs,
serving as the critical link between physical systems and
their  virtual  counterparts.  Three  key  aspects  enhance
the  quality  and  sophistication  of  DTs  from a  data  per-
spective: data perception, data communication, and data
analysis.

In  terms  of  data  perception,  advanced  sensor  tech-
nologies  are  essential  for  capturing  accurate  and  real-
time  data  from  physical  environments.  Tao  et  al.  [99]
emphasized the importance of integrating high-precision
sensors and deploying sensor networks to improve data
collection capabilities. They discussed strategies such as
using IoT devices and implementing redundant sensing
to  increase  reliability  and  reduce  data  gaps.  Similarly,
Fuller et al. [98] highlighted challenges in data acquisi-

tion, noting that existing sensing equipment often failed
to meet the stringent requirements of DT systems. This
shortfall can lead to inaccuracies in the virtual models,
affecting their ability to replicate physical behaviors ac-
curately. With respect to data communication, efficient
and  reliable  transmission  of  data  between  the  physical
system and the DT is important. Leng et al. [65] discussed
issues  such  as  excessive  latency  and  data  noise  that
could  hinder  real-time  synchronization.  They  proposed
solutions such as implementing high-speed communica-
tion networks such as fifth-generation mobile communi-
cation  (5G)  and  enhancing  data  transmission  protocols
to  reduce  latency  and  improve  data  integrity.  These
measures aim to achieve low-latency and high-accuracy
data  exchanges,  which  are  essential  for  responsive  DT
operations. In the realm of data analysis, Qi et al. [100]
explored  how integrating  big  data  technologies  and  AI
could  continuously  optimize  analytical  algorithms.  By
leveraging  machine  learning  and  predictive  analytics,
DTs  can  process  vast  amounts  of  data  to  identify  pat-
terns,  predict  future  states,  and  make  informed  deci-
sions.  This  integration  enhances  the  ability  of  DTs  to
adapt to changing conditions and improves overall system
performance. 

6.2    Model development

Model development is a critical but challenging com-
ponent in the development of DTs across various indus-
tries.  The  physical  systems  contain  a  large  number  of
devices,  people,  and assets,  where  the large amount  of
data and complex data dimensions pose great challenges
for twin modeling. For example, the modeling of equip-
ment in various industries requires solving the complex
problem of building full-scale multiphysics field coupled
models [101], just as the modeling of industrial equipment
suffers from a large amount of data, structural complex-
ity, and special operating conditions [102]. Throughout
the  DT  model  construction  process,  it  becomes  critical
to  combine  existing  expert  empirical  knowledge  with
data-driven  modeling  techniques  to  improve  model  ac-
curacy.  In  addition,  ensuring  the  symbiosis  of  virtual
and  physical  systems  in  DTs  is  imperative  so  that  the
model and physical systems are always synchronized in
complex,  changing,  and  unstable  operating  environ-
ments. Tao et al. [4] noted that most existing modeling
technologies  and  tools  focus  on  model  construction,
with  insufficient  options  for  subsequent  aspects.  There
is  a  lack  of  a  system  or  standard  of  technologies  and
tools to guide the use of technologies and tools in various
modeling  aspects.  The  technologies  and  tools  used  in
the same modeling aspect are not strongly related, and
the technologies or tools used in different modeling as-
pects are also fragmented and lack continuity.

Furthermore,  maintaining  synchronization  between
DTs  and  their  physical  counterparts  is  essential  for  ac-
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curate  real-time  representation.  Cimino  et  al.  [30]  ex-
amined  the  challenges  posed  by  complex  and  unstable
operational environments, which could lead to discrep-
ancies  between  the  physical  system  and  its  DT.  They
emphasized  the  need  for  continuous  data  updates  and
adaptive algorithms to ensure that DT remained an ac-
curate reflection of the physical system over time. 

6.3    Cybersecurity of DTs

DT will be the core part of future digitization in various
sectors  and  possibly  of  the  subsequently  developed  DT
systems, so information and physical security issues will
be a considerable challenge in the future.  Cyberattacks
against DTs could lead to a range of problems, such as
data leakage, system failure, and poor decision-making,
which in turn could lead to more serious societal problems
[103].  Information-physical  security  issues  can  arise
from both internal and external sources, such as external
malicious cyber-attacks and internal system operational
failures.  Establishing  accurate  security  monitoring
mechanisms,  building  strong  protection  mechanisms
against external malicious attacks, and developing effec-
tive fault tolerance mechanisms to ensure normal opera-
tion in the event of information physical security problems
are all issues that must be considered.

Sadeghi et al. [104] detailed how cyberattacks on IoT
systems could lead to societal repercussions, such as dis-
ruptions  in  critical  infrastructure  and  services.  They
stressed  the  necessity  of  implementing  robust  security
frameworks  that  included  threat  detection,  response
strategies,  and regular security assessments.  Masi  et  al.
[105]  introduced  a  specific  architectural  view,  called
the cyber security view, in system representation. Thus,
a cybersecurity DT is derived as part of the security design
practices for industrial  automation and control systems
used in critical  infrastructures.  This DT allows cyberat-
tacks to be simulated and countermeasures to be devel-
oped.  Mustofa  et  al.  [106]  discovered  that  distributed
denial-of-service  (DDoS)  attacks  had  a  greater  impact
on  the  IT  systems  of  DT-based  organizations  than  did
malware  attacks,  particularly  in  terms  of  attack  propa-
gation,  operational  performance,  reliability,  and  re-
silience.  These  findings  have  practical  applications,  al-
lowing DT-based organizations to pinpoint high-risk cyber
threats, assess and forecast IT performance during actual
cyber incidents, and formulate proactive measures to in-
crease network security. 

6.4    Establishment of standards for DTs

There  is  also  the  challenge  of  establishing  suitable,
accurate,  and  quantifiable  evaluation  systems  for  the
degree  of  twinning  for  current  and  future  DT  projects
across various industries to develop standards. It is nec-
essary to combine the characteristics  of  DTs with com-
prehensive  and  quantifiable  project  evaluation  systems

proposed by standardization organizations, industry as-
sociations, or other authoritative organizations. In addi-
tion to the above evaluation standards, in the future ap-
plication  of  DTs,  it  is  necessary  to  establish  universal
implementation standards, including hardware, commu-
nication  technologies  and  protocols,  AI  technologies,
and  universal  visualization  platforms,  in  conjunction
with the universal standards for DTs [107]. In addition
to the physical information security issues described in
Section 6.3,  DTs may have several  security operational
issues that necessitate the establishment of maintenance
standards to standardize operations and ensure hardware
and software security and data security.

Kritzinger  et  al.  [64]  emphasized  the  need  for  com-
prehensive  evaluation  criteria  developed  by  standard-
ization  bodies  and  industry  associations.  Such  criteria
should  include  performance  metrics,  data  quality  stan-
dards, and benchmarking tools to objectively assess the
effectiveness of DT systems. Schleich et al.  [108] high-
lighted  the  importance  of  establishing  universal  imple-
mentation standards related to hardware, communication
protocols,  AI  algorithms,  and  visualization  platforms.
Standardized hardware components and interfaces ensure
compatibility  and  ease  of  integration  across  different
systems.  Adopting  common  communication  protocols
facilitates  seamless  data  exchange,  while  standardizing
AI  algorithms  enhances  the  transparency  and  repro-
ducibility of analytical processes. 

7    Summary and conclusions

The  DT  technology  has  demonstrated  significant  po-
tential  in  transforming  various  industries  by  enabling
real-time simulation, analysis, and optimization of com-
plex systems. The integration of DTs with AI,  big data,
and BIM has opened new avenues for innovation and ef-
ficiency  across  sectors  such  as  aerospace,  manufactur-
ing, construction, and power transmission systems. This
review  highlights  the  diverse  applications  and  benefits
of DTs, as well as the challenges that need to be addressed
for  their  widespread  adoption.  Key  challenges  include
data  management,  model  development,  cybersecurity,
and the establishment of  standardized evaluation crite-
ria. Addressing these challenges is important for realizing
the full potential of the DT technology and ensuring its
successful  implementation in  Industry  4.0.  Future  R&D
efforts should focus on enhancing data quality, improving
model  accuracy,  ensuring  robust  cybersecurity  mea-
sures,  and  developing  universal  standards  to  facilitate
the broader application of DTs. As these challenges are
overcome,  the  DT  technology  is  poised  to  play  an  im-
portant role in the evolution of smart, resilient, and effi-
cient industrial systems.

This  paper  provides  a  comprehensive  review  of  the
application  of  DTs  in  traditional  industries  such  as
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aerospace,  manufacturing,  construction,  and  power
transmission.  However,  it  is  important  to  acknowledge
certain limitations. This paper focuses primarily on the
application  of  DTs  in  certain  traditional  industries  and
does  not  cover  emerging  fields  such  as  healthcare  and
new  energy.  Additionally,  owing  to  the  rapid  pace  of
technological  development,  the  paper  may  not  capture
the latest advancements in some areas. As DTs continue
to  evolve,  future  research  should  consider  expanding
the  scope  to  include  more  industries  and  newer
innovations. 
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