7326

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 29, NO. 10, OCTOBER 2025

e ~IEEE

IEEE {2
“EMBS ComSoc Sha D

Processing
18£% comm o Society

Fast-DDPM: Fast Denoising Diffusion
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Image-to-Image Generation
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Abstract—Denoising diffusion probabilistic models
(DDPMs) have achieved unprecedented success in
computer vision. However, they remain underutilized in
medical imaging, a field crucial for disease diagnosis
and treatment planning. This is primarily due to the high
computational cost associated with the use of large number
of time steps (e.g., 1,000) in diffusion processes. Training
a diffusion model on medical images typically takes
days to weeks, while sampling each image volume takes
minutes to hours. To address this challenge, we introduce
Fast-DDPM, a simple yet effective approach capable of
simultaneously improving training speed, sampling speed,
and generation quality. Unlike DDPM, which trains the
image denoiser across 1,000 time steps, Fast-DDPM
trains and samples using only 10 time steps. The key
to our method lies in aligning the training and sampling
procedures to optimize time-step utilization. Specifically,
we introduced two efficient noise schedulers with 10 time
steps: one with uniform time step sampling and another
with non-uniform sampling. We evaluated Fast-DDPM
across three medical image-to-image generation tasks:
multi-image super-resolution, image denoising, and image-
to-image translation. Fast-DDPM outperformed DDPM and
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current state-of-the-art methods based on convolutional
networks and generative adversarial networks in all tasks.
Additionally, Fast-DDPM reduced the training time to 0.2 x
and the sampling time to 0.01 x compared to DDPM.

Index Terms—Conditional diffusion models,
learning, fast-DDPM, image-to-image generation.

deep

|. INTRODUCTION

IFFUSION models [10], [19], [47], [49] have become

powerful tools for high-quality image generation [6].
The forward diffusion process incrementally adds noise to a
high-quality image until it becomes pure Gaussian noise. An
image denoiser is then trained to learn the reverse process,
progressively removing noise from random Gaussian noise until
it reconstructs a noise-free image. This enables the generation
of new high-quality images that match the distribution of the
training dataset. Beyond computer vision, diffusion models are
increasingly applied to medical imaging [12], [16], [37], [52]
for improved disease diagnosis, treatment planning, and patient
monitoring.

Training and sampling diffusion models are computationally
expensive and time-consuming due to the large number of dis-
crete time steps used to approximate the continuous diffusion
process, as well as the need for large datasets to model complex
image distributions. For 2D diffusion models, training can take
days on a single GPU, limiting experimentation with different
model architectures and hyperparameters. Sampling a diffu-
sion model can take several minutes per 2D image, presenting
challenges for real-time usability when applying 2D diffusion
models to 3D image volumes consisting of hundreds of 2D slices,
where the process may take several hours per volume.

Current research mainly focuses on accelerating the sam-
pling process, using either training-free or training-based meth-
ods [60]. Training-free methods utilize efficient numerical
solvers for stochastic or ordinary differential equations to reduce
the number of time steps required for sampling. This approach
can decrease the number of sampling time steps from 1,000
to 50-100, without compromising the quality of the generated
images. Alternatively, training-based methods, such as progres-
sive knowledge distillation [32], [43], can further reduce the
sampling steps to as few as 10. However, this approach requires
the training of additional student models, which considerably
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Denoising Diffusion Probabilistic Model (DDPM)
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Fig. 1. Fast-DDPM uses significantly fewer time steps than DDPM. For illustration purposes, we used only 3 time steps for Fast-DDPM in this
example.

increases the overall training cost and may not be practical for
medical image analysis.

In this paper, we propose Fast-DDPM, a model designed
to reduce both training and sampling times by optimizing
time-step utilization. We observed that the majority of time
steps involved in training are not utilized by faster diffusion
samplers during sampling. For instance, a Denoising Diffusion
Probabilistic Model (DDPM) trained with 1,000 time steps
is often sampled by the Denoising Diffusion Implicit Model
(DDIM) using only 100 time steps. This practice is resource-
inefficient, as the image denoiser is trained on 900 time points
that are ultimately skipped during sampling. To address this
inefficiency in training, we propose training and sampling the
DDPM model at the same 10 time steps, as illustrated in
Fig. I.

We evaluated Fast-DDPM on three medical image-to-image
tasks, including multi-image super-resolution for prostate MRI,
denoising low-dose CT scans, and image-to-image translation
for brain MRI. Fast-DDPM achieved state-of-the-art perfor-
mance across all three tasks. Notably, Fast-DDPM is approxi-
mately 100 times faster than the DDPM model during sampling
and about 5 times faster during training. We summarize the major
contributions of this paper as the following:

¢ Introduction of Fast-DDPM: A simple yet effective ap-
proach that simultaneously improves training speed, sam-
pling speed, and generation quality.

® Novel Training Strategy: Optimizes time-step utilization
by aligning the training and sampling procedures, signifi-
cantly enhancing both speed and accuracy.

e Efficient Noise Schedulers: Designed two noise sched-
ulers with 5-10 time steps—one utilizing uniform sam-
pling and the other non-uniform sampling—tailored for
specific tasks to enhance performance.

[I. RELATED WORK

A. Fast Sampling of Diffusion Models

Current methods to accelerate the sampling of diffusion mod-
els can be broadly classified into two categories: training-free
and training-based. Training-free methods primarily focus on
developing efficient diffusion solvers to solve reverse stochastic
differential equations (SDEs) or their equivalent ordinary differ-
ential equations (ODEs). For instance, the Denoising Diffusion
Implicit Models (DDIM) approach [47] models the reverse
diffusion process using an ODE and significantly reduces the
number of required sampling steps to 50—100 without impacting
the quality of the generated samples. Building on this, Fast-
DPM [21] establishes a bijective mapping between continuous
diffusion steps and continuous noise levels and uses this mapping
to construct an approximation of the reverse process between
DDPM and DDIM with fewer steps. DPM-Solver [26] intro-
duces a high-order solver for diffusion ODEs based on an exact
solution formulation that simplifies to an exponentially weighted
integral, achieving high-quality sample generation with just
10-50 sampling steps. The Differentiable Diffusion Sampler
Search [54] sampler uses the reparametrization trick and gra-
dient rematerialization to optimize over a parametric family of
fast samplers for diffusion models by differentiating through
sample quality scores. In addition to these solver-based methods,
quantization emerges as another promising training-free method
for improved diffusion model sampling. PTQ4DM [45] intro-
duces Post-Training Quantization (PTQ) with anovel calibration
method named NDTC, aimed at reducing the computational cost
of noise estimation. Concurrently, Q-Diffusion [23] proposes
timestep-aware calibration alongside split shortcut quantization,
further refining the quantization process for efficiency gains.
DeepCache [30] avoids computing deep features repeatedly in
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the network by caching them, thereby accelerating the sampling
process.

A common training-based approach utilizes knowledge dis-
tillation, wherein a teacher diffusion model is first trained with a
large number of time steps, followed by the sequential training
of multiple student models with progressively fewer time steps,
mirroring the teacher model’s behavior [32], [43]. This method-
ology reduces inference time steps from 1,000 to as few as 16
while maintaining sampling quality. Recently, adversarial dif-
fusion distillation [44] has enabled real-time, single-step image
synthesis by combining score distillation and adversarial loss,
achieving state-of-the-art quality with just 1-4 sampling steps.
Furthermore, the rectified flow technique achieves high-quality
sampling in a single time step by straightening the trajectory
of the reverse-time ODE [25], and consistency models [48]
produce superior sampling quality within a single step by di-
rectly mapping noise to an image, either through distillation
from pre-trained diffusion models or as standalone generative
models.

B. Diffusion Models in Medical Imaging

Diffusion models have been applied to various medical imag-
ing tasks, including segmentation [12], [17], [57], anomaly
detection [14], [55], [58], denoising [5], [8], [29], [59], recon-
struction [2], [9], [24], registration [16], super-resolution [5],
[29], [52], [56], and image-to-image translation [18], [28], [37].
Among these, the DDPM model is the most widely used in
medical imaging due to its simplicity. Diffusion models can be
categorized as 2D, 3D, or 4D based on input image dimensions.
Currently, 2D models are the predominant choice in medical
imaging due to their ease of implementation and lower memory
requirements. However, when implementing diffusion models
for 3D and 4D applications, training can take significantly
longer, lasting anywhere from weeks to months. Improving the
training and sampling processes is crucial for a broader adoption
of diffusion models in medical imaging.

C. Unconditional and Conditional Diffusion Models

Diffusion models can be broadly categorized into uncondi-
tional and conditional models. Unconditional diffusion models
generate data samples based solely on the learned data distri-
bution, without incorporating external information or condi-
tions [10], [36], [47]. In contrast, conditional diffusion models
generate data samples guided by additional input conditions,
such as text, class labels, or images, enabling controlled and
contextually relevant outputs instead of random samples. Re-
cent advancements in text-guided diffusion models, such as
Glide [35], DALL-E 2 [38], and Imagen [41], have demon-
strated exceptional capabilities in generating high-quality, con-
textually relevant images based on textual descriptions. These
models leverage semantic understanding to bridge the gap be-
tween language and visual representation, enabling applications
in creative design, personalized content creation, and adver-
tising. Image-guided diffusion models, including SR3 [42],
Palette [40], and Srdiff [22], specialize in transforming or en-
hancing existing images through super-resolution, inpainting,
and style transfer. Their ability to generate realistic and detailed

outputs makes them valuable for tasks requiring dense image-
to-image predictions. The latent diffusion model [39] combines
the strengths of both text and image guidance by operating in a
lower-dimensional latent space. This approach improves com-
putational efficiency while maintaining high generation quality,
making it well-suited for resource-intensive tasks and expanding
practical applications in high-quality image synthesis.

[ll. METHODS
A. Background

a) Diffusion Models: Starting from a noise-free image x,
the forward diffusion process is a continuously-time stochastic
process from time ¢ = 0 to ¢ = 1, incrementally introducing
noise to the image x( until it becomes pure Gaussian noise at
t = 1. The distributions of the intermediate noisy images x(t)
are given by [19]:

g(x(t)|zo) = N(a(t)zo, o* (1)) M

where 2(0) = ¢, «(t) and o (¢) are differentiable functions, and
the signal-to-noise ratio function SNR(t) := SEE? decreases
monotonically from +oo at ¢ = 0 to 0 at £ = 1. An equivalent
formulation of z(t) is given by the following stochastic differ-

ential equation (SDE):
du(t) = F(t)a(t)dt + g(t)dW (1) @)

o'(t)

where f(1) = 20 (1) = \/(02(15))' — 220 52(¢), and W (1)
is a standard Wiener process from ¢ = 0 to £ = 1. It has been
shown that the reverse process of x(t) is given by the following
reverse-time SDE [49]:

da(t) = [f(t) = g°(t) V) log p(z(t))dt + g(t)dW (t)  (3)

where x(1) = N(0,1), dW(t) the standard Wiener process
backwards from ¢t = 1 to ¢t = 0, and p(z(t)) denote the prob-
ability density of z(t). If the score function V) log p(z(t)) is
known for every ¢ € [0, 1], one can solve the reverse-time SDE
to sample new images.

We can train a model sg(x(t), t) to estimate the score function
using the following loss function:

At) ||se(x(t),t
t€[0,1],20~Paaa,x () ~q(x(t)|z0) @) llso(a(®). 1)

~ Voo log p(a(t)]ao) |5 @

where p(z(t)|zo) denote the density function of x(t) generated
in (1) and A(¢) is a scalar-valued weight function. The training
of sg(x(t),t) is straightforward since q(xz(t)|zo) is a Gaussian
distribution and its score function has a closed form:

z(t) —aft)zg €

20 o O

where € is a random noise sample from N (0, T) to generate x(¢)
from (. Equivalently, we can use a U-Net denoiser ep(x(t), t)
to estimate the random noise € (i.e., the score function scaled
by —o(t)). Following [10], in this paper, we trained the U-Net
denoiser using a simple loss function:

— t - t t 2 6
i€[17“'7T]7$0~pda(a7€~N(0,H)[6 eo(a( ):LO + O—( )67 )] ( )

Vi log p((t)|zo) = —
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Fig. 2. Impact of the number of time steps, 7', on the noise scheduler.

where 7' is the total number of time steps and ¢t = %
Linear-f Noise Scheduler Any noise scheduler, defined by

a(t) and o(t)), should ensure that SNR(1) = 328; ~ 0 so
that x(1) is pure Gaussian noise. The variance-preserving
noise schedulers [19] meet this requirement, where a.(?) is a
monotonically decreasing function, «(0) =1, a(1) =0, and
a?(t) + o2(t) = 1 for all t. This formulation guarantees that
the variance of any latent image x(¢) is bounded. The most
popular variance-persevering noise scheduler is the linear-g3
noise scheduler used in the DDPM model [10]. In this approach,
the forward diffusion process was defined as a Markovian pro-
cess at discrete time steps ¢ € {1,2,...,T} using the following
transition kernel:

(e (5)
ARG o

7> B(t) = 0.0001 + (0.02 — 0.0001)¢, and the cor-
responding « noise scheduler «(t) at discrete time steps is given

Cpne)

j=1

To establish feasible noise schedulers using (8), the total number
of time steps T should be carefully chosen. Fig. 2 plots a?(t)
for different choices of 7": 100, 500, 1000, 2000, and 10000. As
we can see, the total number of time steps cannot be too small
(e.g., T'=100), as this results in the endpoint of the forward
diffusion process x(1) not being purely Gaussian. Conversely,
if the total number of time steps is too large (e.g., 7' = 10000),
z(t) becomes pure Gaussian noise at an early time point (e.g.,
t = 0.2). This makes the training of €p(z(t),t) at time steps
t > 0.2 unnecessary since there is no change in the noise level
of z(t) beyond this point. The plots in Fig. 2 suggest that a
good choice of 7' lies between 500 and 2000. This explains
why a linear-/3 noise scheduler with 7" = 1000 is currently the
most popular choice [10]. In other words, we cannot reduce the
number of time steps to 10 using (8). In this study, we first define

1.0 —— T=1000

0.8

—~ 0.6

a(t

0.4

0.2

0.0

(a) The Uniform Sampling

1.0 —— T=1000

0.8

0.6

a(t)

0.4

0.2

0.0

(b) The Non-Uniform Sampling

Fig. 3. Proposed « noise schedulers with uniform and non-uniform
sampling between [0,1].

the continuous function o (¢) and then sample it at discrete time
points.

B. FAST DENOISING DIFFUSION PROBABILISTIC MODEL
(FAST-DDPM)

We have developed the Fast-DDPM model to accelerate the
training and sampling of DDPM by utilizing task-specific noise
schedulers with only 5-10 time steps.

Task-Specific o« Noise Scheduler Previous studies indicate
that images of different sizes require different noise schedulers
for optimal results [4], [11]. Inspired by this, we propose two
a noise schedulers for various medical image-to-image tasks.
We first define a smooth, monotonically decreasing function
a?(t) fromt = 0 to t = 1, with boundary conditions a?(0) = 1
and (1) = 0. In this paper, we use a?(t) as defined by the
linear-( noise scheduler with 7" = 1,000 in (8) (see the green
curve in Fig. 2). Unlike the linear-8 noise scheduler used in
the DDPM model, which uniformly samples 1,000 time points
between [0,1], our first proposed noise scheduler uniformly
samples 10 time steps between [0,1] (Fig. 3(a)). The second
proposed noise scheduler non-uniformly samples 10 time points
between [0,1](Fig. 3(b)). To optimize efficiency, we designate
time step 699 as a boundary, sampling 60% of the total time steps
uniformly from ¢ > 699 and the remaining 40% from ¢ < 699.
While we do not explicitly define a closed-form formula for the
sampling rate as a function of noise level, this heuristic approach
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Algorithm 1: Training Fast-DDPM.

Algorithm 2: Sampling Fast-DDPM.

1 repeat

2 | ie{l,..,T}

3 (:1705 C) "~ Djoint(zo,c)

4 e~ N(0,T)

s | t=+%

6 | Gradient descent: Vyl|le — eg(a(t)zg + o (t)e, c, t)||?
7 until converged,

follows prior observations [4] that later time steps contribute
more to perceptual quality. Our formulation of noise schedulers
satisfies all the desirable properties outlined earlier. Due to the
reduced training and sampling time, users have the opportunity
to try both noise schedulers for each image-to-image task to
determine which one fits their task better.

We provide a rationale for our design. In a related context of
diffeomorphic image registration, 10 time points are sufficient
to solve an ODE for accurately estimating a complex time-
dependent image flow between two images [34], [46]. Since we
can sample at only 10 discrete time points during inference, we
hypothesize that we only need to train the denoiser €y at those
10 time steps, not necessarily at all the 1,000 time points.

Training and Sampling of Fast-DDPM 1In this paper, Fast-
DDPM is applied to conditional image-to-image generation. For
each image x sampled from pyu, (o), we assume there are one
or more associated condition images, denoted by c. Here, ¢ may
represent either a single image or multiple images, depending
on the specific application. We denote the joint distribution of
xo and ¢ as pjoine(20, ¢) and the marginal distribution of the
conditional image as p.(c). We will train a conditional image
denoiser ey (z(t), ¢, t) that takes the condition ¢ as an additional
input to guide the estimation of the score function at each time
t. We used the following simple loss function that assigns equal
weights to different times ¢:

E |le - eg(a(t)zo + o(t)e, ¢, 1) ©)

i,(xo,c),€

where ' = 10,7 € {1,2,...,T},t = &, (w0, ¢) ~ Pjoint(T0, C),
and € ~ N (0,1).

The sampling process starts by randomly sampling a Gaussian
noise x(1) ~AN(0,I) and a condition image ¢ ~ p.(c). The
DDIM sampler [47] was used to solve the reverse-time ODE
to obtain the noise-free output x( that corresponds to c. We
summarize the training and sampling processes of Fast-DDPM
in Algorithm 1 and Algorithm 2, respectively.

In conditional diffusion-based models, noisy ground truth is
used only during training to help the model learn the data distri-
bution across different noise levels. However, during inference,
the model generates the output by denoising a random Gaussian
noise sample, while being guided at each step by a condition
image that supplies structural information. Thus, the use of noisy
ground truth in training does not impact real-world applicability.

1 z(1) ~ N(0,1)

2 ¢~ p(c)
3 for i =T, ,1 do
4 t= %
T

t—4)=
) xi(t—g)) 1 a(t—x%)

a2 +o(t—7)—=Z50(t)]e (z(t), ¢, 1))
¢ end

7 return z(0)

[V. EXPERIMENTS

We evaluated our Fast-DDPM model on three medical image-
to-image tasks: multi-image super-resolution, image denoising,
and image-to-image translation.

A. Datasets

Prostate MRI Dataset for Multi-Image Super-Resolution: We
used T2-weighted (T2w) prostate MRI scans from the publicly
available Prostate-MRI-US-Biopsy dataset [50]. The in-plane
resolution of each MRI is 0.547 mm x 0.547 mm, witha 1.5 mm
distance between adjacent slices. An image triplet, comprising
three consecutive MRI images, serves as a single training or
testing example. In this setup, the first and third slices serve as
inputs to the model, while the middle slice is considered as the
ground truth. The goal of this task is to predict the missing
information in 3D between any two adjacent slices, thereby
enhancing through-plane image resolution. During training,
triplets of consecutive MRI slices are extracted, with the first and
third slices serving as inputs to the model and the middle slice as
the ground truth. A forward diffusion process adds noise to the
middle slice, and the denoiser is trained to reconstruct it from the
noisy version using the first and third slices as conditions. We
used a total of 6979 image triplets from 120 MRI volumes for
training and 580 image triplets from 10 MRI volumes for testing.
All MRI slices were resized to 256 x 256 and normalized to the
range [—1, 1].

Low-Dose and Full-Dose Lung CT Dataset for Image Denois-
ing We used paired low-dose and normal-dose chest CT image
volumes from the publicly available LDCT-and-Projection-data
dataset [31]. The normal-dose CT scans were acquired at routine
dose levels, while the low-dose CT scans were reconstructed
using simulated lower dose levels, specifically at 10% of the
routine dose. In this task, the goal is to generate a normal-dose
CT scan fromits corresponding low-dose scan. The low-dose CT
serves as the condition, and the normal-dose scan is used as the
ground truth. During training, a noisy version of the ground truth
is created via the forward diffusion process and provided to the
denoiser as input, with the corresponding low-dose scan serving
as the condition. We randomly selected 38 patients for training
and the 10 patients for evaluation, comprising 13,211 and 3,501
2D low-dose and normal-dose CT image pairs, respectively. All
images were resized to 256 x 256 and normalized to [—1, 1].
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BraTS Brain MRI Dataset for Image-to-Image Translation
We used registered T1-weighted (T1w) and T2-weighted (T2w)
MR images from the publicly available BraTS 2018 dataset [33].
All images were resampled to a resolution of 1 mm® and
skull-stripped. In this task, the goal is to convert T1w MRI into
T2w MRI, where the T1w MRI serves as the condition and the
T2w scan as the ground truth. During training, the denoiser is
trained using the noisy ground truth as input, conditioned on
the corresponding T1w MRI. The dataset, obtained from [20],
comprised 5760 pairs of T1w and T2w MR images for training
and 768 pairs for testing. All MRI slices were padded from 224
x 224 to 256 x 256 and normalized to [—1, 1].

B. EVALUATION METRICS

In line with prior work in medical image-to-image gener-
ation [1], [20], [51], we used the peak signal-to-noise ratio
(PSNR) and the structural similarity index measure (SSIM) to
evaluate the similarity between the generated images and the
ground truth images across all three tasks. PSNR measures the
ratio between the maximum possible value (power) of the ground
truth image and the power of distorting noise:

MAX;
PSNR =20 -log;, (\/W)
where M A X ;denotes the maximum possible pixel value of the
image and MSE denotes the mean squared error. SSIM [53]
is a widely used metric that measures the structural similarity
between two images and aligns better with human perception of
image quality. SSIM is defined as:

(10)

20,4 + Co

. 2pg plz + C1
SSIM(w,2) = o2x + o2& + ¢

TPt

(11)

where ., 17 and o, 0 are the means and standard deviations
of image x and image Z, respectively; o,z denotes the covariance
of z and £. The value of ¢; is (k;L)? and ¢y = (koL)?, where
k1 is 0.01, k5 is 0.03, and L denotes the largest pixel value of
the image .

C. TRAINING DETAILS

The hyperparameter settings and the U-Net architectures of
Fast-DDPM follow those of DDIM [47]. Training was conducted
using the Adam optimizer with a learning rate of 2 x 107%. A
linear 3 noise scheduler with T = 1000, 5; = 1074, and 7 =
0.02, was used to generate the uniform and non-uniform noise
schedulers presented in Fig. 3. For the image super-resolution
task, we used the noise scheduler with non-uniform sampling,
and for the denoising and translation tasks, we used the noise
scheduler with uniform sampling. We used a training batch size
of 16 and trained the Fast-DDPM model for 400,000 iterations
and the DDPM model for 2 million iterations. All experiments
were conducted on a computing node with 4 NVIDIA A100
GPUs, each with 80 GB memory. We used Python 3.10.6 and
PyTorch 1.12.1 for all experiments .

V. RESULTS

For each image-to-image task, we compare Fast-DDPM with
a GAN-based method, a CNN-based method, and DDPM [10]

TABLE |
COMPARISON OF THE PERFORMANCE AND INFERENCE TIME PER IMAGE
VOLUME (AN AVERAGE OF 58 SLICES) FOR VARIOUS MULTI-IMAGE
SUPER-RESOLUTION METHODS

Method PSNR SSIM Training time Inference Time
miSRCNN [7] 26.5 0.87 1h 0.01 s
miSRGAN [51] 26.8 0.88 40 h 0.04 s

DDPM [10] 25.3 0.83 136 h 37 m

DDIM [47] 26.5 0.88 26 h 23s

DPM-Solver++ [27]  26.5 0.87 26 h 23s

Fast-DDPM 27.1 0.89 26 h 23s
TABLE Il

COMPARISON OF THE PERFORMANCE AND INFERENCE TIME PER IMAGE
VOLUME (AN AVERAGE OF 360 SLICES) FOR VARIOUS CT IMAGE
DENOISING METHODS

Method PSNR SSIM Training time Inference Time
REDCNN (3] 36.4 0.91 3h 0.5s
DU-GAN [13] 36.3 0.90 20 h 38s

DDPM [10] 354 0.87 141 h 214 m
DDIM [47] 37.4 0.91 26 h 12.5's
DPM-Solver++ [27]  37.0 0.90 26 h 12.5s
Fast-DDPM 37.5 0.92 26 h 12.5s

model with ancestral sampling, and two fast sampling methods,
DDIM [47] and DPM-Solver++ [27]. Additionally, to facilitate
a more granular analysis, we conduct ablation studies to investi-
gate the impact of the number of time steps and the type of noise
scheduler used across all three tasks.

A. Multi-lImage Super-Resolution

Results in Table I show that Fast-DDPM outperformed miSR-
CNN [7] and miSRGAN [51], as well as all three diffusion-based
methods: DDPM, DDIM, and DPM-Solver++-. Notably, Fast-
DDPM significantly improved upon DDPM, increasing PSNR
from 25.3 to 27.1 and SSIM from 0.83 to 0.89, while reducing
training time from 136 hours to 26 hours and per-volume in-
ference time from 3.7 minutes to 2.3 seconds. Although DPM-
Solver++ and DDIM offer similar computational efficiency to
Fast-DDPM, their performance in terms of PSNR and SSIM is
inferior.

Fig. 4 shows the results of various image super-resolution
methods on a representative subject. The models received the
previous and next slices as inputs, with the center slice serving
as the ground truth. It is evident that the miSRCNN and miS-
RGAN methods failed to accurately reconstruct the shadowed
area highlighted by the arrows. In contrast, Fast-DDPM most
effectively reconstructed the information missing between the
previous and next 2D slices. Interestingly, although DDPM
is qualitatively inferior to miSRCNN and miSRGAN, it vi-
sually outperformed both methods. While DDIM and DPM-
Solver++ also demonstrated improvements over DDPM, Fast-
DDPM consistently exhibited superior visual and quantitative
performance.

B. Image Denoising

The results presented in Table II indicate that Fast-DDPM
significantly outperformed DDPM, as well as two other promi-
nent CT denoising methods: REDCNN [3] and DU-GAN [13].
In terms of computational efficiency, Fast-DDPM reduced
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TABLE Il
COMPARISON OF THE PERFORMANCE AND AVERAGED INFERENCE TIME PER
BATCH (360 SLICES) FOR VARIOUS IMAGE-TO-IMAGE TRANSLATION
METHODS
Method PSNR SSIM  Training time Inference Time
Pix2Pix [15] 25.6 0.85 6 h 33s
RegGAN [20] 26.0 0.86 9h 3.1s
DDPM [10] 26.3 0.89 135 h 222 m
DDIM [47] 26.2 0.88 27 h 13.2 s
DPM-Solver++ [27] 26.2 0.84 27 h 13.2's
Fast-DDPM 26.3 0.89 27 h 13.2's
MISRCNN MiSRGAN )
Tilw MRI T2w MRI Pix2Pix RegGAN
DDIM DPM Solver++ Fast-DDPM .
Fig. 4. Qualitative results of the MR multi-image super-resolution task. DDPM poM DPM Solvert+ Fast-DDPM

RED-CNN

6

Normal-dose CT

¢

DDIM

Low-dose CT

DDPM

DPM Solver++

Fast-DDPM

Fig. 5. Qualitative results of the CT image denoising task.

inference time by approximately 100-fold and training time by
5-fold compared to DDPM. Furthermore, compared to prior
state-of-the-art fast-sampling methods, DPM-Solver++ and
DDIM, Fast-DDPM achieved higher PSNR and SSIM scores,
setting a new benchmark.

Fig. 5 shows the low-dose, normal-dose, and predicted
normal-dose CT images generated by various models for a
representative subject. The zoomed-in region, highlighted by red
rectangular boxes, demonstrates the ability of our Fast-DDPM
model to preserve fine structural details in the denoised images
compared to other methods. Notably, the lung fissure appears
clearest and sharpest in the image produced by Fast-DDPM,

Fig. 6. Qualitative results of the T1w MRI to T2w MRI translation task.

while other methods (except for DDIM and DPM-Solver++-)
exhibit noticeable blurring and loss of detail in this region. A
pulmonary fissure is the boundary between lobes of the lung.
Preserving fissure details enables automated segmentation of the
lung lobes, facilitating more detailed analysis of lung diseases
at the lobar level.

C. Image-to-Image Translation

As shown in Table III, Fast-DDPM outperformed all other
leading methods on the image-to-image translation task,
including Pix2Pix [15], RegGAN [20], DDPM, DDIM, and
DPM-Solver++. While DDPM achieved comparable perfor-
mance, it required a total training time of 135 hours and
22.2 minutes per batch for sampling. In contrast, Fast-DDPM
significantly reduced the training time to 27 hours and the
sampling time to 13.2 seconds per batch. These improvements
highlight the practical advantages of Fast-DDPM in real-world
applications.

Fig. 6 shows the T2w MR images generated by various
image-to-image translation methods for a representative subject.
Notably, the predictions from Pix2Pix and RegGAN appear
blurry and fail to reconstruct the intricate brain structures high-
lighted by the arrows. DDIM and DPM-Solver++- also produce
blurry predictions and struggle to recover fine details effectively.
Although DDPM restores some structural details, the recon-
structed T2w MRI exhibits a relatively low signal-to-noise ratio.
In contrast, Fast-DDPM produces high-quality translations with
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TABLE IV
THE IMPACT OF THE NUMBER OF TIME STEPS ON DIFFERENT
IMAGE-TO-IMAGE TASKS

TABLE V
THE IMPACT OF UNIFORM AND NON-UNIFORM NOISE SCHEDULERS ON
DIFFERENT IMAGE-TO-IMAGE TASKS

Number of | Super-Resolution Denoising Translation Noise Super-Resolution Denoising Translation
Time Steps | PSNR SSIM PSNR SSIM | PSNR SSIM Scheduler PSNR SSIM PSNR SSIM | PSNR SSIM
3 24.8 0.79 32.7 0.83 253 0.86 Uniform 26.6 0.88 37.5 0.92 26.3 0.89
5 26.9 0.88 37.4 0.92 25.8 0.91 Non-uniform 27.1 0.89 37.3 0.91 26.1 0.88
7 27.0 0.88 37.4 0.92 259 0.91
10 27.1 0.89 37.5 0.92 26.3 0.91
20 26.7 0.88 37.4 0.91 26.5 0.91
50 26.2 0.87 36.9 0.91 26.5 0.92 . cd . . . .
100 258 0.86 36.5 0.90 26.6 0.92 image denplsmg ar?d image-to-image translation .tasks, while
200 25.6 0.85 36.0 0.89 26.6 0.91 the non-uniform noise scheduler performed better in the super-
500 25.4 0.84 35.7 0.88 26.4 0.91 resolution task. These findings highlight the importance of se-
1000 253 0.83 354 0.87 263 0.89 lecting an appropriate noise scheduler tailored to the specific

the sharpest structural fidelity and minimal noise, demonstrating
its superior performance.

D. Ablation Study

Impact of the Number of Time Steps We investigated the
impact of the number of time steps on the performance of
Fast-DDPM. Specifically, we conducted experiments using 3, 5,
7, 10, 20, 50, 100, 200, 500 and 1000 time steps across all three
datasets. A uniform noise scheduler (Fig. 3(a)) was used for De-
noising and Image-to-Image Translation, while a non-uniform
noise scheduler (Fig. 3(b)) was used for Super-Resolution.

Table IV shows that for Super-Resolution and Denoising,
model performance improves with the number of time steps up
to 10, but declines beyond that. Both tasks involve progressively
refining a random noise image with structural guidance from a
condition image containing strong anatomical priors (e.g., in
low-dose CT denoising, the low-dose CT image serves as the
condition), meaning that excessive diffusion steps may intro-
duce unnecessary noise or blurring, reducing perceptual quality.
Since these tasks primarily enhance image fidelity rather than
synthesizing entirely new structures, fewer steps enable efficient
denoising while preserving fine details.

In contrast, Image-to-Image Translation follows a different
trend, achieving peak performance at 100 time steps before
declining. Unlike Super-Resolution and Denoising, this task in-
volves generating new image appearances, often requiring more
extensive transformations between the condition image and the
final output. A higher number of diffusion steps likely allows the
model to refine these transformations more effectively, leading
to improved synthesis quality. However, beyond 100 steps, ad-
ditional diffusion may introduce unnecessary noise refinements
or reduce structural consistency, leading to a performance drop.

These results highlight that the optimal number of time steps
depends on the nature of the task. Tasks focused on enhanc-
ing image fidelity (Super-Resolution, Denoising) benefit from
fewer steps, whereas tasks requiring structural transformation
(Image-to-Image Translation) require more steps to fully recon-
struct new details. Future research could explore adaptive strate-
gies to dynamically adjust the number of time steps based on
task-specific requirements.

Impact of Noise Scheduler Table V illustrates the impact
of the two proposed noise schedulers on the performance of
Fast-DDPM. The uniform noise scheduler is a better choice for

image-to-image task. This adaptability enhances Fast-DDPM’s
performance across various medical image processing applica-
tions, demonstrating its versatility and effectiveness in handling
diverse imaging challenges.

VI. DISCUSSION
A. Alignment With Clinical Standards

In the medical field, image generation and manipulation must
adhere to clinical standards and protocols to ensure practical
relevance and patient safety. Fast-DDPM addresses this critical
need by focusing on clinically relevant tasks such as multi-image
super-resolution, image denoising, and image-to-image trans-
lation, which directly impact diagnostic accuracy and stream-
line clinical workflows, thereby enhancing patient care. Unlike
general-purpose image generators that prioritize visual diversity
and creativity, Fast-DDPM is designed to ensure alignment
with ground truth data, evaluated using clinically relevant met-
rics such as peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM). This alignment guarantees
that the generated outputs preserve the intensity and structural
fidelity essential for clinical decision-making. Furthermore, our
approach significantly accelerates both the training and infer-
ence of diffusion models, paving the way for real-time clinical
applications.

B. Speed-Accuracy Trade-Off

In unconditional image generation, the model must generate
realistic samples entirely from noise, requiring it to learn the
full data distribution across all possible variations. This typically
necessitates a large number of time steps to incrementally refine
details. Reducing the number of steps can disrupt this process,
leading to a mismatch between the learned and true distribution
and ultimately degrading sample quality. As a result, there is
often a trade-off between speed and generation quality.

However, in conditional image generation, the model is
guided by an external signal (e.g., a low-resolution version of
the target image), significantly reducing the complexity of the
learning task. Instead of synthesizing content from scratch, the
model learns to refine existing structures. Consequently, using
fewer, well-optimized time steps can improve performance by
allowing the model to focus its capacity on relevant noise levels
rather than being diluted across unnecessary diffusion steps.
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We hypothesize that training a diffusion model across a wide
range of noise levels without prioritization may introduce exces-
sive redundancy, making it harder to learn distinctive features
at different noise levels. Instead, a more selective, step-aware
training approach—where priority is given to the noise levels
that directly influence the sampling path—can foster more ef-
fective representation learning and ultimately lead to superior
sample quality.

C. Diffusion Models Vs. GANs

While generative adversarial networks (GANs) have proven
effective in various image processing tasks, diffusion models—
particularly Fast-DDPM—offer several distinct advantages over
GAN:Ss. First, Fast-DDPM consistently generates higher-quality
samples than GANSs, avoiding artifacts that can obscure critical
details in medical images. It achieves this without the extended
training and sampling times typical of other diffusion models.
Second, Fast-DDPM ensures superior training stability, effec-
tively avoiding the mode collapse issue often encountered in
GANSs due to their adversarial framework. Additionally, Fast-
DDPM is more robust to hyperparameter tuning, as its perfor-
mance does not depend on balancing generator and discriminator
losses—a common challenge with GANs. This efficiency, com-
bined with adaptability to applications such as text and audio
synthesis, positions Fast-DDPM as a highly promising solution
for a wide range of use cases.

D. Limitations and Future Work

This study has a few limitations that could be addressed in
future work. First, the noise schedulers used were manually
selected and may not be optimal for the specific tasks. Future
work will focus on developing adaptive noise schedulers that
can be automatically learned and dynamically adjusted based
on the input data and the specific task requirements. Second,
this paper focuses on 2D diffusion models, which may not
yield optimal performance compared to applying 3D diffusion
models. However, model development in 3D requires significant
computational resources, which is beyond our current capacity.
Nevertheless, the concept of Fast-DDPM can be directly applied
to 3D. Future work will focus on generalizing Fast-DDPM to
3D by running the diffusion models in a smaller 3D latent space
using autoencoders.

E. Significance and Implications

The advancements introduced by Fast-DDPM have signifi-
cant implications for the field of medical imaging. Our results
demonstrate that Fast-DDPM achieves state-of-the-art perfor-
mance in enhancing medical images across tasks such as super-
resolution, denoising, and image-to-image translation. These
capabilities directly impact clinical workflows by improving im-
age quality, which can enhance diagnostic accuracy, reduce the
need for repeat imaging, and support better-informed treatment
planning. At the same time, Fast-DDPM significantly reduces
training and inference time while preserving image quality, ad-
dressing a key limitation of traditional diffusion models, where

high computational cost and time requirements have limited
their practical applications. The dramatic reduction in resource
demand makes diffusion models more accessible and practical
for real-world clinical applications, particularly in time-sensitive
scenarios. The improved efficiency of Fast-DDPM enables real-
time image analysis, leading to quicker diagnostic decisions
and more timely interventions. Furthermore, Fast-DDPM offers
significant flexibility for fine-tuning through adjustments in time
steps and noise schedulers. Its design encourages exploration
of adaptive noise scheduling methods and task-specific con-
figurations, potentially inspiring future advancements in the
field.

VIl. CONCLUSION

This paper introduces Fast-DDPM, a simple yet effective
approach that accelerates both the training and sampling of dif-
fusion models by reducing the number of time steps from 1,000
to 10. Our evaluation on three imaging datasets demonstrates the
state-of-the-art performance of Fast-DDPM for medical image-
to-image generation tasks. This advancement has the potential
to further research in applying diffusion models for real-time
medical imaging applications.
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