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The radar network system (RNS) can provide multiband and mul-
tiview target information, which helps improve target recognition abil-
ity. A space micromotion targets recognition method based on RNSs
with a dual-channel bidirectional gated recurrent unit (BiGRU)-
Transformer-graph fusion (DC-BiGT-GF) network is proposed in this
article. First, a temporal feature extraction subnetwork based on
BiGRU-Transformer is utilized to process the real and imaginary
parts of complex-valued radar cross section in parallel to capture
the local and global temporal dependencies. Second, a spatial feature
extraction subnetwork is designed to extract the potential spatial
dependencies, which integrates a predefined graph and an adaptive
graph. In the real part channel, the Euclidian distance between radars
is used to construct the adjacency matrix to represent the predefined
graph structure, and the adaptive adjacency matrix is designed to
learn the potential graph structure from end to end. To represent the
frequency-domain features, the phase difference is applied to the imag-
inary part channel to build a predefined adjacency matrix. Meanwhile,
the adaptive adjacency matrix is calculated using cosine similarity to
obtain the geometric features. Finally, extensive experiments show that
the DC-BiGT-GF network can reliably recognize the space micromo-
tion targets under low SNR and low radar pulse repetition frequency
conditions. Recognition accuracy is greatly improved compared with
the baseline methods.

[. INTRODUCTION

With the continuous exploration and utilization of outer
atmosphere space by human beings, a large number of
space debris and ballistic targets pose a nonnegligible threat
to space security and homeland security [1], [2]. These
space targets are usually accompanied by micromotions,
such as precession, nutation, wobble, and tumble, which
will produce time-varying modulation in the radar echoes
[31, [4], [5], [6]. How to extract effective features from the
unique time-varying modulation for radar target recognition
has attracted extensive attention.

In general, the existing recognition methods of space
micromotion targets mainly extract target features from
radar cross section (RCS) sequence [7], [8], [9], [10], [11],
time-Doppler image [12], [13], [14], [15], [16], [17], [18],
high resolution range profile (HRRP) sequence [19], [20],
[21], [22], [23], [24], [25], and inverse synthetic aperture
radar (ISAR) image [26], [27], [28], [29], [30]. In addition,
multifeature fusion methods have also attracted attention
[31], [32], [33], [34], [35], [36], [37], [38]. Narrow-band
signals can be converted into the time-Doppler domain by
implementing time—frequency analysis. The time-Doppler
image contains abundant information about target size, scat-
tering center distribution, and micro-Doppler signatures.
However, the acquisition of time-Doppler image requires
high radar pulse repetition frequency (PRF) and consumes
too much radar resources. The HRRP sequence in wideband
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radar characterizes the projection of the target scattering
center in the radar line of sight direction and reflects the fine
structure of the target. The ISAR image sequence contains
micromotion information. However, the HRRP sequence
and ISAR image can only be acquired in wideband radar.
The RCS sequence can reflect the overall scattering inten-
sity of the target with time, which contains the structure
and micromotion information of the target. Compared with
time-Doppler image, HRRP sequence, and ISAR image,
the RCS sequence can be obtained in both narrow-band and
wideband radars. Therefore, this article intends to extract
features from RCS sequence for space micromotion target
recognition.

The space target recognition methods based on RCS
sequence have been studied extensively. In [39], a target
recognition method based on RCS sequence is proposed.
First, 11-D statistical features are extracted from the RCS
sequence, and then sent into the bidirectional long short-
term memory network to realize the recognition of warhead
and decoy. In [40], the RCS sequence is encoded into three
kinds of images: Gramian angular field, Markov transition
field, and recurrence plot. The image feature extraction is
carried out by convolutional neural network to realize the
recognition of space micromotion targets. A 1-D convo-
lutional neural network RCSNet is proposed in [41]. This
network can extract features from RCS sequence end to
end to recognize targets with the same shape and different
micromotion parameters. In [42], a network of sliding win-
dow statistical gated recurrent unit (GRU) is proposed. The
RCS sequence is divided into multiple subsequences in time
order. The 12-D statistical features are extracted from the
subsequences. Finally, bidirectional GRU (BiGRU) is used
to extract the deep features from these statistical features.
The recognition of three targets with different geometric
shapes is realized.

The above methods are used to extract features from
RCS sequence obtained by monostatic radar for space target
recognition. However, the RCS sequence can only reflect the
overall scattering intensity of the target, which contains less
information than time-Doppler image, HRRP sequence, and
ISAR image. Therefore, the recognition performance based
on RCS sequence needs to be improved, especially in the
case of low SNR.

To solve the above problems, the radar target recognition
method extracts features from RCS sequence collected by
the radar network system (RNS), which is preliminarily
studied. In recent years, thanks to the advancement of high
data rate communication and signal processing capability,
the research of RNS has made great progress [43], [44], [45],
[46]. The RNS composed of independent monostatic radars
deployed at different locations and working at different
frequency bands can collect multiview and multiband
information of the target. Therefore, it can obtain more
comprehensive information for recognition. In [47], a
spatial-temporal-frequency graph attention network (STF-
GACN) based on the heterogeneous RNS is proposed. This
is the first time the graph neural network has been used to
extract features from RCS sequences for aircraft recognition
under low SNR conditions. Furthermore, a semantic

WANG ET AL.: DC-BIGT-GF NETWORK FOR SPACE MICRO-MOTION TARGETS RECOGNITION

feature-enhanced graph attention network for aircraft
recognition is proposed in [48]. The above two methods
are used for aircraft target recognition. There is little
research on space micromotion target recognition based
on RSN at present. We take the lead in proposing a
space target recognition method based on RNS with
BiGRU-Transformer and dual graph fusion network [49],
which is the only research that uses the RNS to recognize
space micromotion targets at present.

However, the above methods only consider the ampli-
tude information of RCS while ignoring the phase infor-
mation. If the amplitude and phase information of RCS
sequence can be used synthetically, it is expected to further
improve the effectiveness and robustness of RNS-based
space micromotion target recognition.

To fully tap the spatial-time—frequency information con-
tained in the complex-valued RCS sequence collected from
the RNS, a space micromotion target recognition method
based on RNS with a dual-channel BiGRU-Transformer
and graph fusion (DC-BiGT-GF) network is proposed in this
article. First, the complex-valued RCS sequence is decom-
posed into real and imaginary components, enabling com-
prehensive feature extraction while maintaining compatibil-
ity with real-valued neural network architectures. Second,
a temporal feature extraction subnetwork (TFES) based on
BiGRU-Transformer is designed to enhance the temporal
feature extraction. Then, a spatial feature extraction sub-
network (SFES) based on predefined graph and adaptive
graph is designed to extract potential spatial dependencies
of the targets. Finally, the spatial-temporal feature vectors
of the real part and imaginary part channel are fused into
the output layer to obtain the recognition result.

The specific contributions of this article are summarized
as follows.

1) The DC-BiGT-GF network structure is proposed in
this article. This model can extract spatial-temporal-
frequency features from multiband and multiview
complex-valued RCS sequence acquired by RNS.
As far as we know, this is the first work on space
micromotion targets recognition based on complex-
valued RCS sequence collected from RNS.

2) We design a TFES combining stacked BiGRU mod-
ule and Transformer module. BIGRU module and
Transformer module are used to extract the short-
term and long-term dependencies of RCS sequence,
respectively, and jointly enhance the ability of tem-
poral feature extraction.

3) We design an SFES based on predefined graph and
adaptive graph. In the real part channel, the prede-
fined graph is constructed based on the prior knowl-
edge of the geographical distance between radars,
which is used to intuitively represent the spatial
dependencies between nodes. Adaptive graph auto-
matically learns the graph structure in a data-driven
way to mine higher order spatial dependencies. In
the imaginary part channel, the phase difference is
used to construct the predefined graph to extract
frequency-domain features. Meanwhile, the cosine
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similarity is calculated in the imaginary channel
to construct the adaptive adjacency matrix, which
can represent the geometric features of the signal.
The dual graph fusion network synthesizes the prior
knowledge of the system, frequency-domain fea-
tures, and geometric features of the complex-valued
RCS sequence, thus effectively enhancing the ro-
bustness of the model.

4) Extensive experimental results show that the
DC-BiGT-GF network can reliably recognize space
micromotion targets under low SNR and low radar
PRF conditions. Compared with the baseline meth-
ods, the recognition accuracy has been greatly
improved.

The rest of this article is organized as follows.
Section II introduces the prior knowledge, including the
motion model, signal model, and problem definition.
Section III elaborates on the proposed network architecture.
Section IV introduces the dataset generation and gives
the experimental results and analysis. Finally, Section V
concludes this article.

[I. PRELIMINARY
A. Motion Model

This article attempts to recognize the targets whose
micromotion forms are precession, nutation, wobble, and
tumble. The micromotion matrix at time ¢ can be expressed
as follows:

Rc()-Rs (), Precession

Rw (1) - Rc (7) - Rs () , Nutation "
Ry (1), Wobble

Ry (1), Tumble

where Rc(t), Rs(7), Rw(?), and Ry (f) represent the con-
ning matrix, spinning matrix, wobble matrix, and tumble
matrix, respectively. Refer to [5] for the specific calculation
method

Rrot (t ) =

r (1) = Ryot (1) - Rigie - (0,0, D' 2

where Ri,;; represents the initial Euler matrix and (0, 0, 1)T
represents the location of the rotational symmetry axis of a
target in the target local coordinate system.

The attitude angle B, (t) can be expressed as follows:

r'(t) - nios )

IXT@)]|, - InLosll

Ba(t) = arccos (} 3)

where np og indicates the radar line of sight (RLOS) direc-
tion.

B. Signal Model
According to Persico et al. [22], the complex-valued
RCS can be expressed as
N

X (f.8) = Y_[X:(f. B)exp (jgi (f. B))]

i=1

= |X (1. B)|exp (o (f. B)) )
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where N represents the total number of scattered points.
Xi(f, B)exp(jo:(f, B)) represents the complex scattering
coefficient of the ith local source. The complex scattering
coefficient is determined by the electromagnetic wave fre-
quency f and incidence angle S. |X(f, B)| represents the
amplitude of RCS, and ¢(f, B) represents the phase of the
scattered field, which can be expressed as

S X, (. B) sin (6 (£ )
¢(f,B) =tan™" | = . ®)
(. B)<os (s (£, B)

=

Therefore, the complex-valued RCS at time ¢ can be
expressed as follows [22]:

X @) =X (f, Bu(0))
= [X (f. B))| exp (joo (f. Ba®))).  (6)

C. Problem Definition

Based on the complex-valued RCS sequence received
by the RNS, this article intends to recognize the space mi-
cromotion targets. As shown in Fig. 1, the RNS consists of
N radars, which can be regarded as an undirected fully con-
nected graph ¢ = (v, ¢, A) with Nnodes. ¢ = {v;};_1,  »
represents the node. ¢ = {e;, j}i,j=1,2 _____  represents the con-
nected edge between nodes. A € RV*V represents the adja-
cency matrix. A; ; represents the weight of the connected
edge between node v; and node v;, which represents the
connection strength of the two nodes.

Assume that the RCS signal received by the RNS is
represented as X = {x|,x;,...,xy} € CV*P, where x; €
CP represents the RCS signal received by the node i. D
represents the length of the RCS signal. The RCS signal
can be divided into the real part and the imaginary part,
namely X = XRe 4 jXIm XRe ¢ RNxD apd XIm ¢ RN*P
represent the real part and imaginary part of RCS se-
quence, respectively. Our goal is to train a nonlinear com-
plex function f(-) on ¢ that maps the graph signal X to
the class label YV € {l}, L, ..., lc} of the target, where C
represents the number of target classes. The recognition
process of space micromotion targets can be expressed
as

l.=fX). (7

[ll.  PROPOSED METHOD

As shown in Fig. 2, the DC-BiGT-GF network con-
sists of two channels, real part channel and imaginary part
channel. The reason for using dual channels is that splitting
the complex-valued RCS sequence into real and imaginary
parts allows different feature extraction modules and pa-
rameters to be designed on the two channels to capture
more comprehensive and accurate information. Meanwhile,
it can directly use the real-valued neural networks to avoid
dealing with complex-valued data directly, which simplifies
the design and implementation of the model. The TFES and
SFES are set in both channels.
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(a)

(b)

Fig. 1. Problem of observing space micromotion targets based on the heterogeneous RNS. (a) Scene of observing space micromotion targets based
on heterogeneous RNS. (b) Graphical representation of spatial-temporal modeling based on heterogeneous RNS.
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Fig. 2. DC-BiGT-GF network architecture.

The TFES consists of stacked BiGRU module and
Transformer module, which is used to extract the tempo-
ral dependencies of the complex-valued RCS sequence.
The SFES consists of stacked graph convolutional network
(GCN) layers. In the real part channel, the predefined graph
is constructed based on the Euclidean distance between
radars. The adaptive graph is constructed to extract the
potential spatial dependencies end to end. In the imaginary
part channel, the predefined graph is constructed based on
the phase difference of complex-valued RCS to extract the
frequency-domain features. Note that the phase difference
of the imaginary part channel is calculated directly from
the complex-valued RCS sequence as a prior knowledge to
construct the predefined adjacency matrix of the imaginary
part channel. On this basis, the cosine similarity of signal
in each GCN layer is calculated to construct the adaptive
graph to capture the geometric features of the signal. Finally,
the spatial-temporal feature vectors extracted from the real
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part and imaginary part channels are input into the predic-
tion output module composed of convolution layer, batch
normalization layer, and fully connected layer. Finally, the
prediction results are obtained.

A. Temporal Feature Extraction Subnetwork

The TFES first extracts the short-term dependencies of
the time series by the BiGRU. The long-range dependencies
of the sequence are then captured by the Transformer.
Therefore, the local and global dependencies in the RCS
sequence can be extracted effectively.

The stacked GRU layers can increase model depth and
improve model performance. Assume that the GRU has M
layers. The reset gate r'™ and update gates z." for the mth

layer at timestep ¢ can be represented as

rm — (f}"”) —q (W;T>x,<'"> +W R 4 bﬁ"”) ®)
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=g ( (m)) — (W(m) m 4 W(’”)h(’") i b(m)) 9)

where #™ and 7"
and update gate before function activation, respectively. x;
represents the input vector for the mth GRU at timestep .

h™, indicates the hidden state output. W, W and b'™
are the learnable network parameters of ™. W), W;Z’),
and b("’) are the learnable network parameters of Z ~(m) .o(4)
represents the sigmoid function.

The candidate state s(m) can be expressed as follows:
s = tanh ( (’”))

= tanh (W(’") oW (h(m) o ,.(m)> i bim)>
(10)

represent the output of the reset gate
(m)

where " represents the output of the candidate state before

functlon activation. W, W;l’;”, and b are the learnable
network parameters of s, ™ @ is the Hadamard product.
tanh(-) represents the hyperbohc tangent function.

Finally, the hidden state h;m) at timestep 7 can be calcu-

lated as follows:
R — ( (m) @s(’”)) ((1 (m)) @h(’")>- (11)

Compared with the standard GRU, BiGRU can use a
combination of historical and future information to obtain
more accurate temporal characteristics. The forward output

ﬁ H

sequence hfm) and backward output sequence h;m) can be
calculated as

—_—
h<'"> GRU(m)(h(’")l, (’”)>,(t=1,2,...,D) (12)

<~
h™ = GRU™ <h§’“{, <m>>, (t=D,D—1,....1)

(13)

where GRU" and GRU™ represent the mapping relation-
ship of the forward and backward GRU, respectively.

The hidden state output hBlGRU , of the mth layer Bi-
GRU at the ¢ timestep is the concatenation of the forward
hidden state at 7th timestep and the reverse hidden state at
(D—t+1)th time step

—_ —
hg:’()}RUt = concat (h(m) hgﬂ>t+]> ,t=1,2,....,D)

(14)
where concat(-) represents the vector concatenation.
Finally, the output of the mth layer BiGRU is H™

B p) - (5)

BiGRU helps to model short-term dependencies on time
series. The contribution of long-range dependencies extrac-
tion to target recognition is also very significant. Because
Transformer’s self-attention mechanism can consider all
locations in the sequence at the same time, long-range
dependencies can be handled efficiently. Therefore, the
Transformer module is placed in series behind the BiGRU

(m) _ (m m
H™ = concat (hBlGRU 1 hBlGRU 2
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module to further capture the global time dependence of the
RCS sequence.

Transformer with attention mechanism as its core is not
sensitive to the location relationship of time series [50],
[51]. Therefore, it is necessary to embed the relative position
information into the input vector through position coding to
enhance the ability of network to understand the sequence.

The position coding matrix is obtained by using the
sine—cosine-based position coding method. The position
coding matrix is added to the output of the Mth layer BIGRU
as input to the Transformer. Assume that the output of the
Mth layer BiGRU is HM € RP*H The position coding
matrix PE is represented as

PE (i, 2j) = sin (i/ 10000%/ ™)
PE (i,2j+1) = cos (i/ 100002-//H)

16)
an

where i = 1,2, ..., D represents the index of sequence
position. j=1,2,...,H/2 represents the index of the
positional encoding vector dimension.

Therefore, the initial input of Transformer is
E) =H™ + PE, E, € RP*H.

The core mechanism for series modeling in Transformer
is multihead self-attention. With multiple attention heads,
the self-attention mechanism can focus on different loca-
tions in the sequence at the same time. Transformer has M
layers. Assuming that multihead attention is implemented in
h subspaces and the input matrix of the /th layer Transformer
isE;_; € RP>*H By multiplying the input matrix with three
different weight matrices, the query vector Q, the key vector
K, and the value vector V can be obtained

Qi =E; 'W,-Ql

Kii=E;_ 'W{j,
Vii=E-W;,

(18)

where (i = 1,2, ..., h). WK and WY represent the weight
matrices.

Compute the query dot product of all keys. Each dot
product is divided by ~/H. The weight Head, ; of the value
is obtained by applying softmax function. The calculation

process can be expressed as follows:

Head,; = Attention (Q;;, Ki/, Vi)

Qi,lel V.
ﬁ il

The calculation process of multihead attention can be
expressed in (20) shown at the bottom of the next page,
where W¢ represents the output transformation matrix.

Information loss and gradient disappearance in forward
propagation can be reduced by processing the output of
multihead attention through residual connection and layer
normalization. It can also provide a more stable gradient for
model training

= softmax ( (19)

E'; = Layernorm (MultiHeadAttention (E;_;) + E;_;) .
(21)
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E; is input into the fully connected network for feature
transformation. Then, the residual connection and layer nor-
malization operations are implemented. The output matrix
of the /th layer Transformer is obtained

E, = Layernorm (FFN (E';) + E)
FFN (E/l) = max (0, E/IWI + bl) W, + b,

(22)
(23)

where W1, W, by, and b, represent the learnable parame-
ters.

B. Spatial Feature Extraction Subnetwork

To extract the potential spatial dependence of the RCS
sequence, a spatial feature extraction module is designed
in the real part channel and imaginary part channel, re-
spectively, which integrates the predefined graph and the
adaptive graph. Note that the design methods of the prede-
fined and adaptive graphs for the two channels are different.
In the real part channel, the Euclidian distance between
radars is used to construct an adjacency matrix to represent
the predefined graph structure, and an adaptive adjacency
matrix is designed to learn the potential graph structure
from end to end. Then, in the imaginary part channel, the
frequency-domain features of the signal are considered, and
the phase difference is used to build a predefined adjacency
matrix. At the same time, considering that, for complex
signal systems, simple frequency-domain features may lead
to information loss, and the adaptive adjacency matrix is
calculated using cosine similarity to obtain geometric fea-
tures. To take into account both frequency-domain features
and geometric features and capture these two similarities at
the same time to make the network structure more robust,
the strategy of “taking the maximum" is adopted to ensure
that the higher similarity in the two graph structures can
be preserved to maximize the potential connection between
nodes.

Inspired by Meng et al. [47], the geographic proximity
between radars is used to compute the predefined adjacency
matrix AR® for the real part channel. The elements of AR
can be expressed as

(ij=12,... (24)

03+ 1. fi=f
w0 )

f,,fi#f./,

where d; ; represents the distance between nodes v; and v;.
fi and f; represent the radar carrier frequencies of nodes v;
and v;, respectively.

To capture deeper spatial dependencies in RCS se-
quence, P-layer GCN is stacked. Suppose that the output
of (p—1)th GCN layer in the real part channel is Fﬁil.

Therefore, the output Fy™® of the pth GCN layer can be

expressed as follows:

FRP™ = LeakyReLU ((f)“e)‘%[xRe (ﬁRe)‘%FﬁiIW,‘jﬁf’“)
(25)

where LeakyReLU(-) represents the leaky rectified lin-

. R . Re, .
ear unit activation function. W “" represents the weight

coefficient, which is a learnable network parameter. AR
represents the normalized adjacency matrix after adding the
self-loop. AR® = AR® 1 Ty, Iy representsan N x N identity
matrix. DR® represents the degree matrix of the normalized
adjacency matrix AR, DR = 3~ ARe.

The factors that affect RCS]sequence are very complex,
including the relative position of radar deployment, the size,
structure and micromotion type of the target, the carrier
frequency and polarization mode of the radar, etc. The pre-
defined graph based on Euclidean distance is not sufficient
to fully characterize the interaction between RCS sequence.
Therefore, the method of adaptive graph is adopted to
improve the ability of spatial feature extraction to a greater
extent.

In the real part channel, two self-learned node embed-
dings E; and E, are randomly initialized. The adaptive

adjacency matrix AaRgp can be expressed as follows:

AR, = Softmax (ReLU (E,E})) .

(26)

The output of the adaptive graph convolution can be
expressed as follows:

Re,adp __ A Re,kypRe Re,adp
FReadr = AReKpRe Wi 27)

where Ai?k represents the adaptive adjacency matrix of

the pth layer GCN with k updates. Wh**® represents the
weight coefficient matrix, which is learnable during network
training.

In the real part channel, the design methods of prede-
fined graph and adaptive graph are inspired by the authors
in [47] and [49]. This method can effectively obtain the
spatial dependence of the real part signal. In imaginary
channel, to consider both the frequency-domain features
and geometric features of RCS sequence, a new method
of graph fusion with the phase difference-based predefined
adjacency matrix and the cosine similarity-based adaptive
adjacency matrix is proposed.

Phase difference-based predefined adjacency matrix can
represent the frequency-domain features of RCS sequence.
First, the phase of the signal x is calculated and normalized
to the interval (0,1)

p_ atan2 (x) + 7 28)
2
where atan2(-) represents the function for calculating the
phase, atan2(x) € (—m, ).

MultiHeadAttention (E;_;) = concat (Head, ;, Head, , ..
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., Head), ;) W/ (20)
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Then, each element of the adjacency matrix A™P® s
calculated based on the phase difference

D
AP = ]l) > |p;—Pi. (29)
=1

The adjacency matrix is sparsely processed according
to the radar carrier frequency

Im,pre
AIm,pre _ {Ai,j s

i.j

iffi=f;
0. it # f;.

The adjacency matrix after adding the self-loop is de-
fined as f\:r;’pre, Almpre — Almpre 4 1

The cosine similarity between nodes is calculated to
construct the adaptive adjacency matrix. A'™ 2 can repre-
sent the geometric features of RCS sequence.

Suppose that the input vectors of the ith and jth nodes of

(30)

the (p—th layer GCN are F)" | ; and F)" , ., respectively.
A™ad can be expressed as '
(Flm1 A)T . FIm1 )
Imoadp p—1t p—LJ
Ai'j N Flm . ||[Fm ' (31)
p—Li p—1.j

Finally, the imaginary channel adjacency matrix A™
is determined by comparing the sizes of the elements of
the predefined adjacency matrix and the adaptive adjacency
matrix at each GCN layer

AIm _ A Im,pre % Im,adp
Al = max (A7, A1),

(32)
The output F;m of the pth GCN layer in the imaginary
part channel can be expressed as follows:

1 1
FI" = LeakyReLU ( (D) *A!™ (D) 'l win )
(33)
where D'™ represents the degree matrix of the normalized
adjacency matrix A™, DI = Y~ AJ". W} | represents the

weight coefficient, which is a lejarnable network parameter.

The predictive output layer consists of convolutional
neural networks (CNN) layer, batch normalization (BN)
layer, and feedforward neural networks (FNN) layer. Fi-
nally, a feature vector O € R® canbe obtained. A probability
distribution P(k) is obtained when the softmax function is
applied to O

exp (O (k))
c

> 0(c)
c=1

P (k) = (34)

where O (k) represents the kth element of the feature vector
0.

Finally, the recognition results correspond to the class
with the maximum likelihood function

¢ = argmax {P (k)}. 35)
k
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C. Loss Function

The cross-entropy loss function is used as the cost
function during model training. The loss function can be
expressed as

1 B C ) )
Loss = — anl Zizly(l)ln P(i)

wherey(i) represents the true label of the ith training sample.
B represents the batch size of the samples.

(36)

D. Evaluation Metrics

In this article, accuracy P,.. and F1-score are used as
the quantitative evaluation metrics of the target recognition
performance. Fl-score represents the harmonic average
between recall P.. and precision P,.. The greater the
F1-score, the better the network recognition performance
[52]

P TP + TN 37)
““" TP+ FN + FP + TN
p_ TP
rec — TP. l:FN
Pore = 75 17p o (38)
Fl — score = 2 x g«

where TP, FP, FN, and TN represent the true pos-
itive, false positive, true negative, and true negative,
respectively.

IV. EXPERIMENTS AND ANALYSIS
A. Dataset Generation

Because the real space target data are difficult to obtain,
simulation technology is widely used in the modeling of
space micromotion targets. Both cone and cone cylinder
targets have micromotion forms of precession, nutation,
wobble, and tumble, which can simulate warheads and
decoys. The cylinder target has only tumble motion, which
is used to simulate the rocket bodies. Therefore, nine types
of space targets are simulated by combining three different
target shapes and four micromotion forms [31], [41]. Fig. 3
shows the 3-D geometric models of three kinds of space
targets. After the 3-D CAD model of the target is estab-
lished, the static electromagnetic scattering data of 360° and
multicarrier frequency are generated by the electromagnetic
calculation software FEKO. The ideal dynamic RCS corre-
sponding to the attitude angle can be queried in the static
electromagnetic scattering data. It is assumed that the noise
in RCS is Gaussian white noise.

Inthis article, precession cone cylinder, precession cone,
nutation cone cylinder, nutation cone, wobble cone cylinder,
wobble cone, the tumble cone cylinder, and tumble cone
and tumble cylinder are named as T1, T2, T3, T4, T5, T6,
T7, T8, and T9, respectively. Assume that each target has
ten initial elevation angles, ranging from 23° to 50°, with a
step of 3°. The micromotion parameters’ settings are shown
in Table I, where f; represents the spinning frequency, f.
represents the conning frequency, f,, represents the wobble
frequency, and A,, represents the wobble amplitude. The
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(a) (b) (c)

Fig. 3. Three-dimensional geometric model of space targets. (a) Cone cylinder. (b) Cone. (c) Cylinder.

BT R I~
IHW\\\‘M lenw !WM MM”,M |
T
| ’l” ‘}, \’WW ""'\M’

Fig. 4. Complex-valued RCS sequence. (a)—(c) Precession cone cylinder, precession cone, and nutation cone cylinder observed by P-band radars.
(d)—(f) Nutation cone, wobble cone cylinder, and wobble cone observed by C-band radars. (g)—(i) Tumble cone cylinder, tumble cone, and tumble
cylinder observed by X-band radars.

TABLE I
Micromotion Parameter Settings
m-D parameter Precession Nutation Wobble Tumble
Js (Hz) 5 5 / /
/. (Hz) 2:3.98 (step: 0.02) 2:3.9 (step: 0.1) / /
/., (Hz) / 1:2 (step: 0.25) 1:2.2 (step: 0.05) 0.5:0.995 (step: 0.005)
A, ©) / 5 3:2:9 1

WANG ET AL.: DC-BIGT-GF NETWORK FOR SPACE MICRO-MOTION TARGETS RECOGNITION 9819



100

100
100
B 0.00 000 000 000 000 0.00 -
Lod = 000 450 000 2450 000 000 000 0.0 = n 000 2200 000 000 000 000 000 0.0
2250 000 000 000 000 0.00
F 80 f- 000 150 050 000 000 000 000 000 - f- 000 (3800 0.00 MMO 000 000 000 0.00
80
R R e e 2 14100, 0.00 000 100 000 000 000 0.00 [ “ 0.00 2050 000 000 000 000 000 0.00
B i 250 000 000 000 000 0.00 60 2 - 000 200 2550 000 000 000 0.00 0.00 60 =-000 7.00 000 050 000 000 000 0.00 0
2 3 H]
54,
o P 0.00 000 0.00 2- 000 000 000 000 0.00 0.00 2-1000 000 050 0.00 000 000 000 000
£ H H
- 800 000 000 000 000 0.00 Thed £- 100 000 100 0.00 050 0.00 - 40 2-2350 400 000 000 3350 40
[- 000 000 000 000 000 [-000 000 000 000 000 [-000 000 000 000 0.00
- =20 20 20
©-000 000 000 000 000 0.00 £-000 000 000 000 000 000 £-000 000 000 000 000
£-000 000 000 000 000 0.00 £-000 000 000 000 000 000 £-000 000 000 000 000
. . B s | | -0 . . . \ . , . . -0 \ . | , . . . -0
m T2 T3 T4 5 T6 T T8 T n Ard T T4 T T6 T T8 T m T2 T T4 T T6 T T8 T
Predicted label Predicted label Predicted label
100 100 100
[ 000 000 000 000 000 000 000 0.00 F 000 000 000 000 000 0.00 [
- 0.00 000 000 000 000 000 000 0.00 r- 0.00 000 000 000 000 0.00 [
80 80 80
e . 0.00 000 000 000 000 000 0.00 -17.50 o, 100 000 000 000 000 000 -
2 - 000 1650 000 2300 0.00 m 0.00 000 0.00 60 - 0.00 0.00 m 60 4 60
3 3 3
- 000 000 000 000 1400 000 000 0.00 g i?- 000 000 000 000 i
i H E
- 000 000 000 000 050 - 40 ©-000 000 000 000 40 © L a0
- 000 000 000 000 0.00 F- 000 000 000 000 E-
-20 -20 -20
©-000 000 000 000 0.00 £-000 000 000 000 ®-
2-000 000 000 000 0.00 £-000 000 000 000 2-
. ' ' . ' . D -0 D ' + ' + " '+ -0 ' ' " . l -0
m T2 T3 T4 T T6 T T8 T mn T2 T T4 T T6 T T T T4 Ts T T T8 ™
Predicted label Predicted label Predicted label

(d) © ®

Fig. 5. Confusion matrices of DC-BiGT-GF and baseline methods when the SNR is 5 dB. (a) RCSNet. (b) SW-S-GRU. (c) MdFFNet.
(d) STFGACN. (e) BiGT-DGEF. (f) DC-BiGT-GF (ours).
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Fig. 7. Confusion matrices of DC-BiGT-GF and ablation methods when the SNR is 5 dB. (a) Same adjacency matrices. (b) BIGRU-GCN.
(c) BIGRU-Transformer. (d) Only retaining predefined adjacency matrices. (e) Segmentating complex-valued RCS sequence into amplitude and

phase. (f) DC-BiGT-GF (ours).
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precession target has 100 conning frequencies. The nutation
target has 20 conning frequencies and 5 wobble frequencies.
The wobble target has 25 wobble frequencies and 4 wobble
angles. The tumble target has 100 tumble frequencies. There
are nine radars in total, of which four are P-band radars with
the carrier frequency of 430 MHz and polarization mode
of HH, three are C-band radars with the carrier frequency
of 5.85 GHz and polarization mode of VV, and two are
X-band radars with the carrier frequency of 10 GHz and
polarization mode of HH. All nine radars have a PRF of
100 Hz. These radars observe the target simultaneously
during 2 s. Therefore, the length of the RCS sequence
is 200. Each radar can obtain 1000 observation samples
of the target. Therefore, there are 81 000 samples in the
dataset. According to the initial elevation angle, the dataset
is divided into training set, test set, and validation set in
a ratio of 7:2:1. The initial elevation angles corresponding
to the training set, test set, and validation set are 23° — 41°,
44° — 47°, and 50°, respectively. The model is trained using
data with the SNR of 5 dB.

Fig. 4 shows the complex-valued RCS sequence of nine
types of targets, with the red lines representing the real part
signals, and the blue lines representing the imaginary part
signals.

B. Training Setup

All experiments were conducted on computers equipped
with Intel Xeon Platinum 8362 CPU @ 2.80 GHz and
NVIDIA RTX 3090 GPU. The operating system is Ubuntu
22.04. The PyTorch version is 2.1.0. The Python version is
3.10. The CUDA version is 12.1. The network architecture

WANG ET AL.: DC-BIGT-GF NETWORK FOR SPACE MICRO-MOTION TARGETS RECOGNITION

is based on the PyTorch framework. In the DC-BiGT-GF
network, the number of BiGRU layers is set to 2, and the
hidden state dimension of each layer is set to 128. The
number of heads for multihead attention in Transformer
is set to 8, the number of layers is 8, and the dimension
of the feedforward network is 512. The number of GCN
layers in the spatial dependency modeling module is 4. The
input data with a sequence length of 200 are used in this
article. The adaptive moment estimation with weight decay
(AdamW) optimizer is used. The initial learning rate is set
to 0.0001, and the weight decay rate is set to 0.0001. The
batch size is set to 16. The training process was terminated
after 200 epochs. The dropout rate is set to 0.5.

In addition, the dynamic learning rate adjustment strat-
egy is adopted. The learning rate decreases after every five
iterations, and the decay factor is 0.5. During the training
process, if the loss is not improved after ten consecutive
times, the training will be terminated early.

C. Contrast Experiments

To show the superiority of the DC-BiGT-GF network,
which is compared with five baseline methods.

1) RCSNet (See [41]): RCSNet is a 1-D convolutional
neural network architecture, which is especially used
to process RCS sequences of space micromotion
targets.

2) Sliding Window-Statistics-GRU (SW-S-GRU) [42]:
SW-S-GRU uses sliding window to segment RCS
sequence, and then input their statistical features into
GRU to recognize radar target shape.
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TABLE II
Recognition Accuracy Comparison of DC-BiGT-GF and Baseline Methods

Number of correctly recognized categories
Method Acc.(%)
T1 T2 T3 T4 T5 T6 T7 T8 T9
RCSNet [41] 200 155 0 5 118 153 200 200 200 68.39
SW-S-GRU [42] 142 196 116 51 197 152 200 198 200 80.67
MdFFNet [31] 156 76 41 185 179 78 200 200 200 73.06
STFGACN [47] 200 200 114 46 172 199 200 200 200 85.06
BiGT-DGF [49] 200 200 163 110 133 198 200 200 200 89.11
DC-BiGT-GF (Ours) 184 156 174 200 200 200 200 200 200 95.22

The bold entities means to highlight our method. The bold values means to highlight the best recognition performance.

3) MdFFNet (See [31]): In this model, three branches
are designed to process RCS sequence, time-Doppler
image, and HRRP sequence, respectively. To ensure
the fairness of comparison, the module that processes
RCS sequence is selected for comparison.

4) STFGACN (See [47]): STFGACN is a spatial-time—
frequency graph attentional convolutional network
based on a heterogeneous RNS, which is used to ex-
tract features from RCS sequences to achieve reliable
recognition of aircraft targets.

5) BiGT-DGF (See [49]): BiGT-DGF is a method
for space micromotion target recognition in RNS
based on BIGRU-Transformer and dual graph fusion
network.

These five baseline methods can be divided into two cat-
egories. The first is the detection method based on the mono-
static radar, including RCSNet, SW-S-GRU, and MdFFNet.
The second category is based on RNS detection methods,
including STFGACN and BiGT-DGF. The recognition re-
sults of DC-BiGT-GF and baseline methods when the SNR
is 5 dB are shown in Table II. It can be seen that compared
with the first category baseline methods, the recognition
accuracy of DC-BiGT-GF is at least 14.55% higher. The
reason is that the detection method based on RNS can
obtain multiband and multiview RCS sequences. Through
the information fusion, it can provide more abundant target
features, thus greatly improving the recognition accuracy,
which proves the advantages of the RNS adopted in this
article. Compared with STFGACN and BiGT-DGF of the
second category of baseline methods, the recognition accu-
racy of DC-BiGT-GF is improved by 10.16% and 6.11%,
respectively. The reason is that DC-BiGT-GF makes full use
of the phase information of the RCS sequence and provides
more accurate target features, thus greatly improving the
recognition accuracy. The above comparison results show
the superiority of DC-BiGT-GF.

To further demonstrate the superiority of DC-BiGT-GF,
the confusion matrices of the various methods under the five
SNRs are shown as follows. Fig. 5 shows the confusion ma-
trices of DC-BiGT-GF and the baseline methods. The larger
the value of the elements on the diagonal of the confusion
matrix, the higher the recognition accuracy. It can be seen
that under each noise environment, the element values on the
diagonal of the confusion matrix of DC-BiGT-GF are almost
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all higher than those of the baseline methods. The baseline
methods always produce wrong judgments on one or several
classes of targets. For example, the RCSNet method cannot
accurately recognize T3 and T4 even at the high SNR. The
recognition ability of T3 by SW-S-GRU method is limited.
The MdFFNet method could not accurately recognize T2,
T3, and T6. Although STFGACN method and BiGT-DGF
method have high recognition accuracy for most targets at
low SNR, the STFGACN method has limited recognition
ability for T3 and T4, and the BiGT-DGF method has less
than 70% recognition accuracy for T4 and T5 at the SNR
of 15 dB.

To more intuitively compare the spatial-temporal fea-
tures extraction performance of DC-BiGT-GF and baseline
methods, the -SNE [53] is introduced to analyze the sepa-
rability of the features extracted from various deep learning
methods. Fig. 6 shows the ~-SNE visualization results of
DC-BiGT-GF and the baseline methods. Each point in the
figure represents a sample, and each color represents a
category. It can be seen that the feature boundaries between
the categories of DC-BiGT-GF are clearer and the features
of the same category are more compact. Therefore, the DC-
BiGT-GF shows better interclass separability and intraclass
cohesion so as to obtain better recognition accuracy.

D. Ablation Experiments

The ablation experiments are conducted to verify the
contribution of each module in DC-BiGT-GF network to
the recognition results. The ablation experiments are set as
follows.

1) Same Adjacency Matrices: To verify the contribution
of the designed adjacency matrix of the imaginary
part channel to the recognition results, the adjacency
matrix of the imaginary part channel is set to be the
same as that of the real part channel.

2) BiGRU-GCN: To evaluate Transformer’s role in
global temporal feature extraction, only BiGRU-
GCN modules are retained in two channels.

3) BiGRU-Transformer: To investigate the effective-
ness of GCN in spatial feature extraction, only TFES,
namely BiGRU-Transformer module, is set in both
real part and imaginary part channels.
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TABLE III
Recognition Accuracy Comparison of DC-BiGT-GF and Ablation Methods

Number of correctly recognized categories

Method Acc.(%)
T1 T2 T3 T4 T5 T6 T7 T8 T9

Same adjacency matrices 179 102 106 179 200 200 200 200 200 87.00
BiGRU-GCN 122 162 196 190 150 200 200 200 200 90.00
BiGRU-Transformer 51 130 144 146 200 197 200 200 200 81.56
Predefined adjacency matrices 174 156 176 200 200 200 200 200 200 94.78
Amplitude and phase 112 141 185 177 142 200 200 200 200 86.50
DC-BiGT-GF (Ours) 184 156 174 200 200 200 200 200 200 95.22

The bold entities means to highlight our method. The bold values means to highlight the best recognition performance.

4) Predefined Adjacency Matrices: To evaluate prede-
fined adjacency matrices’ role in SFES, only prede-
fined adjacency matrices are retained in two chan-
nels.

5) Amplitude and Phase: Complex-valued RCS se-
quence can be divided not only into real and imag-
inary parts but also into amplitude and phase. To
illustrate the superiority of the proposed method,
we compare it with the method of segmenting
complex-valued RCS sequences into amplitude and
phase.

Experimental results of the five ablation models with the
SNR of 5 dB are shown in Table I1I. It can be seen that, when
the same adjacency matrices are adopted, the recognition
accuracy is 87.00% . Compared with DC-BiGT-GF, the
recognition accuracy is reduced by 8.22% . The reason
is that the frequency-domain features and geometric fea-
tures of the RCS sequence are not considered. The feature
richness and accuracy decline. When only BiGRU-GCN
is adopted in both channels, the recognition accuracy is
81.56% . Compared with DC-BiGT-GF, the recognition
accuracy is reduced by 13.66%, which illustrates Trans-
former’s important contribution to global temporal feature
extraction. When only BiGRU-Transformer is adopted in
both channels, the recognition accuracy is 90.00%, which
is reduced by 5.22% compared with DC-BiGT-GF. It shows
the importance of GCN in extracting spatial features. The
ablation experiments show that each module in DC-BiGT-
GF contributes significantly to the improvement of recogni-
tion accuracy. The recognition accuracy of the method that
only retains the predefined graphs in SFES is 94.78 %, which
has a high recognition accuracy. It shows that predefined
graphs can extract the accurate features to achieve accurate
space micromotion targets recognition. The DC-BiGT-GF
designs the adaptive graphs on the basis of the predefined
graphs. Compared with the method that only retains the
predefined graphs, the recognition accuracy at the 5 dB
SNR is improved by 0.44% . This shows that the adaptive
graph contributes slightly to the overall recognition accu-
racy. From the following confusion matrix, it can be seen
that adaptive graph has an important contribution to the
recognition of specific categories, and it is also indispens-
able like predefined graphs. For detailed analysis, see the
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next paragraph. The recognition accuracy of the method
of segmentating complex-valued RCS sequence into am-
plitude and phase is 86.50% at 5 dB SNR, which is 8.72%
lower than that of DC-BiGT-GF. It shows that the method of
segmentating complex-valued RCS sequence into real and
imaginary parts in this article does not cause information
loss and can achieve the accurate space micromotion targets
recognition.

To further demonstrate the necessity of each module of
the model proposed in this article, Fig. 7 shows the confu-
sion matrices of the six ablation models at 5 dB SNR. When
the same adjacency matrix is adopted in both channels, the
recognition accuracy of T2 and T3 is less than 60% under
the five SNRs. When only BiGRU-GCN is adopted, the
recognition accuracy of T1 is about 60% and that of T5
is about 75% under the five SNRs. When only BiGRU-
Transformer is adopted, the recognition performance of T1,
T2, T3, and T4 is not good under the five SNRs, especially
the recognition accuracy of T1 is lower than 45% . When
only the predefined adjacency matrix is used, the overall
recognition accuracy is close to the proposed method, which
shows the effectiveness of the predefined adjacency matrix.
When the adaptive adjacency matrix is used on the basis of
the predefined adjacency matrix, the recognition accuracy
of a specific category T1 is improved by 5.00%, which
indicates that the adaptive adjacency matrix also makes
an important contribution to the space micromotion targets
recognition. When the complex-valued RCS sequence is
divided into amplitude and phase, the recognition accuracy
of T1, T2, T4, and TS5 decreases by 36%, 7.5%, 11.5%,
and 29%, respectively. This shows that the segmentation
of complex-valued RCS sequence into real and imaginary
parts can retain more information and is more suitable
for space micromotion targets recognition. It can be seen
from the ablation experiments that the lack of any module
in the proposed model will cause the problem of unbal-
anced recognition performance. Therefore, each module
of DC-BiGT-GF has an indispensable contribution to the
recognition performance.

To analyze the separability of the features extracted by
the ablation models, Fig. 8 shows their -SNE visualization
results. Compared with the models proposed in this article,
the intraclass cohesion and interclass separability of the six
ablation models are decreased, which also indicates that
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each module plays an important role in the recognition
performance.

E. Robustness Analysis

The recognition accuracy and F'1-score of the proposed
method, baseline methods, and ablation models are shown
in Fig. 9. It can be seen that the recognition performance of
all methods is improved with the improvement of SNR. The
recognition performance of DC-BiGT-GF is optimal under
all SNR conditions, and even under low SNR conditions,
DC-BiGT-GF is still better than other methods.

F. Adjacency Matrices Analysis

Fig. 10(a) shows the predefined adjacency matrix based
on the Euclidean distance of radar nodes, which is fixed in
each GCN layer. There are four GCN layers. Fig. 10(b)—(e)
shows the adaptive adjacency matrices from the first to the
fourth GCN layer in the real part channel. The predefined
adjacency matrix contains the spatial topological relation-
ship of radars in the RNS, while the adaptive adjacency
matrix contains the potential feature representation of the
target. The predefined graph and adaptive graph of the real
part channel complement each other, which taps the poten-
tial information of the real part signal to a greater extent.

In the imaginary part channel, the predefined adjacency
matrix is constructed using phase difference to capture
the frequency-domain features of the RCS sequence. At
the same time, considering that simple frequency-domain
features may lead to information loss for complex signal
systems, the cosine similarity is used to construct adaptive
adjacency matrix to extract the geometric features of sig-
nals. The predefined adjacency matrix calculated based on
the signal phase difference is shown in Fig. 11(a). After
the feature transformation of GCN, the input of each GCN
layer is dynamically changed. By calculating the cosine
similarity between the signals of each node, the adaptive
adjacency matrix is constructed, and the geometric features
of imaginary signals can be fully mined. Fig. 11(b)—(e)
shows the adaptive adjacency matrix from the first to the
fourth GCN layer in the imaginary part channel. The fusion
of the predefined graph and adaptive graph of the imaginary
part channel can fully extract the frequency-domain features
and geometric features of the RCS sequence and improve
the accuracy of micromotion target recognition.

V. CONCLUSION

In this article, the DC-BiGT-GF network is proposed to
extract spatial-temporal-frequency features from complex-
valued RCS sequence collected by RNSs. It aims to realize
space micromotion target recognition. TFES and SFES are
constructed in both real part and imaginary part channels.
The temporal feature subnetwork consists of stacked Bi-
GRU layers and Transformer layers. The core of the SFES is
the GCN, which integrates predefined graphs and adaptive
graphs. In the real part channel, the predefined graph is
constructed based on the Euclidean distance between radar
nodes. The adaptive graph can automatically learn the graph
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structure from end to end. These two graphs can extract
the spatial dependence of the real part signal together. In
the imaginary part channel, the predefined graph is con-
structed based on the signal phase difference to extract the
frequency-domain features of the signal. The geometric fea-
tures of the signal are extracted by constructing an adaptive
graph based on the cosine similarity. Thus, the interaction
between radars is captured to the greatest extent. The DC-
BiGT-GF network can still obtain the recognition accuracy
0f 93.44% under the condition that the SNR is 0 dB and radar
PRFis only 100 Hz. Extensive experiments have proved the
effectiveness and robustness of the proposed method.
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