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Abstract— Health-conscious battery management systems
(BMSs) that rely on surface temperature measurements are
insufficient for managing automeotive lithium-ion batteries (LIBs).
Experimental studies have shown temperature differences of
up to 10 °C between surface and core of cylindrical LIBs.
BMSs that consider only surface temperature overlook crit-
ical thermal information. The missing monitoring can delay
detecting thermal events within the cell, accelerating battery
degradation and increasing the risk of thermal runaway. This
article introduces two deep learning algorithms to address this:
Kolmogorov—Arnold network (KAN) and interconnected long
short-term memory (LSTM) network. Both approaches estimate
the core temperature of LIBs without requiring surface temper-
ature feedback to the neural network. Experimental validation
revealed a core temperature mean absolute error (MAE) of
0.55 °C with a computational cost of 2.9-3.2 ms for KAN. The
proposed interconnected LSTM reached a MAE of 0.80 °C. The
performance of the two core temperature estimation techniques
was further evaluated under dynamic loading profile using
urban dynamometer driving schedule (UDDS) drive cycle. The
KAN method achieved a MAE of 0.325 °C, demonstrating its
adaptability to dynamic operating conditions. The two proposed
methods, primarily KAN, are both adaptive and computationally
efficient, making them suitable for integrating onboard BMS and
cloud-enabled digital-twin-based BMS systems.

Index Terms— Battery management systems (BMSs), data-
driven techniques, digital twining, electric vehicles (EVs),
machine learning (ML), state estimation.

NOMENCLATURE

I Battery current in A.
% Battery voltage in V.
T.mp Ambient temperature in °C.
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Ts Surface temperature of the battery in °C.
Teore  Core temperature of the battery in °C.

ty Time step n.

¢/® KAN activation function/function matrix.
X Input vector.

yv/y  Expected/predicted output vector.
ACRONYMS

Al Artificial intelligence.

BMS Battery management system.

EVs Electric vehicles.

KAN Kolmogorov—Arnold network.

LSTM Long short-term memory.

MAE  Mean absolute error.

R? Coefficient of determination.

RMSE Root-mean-square error.
SOC State-of-charge.

SOH State-of-health.

SOT State-of-temperature.

I. INTRODUCTION

ADOPTION of EVs hinges significantly on advancements
in battery life, safety, and effectiveness of TMS [1].
Effective thermal management ensures optimal battery per-
formance across various climates, reduces degradation, and
prevents overheating, which enhances both longevity and
safety while maintaining higher resale values but also reduces
overall ownership costs. Together, these factors contribute
to making EVs more reliable, cost-efficient, and appeal-
ing, driving their broader acceptance and market expansion.
Experimental studies and user experiences revealed that the
performance, safety, and life of LIB are significantly affected
by the operating temperature of LIB [2], [3]. Battery tem-
perature outside of the safe operating region specified by the
manufacturer results in accelerated battery degradation and
often leads to safety issues such as thermal runaway or perfor-
mance degradation [4], [5]. Such thermal issues become even
more complicated in EVs battery packs typically consisting
of several 100 and 1000 of individual cells closely packed,
resulting in thermal imbalance exacerbated by inhomogeneous
heating/cooling, particularly under fast charging/discharging
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TABLE I
SUMMARY OF REFERENCES FOR TEMPERATURE ESTIMATION

Reference Model Model Input Estimated Parameters Performance
Lin et al. [7] H oo model 1, inlet coolant temperature Ts, Teore Worst case < 3.1°C
Richardson et al. [8] EKF-based estimator I,V Temperature distribution RMSE < 0.7°C
Chen et al. [9] EKF-based estimator I,V Ts, Teore Teore = 1.5°C

/Ts £ [-0.5°C; 1°C]

Schmidth et al. [10] Impedance-based

EIS-Measurement, SOC

with SOC £+ 0.17°C
without SOC + 2.5°C

Bulk temperature

Wang et al. [11] LSTM with transfer learning

LV, Ts, Tamb

Teore RMSE < 0.3302°C

MAE 0.3302°C

Zheng et al. [12] LSTM Impedance, I, V' volume-average temperature RMSE 0.46 °C
Surya et al. [6] 2D grid LSTM 1,V,Q, Ts Teore RMSE < 0.81°C
Xu et al. [13] Nonlinear Spatiotemporal Modeling 1,V Temperature distribution RMSE < 0.1439°C

Kleiner et al. [14] ECM-NARX-network SOCint, I Teore MSE < 0.5°C
Wei et al . [15] LTNN-UKF I,V Temperature distribution RMSE < 0.4266 °C

MAE 0.3180°C

Zhang et al. [16] LSTM 1,V,Ts Teore RMSE < 0.171°C

MAE < 0.148°C

Zhang et al. [16] GRU 1,V,Ts Teore RMSE < 0.131°C
MAE 0.099°C

Chin et al. [17] Electro-Thermal State-Space model I, Tymp Ts, Teore Ts MSE < 3°C

and dynamic operations and conditions. Furthermore, a dif-
ference of up to 10 °C is noticed between surface and core
temperature, especially in cylindrical LIB cells [6]. Therefore,
closely monitoring the core temperature of individual cells
is extremely important for effective TMS control, ensuring
longer battery life and safer operation under dynamic operating
conditions and fast charging of EVs batteries.

The representative studies on battery temperature estima-
tions have been summarized in Table 1. Zheng et al. [18]
identified four key metrics for assessing the SOT of LIB:
surface temperature, core temperature, bulk temperature, and
temperature distribution. Traditionally, cell temperatures are
monitored using sensors such as thermistors or thermocouples
attached to the cell surface. However, in EVs, the battery
pack consists of numerous cells, and equipping each cell with
a temperature sensor significantly increases both cost and
hardware complexity. Consequently, only a limited number
of sensors are installed at key locations. For instance, the
Chevy Volt employs 16 sensors for 288 cells, while the Ford
C-Max Hybrid uses ten sensors for 76 cells [7]. This limited
sensor deployment reduces full observability of individual cell
temperatures. Moreover, even with surface temperature sen-
sors, it is challenging to monitor the rapidly changing internal
temperature of the cell due to the heat transfer delay from
the core to the surface. As a result, temperature information
obtained through direct sensor measurements often proves
insufficient, leading to suboptimal thermal management in
battery systems. Moreover, in cylindrical batteries, especially
those under forced convection cooling or with larger diameters
(e.g., 26 650 cells), the Biot number Bi is given by Bi = k/hL,
where h is the heat transfer coefficient, L is the characteristic
length, and k is the thermal conductivity [19], [20], can be
greater than 0.1. This indicates significant thermal gradients
within the battery. Consequently, the core temperature can
be substantially higher than the surface temperature, with
differences reaching up to 10 °C. Therefore, monitoring or
accurately estimating the core temperature is critical for main-
taining the thermal safety and performance of LIB.

Existing high-fidelity thermal models [20], [21] can pre-
dict the detailed temperature distribution throughout the cell.
However, these models are not suitable for onboard appli-
cations due to their high computational intensity, especially
for the entire battery pack consisting of 100-1000 of indi-
vidual cells. Reduced order models [22], [23] are capable
of estimating the bulk or average temperature and capturing
the thermal dynamics of the cell. Even though these models
are computationally efficient compared to detailed modeling,
they often fail to capture the cell dynamics and are still
not suitable for on-board application due to the commutative
computational cost for the entire battery pack. Lumped thermal
models [20], [24] are capable of estimating surface and core
temperature simultaneously; however, such simplified models
are not reliable in terms of accuracy and the capability of
considering the cell dynamics. Moreover, in general, equiva-
lent model-based estimation methods often fail to consider the
dynamics of the operating conditions, such as variable load
current, ambient temperature, and aging of the battery. These
results in poor reliability over the entire cycle life of batteries,
EVs despite high degree of accuracy during the laboratory
conditions [25]. Numerical methods [8], [26], [27] such as
finite element methods are also established to predict the
battery temperature distribution even under dynamic operating
conditions. Like distributed thermal models, numerical models
are also computationally expensive, resulting in impractical
for on-board BMS. Schmidt et al. [10], Srinivasan et al. [28],
and Zheng et al. [12] used EIS-based internal temperature
estimation of LIB. However, this is limited by the cost of the
measurement system and integration of the EIS setup to the
on-board BMS. Fusion of data-driven algorithms and lumped
parameter thermal models [6], [9], [29] are also proposed for
cell core temperature estimation, where the influence of heat
generation rate and temperature entropy coefficient on the heat
generation rate is considered to improve the estimation accu-
racy. However, these models still depend on the parameters
of the lumped models, which change with battery aging and
operating conditions.
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The prediction of core temperature in LIB is inherently a
time-series prediction problem due to the distributed param-
eter system with spatiotemporal variations [13]. In recent
years, researchers have increasingly adopted Al and ML-based
techniques to monitor and predict both short-term [30] and
long-term [31] states of LIBs. For instance, Kleiner et al. [14]
proposed a nonlinear autoregressive model with exogenous
(NARX) inputs, Wei et al. [15] utilized a backpropagation
neural network (BPNN), Wang et al. [11] employed a LSTM
network, and Surya et al. [6] applied a 2-D grid LSTM for
core temperature estimation. These studies primarily relied on
battery current, voltage, SOC, and heat losses within each
cell as inputs to their ML algorithms. RNNs are particularly
adept at capturing long-term dependencies in time-series data
by enabling information transfer across multiple time steps
through recurrent connections within the network. However,
training RNNs on extended sequences or large time-series
datasets often encounters challenges such as vanishing or
exploding gradients. To address these issues, Cho et al. [32]
introduced the GRU. Recently, Yuan et al. [33] proposed a
method combining a numerical model with an LSTM neural
network for core temperature estimation. In this approach,
the numerical model, utilizing EIS, provided volume-averaged
temperature features for the LSTM network. While the method
demonstrated an estimation MAE of less than 0.23 °C, it still
faced the inherent challenges associated with numerical and
EIS-based approaches, such as dependency on precise model
parameters and operational constraints. Zhang et al. [16]
performed a comparative analysis of RNN, LSTM, and GRU
models, improving core temperature estimation performance
through hyperparameter optimization using Bayesian opti-
mization with a tree-structured Parzen Estimator, coupled
with K-fold cross-validation. Despite these advancements,
a common limitation of existing techniques is their dependence
on measured surface temperature as feedback, necessitating
a physical surface temperature sensor for each cell. More-
over, using heat generation as an input to ML models is
impractical since obtaining accurate heat generation data is
challenging in real-world applications. Heat generation cannot
be directly measured, and estimations using equivalent thermal
models become inaccurate over time due to battery aging and
evolving model parameters influenced by varying operating
conditions, including temperature fluctuations [17]. To address
these research gaps, this article introduces a self-learnable
KAN for predicting the internal and surface temperatures of
LIBs, eliminating the need for a surface temperature sensor
as feedback. The novel contributions of this work can be
summarized in the following three aspects.

1) First, the article introduced two LSTM and KAN for
core and surface temperature estimation of LIB without
needing any surface temperature measurement sensor
feedback eliminating the need for a physical surface
temperature sensor on each cell resulting in reduced cost
and wire-harness of BMS.

2) The proposed core and surface temperature estima-
tion techniques ensuring a high degree of prediction
accuracy and reliability for a wide range of bat-
tery charging—discharging conditions and operating
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temperatures (—20 °C to 40 °C) even with dynamic
drive cycle discharging conditions.

3) A comparative analysis between the proposed KAN and
LSTM models to estimate core and surface temperature
with state-of-the-art is also presented in this article
to demonstrate the superiority and advantages of the
proposed techniques for temperature monitoring and
control by the on-board BMS.

The remainder of this article is organized as follows.
Section II describes the methods employed, detailing the archi-
tectures of the proposed LSTM and KAN models. Section III
outlines the experimental setup and data collection process
used for model training and validation. Section IV presents
the results and discusses the comparative analysis of the pro-
posed techniques under various operating conditions. Finally,
Section V concludes the article by summarizing the findings
and providing insights for future research directions.

II. METHODS

As mentioned, multiple different temperature estimation
methods have been proposed in the literature. This article
introduced, for the first time, a KAN model for estimating
the core and surface temperature of a LIB cell using the
basic operating parameters of the battery: voltage, current,
and ambient temperature. Also, an interconnected LSTM
network architecture is proposed to estimate the core and
surface temperature using the basic operating parameters.
Sections II-A and II-B proposed the architecture of both intro-
duced methods: the interconnected LSTM and the KAN
architecture.

A. Interconnected LSTM

LSTM is a popular RNN, having a feedback connection
within the model. The architecture makes LSTM well-suitable
for processing time series data. Compared to other variations
of RNN-based models like bidirectional LSTM (BiLSTM),
conventional LSTM is less computationally intensive [34].
Moreover, as Lindemann et al. [35] demonstrated, LSTM net-
works are highly efficient in detecting anomalies and learning
the temporal relationships within a time-dependent context.
A single LSTM cell consists of an input gate i, forget gate f
and the output gate o. The structure of a standard LSTM cell
is illustrated in Fig. 1. The LSTM cell utilizes an input gate i,
forget gate f, and the output gate o [36] to obtain the desired
estimated parameters based on the input given to the model.

Previous studies have already presented estimation meth-
ods that use interconnected LSTM networks to estimate two
parameters that are related to each other. The internal resis-
tance of a battery cell is one of the most significant indicators
of SOH. Van and Quang [37] of a previous study use this
effect. Their work proposes a model architecture that estimates
the SOH utilizing the input of temperature, current, and
voltage. The interconnected network also employs the input
of the first network and the output, the SOH. The authors
conclude that estimating SOH as an input helps estimate
internal resistances and their relationship is considered in
the deep learning process of LSTM for improved precision.
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Fig. 1. LSTM Architecture and cell structure.

amb

Fig. 2. Structure for estimating surface and core temperature using intercon-
nected LSTM network.

In addition, Hu et al. [38] proposes a joined SOC and SOH
estimation method using two interconnected LSTM networks.
The positive results of the two studies indicate the potential of
an interconnected LSTM for estimating interdependent states.
This study introduces an interconnected LSTM designed to
predict the surface temperature 7s and the core temperature
T.ore- The first network takes voltage V, current I, and ambient
temperature Ty, as inputs, and its output is the surface
temperature Tg. The second network uses the same inputs as
the first and includes the surface temperature as an additional
input parameter to estimate the core temperature T oe. Fig. 2
illustrates the structure of the method. Each estimation model
consists of an LSTM layer followed by a FNN with one hidden
layer and a final output layer. Battery current /;, voltage Vi,
and ambient temperature Tymp, Of i time steps are used as an
input vector x of the LSTM network and as output vector y
the estimated surface temperature 75, and core temperature
Teore.r, at time step

x=[L,. I ... L.,

Vi Vi is oo Vi s

Tamb,y> Tamboty s - - -+ Tamboty s | (D
y = [TS,tn9 Tcore,tn]- (2)

B. Kolmogorov—-Arnold Network

In MLP [39], during the learning process, the weights are
optimized, and the activation function on each node is fixed.
Unlike MLP, the KAN learns the activation function of each
node [40] individually. The KAN does not have linear weights;
it has univariable spliced functions. When a neuronal network
learns a high-precision function, the model should learn to
approximate the univariate functions and the compositional

IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 11, NO. 4, AUGUST 2025

Teore

Tamb

Fig. 3. Structure of a KAN.

structure. The KAN, as proposed by Liu et al. [40], combines
the splines and MLP to achieve a high degree of robustness,
accuracy, and adaptability. Fig. 3 shows the structure of a KAN
and the learnable activation functions as proposed in [40]. This
article uses a similar architecture tailored to core and surface
temperature estimation of LIB.

The KAN is inspired by the Kolmogorov—Arnold rep-
resentation theorem [41]. The importance functions, and
background calculus of the KAN architecture are discussed
below

2n+1 n

FO)=f@ox) =D @[ D ge,(x) ] B
q=1 p=I1

where ¢, , : [0,1] - R and &, : R — R. A single KAN
activation value of the (I 4+ 1, j) neuron is the sum of all
incoming postactivations, where / is the layer, j the neuron of
the (I + 1)th layer, and i the neuron of the /th layer [40]

n
Xi1,j = Zfﬁl,j,i(xl,i), J=1 ..., n51. “4)

i=1
In matrix form, it can be defined as
G110 b1 ()
X4 = : : X (5)

¢1Jll+1,1(') ¢l,n1+1,n1(')

b

where @, is the function matrix of the /th KAN layer. A KAN
network with L layers and a given input vector x is defined
as

KAN(x) = (d;_j 0--- 0 ®; o Dy)x. (©6)

Previous studies [42], [43] have identified KAN as highly
suitable for time-series data with a higher interdependency.
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TABLE II
MOLICEL P42A INFORMATION
Property | Molicel P42A
Nominal Capacity 4200mA h

Continuous Discharge Rating (max) 45A
Nominal Voltage 3.6V
Maximum Voltage 4.2V
Discharge cut-off Voltage 2.5V
Discharge cut-off SOC 30%

Nominal discharge 4A
Maximal discharge 45 A

Nominal charge 2A
Maximal charge 8.4A

These studies demonstrate the network’s high interoperability
and accuracy in predicting time-series data. Furthermore, com-
pared to similar architectures used in estimation and prediction
applications involving time-series data, such as MLP and
LSTM, KAN achieves fewer parameters while maintaining
higher or comparable accuracy. This work uses a tailored made
KAN model to forecast the core and surface temperature of
battery cells within one network. Battery current [, voltage
V;, and ambient temperature Ty, of three time steps ¢, £,_1,
and #,_, are used as an input vector x of the network and as
output vector y the estimated surface temperature Ts, and
core temperature Ty, at time step t,

X = [It,,v It,,_l , It,,_zv

VI,,’ ‘/tn,p ‘/t,,,25
Tamb,tnv Tamb,t,,_| 5 Tamb,t,l_z] (7)
y= [TS,I,,v Tcore,zn]« (8)

III. EXPERIMENTAL DATA AND MODEL TRAINING
A. Core Temperature Measurements

As shown in Fig. 4, the experimental setup collects the
training, testing, and validation data for the proposed core
and surface temperature estimation techniques. The battery
testbench consists of an Ivium (Model: OctoStat5000) battery
cycler, an Ivium (Model: OctoPDA-T) analog data collector
for core and surface temperature measurement, a Binder
environment control chamber (Model MKF 240), and an
MCP (model: LBN-1990) digital power supply for providing
power for core temperature measurement. A Microsoft Surface
Pro 7 is used for the overall system control and central-
ized monitoring using the IviumSoft platform. A Molicel
4200 mAh 45 A INR-21700 cylindrical LIB is selected for
this study. This battery was selected due to its fast response
time, high maximum discharge, and current charge capability
for fast discharge and charge cycling. The specification of the
battery as provided in the manufacturer’s data sheet! is given
in Table II.

At first, a physical temperature sensor (TE connectivity,
GA10K3MCD1) is embedded at the core of each cell by
drilling the cell vertically through the negative terminal of the
cell. Before drilling, the cells were discharged to SOC 0% and
cooled down at a temperature of 0 °C. The width of the drill is

Uhttps://www.molicel.com/wp-content/uploads/INR21700P42A-V4-
80092.pdf
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(©)

Fig. 4. Battery cell preparing. (a) Drilling of cooled down, discharged cell,
(b) inserted core temperature sensor, and (c) battery cycling setup with cycler
and climate chamber with seven prepared cells and nine validation cells.

0.55 mm, which is just sufficient for installing the temperature
sensor as shown in Fig. 4(a). Then, the adhesive is provided
carefully to seal the air gap and protect the battery’s internal
chemistry from degradation. Fig. 4(b) shows the prepared
cell. The negative temperature coefficient (NTC) thermistors
provide a measurement accuracy of £0.2 °C at 20 °C. A K-
type thermocouple sensor is also installed on the surface of
each cell for surface temperature measurement. The K-type
sensor provide an accuracy of £2 °C for temperatures between
—25 °C and 40 °C.

Then, a series of battery cycling is performed with four
drilled cells and one validation cell in a wide range of ambient
temperatures and C-rate as mentioned in the list below.

1) Ambient temperatures in performed order: 20 °C 10 °C,

0 °C, —10 °C, —20 °C, 30 °C, 40 °C.
2) 3x Each: CC-CV (0.3 C/0.3 C); CC-CV (0.5 C/0.5 C);
CC-CV (0.8 C/0.8 C); CC-CV (1 C/1 C).

After a change in the outside temperature, a break of at least
3 h was taken to ensure that the cell rested under the changed
temperature. The measured core and surface temperature at
20 °C, including cell voltage and current over 12 charging
and discharging cycles, is shown in Fig. 5. Similarly, all the
experiments are conducted per the schedule mentioned above
to generate a large data set. The collected data are used
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for both the LSTM and KAN network development, train-
ing, testing, and validation. The measured core and surface
temperature data are then used as baseline and reference data
to assess the prediction models’ accuracy and generalization
under varied ambient temperatures and C-rate. The measured
temperature data are also used to compare the LSTM and
KAN to demonstrate the proposed method’s superiority and
practicality.

B. Model Implementation and Validation

The flow of data acquisition, processing, and the neuronal
network is illustrated in Fig. 6.

1) Data Processing: The test setup and the software
used during data acquisition ensured no missing data points.
In addition, the measurement software has already corrected
for outliers in the data. Data processing consists of min—max
normalization of the features. Furthermore, to preprocess the
data for training and validation. To ensure that data are
not considered by the model during training and validation,
it is randomly divided into training and validation data-based
ambient temperature and cell. At each ambient temperature,
one out of four cells is randomly chosen as test cell and three

IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 11, NO. 4, AUGUST 2025

TABLE III
ARCHITECTURE OF MODELS
Layer | LSTM | KAN
1 LSTM(input=3, hidden size = 25, layers = 1) KAN(Q9)
2 Dense(32) KAN(32)
3 Dense(1) KAN(16)
4 LSTM(input=4, hidden size = 50, layers = 1) KAN(2)
5 Dense(32)
6 Dense(1)

cells for training. Data have been sliced into time windows of
5 s measurement, corresponding to 50 data points.

2) Model Implementation: Python 3.10 has been used as a
programming language, PyTorch 2.3.1, and the KAN imple-
mentation of pykan 0.0.5 to implement the models. A grid
search was carried out to determine the hyperparameters of the
two network architectures. To determine the LSTM hyperpa-
rameters, an exploration via grid search was performed across
different hidden layers (ranging from 1 to 3) and hidden sizes
(25, 50, and 75) for each of the LSTM estimation networks.
The evaluated hyperparameters of the KAN are the layer size
of the two hidden layers of the network. The exploration
includes the combinations 8/4, 16/8, 32/16, and 64/32 for the
two layers. Table III presents the structures of the two selected
hyperparameter configurations.

IV. RESULTS AND DISCUSSION

The performance and the superiority of the proposed
KAN-based core and surface temperature estimation tech-
nique for LIB are demonstrated in this article through
a detailed comparative analysis with the proposed LSTM
model. Hyperparameter optimization was followed by train-
ing and validating each model. Two different datasets were
utilized for independent training and evaluation. First, the
above-mentioned dataset was measured during the core tem-
perature experiments, as described in Section III-A, and is
named the CC-CV dataset. Samata and Williamson [44] pro-
posed a dataset containing measurements of CC-CV cycles
up to 4 C at ambient temperatures —20 °C—40 °C, and urban
dynamometer driving schedule (UDDS) and highway fuel
economy driving schedule (HWFET) drive cycle at 25 °C
30 °C, and 40 °C ambient temperature employing Samsung
INR21700-40T cylindrical cells, following named as drive
cycle dataset. For training the measurements of CC-CV cycles,
HWFET and UDDS are employed. The dataset contains data
with a measurement frequency of 1 Hz. The model is evaluated
once with the UDDS driving cycle at 25 °C and once more
with HWFET 30 °C. In this case, the corresponding driving
cycle is excluded from the respective training. Performance
assessment was done with a new data set entirely unknown
to both models. Three commonly referred metrics are chosen
to quantitatively characterize the performance of the model,
including RMSE, MAE, and coefficient of determination (R?),
which can be described as follows:

RMSE = 9)
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TABLE IV [$) 1 === Measured LSTM e KAN
MAE, RMSE, AND R?> CORE AND SURFACE TEMPERATURE PER MODEL 14 T i i i T o1 1
OF DRILLED CELLS IN °C g | | | .
1 1 1 1
- 1 I 1 i i
— KAN LSTM ST A i ;
=] 1 1 Ir 1
Core 0.579 0.613 g : :
Surface | 0.353 0.370 & | i !
RMSE g 107 . !
Core 0.814 0.875 “‘g ] i i i i
Surface 0.519 0.520 n 1 1 1 ] !
R? 8 4+t —t— — —t T
Core 0.99808 | 0.99779 0 10 20 30 40 50
Surface | 0.99911 | 0.99910 Time (h)
TABLE V Fig. 7. Measured surface temperature (green) compared with KAN (cyan)

and LSTM (pink) estimation models at 10 °C ambient temperature.

MAE SURFACE AND CORE TEMPERATURE PER MODEL IN °C

Surface Core - - -
Ambient Temperature | KAN | LSTM | KAN | LSTM . === Measured ILSTM e KAN
40 0.230 | 0.293 | 0.464 | 0.768 @) | i i i i
30 0.363 | 0473 | 1.403 | 1.143 e t-r-r-ro- Ammmmme- mmmmmee- e
20 0325 | 0.264 | 0.207 | 0419 5 1 ! ! ! !
10 0.403 | 0413 | 0.714 | 0.639 § E E 1 1 E
0 0.267 | 0306 | 0.532 | 0.528 g 15 ' i N N o N i
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where n is the sample size, y; is the actual value, and y; is
the predicted value.

A. CC-CV Dataset

Table IV shows the model validation performance for both
surface and core temperature estimation. The quantitative
performance metrics of the model at the full range of ambient
temperatures are performed for both LSTM and KAN-based
surface and core temperature estimation algorithms. The KAN
model is considered the model with the best performance for
all analyzed metrics. From Table IV, it can be noticed that the
average RMSE and MAE of core temperature measurement
using KAN are less than 0.75 °C and 0.47 °C, respectively.
Similarly, the average RMSE and MAE of surface temperature
measurement using KAN is less than 0.47 °C and 0.30 °C,
respectively.

The validation and robustness of the KAN and LSTM are
also performed at a wide range of ambient temperatures,
as shown in Table V. It can be noticed that the changes in MAE
vary for KAN in the range of 0.230 °C at 40 °C to 0.422 °C at
—20 °C for surface temperature estimation. Similarly, in KAN
core temperature estimation, the MAE varies in the range of
0.207 °C at 20 °C and 1.40 °C at 30 °C. LSTM produced the
slightest error of 0.355 °C at —10 °C for core temperature
estimation, whereas for surface temperature, LSTM produced
the least MAE of 0.293 °C at 40 °C.

The estimated surface and core temperatures are shown in
Figs. 7 and 8, respectively, at 10 °C ambient temperature.
As illustrated in Fig. 7 for the surface and Fig. 8 for the core,

the estimated temperatures closely match the measured values.
A summary of MAE, RMSE, and R? of both core and surface
temperature estimation using KAN and LSTM is shown in
Table IV.

The estimated surface temperature based on the same input
battery parameters, voltage, current, and ambient tempera-
ture is shown throughout the validation cell in Fig. 9. The
validation cell has not been drilled and does not include a
core temperature sensor. This enables the validation of model
accuracy for a standard battery cell. The figure illustrates that
higher maximum errors can be observed at lower ambient
temperatures. A decrease in accuracy during aging cannot be
observed. Furthermore, a significant relation between MAE
and aging and temperature cannot be observed. As the zoom-
in illustrates, the KAN model shows higher accuracies than the
LSTM model. The illustrated error shows significantly higher
estimations than the measured values through short periods.
The performance of the KAN and LSTM model within the
validation cell is shown in Table VI. A reduction in accuracy
compared to the drilled cells, shown in Table IV, can be seen.
This apparent difference in accuracy between cells with and
without an inserted temperature sensor can be explained by
the physical effect on the cell caused by the insertion of the
Sensor.

Fig. 10 shows the measured capacity of the battery cells
during the test period. The respective ambient temperatures
are also shown. During the experiment, a capacity drop across
all battery cells is seen. However, the validation cell shows
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Fig. 9. Validation of surface temperature estimation method using validation
cell over the wide range of ambient temperatures.

TABLE VI

MAE, RMSE, AND R? SURFACE TEMPERATURE PER MODEL
OF VALIDATION CELL IN °C

KAN LSTM

MAE 0.550 0.800

RMSE 0.851 1.128

R? 0.99793 | 0.99635
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Fig. 10.  Change of discharge capacity during performed experiments;
Comparison between not prepared validation cell V1 and drilled test cells
T1-T4.

a significantly lower capacity loss than cells with the core
temperature sensor inserted.

B. Drive Cycle Dataset

Table VII shows the accuracy of the KAN and LSTM
models trained with the dataset proposed in [44]. Due to
the low standard deviation in core and surface temperature,
the R? value is not considered reliable, given the inherent
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TABLE VII

MAE AND RMSE CORE AND SURFACE TEMPERATURE PER MODEL AT
UDDS DATASET AT VARIATIONS OF TRAINING IN °C

UDDS 25°C UDDS 25°C HWFET 30°C
(Unknown UDDS profile)
KAN | LSTM KAN LSTM KAN | LSTM
MAE
Core 0.610 0.901 0.598 0.887 0.936 0.727
Surface | 0.411 1.206 0.481 1.030 0.775 | 0.725
RMSE
Core 0.735 1.354 0.787 1.433 1.507 1.150
Surface | 0.520 1.459 0.677 1.636 1.305 1.007
1 : :
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Fig. 11. Measured core and surface temperature (green) compared with KAN
(cyan) and LSTM (pink) estimation models at UDDS 25 °C.

weaknesses associated with limited-variance data. The table
gives MAE and RMSE of core and surface temperature
estimation of three different training and validation settings
as follows.

1) UDDS 25 °C: Training: CC-CV cycles, UDDS (30 °C,
40 °C), HWFET (25 °C, 30 °C, 40 °C); Validation:
UDDS 25 °C.

2) UDDS 25 °C (Unknown UDDS profile): Training:
CC-CV cycles, HWFET (25 °C, 30 °C, 40 °C); Vali-
dation: UDDS 25 °C.

3) HWFET 30 °C: Training: CC-CV cycles, UDDS (25 °C,
30 °C, 40 °C), HWFET (25 °C, 40 °C); Validation:
HWEFET 30 °C.

For the UDDS driving cycle, KAN shows a better result than
LSTM for all key performance indicators considered. With an
RMSE of 0.677 °C for the surface temperature, there is only
a slightly worse result of 0.157 °C RMSE between the results
where the driving cycle is already known to the model, as it
is included in the training data at other temperatures and the
results where the driving cycle is still completely unknown.
At HWFET, the LSTM model indicates that 1.150 °C and
1.007 °C RMSE have better core and surface temperature
estimation performance, respectively.

Fig. 11 illustrates measured (green) and estimated KAN in
cyan and LSTM in pink, core and surface temperature UDDS
drive cycle at 25 °C, where training data include UDDS drive
cycle at 30 °C and 40 °C. The figure shows a surface and
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TABLE VIII

COMPUTATIONAL COST COMPARISON OF MODELS AND DIFFERENT
HARDWARE SETUPS IN ms

CPU-Setup | LSTM KAN
Intel Xeon Gold 6338 2G | 0.55 £ 0.10 | 2.92 £ 0.45
Intel Core i9-10885H | 0.58 4 0.04 | 3.28 + 0.34

core temperature increase of 4.0 °C and 4.9 °C. The proposed
KAN model reproduces the battery behaviors and dynamics
more accurately than the interconnected LSTM. Both models
modulate the increasing temperatures. However, LSTM shows
a significantly higher fluctuation in temperatures, which does
not correctly reflect the dynamics of the battery. The KAN
also shows higher dynamics compared to the measured tem-
perature, although these are lower than in the LSTM.

C. Computational Cost

As can be seen from Table VIII, the computational cost at
20 °C, LSTM performs better than KAN with the CPU-setup
with a computational cost in the range of 0.55-0.58 ms for
LSTM whereas 2.92 to 3.28 ms for KAN. However, it is
noticed that the computational cost can be reduced with
improved CPU setup. Furthermore, the KAN implementation
is still in a relatively early stage of development. Due to
further development and the associated optimization of the
implementation, performance gains can be expected over the
coming months and years.

While KAN offers potentially greater predictive power
and flexibility, especially in handling complex nonlinear rela-
tionships, these advantages come at the cost of increased
computational complexity and time compared to the proposed
LSTM model. The validation using the unprocessed valida-
tion cell influences the battery behavior. Future studies will
enhance this by refining the insertion procedure. However, the
results indicated that it is possible to minimize this influence
as early as the modeling stage.

V. CONCLUSION AND OUTLOOK

This article introduces two neural network architectures to
estimate the surface and core temperature of LIB employing
voltage, current, and ambient temperature as model inputs.
The proposed interconnected LSTM architecture can estimate
the interdependent parameters, surface and core temperature,
in time-series data. Learnable activation functions in neural
networks offer a promising alternative to the traditional multi-
layer perceptron. The proposed KAN architecture utilizes this
innovative approach to estimate core and surface temperatures
for battery state estimation. First, core temperature measure-
ments with Molicel P42A were performed to evaluate the
proposed models. Furthermore, the dataset Zhang et al. [16]
was used to evaluate the accuracy at dynamic conditions.

Some major findings include the following.

1) Battery cell preparation influences capacity reduction

significantly.

2) With computational cost of 0.55/0.58 ms, the LSTM

model outperforms KAN (2.92/3.28 ms) by more than
five times.
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3) At CC-CV dataset, an MAE of 0.353 °C and 0.579 °C
is noticed for surface and core temperature estimation
with the KAN model, respectively.

4) At UDDS, drive cycle conditions KAN reaches an MAE
of up to 0.411 °C and 0.610 °C of surface and core
temperature, respectively. Interconnected LSTM outper-
forms KAN at HWFET drive cycle.

The results demonstrate the potential of both methods, espe-
cially the KAN model. For use in real-time applications, the
lower computing time of LSTM can be an advantage over the
lower accuracy, as seen in the most validation results. Thereby,
LSTM HWEFET drive cycle results indicate further investiga-
tions for real world settings. The estimation frequency required
in combination with the number of cells to be monitored
must be considered. The simultaneous estimation of core and
surface temperature demonstrates its potential when compared
to the methods listed in Table III. Previous methods leak in the
possibility to estimate core and surface temperature at once.
The suggested approach notably decreases the quantity of
sensors needed for practical use. The surface temperature is not
a parameter in estimating the core temperature. To evaluate the
influence of aging in accuracy, future experiments should be
carried out at the constant temperature. To improve the model,
a hybrid model of physical thermal model and ML model has
to be implemented based on the insight gained from this work.
The models must be adapted to estimate the temperatures for
large-scale battery pack applications implemented in on-board
and cloud-based BMS.
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