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ABSTRACT This study presents a hybrid model, STL-ARIMA-ES-LSTM, developed to improve the
accuracy of Gross Primary Productivity (GPP) forecasts in the Amazon region. The model integrates
seasonal and trend decomposition using Loess (STL) with statistical methods (ARIMA and Exponential
Smoothing-ES) and a machine learning technique (Long Short-Term Memory - LSTM). Applied to GPP
data from the PE-QFR site, the hybrid model achieved significantly better error metrics, with RMSE
of 1.69 gC/m?/day, MAE of 1.35 gC/m?/day, and MAPE of 0.20%, compared to the standalone LSTM
(RMSE of 2.16 gC/m?/day, MAE of 1.78 gC/m?/day, and MAPE of 0.27%). Furthermore, the hybrid
model showed stronger agreement with the observed data, with correlation coefficient r = 0.62 and
R? = 0.39, whereas the LSTM alone yielded r = 0.26 and R> = —0.002. The STL decomposition
allowed effective separation of trend, seasonality, and residual components, enabling tailored modeling
of each, which contributed to the improved predictive performance. These results demonstrate the
advantage of hybrid approaches in capturing the nonlinear and seasonal patterns of GPP, supporting
enhanced environmental monitoring and more informed climate change mitigation strategies in the

Amazon.
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I. INTRODUCTION

Climate change, driven primarily by carbon dioxide (CO;)
emissions, stands as one of the greatest environmental and
socioeconomic threats of the 21st century [1]. The increasing
accumulation of this gas in the atmosphere significantly
contributes to global temperature rise, intensifying the occur-
rence of extreme weather events such as heatwaves, heavy
rainfall, floods, and prolonged droughts [2], [3], [4]. These
phenomena have profound impacts on both the environment
and human activities, including water resource scarcity,
increased respiratory diseases, threats to food security, among
others [4], [5], [6], [7], [8].

In this context, the Amazon plays a crucial role in global
and regional climate regulation, acting as an important
CO; sink, contributing to reducing its concentration in the
atmosphere [9], [10], [11]. However, the growing pressure
caused by forest degradation, deforestation and the lack of
effective public policies jeopardize the forest’s ability to
mitigate the effects of climate change [12], [13], [14]. Given
this scenario, understanding and forecasting carbon fluxes
becomes essential to anticipate trends and support more
effective conservation strategies.

The forecasting of these fluxes is closely linked to the
estimation of Gross Primary Productivity (GPP), which
represents the carbon fixed by plants during photosynthesis
and serves as a key indicator of ecosystem functioning [15].
By reflecting the forest’s response to physical and biological
disturbances, GPP is a critical variable for understanding
energy flow within an ecosystem [8], [16], [17]. However,
accurate prediction of GPP is challenged by its high
interannual variability and sensitivity to extreme climatic
conditions [9], [18], [19], [20], which may distort the
understanding of its future behavior in the region.

To estimate GPP, techniques such as eddy covariance
(EC) are widely used, enabling in situ monitoring of carbon
fluxes through stations known as flux towers [9], [21],
[22]. However, the low density of towers in the Amazon,
in addition to the limited range of measurements made
by these structures, reduces the effectiveness of large-scale
forecasts of these flux variables due to the vastness of the
region [23], [24].

In this context, the use of remote sensing data has become
essential for monitoring and predicting GPP in a viable and
effective way in larger regions due to its wide range [16],
[21], [25]. One example is the MODI17 product from the
Moderate-Resolution Imaging Spectroradiometer (MODIS)
satellite, which provides data at a resolution of 500 meters
from the earth’s surface every 8 days [26], [27], making it
crucial to understand the behavior of this variable in regions
inaccessible by field measurements or flux towers.

However, although remote sensing provides essential
data, accurate GPP forecasting—especially considering its
significant spatial and temporal variations [28], requires more
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sophisticated approaches. In this regard, Artificial Intel-
ligence (Al)-based methods have been widely applied to
estimate environmental variables such as GPP, demonstrating
considerable potential in forecasting this variable [29], [30],
[31]. This potential is particularly evident in AI’s ability
to deal with non-linear and complex problems, common
characteristics in forest ecosystems, where interactions
between the various environmental factors can be highly
dynamic [18].

In this context, [32] compared three neural network
architectures for daily GPP forecasting — Recurrent Neural
Networks (RNNs), Gated Recurrent Units (GRUs), and
Long Short-Term Memory (LSTMs) — observing similar
performance among the models, but with LSTMs standing
out for their lower error rates in predicting extreme GPP
values induced by climate. Other studies reinforce the
effectiveness of LSTMs in modeling environmental time
series: [33] achieved good results in temperature forecasting,
while [34] proposed the AELSTM model, based on LSTMs,
which outperformed traditional approaches in estimating
vegetation cover. Collectively, these studies highlight the
potential of LSTMs in forecasting complex environmental
variables and suggest that they may yield promising results
in GPP estimation.

In addition to AI models, statistical methods have also
been applied in forecasting environmental variables with
satisfactory results. In [35], the ARIMA model was used
to estimate GPP in China, showing good performance in
most regions, although with limitations in areas with lower
data quality. Meanwhile, [36] compared ARIMA, Double
Exponential Smoothing (DES), and Grey Model (GM) for
forecasting greenhouse gas emissions in Turkey, with DES
proving to be the most effective, followed by ARIMA and,
finally, GM. These results suggest that both ARIMA and DES
can be considered promising methods for GPP forecasting,
especially in contexts with consistent historical data.

In order to refine the forecasting of statistical methods,
the study by [37] investigated the integration of the Sea-
sonal and Trend decomposition using Loess (STL), which,
by separating the time series into simpler components,
facilitates modeling, especially for seasonality. However,
it was observed that this approach might compromise the
performance of Al models, which already capture complex
patterns in an integrated way and are hindered by the
separation of the data. However, the study did not investigate
the possibility of combining statistical and Al models, hybrid
models [38], [39], [40], to treat each part of the STL
decomposition distinctly, which opens avenues for future
research.

In this regard, [38] proposed a hybrid STL-AR-LSTM-
ATLSTM model to forecast wind speed, which combines
STL decomposition with ARIMA and attention-based LSTM
(AT-LSTM) models. The model uses LSTM to decompose

VOLUME 13, 2025



J. A. C. Dias et al.: Enhanced Carbon Flux Forecasting via STL Decomposition

IEEE Access

the series into components such as trend, seasonality, and
residuals, while the ARIMA-LSTM models the trend, and
the AT-LSTM captures the seasonal and residual terms. The
results showed superior performance compared to ARIMA,
AT-LSTM, and ARIMA-AT-LSTM when used in isolation,
especially in extreme values. Although the study focused
on wind speed forecasting, its results highlight the potential
of hybrid models in the analysis of climatic time series,
paving the way and encouraging the application of similar
methodologies to other variables.

Building on these foundations, this paper proposes and
evaluates a hybrid model, STL-ARIMA-ES-LSTM, for
forecasting GPP at the PE-QRF monitoring site located
in the Peruvian Amazon, using the decomposition of time
series data from the MERRA-2 and MOD15A2H satellites.
The model integrates the STL decomposition technique with
statistical models (ARIMA and ES) and neural networks
(LSTM), enabling the isolated analysis of GPP time series
components [41], [42], [43].

The contributions of this work are: i) improvement in
understanding dynamics of the carbon cycle in a biome
of the Amazon Ecoregion; ii) the use of state-of-the-art
techniques to create more accurate and reliable modeling
and forecasting methods for GPP; iii) a comparison of the
performance of the proposed hybrid model in relation to the
LSTM neural network, evaluating the gain in performance
with the proposed methodology.

This article is divided as follows: section II presents the
methodology used, including the definition of the study
area and the proposed forecasting pipeline; section III
describes the results obtained with the proposed hybrid
model, comparing its performance with that of the LSTM
alone; section IV discusses the benefits and limitations of
the study; and finally, section V presents the conclusions and
directions for future work.

Il. METHODOLOGY

The methodology used in this study was divided into
four phases. Firstly, in Data Collection and Preparation,
the region chosen as the geographical context and the
methodology for obtaining GPP data are discussed. Then,
in Time Series Decomposition, the decomposition followed
by the pre-processing of the data is explained. Next,
in Forecasting Models, the structure of the proposed model
is commented on, as is the description for hybrid modeling.
Finally, in Performance Evaluation Metrics, the concepts
relating to the evaluation metrics used are explored. Figure 1
visually presents the methodology of this article.

A. DATA COLLECTION AND PREPARATION

This section presents the methods for obtaining the variables
needed to calculate the GPP, including its final calculation.
Firstly, in Study Area, the motivation for choosing the study
areais reinforced, along with geographical and environmental
details of the region. In MERRA-2 and MOD15A2H
Data, the main data sets used are discussed, including the
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FIGURE 1. End-to-End forecast proposed pipeline flowchart. The division
on the Y axis represents the subsections of this article’s methodology.
The colored blocks within each division represent subsubsections, while
the white blocks represent the data obtained.

methods for acquiring these data. Finally, in Gross Primary
Productivity Calculation, the algorithm used to calculate the
GPP is commented on.

1) STUDY AREA

Considering the recent literature (2020-2023) of studies
aimed at the quantitative and qualitative analysis of carbon
concentration in the Amazon rainforest [15], around 42% of
the studies are carried out within the Brazilian Amazon. The
spatial heterogeneity of the dynamics of the carbon cycle in
the Amazon rainforest is already known [44], [45] and the
lack of studies in other regions can generate scientific gaps in
certain parts of the Amazon.

In this context, the Peruvian Amazon, in particular, is home
to vast areas of tropical forests and unique ecosystems,
including vast deposits of peat, which play a crucial role
in long-term carbon storage [46], accounting for approxi-
mately 20% of global carbon [47]. Despite its importance,
according to [47], this region remains under-represented
in studies, which limits understanding, especially of the
carbon and methane cycle, as well as its responses to hydro-
meteorological variations. The study therefore highlights the
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FIGURE 2. Overview of the study area.

need to increase observations and research in the Peruvian
Amazon in order to quantify and understand the energy
balance characteristics of these systems.

Therefore, in order to contribute to the advancement of
knowledge in this region, the PE-QFR site (Figure 2), which
is located in the Quistococha Federal Reserve, near the
district of Iquitos, in the municipality of Loreto, Peru, (QFR,
3° 50" S, 73° 19° W) emerges as a strategic location for
mitigating climate change in the region. According to [47],
the region represents an important carbon dioxide sink, with
a net absorption of —465 gC m? in 2018 and —462 gC m? in
2019, which highlights its role in mitigating climate
change.

According to the land cover classification provided by
the MCDI12 product [48], vegetation is mostly classified
as evergreen broadleaved forests. The region of the site
has minimum temperatures of 22.9 °C and maximum
temperatures of 31.8 °C during its rainy season and 22.5 °C
and 32.7 °C minimum and maximum temperatures during its
dry season, with average rainfall of 810 mm and 545 mm,
respectively, during the aforementioned seasons [47].

2) MERRA-2 AND MOD15A2H DATA

The daily GPP dataset used to carry out the experiments
in this article was developed based on the MERRA-2
[49] reanalysis dataset, which is widely used to calculate
the GPP [50], [51], and the MODI15A2H product. This
process followed the methodology exhaustively detailed in
the MOD17 user manual [26], which is also used to generate
the MOD17A2H [52] products, which are made available
to the public at 8-day intervals.
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The Google Earth Engine' platform was used to acquire
the variables, using the dataset entitled M2TINXSLV
[53] and M2TINXRAD [54], referring to MERRA-2, and
MOD15A2H.061. The data collected from MERRA-2 con-
sisted of the daily minimum temperature (7;,;,) and average
temperature (Tjeqn) at a height of 10 meters, incident
photosynthetically active radiation (PAR), obtained from
45% of the variable referring to the shortwave flux entering
the surface [26], water vapor mixing ratio at a height of
10 meters (gy10m) and atmospheric pressure (P). With the
MOD15A2H, only data on the fraction of photosynthetically
active radiation (fPAR) was collected.

Next, the Actual Vapor Pressure (AVP) and Saturation
Vapor Pressure (SVP) variables were obtained using Equa-
tions 1 and 2, respectively. The vapor pressure deficit (VPD)
was obtained from Equation 3.

qviom - P

AVP = 1)
0.622 4 0.379 - gyiom
17.38 - T,
SVP = 610.7 - exp (ﬂ) 2)
239 + Tmean
VPD = SVP — AVP (3)

3) GROSS PRIMARY PRODUCTIVITY CALCULATION

To combine the variables in order to obtain the GPP,
we used the software that implements the algorithm used in
MOD17A2H, which was developed by [50] and is available
in a repository on the Github? code versioning platform, in the
Python programming language.

The algorithm follows a methodology based on radiation
use efficiency (¢) (Equation 4), which is calculated by
multiplying a maximum efficiency factor (e,,,,), obtained
from the biome properties table (BPLUT), with scalars
resulting from a linear ramp function applied to the variables
Tiin and VPD. The maximum and minimum limits of this
function are provided by BPLUT, resulting in f(Tii,) and
f(VPD,). Finally, the GPP is calculated using Equation 5.

€ = €max Xf(Tmin) Xf(v) (4)
GPP = ¢ x PAR x fPAR (5)

B. TIME SERIES DECOMPOSITION
Environmental time series often present complex patterns and
non-linear dynamics that make them difficult to model using
simplified approaches. These factors emerge through human-
environment interactions, climate variability and ecological
interactions. In the Amazon biome, GPP is a variable widely
recognized for its complex seasonal dynamics, characterized
by fluctuations associated with environmental factors at
multiple temporal and spatial scales, especially in the
Amazon region [23].

Decomposition methods, used primarily in exploratory
data analysis, are decisive techniques for analyzing time

1 https://earthengine.google.com/
2https:// github.com/arthur-e/MOD17
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series that exhibit complex patterns, as they separate the
structural components into distinct structures, facilitating
subsequent analysis of each aspect of the time series [55],
[56], [57]. In a forecasting context, [58] points out that
decomposing the time series into isolated structures can
be beneficial, as it eliminates the presence of noise and
any stochastic variability in the parts, making it easier to
extrapolate each component.

1) SEASONAL-TREND DECOMPOSITION USING LOESS (STL)
Time series decomposition methods include STL decom-
position, which separates a time series into three compo-
nents: Trend, Seasonality and Residuals. Considered a filter
procedure, it uses locally estimated scatterplot smoothing
(LOESS), operating in a more robust way to outliers
compared to the traditional local polynomial (LP) method,
acting through an iterative procedure applying a weighted
LP smoothing to the original series [59], [60]. The original
series is returned following the representation of Equation 6,
where y, represents the value of the original series y at time ¢,
T represents the trend component, S represents the seasonal
component and R represents the residual component of the
decomposition.

=T +S8+R (6)

To carry out the decomposition, the STL operates through
two recursive, nested loops. Each iteration in the inner loop
updates the trend and seasonality components through a
sequential procedure. The outer loop operates by comput-
ing robustness weights; these weights are used to ensure
robustness against anomalies in the trend and seasonality
components, by changing the smoothing steps with a robust
version of LOESS [37], [60].

After decomposing the time series using the STL method,
the GPP data was divided chronologically to apply different
modeling approaches. For the ARIMA and ES models, the
set was divided into 85% for training and 15%. This division
was chosen in order to maximize the amount of information
for training the statistical models, which depend on a precise
adjustment of their coefficients in order to understand the
long-term time series. For the LSTM, due to the need for a
validation set, the division used was: 70% for training 15% for
validation and 15% for testing. This allocation was selected
in order to allow appropriate adjustments to the weights and
hyperparameters of the LSTM, as well as monitoring the
network’s ability to generalize.

C. FORECASTING MODELS
In the systematic review carried out by [61], it is highlighted
that capturing the patterns, trend and seasonality of the
historical data set is used to make accurate forecasts and
comments that decomposing the series can be beneficial as
it helps to identify individual patterns present in the data.

In order to deal with the various characteristics of the data,
after STL decomposition, this study adopted three models
with the aim of improving the forecasting of GPP variability.
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In this section, the details of each of these models are
presented: ARIMA, with its theoretical concept and specific
application; ES, discussed in terms of its implementation and
necessary adjustments; and LSTM, discussed in terms of its
concept and training configuration.

Finally, Model Configuration presents the proposed hybrid
model, which integrates the approaches discussed - STL,
ARIMA, ES and LSTM. In addition to detailing its configu-
ration, the forecast horizon and the optimization of the LSTM
hyperparameters are discussed.

1) AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
(ARIMA)

ARIMA is a statistical model used for analyzing and
forecasting time series. This model expresses a stationary
time series as ARIMA(p,d,q), where p represents the order of
the autoregressive coefficient, i.e. the past observations (lags)
used in the model, d represents the degree of differentiation
required to achieve stationarity and q the order of the
moving average coefficient. The modeling represents a linear
combination of the past values of the stationary series
and random errors, guided by the autocorrelation (ACF)
and partial autocorrelation (PACF) functions to model the
stochastic nature of the original series and thus estimate
future values [62].

The ARIMA model is widely used in various fields,
including financial forecasting [63], climate forecasting [64]
and environmental forecasting [65], and is highly relevant
in short-term forecasting tasks. In this study, the trend
component decomposed by the STL method helps to identify
linear patterns in the decomposed trend, which facilitates its
modeling with ARIMA, a classical statistical model.

2) EXPONENTIAL SMOOTHING (ES)

Exponential smoothing models are a family of methods
that produce forecasts based on weighted averages of past
observations, with the associated weighting decreasing as the
distance of the observation from the current point [56]. These
methods are divided into:

« Simple exponential smoothing (SES): Useful for series
with no clear trend or seasonality;

o Double exponential smoothing (or Holt’s
method): Can model the trend of a series;

o Triple exponential smoothing (or Holt-Winters seasonal
method): Can model both the trend and seasonality of a
time series;

linear

The ES family models are widely recognized and used in
various forecasting tasks. Previous studies have successfully
applied them both to climate time series forecasts [66]
and to hybrid applications aimed at forecasting electricity
consumption [67]. Triple exponential smoothing was used
to model the seasonal component of the GPP, due to
its easy implementation and low computational cost [68],
as well as its ability to give more importance to recent
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observations for forecasting, making it effective for short
horizon forecasts [69], [70].

3) LONG-SHORT TERM MEMORY (LSTM)

First proposed by [71], LSTMs are a type of recurrent neural
network (RNN) created to correct the problem of gradient
disappearance. This type of network has internal memory,
represented by memory blocks with a unit that protects it from
the problem mentioned above. This type of behavior allows
the neural network to capture long-term patterns, making it an
ideal choice for predicting future values based on past events.

Recent studies have already addressed the application of
LSTM models in climate variable forecasting tasks [72],
highlighting their expertise in modeling complex and
non-linear time series. In addition, current research [73],
[74] has investigated the performance of LSTM models
in hybrid approaches, especially in forecasting tasks for
extreme weather events and environmental monitoring.
Furthermore, the residuals decomposed by STL often contain
non-linear patterns and complex temporal dependencies,
which the LSTM recurrent neural network model can capture
effectively.

In this study, the implementation of the LSTM library
Tsai®, called LSTMPlus [75], was used to carry out
the forecasts, with the only change being the automatic
implementation in the last layer, in order to guarantee that
the forecasts are output in the desired format. This implemen-
tation was chosen because the environment provided by the
library guarantees a wide variety of specific configurations
for creating and testing deep learning models for predicting
time series.

In addition, to train the network, the data was previously
normalized and Huber’s loss function [76] was used to
ensure robust training against outliers. In addition, two
procedures were used to monitor training: reducing the
learning rate when the loss function in the validation set
stops decreasing (ReduceLROnPlateau) and ending training
early if performance does not improve after a predetermined
number of epochs (EarlyStopping). These procedures were
used to prevent overfitting during training. It is important
to note that the LSTM belonging to the hybrid model,
used to model the residual component of the decomposition,
will be denoted as LSTMpgesiauar to differentiate it from the
benchmark LSTM model, which uses the same settings.

4) FINE-TUNING AND MODEL CONFIGURATION
In order to carry out the forecasts, it was decided to use
8 past values to forecast 8 future values, ensuring consistency
with the structure provided by the MOD17 product for data
availability. For the ARIMA and ES models, multi-step
forecasting was used to adapt to the structure.

To ensure robustness in the evaluation, a specific cross-
validation method for time series was used, called Walk
Forward Cross Validation (WFCV) with 3 folds. Traditional

3 https://timeseriesai.github.io/tsai/

84718

cross-validation was not used in the analysis due to its
behavior of shuffling the data, which violates the general
structure of time series, which follow a chronological order,
unlike WFCV which preserves this order by training and
testing the model incrementally, using past data to predict
the future. Recent studies such as [77] and [78] have used
this same method with similar motivation for performance
evaluation.

To evaluate the uncertainty of the predictions obtained due
to random initialization, the approach based on [22] was used,
in which each model was trained a total of 10 times, giving a
total of 20 GPP predictions. The interquartile range between
the predictions was then calculated and the dispersion of
the predictions was taken into account, with the median
representing the best prediction of that model.

In addition, the Optuna library was used to acquire the
best hyperparameters for both the LSTM networks and
the ES model. Optuna is a framework specialized in the
automatic search for hyperparameters, providing an efficient
environment for finding the best configurations for the
proposed model [79]. For its implementation, 100 trials were
used to find the parameters of the LSTM and ES models,
which are part of the hybrid structure, and 150 trials to find
the parameters of the network used for benchmarking, LSTM.
For the ARIMA model, the auto_arima method was used via
the pmdarima library, implemented in Python with default
settings.

D. PERFORMANCE EVALUATION METRICS

Association and error metrics were used to assess the
performance of the models. It is therefore necessary to
understand the metrics used in order to better understand
the results obtained. This subsection presents the metrics and
methods used to evaluate the models, detailing the concepts
and reasons for choosing them. Firstly, in Error Metrics, the
average error metrics used to evaluate the performance of the
models are presented. Next, Distributional Analysis explains
the metrics used to analyze the distribution of forecast errors.
Finally, Association Metrics discusses the association metrics
used to quantify the relationship between predicted and
observed values.

1) ERROR METRICS

To evaluate the final forecasts in general, the following
metrics were used: Mean Absolute Error (MAE), Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE). The MAE provides a robust view against outliers of
the average magnitude of the errors presented in the forecasts,
providing estimates on the same scale as the original set [80].
The RMSE, unlike the MAE, highlights the largest errors,
since they are squared before the average is calculated,
providing a sensitive estimate for analyzing large deviations
observed in the predictions [81]. Finally, MAPE offers an
intuitive measure of the model’s performance in relative
terms, demonstrating the magnitude of the discrepancy
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between predicted and actual values [82]. Their respective
concepts are detailed below:

« MAE: It represents the average of the absolute differ-
ences between the actual observations, denoted as y, and
the predictions made by forecasting models, denoted by
y. The MAE is obtained from Equation 7.

1 n
MAE = = > |y —Jil (N
"

o RMSE: It measures the square root of the mean of the
squared differences between the actual observations and
those predicted by a regression model. The RMSE is
obtained from Equation 8.

1< A
RMSE = |~ ;(yi —$)? (8)
1=

« MAPE: It measures the absolute difference between
actual observations and predictions in percentage terms,
through the proportion of the magnitude of error
observed in relation to the actual value. MAPE is
obtained from Equation 9.

1 n
MAPE = -
&

yi — i

Vi

©))

2) ASSOCIATION METRICS

Measures of association quantify the relationship between
two variables, mainly assessing the strength and direction
of this relationship. In this study, the coefficients of deter-
mination (R?) and Pearson’s correlation coefficient (r) were
used. The R? was chosen because it provides an explanatory
measure of how much of the variability in the time series
is explained by the proposed model, and has already been
used in other studies as an evaluation metric in environmental
contexts [23], [83], [84]. In a complementary way, r shows
the direction and intensity of the linear relationship between
variables, and is often used in environmental studies to
evaluate the performance of LSTM models and also to
analyze the relationship between climate variables [22], [85].

o R?: Evaluates how well a linear regression model
explains the relationship between variables in terms of
the proportion of variance, with a maximum value of 1,
which means maximum explanation, zero, no explana-
tion [86], but it can also have negative values when the
model fails to explain the variation in the data [87]. The
R? is obtained from Equation 10, where § represents
the values predicted by the model and y the actual
observations, where y is the average of the data set in
question.

532

20i— y_i) (10)
> i —3)?

o r: It quantifies the strength and informs the direction
of the linear relationship between the variables, ranging

R =1
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from -1 to 1, where the first dictates a perfect negative
linear correlation and the second a perfect positive linear
correlation. In cases where r is close to zero, it is said
that the variables do not have such a relationship [88].
The value of 7 is obtained from Equation 11.

. > Gi = NGi — )
JZGi =32 S0 - 2

3) DISTRIBUTIONAL ANALYSIS

As a complement to the analysis carried out with the main
metrics, the Skewness and Kurtosis metrics were considered,
which are related to the distribution of forecast errors, making
it possible to evaluate characteristics such as symmetry and
dispersion around a normal distribution. This analysis is
relevant because it allows systematic patterns in forecast
errors to be determined.

Firstly, the Skewness metric was chosen because it allows
us to assess whether there are patterns of underestimation or
overestimation in the observed errors, which is essential for
assessing whether the model is introducing systematic biases
into the forecasts. In addition, this metric has been widely
used as a complement to analysis based on traditional metrics
in studies evaluating prediction errors in artificial intelligence
models [89], [90].

It is important to note that high or negative Skewness
values indicate, respectively, an overestimation or underes-
timation bias in the predictions in relation to the observed
values. Skewness is obtained from Equation 12, where N is
the number of forecast errors, x; is the value of the ith error,
X is the mean and o is the standard deviation of the forecast
errors.

(1D

N

1 < (& —x)
D (12)

Skewness = 3
i=1 o

Kurtosis was used to assess the concentration of errors
around the mean, helping to identify distributions with heavy
tails compared to a symmetrical distribution. High or very
negative values indicate the strong presence of outliers in the
forecast errors. This metric is complementary to Skewness
and is traditionally used together [89], [90]. Kurtosis is

obtained from Equation 13.

N —\4
. 1 (x; — X)
Kurtosis = ﬁ Z —64 (13)

i=1

IIl. RESULTS

This section presents the results obtained from the inference
of the STL-ARIMA-ES-LSTM model, with the traditional
LSTM used as a baseline for comparison. Initially, in Error
and Association, the general error metrics are discussed.
Next, in Monthly Residual, the dispersion of errors on
a monthly scale is presented. Finally, in Forecast Error
Distribution, the shape of the error distribution is explored.
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FIGURE 4. Regression analysis between the observed variable and the
prediction of each model.

A. ERROR AND ASSOCIATION

Figure 3 shows a graph comparing the forecasts of each model
with the original observations in the last fold, in which a
moving average filter was used to make the graph easier to
see. The spots around the forecasts indicate the uncertainty
interval, represented by the IQR of the forecasts around the
median over the 10 forecasts made by each model. It can be
seen from the image that the proposed model consistently
outperformed the LSTM alone, with spots referring to
uncertainty less visible throughout the series. With regard to
error metrics, the proposed model (STL-ARIMA-ES-LSTM)
consistently outperformed the isolated LSTM, with RMSE
of 1.69 gC/m?/day, MAE of 1.35 gC/m?/day and MAPE of
0.20%, while the isolated LSTM obtained 2.16 gC/mz/day,
1.78 gC/m?/day and 0.27%.

With regard to the association metrics, Figure 4 shows
the dispersion of the data, with a fitted regression line,
between the observed GPP and that predicted by each model.
The dotted black line indicates the ideal case, in which
the predictions correspond exactly to the values in the
observations. The proposed model showed a better quality of
fit in relation to the observations, with correlation coefficient
r = 0.62 and R? = 0.39. In contrast, the LSTM showed
an inferior fit, with  and R2? equal to 0.26 and —0.002,
respectively.
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FIGURE 5. Distribution of forecast errors on a monthly scale. The dashed
line serves as a reference for the scenario in which predicted values
match the observed ones.

B. MONTHLY FORECAST ERROR

Figure 5 shows the dispersion of the forecast errors for each of
the models on a monthly scale, looking for possible seasonal
patterns in the forecast errors. A reference line at zero was
included to indicate the ideal case of the forecasts having
the same values as the observations. It can be seen that the
forecast errors of the proposed hybrid model (in blue) remain
close to the reference line in most of the months analyzed,
while the LSTM forecast errors (in orange) show greater
dispersion and total amplitude.

In addition, the proposed model showed a monthly
median more concentrated at zero, with the greatest devi-
ation from the median in January with a GPP error
value of 0.32 gC/m?/day, it also showed consistently
lower extreme values, with the greatest positive extremes
observed in the months of November (5.27 gC/m?/day) and
April (5.18 gC/m?/day), and negative extremes in March
(—5.71 gC/m?/day) and November (—5.74 gC/m?/day).

With the LSTM, the greatest deviations from the median
were observed in January and November, with GPP values of
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0.71 gC/m?/day and 0.70 gC/m?/day, and it also showed a sig-
nificantly greater range of error, with more dispersed extreme
values. The greatest positive extremes for LSTM occurred
in November (7.38 gC/m?/day) and July (6.60 gC/m>/day),
while the negative extremes were recorded in October
(—5.66 gC/m?/day) and April (—5.63 gC/m?/day).

C. FORECAST ERROR DISTRIBUTION

Figure 6 shows comparisons made between the forecast error
distributions and the normal distribution. In this context,
Figures 6(a) and 6(b) indicate subtle deviations in the tails of
both distributions, with the best fit presented by the proposed
model (Figure 6(a)), despite the presence of positive outliers
being significant. On the other hand, the LSTM (Figure 6(b))
shows a lower quality of fit, visible in the sharp deviations in
both the positive and negative tails.

In addition, Figure 6(c) and Figure 6(d) visually show the
histogram and kernel density estimate (KDE) of the forecast
errors. It can be seen that, for the hybrid model, the estimated
curve is closer to a normal distribution, as evidenced by
the kurtosis (—0.12) and asymmetry (—0.01) values, which
indicate less deviation from symmetry and the concentration
of values around the mean. On the other hand, the LSTM
model shows a greater deviation, as evidenced by the kurtosis
(—0.48) and asymmetry (0.03), which reinforce the lower
adherence of the errors to normality.

IV. DISCUSSION
The results of this study show that the STL-ARIMA-ES-

LSTM hybrid model outperforms the traditional LSTM in
predicting Gross Primary Productivity (GPP) in the Amazon
region. The hybrid model showed a lower absolute error
(MAE), root mean square error (RMSE) and absolute
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percentage error (MAPE), as well as a higher correlation
coefficient (r) and R?, indicating a more faithful represen-
tation of GPP variability. These findings suggest that the
combination of statistical techniques and machine learning
may be more effective in capturing the complex dynamics of
the carbon cycle in the Amazon.

STL decomposition proved to be an essential step in
improving the GPP forecast, allowing for more efficient
modeling of trends and seasonality. The use of ARIMA
to model the trend and Exponential Smoothing (ES) for
seasonality contributed to reducing noise and improving
forecast accuracy, while LSTM was responsible for capturing
non-linear patterns in the residual component. These results
are in line with previous studies indicating that hybrid
models can outperform isolated approaches in complex
environmental forecasting [91], [92], [93], [94], [95].
However, it is worth noting that the efficiency of STL
decomposition can vary depending on the type of data
and the temporal dynamics of the variable studied. In this
sense, future research could explore alternative decompo-
sition techniques, such as Fourier analysis or Wavelets,
to assess whether the segmentation of the time series can be
optimized.

When compared to other studies, it can be observed that
approaches based exclusively on machine learning may have
limitations in predicting environmental time series due to
the difficulty of modeling or predicting extreme events,
especially when these events are not included in the training
period [96]. Furthermore, the combination of hybrid models
has been explored in several areas, such as water quality
forecasting [91], [92], ozone concentration forecasting [93],
and solar energy generation forecasting [95], reinforcing the
relevance of integrated approaches.
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Despite the good results, some limitations should be
considered. The model relies on reanalysis data (MERRA-2),
which can introduce uncertainties, especially in regions with
low direct observation coverage. In addition, validation was
carried out at a single monitoring site (PE-QFR), which
may not reflect the spatial variability of GPP throughout the
Amazon [23]. Future studies should explore the application
of the model in different regions, as well as integrating
high-resolution remote sensing data to improve the spatial
representation of the forecast.

With regard to modeling the behavior of the GPP, it can
be seen from other studies that in the palm swamp region
studied, it manages to be a large CO? sink in the wet
season [47], with reduced intensity in the dry season due
to the closure of leaf stomata to preserve internal water by
evaporation, reducing photosynthesis, a pattern also observed
in terra firme latifolia vegetation further east in the Amazon,
in Brazil [17]. This seasonal pattern was well captured by
the model even with only two years of data in the region,
however, ongoing climate change is causing changes in the
pattern of rainy seasons in the Amazon, as well as an increase
in average temperature, which may decrease the effectiveness
of the model’s forecast, considering only the carbon flux time
series.

Future analyses could investigate multivariate forecasts
combining GPP models and climate forecasts, using updated
temperature and humidity data to detect abrupt changes in
carbon uptake. Together, the simulation of future GPP series
based on the different warming scenarios provided by the
Intergovernmental Panel on Climate Change (IPCC) can
provide important perspectives on changes in the different
component biomes of the Amazon region as a result of surface
warming [97].

Furthermore, the implications of the proposed model
go beyond predicting GPP. The improved accuracy of the
estimates can contribute to a better understanding of the
carbon cycle and provide subsidies for forest conservation
policies, such as the REDD+ program, and apply social
programs focused on changing the land use of the population
in the region of greatest impact, such as in the areas of
agricultural frontier and cattle ranching [5], [7]. Incorporating
socioeconomic variables, such as deforestation and land use
indices, could further refine the model’s ability to anticipate
changes in the carbon balance [22].

Thus, this study reinforces the potential of hybrid
approaches for modeling complex environmental systems
and highlights the need for additional research to expand and
validate the proposed methodology. With further refinements,
this approach could become a valuable tool for environmental
monitoring and the development of effective climate change
mitigation strategies.

V. CONCLUSION

This study demonstrated the effectiveness of the STL-
ARIMA-ES-LSTM hybrid model in forecasting GPP in
the Amazon region, surpassing the results obtained by the
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traditional LSTM network in terms of error, association
and distribution metrics. The use of STL decomposition
as a pre-processing stage, together with the combination
of statistical and machine learning methods, proved to be
a promising approach for capturing the complex dynamics
of environmental time series, highlighting its potential for
application to other variables of climatic interest.

The results presented show the potential of hybrid
approaches to solve challenges related to modeling complex
environmental systems, especially in regions of high biodi-
versity and climatic relevance, such as the Amazon. Although
the model was applied to the GPP, the methodology can
be adapted to other variables critical to the carbon cycle,
broadening the scope of application in tropical biomes.

Even so, the study faces limitations, such as the depen-
dence on reanalysis data and the low density of flux towers in
the Amazon, factors that restrict validation on broader scales.
Future work should explore the integration of remote sensing
data with greater temporal and spatial resolution, as well
as investigating the application of more advanced models to
capture even more complex seasonal patterns.

Furthermore, this study makes a substantial contribution to
advancing our understanding of the dynamics of the carbon
cycle, offering tools that can support public policies aimed
at mitigating climate change and conserving the Amazon
rainforest. By reinforcing the importance of the Amazon as a
global climate regulator, it is hoped that the results presented
here will inspire new research and strategies to protect this
essential ecosystem. Finally, to ensure the replication of the
results, a repository containing the Python code, dataset and
images used in this article has been created and is available
in a repository on Github.*
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