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ABSTRACT The recognition of modulation types in received signals is essential for signal detection
and demodulation, with broad applications in telecommunications, defense, and wireless communications.
This paper introduces a pioneering approach to automatic modulation recognition (AMR) through the
development of a highly optimized long short-term memory (LSTM) network. The proposed framework
is engineered to capture intricate temporal dependencies within modulated signals, leveraging a gated
architecture that effectively mitigates the vanishing gradient problem. This innovation markedly improves
recognition accuracy, particularly in low-SNR conditions where traditional methods are often limited.
A defining contribution of this work is the introduction of a novel, adaptive temporal-spectral feature
learning mechanism, which seamlessly integrates both temporal and spectral characteristics of the signal.
This paradigm eliminates the need for manual feature extraction, enhances interpretability, and significantly
boosts classification efficiency. Furthermore, the proposed framework is designed for low-complexity
deployment, ensuring its scalability and suitability for next-generation wireless networks and real-time
communication systems. The proposed architecture is capable of distinguishing between seven modulation
classes: BASK, 4-ASK, BFSK, 4-FSK, BPSK, 4-PSK, and 16-QAM. Performance is evaluated across a
broad range of signal-to-noise ratios (SNR), from −10 dB to +30 dB, through extensive simulations.
Experimental results demonstrate that the model achieves a recognition accuracy of 99.87% at an SNR of
-5 dB, outperforming several conventional machine learning techniques, including multi-layer perceptron
(MLP), radial basis function (RBF) networks, adaptive neuro-fuzzy inference systems (ANFIS), decision
trees (DT), naïve Bayes (NB), support vector machines (SVM), probabilistic neural networks (PNN), k-
nearest neighbors (KNN), and ensemble learning models, as well as recurrent neural networks (RNNs).
Comparative analysis reveals that the proposed framework outperforms conventional machine learning
techniques, with accuracy improvements ranging from 1.77% to 34.03% over the best- and worst-performing
methods. Additionally, the proposed model achieves a performance gain of 2.02% over the deep learning
(DL)-based RNN, further highlighting its superior capability in AMR.

INDEX TERMS Automatic modulation recognition, classification, conventional algorithms, deep learning,
long short-term memory.
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I. INTRODUCTION
In modern wireless communication systems, accurate and
efficient signal processing is fundamental to ensuring reliable
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data transmission. One of the most critical tasks in this
domain is automatic modulation recognition (AMR), which
plays a key role in both military and civilian applications.
In military contexts, AMR enables spectrum surveillance,
electronic warfare, and signal intelligence, while in civilian
domains, it is crucial for cognitive radio, adaptive commu-
nication, and spectrum monitoring [1], [2]. Given the rapid
evolution of wireless networks, the need for highly accurate,
robust, and efficient AMR methods has become increasingly
important.

Over the past few decades, AMR techniques have evolved
significantly, driven by the need for improved classifi-
cation accuracy and real-time adaptability [3], [4], [5],
[6], [7]. Traditional AMR methods are broadly classified
into decision theory-based and pattern recognition-based
approaches. Decision theory-basedmethods rely on statistical
modeling and predefined rules, such as Bayesian inference
and the Neyman-Pearson criterion, to classify modulation
types [8]. While these methods are mathematically rigor-
ous, they suffer from high computational complexity and
limited adaptability in dynamic environments [9]. Pattern
recognition-based methods extract discriminative features
from received signals—such as normalized amplitude,
higher-order statistics, and momentary standard deviation—
to perform classification [10]. While more flexible than
decision-theoretic models, their reliance on manually engi-
neered features makes them prone to errors in complex and
noisy conditions, particularly at low signal-to-noise ratios
(SNRs) [5].
A major drawback of traditional AMR techniques is their

inability to generalize well under diverse channel conditions,
where noise, fading, and interference significantly degrade
classification accuracy. Additionally, manual feature extrac-
tion is computationally expensive and often impractical for
modern high-speed communication systems. To overcome
the limitations of conventional methods, deep learning (DL)-
based AMR approaches have gained significant attention.
Unlike traditional techniques, DL models automatically
learn hierarchical features from raw signals, eliminat-
ing the need for manual feature engineering [11], [12],
[13], [14].

Among DL models, convolutional neural networks
(CNNs) have shown remarkable success in AMR by treating
signals as time-frequency representations and extracting
spatial features [15], [16]. Several studies have leveraged
CNNs for AMR with promising results. For instance, in [17],
time-domain signals are transformed into spectrograms using
the short-time Fourier transform (STFT), followed by a
CNN for classification. A compact CNN architecture is
introduced in [18], where constellation images serve as input
to optimize both accuracy and computational efficiency.
Additionally, [19] proposes a hybrid CNNmodel that utilizes
grid constellation matrices and contrastive loss functions to
improve feature separation.

While CNN-based models have improved modulation
classification accuracy, their primary limitation is their

inability to capture temporal dependencies, which are crucial
in wireless signal analysis [20], [21]. Since modulated signals
exhibit dynamic amplitude and phase variations over time,
temporal relationships are critical for robust AMR. However,
CNNs are inherently designed for spatial feature extraction
and fail to effectively model these dependencies.

Wireless signals are inherently time-dependent sequences,
making it essential to incorporate models capable of learning
long-term temporal dependencies. However, many existing
DL-based AMR methods overlook this aspect, focusing
primarily on spatial features [4], [5], [6], [7], [16], [22].
To address this challenge, this paper proposes a novel AMR
framework based on an optimized long short-term memory
(LSTM) network. LSTMs are specifically designed to handle
sequential data, overcoming the vanishing gradient problem
in traditional recurrent neural networks (RNNs). Unlike
CNN-based models that primarily learn local spatial features,
LSTMs effectively capture both short-term and long-term
dependencies in modulated signals, making them well-suited
for AMR applications.

The proposed LSTM-based AMR model offers sev-
eral advantages. Unlike CNNs, which focus on spatial
patterns, LSTMs learn how modulation characteristics
evolve over time, leading to higher classification accu-
racy in dynamic environments. The model demonstrates
strong noise resilience, making it particularly effective in
real-world wireless scenarios where traditional methods
struggle. Additionally, the optimized LSTM structure ensures
reduced computational overhead, facilitating deployment in
resource-constrained environments such as next-generation,
i.e., beyond fifth-generation (5G) and sixth-generation (6G)
wireless networks. This work introduces a state-of-the-art
LSTM-based AMR framework, rigorously evaluated against
traditional AMR techniques, ensemble learning models, and
DL architectures, including RNNs. The key contributions of
this paper include the development of a novel LSTM-based
AMR model that efficiently captures both spatial and
temporal features, overcoming the limitations of CNN-based
approaches. The study presents a comprehensive bench-
marking analysis against a wide range of AMR techniques,
demonstrating the superior classification performance of the
proposed model. Extensive experimental validation is con-
ducted, showcasing robust performance across varying SNR
levels and complex wireless environments. By integrating
deep temporal modeling with efficient neural architectures,
this research paves the way for next-generation AMR
solutions with enhanced accuracy, adaptability, and real-
world applicability.

Building on these foundations, the key contributions of this
work are as follows.

• Innovative LSTM-based AMR framework for superior
temporal-spectral feature extraction: This work intro-
duces a novel LSTM-based AMR framework designed
to capture intricate temporal dependencies in modulated
signals with unparalleled precision. By leveraging an
optimized gated architecture, the model mitigates the
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vanishing gradient problem and significantly enhances
recognition accuracy, particularly under challenging
low-SNR conditions, where conventional methods
struggle.

• Redefining feature learning with optimized and adap-
tive temporal-spectral processing: Departing from con-
ventional handcrafted feature extraction, the pro-
posed approach introduces an adaptive feature learning
paradigm that seamlessly integrates both temporal
and spectral characteristics of signals. This eliminates
reliance on manual feature engineering, enhances inter-
pretability, and significantly improves classification
efficiency. Moreover, the framework is optimized for
low-complexity deployment, ensuring scalability in
next-generation wireless networks and real-time com-
munication systems.

• Comprehensive benchmarking and superior perfor-
mance over traditional and DL architectures: Through
a comprehensive comparative analysis against tra-
ditional machine learning models, ensemble learn-
ing frameworks, and DL-based RNNs, the proposed
model demonstrates significant accuracy improvements.
Achieving 99.87% accuracy at -5 dB SNR and surpass-
ing the best conventional method by up to 34.03% and
the RNN by 2.02%, this work sets a new benchmark
for AMR performance, reinforcing its robustness in
real-world signal environments.

The remainder of this paper is organized as follows.
Section II provides a comprehensive review of related work
and state-of-the-art approaches in AMC, highlighting key
advancements, methodologies, and their respective strengths
and limitations. Section III discusses the selected features and
employed algorithms, outlining the foundational assumptions
of this study. Section IV elaborates on the methodology of
the proposed architecture, providing an in-depth discussion
of the algorithm. Section V details the experimental studies,
including the simulation and evaluation processes associated
with the algorithm. Finally, Section VI presents the conclu-
sions, summarizes the findings, and offers recommendations
for future research.

II. RELATED WORK AND STATE-OF-THE-ART
APPROACHES IN AMC
AMC has been extensively studied in the literature, with
numerous approaches proposed to enhance classification
performance [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32]. While early AMC techniques relied on tra-
ditional feature-based classification methods, they often
suffered from limited accuracy and robustness, particularly
in dynamic and noisy environments. Consequently, DL-based
solutions have gained prominence due to their ability to
automatically extract complex temporal and spectral features
from modulated signals, leading to significant performance
improvements over conventional methods. A detailed review
of the advancements in this field can be found in [33]

and [34]. Figure 1 illustrates a comparison of the performance
of traditional methods and DL techniques.

CNNs have emerged as a widely used DL architecture
for AMC, demonstrating superior feature extraction capa-
bilities. O’Shea et al. [22], [35], [36], [37] pioneered the
application of CNNs for classifying modulation schemes
directly from time-domain signal representations, achieving
notable improvements in classification accuracy. Subsequent
research, such as that by Kulin et al. [38], refined CNN
architectures by incorporating domain and phase information,
further enhancing classification performance.

Several studies have explored modifications to CNN archi-
tectures to improve robustness under real-world conditions.
For instance, Yashashwi et al. [39] introduced a signal distor-
tion correction module within a CNN framework to mitigate
frequency and phase offsets, leading to improved classifica-
tion outcomes. Other works, such as [10] and [40], lever-
aged image-based signal representations, utilizing CNNs
to extract discriminative features from eye diagrams and
high-frequency radio signals. Peng et al. [41] demonstrated
that architectures such as AlexNet and GoogLeNet could
effectively process raw modulated signals by transforming
them into image representations, particularly under additive
white Gaussian noise (AWGN) conditions. However, these
methods exhibited performance degradation in complex
scenarios involving channel impairments like fading and
interference. Addressing this, [42] proposed converting
modulated signals into time-frequency representations before
applying CNNs, thereby improving classification accuracy
under more challenging conditions.

In line with recent advancements in modulation schemes
for future communication systems, hexagonal quadrature
amplitude modulation (HQAM) has emerged as a promis-
ing approach for supporting high data rates and energy
efficiency, particularly in 6G networks. The work in [43]
propose a simple yet accurate closed-form symbol error
probability (SEP) approximation for HQAM constellations,
along with tight upper bounds that are especially effective
for higher-order constellations (M ≥ 256). They also
introduce a low-complexity detection scheme with efficiency
comparable to maximum likelihood detection (MLD) but
with reduced computational complexity (O(log

√
M )). The

study provides valuable insights into the performance of
HQAM and its potential benefits in practical systems, rein-
forcing its relevance for future modulation schemes in AMR
systems.

A recent study in [28] addressed the challenge of AMC
under phase imperfections (PI) and imperfect channel state
information (CSI), which significantly degrade classification
accuracy in real-world wireless environments. To mitigate
these issues, Oikonomou et al. proposed a CNN-based
framework that applies a polar transformation to the received
signals, enhancing robustness against PI. Additionally, they
introduced an asymmetric kernel dimension modification
in CNN layers, optimizing feature extraction based on
the geometry of modulated schemes. Simulation results
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FIGURE 1. (a) An illustration of modulation recognition systems. (b) Simplified block diagram illustrating automatic modulation recognition in traditional
methods, which necessitate feature extraction. (c) Block diagram of deep neural networks, representing end-to-end approaches where feature extraction
is performed automatically within the layers of the network.

demonstrated that this approach effectively improves AMC
accuracy, even under severe PI conditions, while maintaining
low computational complexity. Notably, the study also
challenged the assumption that more complex CNN archi-
tectures always yield superior performance, showing that
the proposed method enables simpler models to outperform
deeper networks in PI-affected scenarios. These findings
highlight the potential of tailored CNN modifications
to enhance AMC performance without increasing system
overhead.

RNNs, particularly LSTM networks, have gained traction
in AMC due to their ability to capture temporal dependencies
in sequential data. Rajendran et al. [44] utilized LSTMs
to classify modulation schemes, emphasizing domain and
phase information. However, LSTM-based models often
struggle with capturing spatial features, which can limit their
overall classification accuracy. To address these limitations,
researchers have explored hybrid CNN-LSTM architectures.
The work in [22] introduced a CNN-LSTM-based deep
neural network (CLDNN) that effectively captured both
spatial and temporal signal characteristics, achieving high
classification accuracy using only in-phase and quadrature
(I/Q) signal representations. Similarly, the hybrid LSTM
architecture in [45] attained a peak classification accuracy
of 95% at 18 dB signal-to-noise ratio (SNR), demon-
strating the efficacy of combining LSTMs with other
DL models.

Recent advancements have further refined hybrid architec-
tures by integrating LSTM networks with residual networks
(ResNet) to improve feature extraction and mitigate issues
such as gradient vanishing and overfitting [46]. This approach
achieved an accuracy of 92% at 18 dB SNR, outperform-
ing standalone CNN and CLDNN models. While LSTM

networks remain a powerful tool for AMC, their effectiveness
is often enhanced when combined with other architectures
that compensate for their limitations.

Recognizing the strengths and weaknesses of individual
DLmodels, hybrid architectures have emerged as a promising
direction for AMC [46], [47], [48], [49], [50], [51], [52], [53],
[54]. By leveraging the complementary strengths of multiple
neural network models, hybrid approaches have demon-
strated improved classification robustness in diverse signal
environments. For instance, [55] proposed a dual CNN-based
framework, where a signal-based CNN (SBCNN)was used to
extract features from raw time-domain signals before trans-
forming them into heat maps processed by an image-based
CNN (IBCNN). This hybrid approach exhibited superior
classification accuracy, particularly in low-SNR conditions.
Similarly, [47] introduced a dual-stream model combining
CNNs and LSTMs to capture both spatial and temporal
characteristics ofmodulated signals, yielding higher accuracy
than traditional CNN-based solutions. Ke and Vikalo [48]
further advanced hybrid AMC models by integrating LSTMs
with denoising autoencoders (AEs) to enhance feature extrac-
tion under noisy conditions. Meanwhile, Wang et al. [50]
introduced a novel CNN-transformer-graph neural network
(CTGNet) model, leveraging transformers’ attention mecha-
nisms and graph neural networks’ (GNNs) structural learning
capabilities to improve AMC performance.

Transformers, known for their ability to capture long-range
dependencies in data, have recently been explored for AMC
applications. The deep hybrid transformer network (DH-
TR) proposed in [56] combines convolutional, recurrent, and
transformer-based modules to extract both local and global
signal features. By integrating a convolutional stem for initial
feature extraction, a gated recurrent unit (GRU) for sequential
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TABLE 1. Comparison of AMC techniques in the literature.

pattern recognition, and a transformer branch for capturing
long-term dependencies, the DH-TR model achieved state-
of-the-art performance across multiple benchmark datasets.
However, despite its high accuracy, the model remains com-
putationally intensive, limiting its deployment in real-time
and resource-constrained environments.

Other studies have investigated transformer-based hybrid
models, such as CNN-transformer networks, to improve
feature extraction efficiency and robustness under real-world
signal conditions [51], [52]. These approaches have shown
promise in addressing challenges related to PI and CSI
inaccuracies, which are critical factors in next-generation
wireless networks. Table 1 provides a comprehensive com-
parison of existing AMC techniques, highlighting their key
contributions, strengths, and limitations. This comparison

highlights the trade-offs between various DL models and
hybrid approaches, emphasizing the need for more efficient
and robust solutions in real-world communication environ-
ments.

Despite the significant advancements in DL-based AMC,
several challenges remain. While CNNs excel at extracting
spatial features, they struggle with modeling temporal depen-
dencies in dynamic signal environments. Conversely, LSTMs
effectively capture temporal relationships but lack the ability
to fully leverage spatial information. Hybrid approaches that
integrate CNNs, LSTMs, and transformers have demon-
strated improvements in classification accuracy, yet they
often introduce increased computational complexity, making
real-time deployment challenging. While recent advance-
ments in AMC have leveraged DL models such as CNNs,
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LSTMs, and hybrid architectures, several challenges persist
in real-world applications, particularly in environments with
low SNR, PI, and imperfect CSI. Notably, while architectures
like deep hybrid transformer networks offer impressive per-
formance, their computational intensity poses challenges for
real-time deployment, particularly in resource-constrained
scenarios. Furthermore, existing approaches typically rely on
either handcrafted feature extraction or rigid DL pipelines
that may fail to adapt dynamically to diverse, unpredictable
signal environments. The inherent trade-offs between model
complexity, accuracy, and computational efficiency in these
methods remain inadequately addressed, particularly in the
context of next-generation wireless systems that demand
both high performance and low computational overhead.
The existing models are primarily optimized for benchmark
datasets, leaving uncertainties regarding their generalizability
to real-world radio signal conditions, including varying levels
of interference, multipath fading, and channel impairments.
Additionally, balancing classification accuracy with compu-
tational efficiency remains an open problem, particularly for
resource-limited applications in B5G and 6G networks.

This work directly addresses the aforementioned research
gaps by introducing an innovative LSTM-based AMR
framework that offers superior temporal feature extraction
capabilities. Unlike traditional methods that rely on static
feature extraction, our approach utilizes an optimized gated
architecture within the LSTM framework, which effectively
mitigates the vanishing gradient problem and enhances the
model’s ability to capture complex temporal dependencies.
This architecture is especially valuable under challenging
low-SNR conditions, where previous methods, including DL
approaches, struggle to maintain accuracy.

In addition, this study redefines feature learning by
integrating both temporal and spectral characteristics of
modulated signals in an adaptive manner. This removes
the reliance on conventional handcrafted feature extraction
techniques, which can be both time-consuming and prone
to error. The proposed adaptive learning paradigm ensures
that the model can dynamically adjust to varying signal
conditions, enhancing both interpretability and classification
efficiency. Importantly, the framework is optimized for low-
complexity deployment, making it suitable for real-time
communication systems and scalable for next-generation
wireless networks, which is a critical advancement over
previous, more computationally demanding models such as
those based on hybrid transformers.

III. SELECTED FEATURES AND EMPLOYED ALGORITHMS
This study critically evaluates the performance of traditional
algorithms in comparison to a novel DL-based approach.
The traditional algorithms function on extracted features,
relying on no prior information about the received signal as it
traverses an additive white Gaussian noise (AWGN) channel.
Within this communication framework, the transmitted signal
is modulated and subsequently blended with Gaussian noise,
entering the receiver block devoid of any transmitter-specific

knowledge. For communication systems, themodulated input
signal can be represented mathematically as:

z(t) = s̃(t)ej(2π fct+φc) + n(t), (1a)

where

s̃(t) = a(t)ej[2π f (t)t+φ(t)], (1b)

where fc denotes the carrier frequency, φc represents the
carrier phase, n(t) signifies the Gaussian white noise, and s̃(t)
indicates the modulated signal s(t). The parameters a(t), f (t),
and φ(t) correspond to the amplitude, frequency, and phase of
the signal, respectively. The assumptions guiding this study,
along with comparisons to prior work [4], [6], [57], [58], are
succinctly summarized in Table 2.

TABLE 2. Parameters and assumptions of signals employed in simulation
datasets.

This analysis categorizes the modulations into seven
distinct classes: binary amplitude-shift keying (BASK), 4-
ary amplitude-shift keying (4-ASK), binary frequency-shift
keying (BFSK), 4-ary frequency-shift keying (4-FSK), binary
phase-shift keying (BPSK), 4-ary phase-shift keying (4-
PSK), and 16-ary quadrature amplitude modulation (16-
QAM). The features utilized in this research are briefly
outlined in the following Section. Through meticulous
processing of the input data, distinctive characteristics of
the modulation schemes are extracted and employed in the
learning processes of traditional algorithms.

A. UTILIZED FEATURES
AMR techniques leverage a variety of features to effectively
distinguish between modulation types. A pivotal question
arises: which features are most effective in maximizing clas-
sification accuracy. Furthermore, considering the real-time
demands of modulation recognition, it is imperative to
identify features that optimize processing speed. Previous
studies grounded in traditional learning methodologies have
explored an array of features [3], [57], [59], [60], [61], [62].
This study highlights specific features identified in previous
work [4], [6], [58], which are elaborated upon as follows.

The second-order moment of the non-linear component of
the instantaneous phase is the first feature utilized in theAMR
framework. The mathematical representation of this attribute
is defined as:

MφNL =
1
Ns

Ns∑
i=1

φ2NL(i), (2a)
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where

φNL(i) =
φ(i)

φ̄
− 1, (2b)

where Ns represents the number of symbols, φNL(i) denotes
the normalized non-linear component of the instantaneous
phase, φ(i) indicates the instantaneous phase, and φ̄ is the
mean phase. Signals modulated by ASK lack information
in their instantaneous phase, resulting in the lowest com-
puted values of MφNL compared to other modulation types.
This characteristic effectively distinguishes between BASK,
4-ASK modulations, and other modulation schemes such as
QAM, PSK, and FSK.

The second feature employed in this study is a spectrum-
based characteristic, defined as follows:

σ 2
z =

1
Ns

Ns∑
i=1

Z (i) −
1
Ns

Ns∑
j=1

Z (j)

2

, (3)

where Z (i) represents the discrete-time Fourier transform
(DTFT) of the received signal. This feature effectively
differentiates ASK and QAM from other digital modulation
schemes, including PSK and FSK, which do not convey
amplitude-related information.

The third attribute incorporated into the proposed AMR
system is the mean value of the power spectral density of
the normalized instantaneous amplitude of the received signal
segment, expressed as:

γ =
1
Ns

Ns∑
i=1

|Acn(i)|2, (4a)

where

acn(i) =
a(i)
ma

− 1, (4b)

and

ma =
1
Ns

Ns∑
i=1

a(i), (4c)

whereAcn refers to the DTFT of the normalized instantaneous
amplitude, acn(i) signifies the normalized instantaneous
amplitude, and ma is the mean instantaneous amplitude. This
characteristic enables the proposed models to differentiate
4-ASK modulation from BASK.

As the fourth feature, the standard deviation of the
normalized non-linear component of the instantaneous phase,
which encompasses phase-related information, is analyzed.
The mathematical formulation for extracting this attribute is
given by:

σdp =

√√√√√ 1
Ns

Ns∑
i=1

φ2NL(i) −

(
1
Ns

Ns∑
i=1

φNL(i)

)2

. (5)

This characteristic is utilized to distinguish PSK from
quadrature PSK (QPSK) in hierarchical classifiers.

The fifth and sixth features of the framework involve
the continuous wavelet transform (CWT), which facilitates
time-frequency analysis and is mathematically defined
as:

CWTψx(τ, s) = ψx(τ, s) =

∫
∞

−∞

x(t)ψ∗
τ,s(t)dt, (6a)

where

ψτ,s(t) =
1

√
|s|
ψ

(
t − τ

s

)
, (6b)

where τ as the translation parameter, s as the scale parameter,
and ψ∗(t) representing the complex conjugate of ψ(t).
This method calculates the correlation between the wavelet
transform of the received signal and the predefined patterns
within the system. For the wavelet transform simulations,
the Haar function is employed. By comparing the calculated
CWT against templates for BASK and BFSK, the system
effectively distinguishes among BPSK, QPSK, BFSK, and
4-FSK modulations.

B. CONVENTIONAL MACHINE LEARNING ALGORITHMS
A critical element of AMR lies in the utilization of
classifiers based on machine learning methodologies. This
work employs eight distinct machine learning algorithms,
instantiated across nine models. The first algorithm is the
multi-layer perceptron (MLP), which utilizes the backprop-
agation technique during its training phase. The second
algorithm is the radial basis function (RBF), characterized
by a three-layer architecture that incorporates Gaussian
functions in the hidden layer. The third algorithm, adaptive
neuro-fuzzy inference system (ANFIS), stands out as a
pivotal neuro-fuzzy methodology.

The fourth algorithm employed is the decision tree (DT),
a highly regardedmethod in datamining that employs entropy
measures to identify optimal features. The fifth algorithm,
naïve Bayes (NB), leverages simple probabilistic classifiers
based on prior distributions. The sixth algorithm, k-nearest
neighbors (KNN), categorizes data based on proximity
metrics. The seventh algorithm is the probabilistic neural
network (PNN), a variant of RBF networks characterized by
a four-layer structure dedicated to computing the probability
density function (PDF) for each class.

The eighth algorithm is the support vector machine
(SVM), implemented using both one-against-all (OAA)
and one-against-one (OAO) strategies to optimize classi-
fication accuracy. The ninth approach involves ensemble
learning, which combines multiple weak learners or base
models, enhancing performance through collective learn-
ing. Detailed descriptions of each algorithm are omitted,
though parameters utilized in each model are presented in
Section V.

C. DEEP LEARNING MODEL
In this study, a RNN is employed as a DL approach to AMR.
RNNs are well-regarded for their ability to model sequential
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data, leveraging recurrent connections to capture temporal
dependencies effectively. This makes them highly suitable
for AMR tasks, particularly in low SNR scenarios [63].
As part of a diverse and comprehensive comparison, RNN
performance is evaluated alongside traditional machine
learning algorithms and advanced DL techniques. RNN’s
performance is further compared with both conventional
machine learning algorithms and the proposed model to
highlight its relative strengths and limitations in AMR tasks.
This inclusion allows for a comprehensive evaluation of
DL techniques in the context of AMR. Detailed imple-
mentation parameters of the RNN model are provided in
Section V.

IV. METHODOLOGY OF THE PROPOSED ARCHITECTURE
In recent years, various CNN models have been developed
to enhance the efficacy of AMR. Modulation signals are
typically modeled as continuous time-varying codes, with the
amplitude and phase of different modulation types following
specific statistical distribution laws over time. However,
many existing CNN architectures neglect these temporal
relationships, highlighting the necessity for algorithms that
effectively incorporate these inherent characteristics of mod-
ulation signals during the learning process.

RNN, LSTM networks, and gated recurrent units (GRUs)
represent three prominent architectures within the realm of
recurrent neural networks. RNNs are particularly suited for
tasks involving sequential data, such as speech recognition
and natural language processing (NLP). Unlike traditional
deep networks like CNNs, which are structured as feed-
forward networks processing inputs in a singular direction,
RNNs maintain an internal memory. This recurrent archi-
tecture allows RNNs to apply the same function to each
input while enabling the current output to depend on prior
computations. After generating an output, this information
is fed back into the network, facilitating a decision-making
process that takes into account both the current input and the
previously learned outputs.

LSTM networks specifically address the limitations asso-
ciated with conventional RNNs, notably the vanishing
gradient problem, by replacing the recurrent layer with an
LSTM block [64]. LSTMs incorporate internal mechanisms
known as gates, which regulate the flow of information
and determine which data in a sequence are essential for
retention and which can be discarded. This capability enables
the network to transmit critical information throughout the
sequence, ensuring the desired output is achieved. Figure 2
illustrates a comparative analysis of inputs and outputs within
the RNN and LSTM architectures.

In the LSTM architecture, the hidden state input is
denoted by h, while C represents the cell state—a crucial
component often referred to as long-term memory. This
memory possesses two key attributes: the ability to delete
information, i.e., forgetting, and the capacity to incorporate
new information i.e., remembering. The LSTM model
is trained through backpropagation. An LSTM network

incorporates three essential gates, illustrated in Figure 3: the
input or update gate, the forget gate, and the output gate.

The following equations elucidate the principles underly-
ing the LSTM methodology [64]:

ft = σ (Wf · [ht−1, xt ] + bf ), (7a)

it = σ (Wi · [ht−1, xt ] + bi), (7b)

C̄t = tanh(WC · [ht−1, xt ] + bC ), (7c)

Ct = ft · Ct−1 + it · C̄t , (7d)

ot = σ (Wo · [ht−1, xt ] + bo), (7e)

ht = ot · tanh(Ct ), (7f)

where ft is the forget gate activation, it indicates the input gate
activation, xt represents the current input, C̄t is the candidate
cell state, Ct is the current cell state, ot is the output gate
activation, ht is the current hidden state. The parameters
Wf ,Wi,WC ,Wo are the weight matrices associated with
the forget, input, candidate, and output gates, respectively.
Moreover, bf , bi, bC , bo are the bias vectors for the respective
gates, σ denotes the sigmoid activation function, and tanh is
the hyperbolic tangent activation function. These equations
collectively describe the LSTM’s mechanism for maintaining
and updating information over time, enabling it to learn
long-term dependencies in sequential data.

FIGURE 2. Comparative analysis of input and output dimensions in RNN
and LSTM architectures.

FIGURE 3. Internal structure of LSTM network modules.

LSTMs effectively mitigate the risk of gradient explosion,
as all functions and their derivatives remain constrained
between zero and one. In contrast, older RNN architectures
link each state to the previous one through nonlinear
mappings, such as tanh, resulting in substantial gradient
decay due to repetitive matrix multiplications. The memory
cells in LSTMs, however, exhibit a relatively low decay
rate at each time step, governed by first-order difference
equations.

The architecture of the proposed LSTM model is meticu-
lously designed to address the complex challenges of AMR
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FIGURE 4. Architecture of the proposed model.

under diverse signal conditions. As depicted in Figure 4, the
model integrates a sequential flow of LSTM blocks, dropout
layers, fully connected dense layers, and a final Softmax
layer, each playing a critical role in ensuring the model’s
robustness and accuracy.

At the core of the architecture is the LSTM layer, which
comprises 100 hidden units. Each LSTM cell is structured
to manage long-term dependencies in sequential data by
incorporating a combination of three gates: the input gate,
forget gate, and output gate. These gates regulate the flow of
information through the cell state, effectively addressing the
vanishing gradient problem inherent in traditional RNNs. The
cell state acts as a memory conveyor, selectively retaining or
discarding information over long time sequences.

Following the LSTM block, a dropout layer with a
rate of 0.2 is incorporated to prevent overfitting. Dropout
layers randomly deactivate neurons during training, intro-
ducing stochasticity that enhances the model’s generalization
capability. The fully connected dense layers act as feature
aggregators, transforming the sequential data representations
from the LSTM into a higher-dimensional space suitable
for classification. These layers ensure that temporal depen-
dencies captured by the LSTM are utilized effectively for
decision-making.

The Softmax layer at the output serves as the final classifi-
cation stage. While alternatives like Entmax exist, Softmax
remains a widely adopted choice due to its simplicity,
efficiency, and well-established performance in similar tasks.
By producing a normalized probability distribution across
modulation classes, the Softmax function facilitates precise
multi-class classification. The mathematical model, Si =∑

j e
zj ezi , ensures clear distinctions between classes.

To optimize the performance, the model employs the
adaptive moment estimation (Adam) optimizer, which com-
bines the advantages of both momentum-based and adaptive
learning rate methods, resulting in faster and more stable
convergence. Training is conducted using a mini-batch size
of 32 for a maximum of 30 epochs, ensuring computational
efficiency while achieving high accuracy. The cross-entropy
loss function is utilized to minimize classification errors,
and ReLU activation is employed throughout the network to
enhance gradient propagation and training stability.

Hyperparameter optimization is performed through an
extensive grid search combined with evolutionary search
techniques. This allowed fine-tuning of critical parameters,
including the number of hidden units, learning rate, and
dropout rate. The resulting architecture comprises 840,400
trainable parameters, balancing computational efficiency
and representational power. To ensure robust and reliable
performance evaluation, the model incorporates M-fold
cross-validation across 30 iterations. This validation strategy
reduces the impact of dataset partitioning bias and ensures
consistent performance metrics.

Key features of the proposed LSTM model include:

• Hyperparameter tuning aimed at achieving optimal
accuracy, conducted through comprehensive search
methodologies complemented by evolutionary search
techniques for initial point optimization.

• A total of 100 hidden units, employing the Adam
optimizer, resulting in a total of 840,400 parameters
within the network.

• The activation function utilized throughout the network
is ReLU, which promotes faster convergence during
stochastic gradient descent (SGD) and alleviates gradi-
ent propagation issues. The softmax function, expressed
as Si =

∑
j e
zjezi , is employed in the final layer.

Algorithm 1 outlines the step-by-step procedure for training
the proposed LSTM-based modulation classification model,
including the preprocessing steps, feature extraction using the
CWT, model architecture consisting of LSTM layers with
dropout for regularization, and final classification through
a Softmax output. Additionally, it incorporates hyperpa-
rameter optimization and model evaluation through cross-
validation, ensuring robust performance under varying signal
conditions.

V. EXPERIMENTAL STUDIES
This section presents a comprehensive evaluation of the
proposed algorithm through meticulously designed simula-
tions. All experiments are conducted using MATLAB 2024a,
leveraging the capabilities of the neural network toolboxes
on a personal computer equipped with a Intel(R) Core(TM)
Ultra 125U 1.30 GHz and 16.0 GB of RAM. The simulations
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Algorithm 1 LSTM-Based Modulation Classification
1: Input: Training dataset Dtrain, testing dataset Dtest
2: Output: Classification model and accuracy
3: Initialize:
4: LSTM model with 100 hidden units
5: Dropout rate = 0.2, Adam optimizer, ReLU

activation, softmax output
6: Set batch size = 32, epochs = 30, learning rate α
7: Preprocessing:
8: for each signal in Dtrain do
9: Add noise (AWGN) to simulate real-world condi-

tions
10: Normalize features to ensure consistent scale
11: Apply CWT, i.e., optimized and adaptive temporal-

spectral, for feature extraction with Haar wavelet
12: end for
13: for each signal in Dtest do
14: Normalize features
15: Apply CWT for feature extraction
16: end for
17: Model Architecture:
18: LSTM with 100 hidden units, followed by a Dropout

layer
19: Dense layers for feature aggregation and Softmax output

for classification
20: Training:
21: for epoch = 1 to epochs do
22: for batch in Dtrain do
23: Perform forward pass and compute loss (cross-

entropy)
24: Backpropagate error and update weights using

Adam optimizer
25: end for
26: end for
27: Evaluation:
28: Evaluate model on validation set for accuracy
29: Test model on Dtest and compute final accuracy
30: Optimization:
31: Perform grid search or evolutionary search for hyperpa-

rameter tuning
32: Output: Trained model and performance metrics (accu-

racy, precision, F1-score, and confusion matrix)

model a real-world communication channel characterized by
AWGN. In this context, the transmitted signal is modulated
at the sender’s end and subsequently mixed with noise upon
traversing the channel, entering the receiver block devoid of
any prior knowledge about the sender.

A. DATASET AND PREPROCESSING
To ensure the robustness, reproducibility, and generalizability
of the model, a carefully constructed real-world dataset
comprising modulated signals collected from communication
systems operating under varying SNR conditions is utilized.

The signals are generated and processed using the MATLAB
software environment, with key parameters set as follows:
carrier frequency of 150 kHz, a sampling rate of 1.2MHz, and
a symbol rate of 12.5 kHz. These settings are representative
of typical communication systems, ensuring that the dataset
reflects practical conditions encountered in real-world sce-
narios.

To extract critical features, the CWT with the Haar
wavelet function, featuring 64 scale values, is employed.
This approach enables efficient capture of time-frequency
domain features, such as power spectral density, phase
characteristics, and signal amplitudes, which are crucial for
distinguishing between different modulation types. The CWT
is applied to the generated signals, ensuring that relevant
temporal dependencies and modulation-specific features
were preserved.

After applying theAWGNchannel to the signals, corrupted
versions are created to simulate real-world noise conditions.
These noisy signals are fed into the model to extract features
and perform modulation classification. To guarantee the
reliability and reproducibility of the results, two independent
datasets for training and testing are generated. Each mod-
ulation type comprises 3600 realizations, covering varying
SNR levels from −5 dB to +30 dB. This results in a total
of 25,200 training samples. For the testing phase, SNR
values ranging from −10 dB to −6 dB are added, extending
the cumulative SNR range from −10 dB to +30 dB. This
ensures the model’s ability to generalize across diverse noise
conditions, making it robust and applicable to practical AMR
scenarios.

Additionally, the dataset generation process follows
well-established protocols from previous research, as demon-
strated in [4], [6], [58], and [65], ensuring consistency and
validation of the proposed framework. The use of real-world
data, combined with the rigorous preprocessing steps and
feature extraction techniques, ensures that the model is both
reliable and reproducible, contributing to the advancement of
AMR research.

As illustrated in Figure 5, the variation of selected features
with respect to SNR across different modulation schemes
is examined to facilitate AMR. The features utilized in this
study were introduced and briefly examined earlier in the
system model and the feature selection process in Section III.
As depicted in Figure 5a, the second-order moment of the
non-linear component of the instantaneous phase (denoted
as MφNL ), representing the first feature, yields the lowest
values for ASK-modulated signals. This feature proves
particularly effective in distinguishing ASKmodulation from
other modulation schemes. Figure 5b highlights the ability
of the spectrum-based feature σ 2

z to accurately differentiate
between ASK and QAM modulations, while also effectively
distinguishing them from other digital modulation types such
as PSK and FSK, which do not contain amplitude-related
information.

The AMR models developed in this work rely on
the mean value of the power spectral density of the
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FIGURE 5. The variation of selected features with respect to SNR across different modulation schemes, analyzed for the task of AMR.
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normalized-centered instantaneous amplitude of the inter-
cepted signal segment (γ ), as shown in Figure 5c. This
feature is instrumental in distinguishing 4-ASK modulations
from BASK. Furthermore, Figure 5d demonstrates the use
of the standard deviation of the normalized-centered non-
linear component of the direct instantaneous phase (σdp)
to differentiate between PSK and QPSK modulations in
hierarchical classification systems. Finally, Figures 5e and 5f
illustrate how the CWT-based features, i.e., CWTψx(τ, s),
enhance the model’s ability to identify modulation schemes
such as BPSK, QPSK, BFSK, and 4-FSK.

B. RESULTS AND PERFORMANCE EVALUATION
A non-ideal channel model with Gaussian noise has been
employed, as summarized in Table 2, which outlines the
parameters of the utilized signal. Furthermore, Table 3
presents the assumptions related to the parameters of the
simulation algorithms, outlining the key values and settings
used in the experimental setup. Hyperparameter optimization
for all models presented in this work is performed using
a rigorous and systematic approach to ensure optimal
performance for each model. The hyperparameters of the
selected models are fine-tuned using a combination of
grid search, genetic algorithm (GA), and particle swarm
optimization (PSO), which are well-established techniques
for efficiently navigating large search spaces and identifying
optimal configurations [4], [6]. These methods are renowned
for their effectiveness in achieving high accuracy and
robustness in machine learning models.

Additionally, a trial-and-error approach is employed to
further refine the hyperparameters, enabling the identifi-
cation of configurations that maximize accuracy, enhance
generalization, and mitigate the risk of overfitting. This
comprehensive optimization process underscores the validity
of the comparative analysis by ensuring that the models are
rigorously tuned for peak performance. To ensure robust
evaluation, 10-fold cross-validation is implemented across
30 iterations, with results averaged to enhance reliability. The
average error is computed using (8), ensuring consistency
with the graphical representations [6]:

ε̄ =
1
P

P∑
i=1

 1
M

M∑
j=1

Error_Foldj

 . (8)

Figure 6 showcases the simulation outcomes across
various SNR percentages. The results reveal a signal-to-noise
variation spanning from−10 dB to+30 dB for all tested algo-
rithms. Notably, as SNR increases, the accuracy improves
significantly, surpassing 94% for numerous algorithms when
the SNR exceeds zero. In addition, Figure 7, a zoomed-in
version, focuses on the range from −10 to 0 dB, allowing for
a more detailed examination of the relevant features within
this narrower range. For a detailed comparative analysis,
specific results corresponding to designated SNR levels are
summarized in Table 4.

TABLE 3. Assumptions pertaining to the parameters of the simulation
algorithms.

As evidenced by the results, the proposed model demon-
strates impressive accuracy in differentiating among seven
modulation classes, significantly outperforming traditional
machine learning methods, ensemble learning approaches,
and the DL-based RNN model. In the comparative analysis,
the proposed model achieves an accuracy of 99.87% for
AMR at −5 dB. This represents a significant improve-
ment over the accuracy of the ten benchmark techniques
evaluated. Specifically, the proposed architecture outper-
forms the MLP by 7.26%, the RBF by 29.13%, and the
ANFIS by 34.03%. Additionally, the proposed algorithm
surpasses the DT by 3.44%, NB by 24.65%, and KNN
by 2.49%. It also achieves a notable advantage over the
PNN by 3.32%, and the SVM configurations, i.e., SVM-
OAO and SVM-OAA, by 1.77% and 1.84%, respectively.
In comparison to ensemble learning, the proposed LSTM
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TABLE 4. Performance metrics of various algorithms under different signal-to-noise ratios.

FIGURE 6. Comparative output illustrating the accuracy of the selected
algorithms at different SNR levels.

technique achieves a remarkable enhancement of 2.01%.
Furthermore, when benchmarked against the RNN, the
proposed LSTM model delivers superior performance with a
2.02% improvement. These results underscore the superiority
of the proposed approach in achieving higher accuracy in
AMR tasks.

Furthermore, two additional graphs delineate the variations
in accuracy and loss function across epochs, depicted in
Figures 8 and 9. The accuracy graph demonstrates that
exceptional performance is achieved shortly after the first
epoch, with a steady upward trajectory in accuracy as the
number of epochs increases. Concurrently, the loss function
exhibits a consistent decline, indicating the efficacy of the
learning process.

FIGURE 7. Detailed view of the comparative output, focusing on the
accuracy of the selected algorithms at SNR levels between −10 and 0 dB.

FIGURE 8. Accuracy performance chart during the training phase of the
proposed model.

In addition, Table 5 provides a comprehensive comparison
of the classification accuracy achieved by various methods
across different modulation schemes. The results highlight
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TABLE 5. Comparison of classification accuracy across various modulation schemes and methods.

FIGURE 9. Performance chart of the loss function throughout the training
phase of the proposed model.

the performance of several models, including CNN-based,
DNN-based, and hybrid approaches, with accuracy ranging
from 70% to 98%, depending on the modulation type and
SNR. Notably, the proposed LSTM-based model achieves
99.87% accuracy at an SNR of -5 dB, demonstrating
superior performance compared to the other methods. This
comparison underscores the effectiveness of the proposed
architecture in delivering high classification accuracy across
a wide range of modulation schemes and challenging
conditions.

Importantly, the DL algorithm presented herein cir-
cumvents the need for complex feature extraction pro-
cesses, thereby offering significant operational efficiency
and cost-effectiveness compared to conventional approaches.
In summary, this work not only demonstrates the efficacy
of DL techniques in AMR but also sets a new benchmark
for future developments in the field. The findings advocate
for a paradigm shift in how modulation types are classified,
promising significant implications for the advancement of
communication technologies.

Furthermore, to improve classification accuracy under
phase noise conditions, the incorporation of constellation
transformations, specifically the polar transformation of
symbol coordinates in the IQ plane, is tested. This trans-
formation, as suggested by Oikonomou et al. [28], aims
to compensate for phase imperfections by adjusting the
constellation points to mitigate phase distortions. The effects
of this transformation are evaluated within the proposed

LSTM architecture, with simulations conducted to assess
the impact on modulation recognition performance under
various phase noise levels. The results indicated that while
the polar transformation slightly improved robustness to
phase imperfections, the performance gains are not sub-
stantial enough to surpass the original LSTM framework
under typical conditions. The transformation helped reduce
misclassifications in scenarios with significant phase noise,
but its effect on overall accuracy is modest. These findings
suggest that the integration of constellation transformations
may be useful in handling phase imperfections, although it
may need to be combined with other advanced techniques
such as denoising algorithms or more sophisticated channel
models for enhanced performance. This direction is proposed
as a potential area for future research to further improve the
robustness of AMR systems.

C. LIMITATIONS AND FUTURE DIRECTIONS
The proposed LSTM-based architecture demonstrates out-
standing performance in classification accuracy and robust-
ness across diverse SNR conditions, reinforcing its potential
for practical applications in AMR. However, it is important
to acknowledge certain limitations inherent to the model
and its deployment. Addressing these limitations not only
underscores the transparency of this work but also provides a
foundation for future advancements. These limitations, along
with potential solutions and avenues for future research, are
outlined below:

1) Computational Complexity: The proposed model
comprises 100 hidden units, resulting in 840,400
trainable parameters, which ensures its ability to
learn intricate temporal dependencies. However, this
complexity introduces a computational burden dur-
ing training and inference phases, particularly in
resource-constrained environments. The reliance on
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backpropagation through time (BPTT) for gradient
optimization further accentuates this demand, poten-
tially limiting its deployment in real-time or embedded
systems. Accordingly, future investigations can explore
lightweight alternatives, such as GRUs or low-rank
LSTM models, which offer comparable performance
with reduced computational overhead. Advanced tech-
niques like model pruning, quantization, or knowledge
distillation could also optimize the model’s footprint
while preserving accuracy.

2) Scalability to Diverse and Larger Datasets: The
scalability of the model remains a critical challenge,
especially when adapting to larger datasets or expand-
ing the number ofmodulation types. The computational
and memory demands grow significantly as dataset
size and complexity increase, potentially introduc-
ing inefficiencies in handling real-world datasets
or highly diverse modulation schemes. Distributed
training frameworks, leveragingGPU clusters or cloud-
based solutions, can mitigate scalability concerns.
Incremental learning approaches, which allow the
model to adapt to newmodulation schemes without full
retraining, could also be investigated. Such methods
would significantly enhance the model’s practicality
and scalability in dynamic environments.

3) Adaptation to Real-World Scenarios: The experi-
mental evaluation predominantly relies on synthetic
datasets generated under controlled conditions. Real-
world environments often introduce additional noise
sources, interference, and dynamic signal charac-
teristics that are absent from synthetic data. Such
discrepancies could impact the model’s performance
when deployed in practical applications. Testing the
model with real-world datasets, reflective of diverse
operational environments, is a crucial next step.
Transfer learning or domain adaptation techniques
could further enhance the model’s robustness to real-
world variability. Additionally, designing preprocess-
ing pipelines tailored to real-world challenges could
significantly improve performance.

VI. CONCLUSION
This paper introduces an innovative DL architecture that
significantly advances the field of AMR. Themodel leverages
LSTM networks to automate feature extraction during the
classification process, marking a departure from traditional
methods that rely heavily onmanual feature engineering. This
approach not only simplifies the workflow but also enhances
the accuracy and efficiency of modulation recognition
tasks. Experimental results demonstrate that the proposed
model achieves exceptional performance, outperforming
traditional algorithms, an ensemble learning method, and
the DL-based RNN model. Specifically, the model delivers
a remarkable 3.89% increase in accuracy at an SNR
of -2 dB compared to the best-performing conventional
method, highlighting its robustness and ability to handle

noise and variability in real-world scenarios. Furthermore,
when compared to the RNN, the proposed LSTM model
achieves a performance gain of 1.73%, further emphasizing
its superiority in tackling AMR challenges. The use of the
Adam optimization algorithm further enhances the model’s
performance, highlighting its adaptability and effectiveness.
Looking ahead, future research will explore the integration
of evolutionary algorithms and the application of advanced
DL architectures, including attention mechanisms, to further
improve classification accuracy across diverse datasets such
as RadioML 2016.10a, RadioML 2018.01A, and HisarMod
2019.1. Additionally, we aim to investigate the performance
of the proposed framework within the context of emerging
communication technologies, specifically B5G and 6G wire-
less networks. This will involve considering various com-
munication channels and conditions to ensure the model’s
scalability and relevance in next-generation wireless systems.
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