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Abstract— With the development of affective computing
and Artificial Intelligence (AI) technologies, Electroen-
cephalogram (EEG)-based depression detection methods
have been widely proposed. However, existing studies have
mostly focused on the accuracy of depression recognition,
ignoring the association between features and models.
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Additionally, there is a lack of research on the contribution
of different features to depression recognition. To this
end, this study introduces an innovative approach to
depression detection using EEG data, integrating Ant-Lion
Optimization (ALO) and Multi-Agent Reinforcement Learn-
ing (MARL) for feature fusion analysis. The inclusion of
Explainable Artificial Intelligence (XAI) methods enhances
the explainability of the model’s features. The Time-Delay
Embedded Hidden Markov Model (TDE-HMM) is employed
to infer internal brain states during depression, triggered
by audio stimulation. The ALO-MARL algorithm, combined
with hyper-parameter optimization of the XGBoost classi-
fier, achieves high accuracy (93.69%), sensitivity (88.60%),
specificity (97.08%), and F1-score (91.82%) on a auditory
stimulus-evoked three-channel EEG dataset. The results
suggest that this approach outperforms state-of-the-art
feature selection methods for depression recognition on
this dataset, and XAI elucidates the critical impact of the
minimum value of Power Spectral Density (PSD), Sample
Entropy (SampEn), and Rényi Entropy (Ren) on depression
recognition. The study also explores dynamic brain state
transitions revealed by audio stimuli, providing insights
for the clinical application of AI algorithms in depression
recognition.

Index Terms— EEG, depression detection, ant lion opti-
mization - multi-agent reinforcement learning (ALO-MARL),
explainable artificial intelligence (XAI).

I. INTRODUCTION

DEPRESSION has evolved into a comparatively prevalent
mental health disorder with the progression of societal

advancement [1]. The World Health Organization (WHO)
predicts that depression will be the second leading cause of
disability and death by 2030 [2], [3]. Besides, the outbreak
and spread of COVID-19 have led to a rapid increase in
the prevalence of depression in recent years. Mild depression
patients may suffer from bad mood, lack of sleep, and mental
malaise, while severe depression patients potentially even hav-
ing suicidal behaviour [4]. Traditional diagnostic methods are
standard scales evaluations – usually through subjective inter-
views, which are susceptible to environmental and individual
differences. With the development of affective computing,
the Electroencephalogram (EEG), as a non-invasive measure
of electro-physiological signals with a millisecond time res-
olution, has been a potential tool to investigate the brain
functions and cognitive processes in both healthy and diseased
subjects, at rest [5], or during a task [6]. Several studies have
demonstrated the relationship between depression and the EEG
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signal obtained from prefrontal-lobe EEG sites, showing its
validity as a physiological marker in depression [7], [8], [9],
[10], [11], [12]. Furthermore, in the domain of EEG signal
processing, the selection of EEG features emerges as a pivotal
step, entailing the identification of paramount features for
ensuing predictive analyses [13]. Efficacious feature selection
is instrumental in diminishing dimensionality, augmenting
prediction accuracy, and enhancing the intelligibility of results.
However, the quest for the optimal feature subset within
the expansive feature subset space presents a conventional
challenge of considerable magnitude. Concurrently, existing
methodologies exhibit a discernible deficiency in elucidating
the correlation between models and features, thus leading to
a lack of interpretability.

The existing body of literature concerning feature selection
delineates three primary approaches: (i) Filter methods, such
as univariate feature selection and correlation-based feature
selection, prioritize features based on specific scores; (ii)
Wrapper methods, exemplified by evolutionary algorithms
and branch-and-bound algorithms, identify optimal feature
subsets through search strategies in conjunction with predictive
models; (iii) Embedded methods, including Least Absolute
Shrinkage and Selection Operator (LASSO) [14] and Decision
Tree (DT), integrate feature selection into the optimization
goals of predictive tasks. However, each approach manifests
both strengths and limitations. For instance, filter methods
may neglect dependencies among features and the interaction
between feature selection and predictors, while wrapper meth-
ods encounter challenges in exploring an extensive feature
space with 2N potential feature subsets for N features. Embed-
ded methods heavily rely on structured assumptions inherent
in predictive models. Consequently, effective feature selec-
tion demands a comprehensive approach that encompasses:
(i) strategic assessment of feature importance, (ii) efficient
exploration for an optimal feature subset, and (iii) seamless
integration with predictive models. The current research on the
fusion of EEG signal brainwave characteristics encompasses
diverse methodologies, including linear combination meth-
ods [15] and approaches that amalgamate general Machine
Learning (ML), specifically with Deep Learning (DL) [16].

Meanwhile, in recent years, Explainable Artificial Intel-
ligence (XAI) has emerged as one of the most prominent
topics aimed at addressing the explainability of ML and,
in particular, DL methods, as well as developing strategies
to enhance the explainability of ML algorithm outcomes.
Generally, explainable methods [17] are of two types: ante-
hoc and post-hoc. For ante-hoc, it is usually incorporated
directly into the model structure, such as linear regression;
for post-hoc, it explains the results of the model predictions
based on what is easy to explain. Among them, classical
permutation-based algorithms are usually used in combination
with ML, such as Permutation Feature Importance (PFI) [18].
In addition, there are advanced local agent methods that
aim to replace decision functions with directly explainable
local agent models (e. g., SHapley Additive exPlanations
(SHAP) [19].

Therefore, to enhance feature selection performance and
achieve higher accuracy with a streamlined set of features,

we propose a novel ALO-MARL-based EEG feature selec-
tion algorithm. This algorithm, integrated with ML classifier
parameter optimization for depression recognition, facilitates
a balanced approach to global and local search. Concurrently,
in order to post-interpret the model, we utilize XAI methods
based on post-hoc approaches to directly explain trained
models, elucidating the relationship between depression fea-
tures and recognition. This provides an ideal method for the
auxiliary diagnosis of depression in patients, without the need
for adjusting internal parameters of the chosen classification
model.

The main contributions of this work can be summarized
as follows: we extract linear and non-linear EEG features.
Subsequently, we propose a novel algorithm for EEG feature
selection, coupled with ML classifier parameter optimization
for depression detection. This approach achieves highly effec-
tive depression recognition with a reduced feature set. Finally,
we use two different XAI approaches [20] and a TDE-HMM
model to focus on the interpretation of the classification results
of the model.

II. MATERIALS AND METHODS

A. Data Acquisition and Preprocessing
In this work, the EEG signals under audio stimulation

are collected by electrodes located on the prefrontal-lobe
(Fp1, Fpz, and Fp2) using a wearable three-lead EEG device
developed by the Key Laboratory of Brain Health Intelligent
Evaluation and Intervention (Beijing Institute of Technology,
China) [3], [21], as shown in Fig. 1. In addition, two other
electrodes are placed on two mastoid processes (A1 and A2)
as reference and bias electrodes, respectively. All electrodes
are placed according to the 10-20 international electrode
placement systems [22]. In particular, we employ six audi-
tory stimuli characterized by different emotional properties to
investigate differences between depressed patients and healthy
controls. The first two stimuli were neutral in nature, followed
by two stimuli with negative emotional valence, and con-
cluding with two stimuli characterized by positive emotional
valence [12].

We recruited 70 depressed patients (16 to 56 years old) and
108 healthy controls (18 to 55 years old) from psychiatric
hospitals for the experiment. All participants were carefully
examined and screened by a professional psychiatrist using
the Patient Health Questionnaire-9 (PHQ-9). Prior to data
collection, participants were given a full explanation about
the study and assured that their private data would not be
disclosed. Each subject volunteered to participate in the study
after being fully informed about the work and signing an
informed consent form with their legal guardians. The consent
forms and study design were approved by the local Ethics
Committee for Biomedical Research at the Lanzhou University
Second Hospital, and the ethics approval number is 2022A-
620. In addition, all subjects are not taking any medication and
are free from diseases such as epilepsy and other neurological
abnormalities.

The experimental paradigm, as illustrated in Fig. 1, involved
each participant undergoing a 72 s auditory stimulus exper-
iment, followed by the analysis of the collected EEG data.
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Fig. 1. The paradigm of the audio stimulation experiment. EEG
signals induced by different audio stimuli are recorded using a wearable
three-lead EEG sensor. (a) Wearable three-lead EEG sensor. (b) Three-
lead EEG electrode locations in the prefrontal lobe. (c) The auditory
stimulation process can be delineated into three major phases, namely
neutral, negative, and positive stimuli. Furthermore, the stimulation
protocol adopts an intermittent stimulation paradigm, interspersed with
intervening resting phases.

The experiment is divided into 3 major phases and 6 minor
phases, which can be further divided into 12 sub-phases at
a smaller granularity. Firstly, in the first major phase, the
subjects are in a resting state for 6 s, then, a neutrally-valenced
audio stimulation is played for 6 s, paused for 6 s, and then
repeated for 6 s, marking the end of this phase. The second
and third major phases have a similar experimental procedure
as the first phase, except that the type of audio played is
different: negatively-valenced audio is played in the second
major phase, and positively-valenced audio is played in the
third major phase [12]. The stimulation audio is derived from
the International Affective Digitized Sound (IADS-2) [23].

EEG signals are acquired using three-lead EEG sensors
operating at a sampling frequency of 250 Hz. In the pursuit of
maintaining data integrity, a Finite Impulse Response (FIR)
filter is employed, characterized by a passband frequency
spectrum spanning 0.1-45 Hz. The primary function of this
filter is to eliminate prevalent issues such as baseline drift and
Radio-Frequency Interference (RFI) noise. Due to the close
proximity of electrodes to the ocular region, Ocular Artifacts
(OAs) are inevitably captured by the sensors [24]. To address
this challenge, a dual-method strategy is adopted, combining
Discrete Wavelet Transformation (DWT) with a Kalman fil-
ter [3]. This approach is implemented to effectively expunge
OAs from the EEG recordings, ensuring the purification and
accuracy of the signal data.

B. Feature Extraction
The EEG signals are nonstationary and stochastic [25],

and a single feature is inadequate to capture the diverse

and complex information they contain. Therefore, in this
work, 7 features, including linear features (Mean-PSD, Max-
PSD, and Min-PSD) and nonlinear features (FAA, LZC,
SampEn, and REn), were extracted from the 72 seconds of
audio-stimulated EEG data for feature selection.

1) Power Spectral Density (PSD): PSD has been shown to
exhibit significant variation in relation to depression [3], [15],
[26]. To leverage this relationship, three PSD-based features
are extracted from the EEG signals: the mean (Mean-PSD),
maximum (Max-PSD), and minimum (Min-PSD) values of the
PSD. These features are selected to effectively capture the key
characteristics of the PSD that are associated with depressive
states.

2) Frontal Alpha Asymmetry (FAA): Asymmetric frontal
activity serves as a crucial indicator of neurophysiological
activity and is closely linked to emotional processing and
affective disorders, such as depression [27], [28], [29]. FAA
is computed by determining the difference in the PSD of the
alpha rhythms between the Fp1 and Fp2 electrode sites. This
measure has been widely utilized due to its association with
frontal asymmetry and its relevance in studying depressive
states.

3) Lempel-Ziv Complexity (LZC): LZC is a well-established
metric in bioinformatics, particularly in the analysis of EEG
signal complexity [30], [31], and has been successfully applied
in EEG-based depression detection [3], [12]. Its utility lies in
quantifying the complexity and irregularity of time series data,
making it a valuable feature for assessing neural dynamics in
relation to depressive states.

4) Sample Entropy (SampEn): SampEn, initially proposed
by [32] for analyzing physiological time-series data, has been
employed by [31] to evaluate EEG complexity across various
depression severity levels and healthy control groups. This
measure is particularly useful for capturing the irregularity
and unpredictability of EEG signals, providing insight into
the neural dynamics associated with depressive states.

5) Rényi Entropy (REn): Rényi Entropy is a generaliza-
tion of Shannon entropy that introduces a parameter alpha,
allowing for a more flexible assessment of uncertainty in prob-
ability distributions [33]. In EEG-based depression detection,
it is used to quantify changes in brain activity complexity,
as depression often leads to reduced neural signal complex-
ity [34].

C. Feature Selection Through the ALO-MARL Algorithm
Feature selection is a common step in ML, which not only

reduces feature redundancy, but also effectively improves the
classification performance of the model. Various algorithms
are currently employed to address the feature selection prob-
lem [35].

In this study, a wrapper approach [36] is employed to
integrate feature selection into the model evaluation process,
treating feature selection as the means to find the optimal
solution for the model. The primary objective involves fea-
ture fusion, where a novel algorithm, termed the Ant Lion
Optimization (ALO) - Multi-Agent Reinforcement Learning
(MARL) algorithm, is introduced. This algorithm combines



1414 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 33, 2025

Fig. 2. Framework of the Proposed ALO-MARL algorithm.The left circle illustrates the feature selection process using the ALO algorithm, where
initially, relevant features are selected from the original set of 19 features, forming a preliminary subset of features that are pertinent to the
classification task. These pre-selected feature subsets are then fed into the subsequent MARL algorithm for further processing. The right side
depicts a MARL framework containing multiple features, where each feature is treated as an agent that exchanges information with other features.
Within the MARL framework, the agents iteratively optimize and update their states based on Global Rewards, ultimately identifying the optimal
feature set.

the ALO and MARL algorithms, enhancing their effective-
ness in depression recognition through the incorporation of
parameter optimization techniques from ML classifiers [37],
[38]. The ALO-MARL algorithm strives to strike a balance
between global and local search methodologies to identify
more optimal feature subsets for EEG feature selection. The
algorithm is detailed in a comprehensive procedural frame-
work, outlined in Algorithm 1, showcasing a synergistically
enhanced effect resulting from the integration of the unique
strengths of the ALO and MARL algorithms. Meanwhile,
Fig. 2 illustrates the overall system framework, specifically
the proposed ALO-MARL algorithm flowchart.

1) Feature Space Selection Based on the ALO Algorithm:
The ALO algorithm is a nature-inspired metaheuristic based
on the hunting behavior of antlions [39]. ALO simulates
how antlions trap ants in sand pits, representing a search
process to find optimal solutions in complex problem spaces.
In ALO, each “ant” (a potential solution) performs a random
walk around an “antlion” (a candidate best solution), which
helps it explore different regions of the search space. This
process is designed to balance exploration (finding new areas
of the solution space) and exploitation (refining solutions in
promising areas). In feature selection, ALO is used to identify
the most relevant subset of features that maximizes classifier
accuracy while reducing computational load [40].

The algorithm works in iterations, where each ant’s move-
ment is influenced by the closest antlion. The random walk
can be represented as:

Wt =

t∑
i=1

(2r − 1) (1)

where r is a random binary variable (either 0 or 1), creating
a cumulative path influenced by the random choices.

As the algorithm progresses, the search radius around each
antlion is gradually reduced, trapping ants closer to antlions
over time, mimicking the natural shrinking effect in sand traps:

gt = gi/I, ht = hi/I (2)

where I is an adaptive ratio that controls exploration-
exploitation, and g and h are the boundaries within which ants
move. ALO’s adaptive nature in shrinking the search space
ensures efficient and accurate feature selection, particularly in
high-dimensional data.

ALO includes an elitism strategy that ensures the best
solution is retained across iterations, providing stability
and improving convergence. The Blend Crossover Operation
(BLX) is used to generate new candidate solutions around the
best antlion. This crossover helps maintain diversity and pre-
vent premature convergence, allowing ALO to be effective for
a range of optimization tasks, especially for feature selection.

In this work, we utilize the ALO algorithm for feature
selection to obtain an initial subset of features for subsequent
algorithmic operations. Concurrently, the integration of a BLX
can be incorporated to augment the search capability of the
ALO algorithm, thereby yielding superior feature selection
outcomes. The pseudocode of the ALO algorithm is pre-
sented in [3]. The fitness function used in this study is the
F1-score.

2) Introduction to the Multi-Agent System Model: In the con-
text of a solitary agent system, the reward function exclusively
evaluates the states of two nodes, disregarding others. Conse-
quently, it fails to capture the intricate interplay between the
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Algorithm 1 Feature Selection Using the ALO-MARL
Algorithm
Input: Training data (D), Maximum Iterations (N ),

Population Size (P)
Output: Final feature subset (S), Model recognition

effect (E)
1 begin
2 Initialize: Randomly generate positions of ants (AN )

and antlions (AL). Evaluate fitness of each ant’s
position using the objective function (e.g., classifier
performance).

3 for i ter = 1 : N do
4 for i = 1 : P do
5 Perform random walk influenced by the

position of the corresponding antlion.
6 Update ant’s position based on the random

walk.
7 Evaluate the fitness of the new position.
8 Select the best ants (elite solutions) and

update antlion positions: Replace antlions
with the best-performing ants.

9 If a better feature subset is found: Update the
global best solution.

10 end
11 end
12 Obtain the initial optimal feature subset.
13 Initialize Q-values: ∀a | Q(a) = −1.
14 for episode = 1 : num_episodes do
15 for agent = 1 : num_agents do
16 if f lag_C L E AN == 1 then
17 Execute greedy (online) action ai ∈ {0, 1}.
18 else
19 Execute ϵ-greedy action ai ∈ {0, 1}.
20 end
21 end
22 Observe joint action a. Get subset S by

considering only “on” actions. Get global reward
G(a) = Reward(S, D).

23 for agent = 1 : num_agents do
24 if f lag_C L E AN == 1 then
25 Take ϵ-greedy (offline) action ci ∈ {0, 1}.
26 Calculate Ci = G(a − ai + ci )− G(a).
27 Update Q(ci )← Q(ci )+ α[Ci − Q(ci )].
28 else
29 Update

Q(ai )← Q(ai )+ α[G(a)− Q(ai )].
30 end
31 end
32 Reduce α using α_decay_rate. Reduce ϵ using

ϵ_decay_rate.
33 end
34 end

environment and multiple agents within the system. In order to
rectify this limitation, we present a novel multi-agent system
model.

Fig. 2 illustrates a framework comprising multiple features,
with each feature considered as an agent engaged in infor-
mation exchange with others. Notably, the entire process of
feature fusion analysis is conceptualized as a Markov Deci-
sion Process (MDP). Serving as the foundational theory for
the Reinforcement Learning (RL) algorithm, MDP inherently
captures the stochastic fluctuations in environmental states and
addresses the stochastic optimization of the system objective.
The implementation of this framework is supported by the
incorporation of ALO-MARL models [41].

Moreover, within the framework of feature fusion analysis,
all feature states collectively constitute the set of states denoted
as S. At a specific time t , the state of the current feature i
is represented as st

i . Additionally, the actions associated with
the selection of feature i form the set of actions denoted as
Ai , where the selection of feature i at time t is considered
as the action at

i . Upon executing the action at
i , the resulting

reward r t
i is obtained as feedback. Furthermore, leveraging

the insights from feature fusion analysis, the determination
of the Global Reward at time t transpires. Subsequently, the
Global Reward is distributed among agents through an assign-
ment mechanism. Ultimately, the decision-making process for
feature fusion analysis is executed, leading to the selection of
features essential for the model. The definition and assignment
of Global Reward will be discussed in detail later.

Significantly, the information interactions among agents
play a pivotal role in enabling feature fusion analysis to
respond promptly to dynamic environmental changes. Building
upon this foundation, the present agent computes the associ-
ated reward and Q-value based on the available information,
ultimately selecting an action through comparative analysis.

From the model elucidated above, it becomes evident that an
anticipated trajectory is obtained through iterative information
interactions and continuous adjustments. Broadly speaking, the
resolution to the MDP problem lies in the application of the Q-
learning algorithm. In Q-learning, the experience of the agent
is encapsulated within a sequence of discrete episodes, facili-
tating the learning of an optimal strategy without necessitating
knowledge of the detailed MDP model at each step. Serving
as the bedrock for the implementation of RL-based feature
fusion analysis, the foundational formula is as follows:

Qt+1
i (st

i , at
i ) = (1− α)Qt

i (s
t
i , at

i )

+ α

{
r t+1(st+1

j )+ γ ∗ max
α∈A j

Qt
j (s

t+1
j , a)

}
,

(3)

where α denotes the learning rate, and γ serves as a discount
factor. Qt

i (s
t
i , at

i ) is defined as a Q-function designed to esti-
mate the Q-value, representing the cumulative reward when
an agent takes action at

i ∈ Ai in state st
i ∈ S. Simultaneously,

r t+1(st+1
j ) signifies the immediate reward at time t + 1 when

an agent transitioning from state st
i to st+1

j .
3) Reward Function for RL: The presented approach aligns

with the concept of multiple information learners, where
each agent views other agents as integral components of
the environment, contributing to its dynamic nature through
interactions [42]. The methodology employs a Global Reward



1416 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 33, 2025

as the main feedback signal, derived from an aggregate eval-
uation of all agents. However, this reward is susceptible to
perturbations from other agents’ exploratory actions, posing
a challenge in distinguishing disturbances from environmental
dynamics or other agents’ actions. To address this, the CLEAN
rewards [43] method is adopted, representing the difference
between the global reward under exploratory actions and a
greedy strategy.

In the context of feature selection, the approach treats it as
a multi-agent coordination challenge, assigning a dedicated
learning agent to each feature. The goal is to filter out
irrelevant features, and each agent decides on the inclusion
or exclusion of a specific feature. Actions 0 and 1 denote
deactivation and activation of a feature, respectively, forming
the feature subset. The reward function is framed as a multi-
objective problem, aiming to simultaneously reduce the subset
size and improve classification performance, considering met-
rics like accuracy or F1-score. A penalty is introduced when
the subset size exceeds a predetermined upper limit. The
reward function is defined in:

Reward =

{
P, s ≤ k
P · k/s, s > k

(4)

with k representing the maximum permissible features, s indi-
cating the subset size, and P representing its corresponding
classification performance.

D. Explainable Artificial Intelligence (XAI)
The computational cost of the PFI is low, SHAP is capable

of providing explanations for the overall model with consis-
tency and high credibility. Hence, we are employing these
two methods for post-model interpretation. These two different
methods are applied to interpret the model classification and
quantify feature importance. The following content provides a
more in-depth description of the above explainable methods.

1) Permutation Feature Importance (PFI): This method is
based upon Mean Reduction Accuracy, and it can be used as an
alternative method to overcome the drawbacks of calculating
the default feature importance with the Mean Decrease in
Impurity. It measures the changes in model prediction error
(in our case cross-entropy loss) when a single feature value is
randomly disrupted. The variation in the model score shows
how much the model depends on the feature [44]. In fact,
permuting important features leads to a considerable decrease
in accuracy, while the effect of permuting less relevant features
should be negligible [18].

2) SHapley Additive exPlanations (SHAP): This is a
model-agnostic interpretation method that belongs to the
additive feature attribution approach, which builds on the
game-theoretic concept of Shapley values. These values are
used to determine the contribution of each player in a coalition
or a cooperative game. In fact, initially, Shapley [45] proposed
a game-theoretic approach that assigns fair payoffs to players
based on their contributions to the total payoff. In a prediction
task, this corresponds to assigning quantitative values to each
feature based on its contribution to a particular prediction. The
SHAP method calculates the Shapley values and represents
them as a linear model of feature coalitions [46].

According to [19], SHAP values attribute to each feature the
change in the expected model prediction when the condition
is applied to that feature. In this framework, the difference
between the prediction and the average prediction, which is
considered as the baseline reference, is perfectly distributed
among all features. Thus, the SHAP values for all features
add up to explain the difference between the actual prediction
and the baseline. The SHAP method is quite robust and it
yields a comparative interpretation of individual predictions
versus average predictions.

E. Time-Delay Embedded Hidden Markov Model
(TDE-HMM)

TDE-HMM showcases distinct advantages in the analysis
of internal state transitions within EEG data through the
utilization of time-delay embedding and Hidden Markov Mod-
elling techniques. This approach provides enhanced temporal
representation, robustness, and adaptability tailored to the
inherent characteristics of EEG data.

As a general framework, a Hidden Markov Model (HMM)
assumes that a time series can be described using a hidden
sequence of a finite number of states such that at each point
in time, only one state is active. In practice, since the HMM
is a probabilistic model, there is uncertainty in the inference
process, assigning the probability of being active at each time
point to each state [47]. The HMM is an effective method
for analyzing state transitions and can be used for state and
transition probability estimation. It has been widely used for
modelling multi-channel neural data [48].

For traditional HMMs, the observation function may have
a large number of parameters, which may lead to overfitting.
As a result, this makes the HMM unable to segment time series
effectively. Here, we apply a novel HMM to the original time
series, which allows us to detect changes not only in power
but also in phase-locking.

In this approach, the TDE-HMM, we define the observation
distribution as the neural activity over a specific time window.
We use a Gaussian distribution with zero mean (i. e., using the
covariance matrix) to model the entire window. To avoid exten-
sive computation and severe overfitting problems, we run the
HMM on a Principal Component Analysis (PCA) decompo-
sition of the embedded space, which not only greatly reduces
the complexity of the state distribution, but also naturally
concentrates the slower frequencies in the data. Therefore,
besides the number of states, the important parameters of the
model are the length of the window (i. e., the number of lags
to be modelled by the state autocovariance matrices) and the
number of PCA components [48].

III. EXPERIMENTS AND RESULTS

A. Experimental Settings for Experimental Testing of the
Recognition Model

In this work, six features (Mean-PSD, Max-PSD, Min-
PSD, LZC, SampEn, and REn) are extracted from each of
the three EEG channels (Fp1, Fpz, and Fp2), resulting in a
total of 3 ∗ 6 = 18 features. Additionally, the feature FAA
is calculated based on the difference in the PSD of the alpha
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rhythms between the Fp1 and Fp2 electrode sites, serving as an
additional feature dimension. Therefore, a total of 19 features
are used for feature selection and analysis in the ALO-MARL
algorithm.

This paper explores three strategies for feature fusion anal-
ysis in the context of depression recognition tasks. These
strategies include a novel approach proposed by us, namely the
ALO-MARL algorithm for feature fusion analysis, the inde-
pendent application of the ALO algorithm for feature selection,
and the independent use of MARL for feature selection. In the
first strategy, the process involves the initial screening of fea-
ture subsets using the ALO algorithm to obtain an initialized
feature subset. Subsequently, this subset is modeled using
the MARL algorithm for feature fusion analysis, followed by
the optimization of ML classifier hyper-parameters through a
grid search strategy and ultimately concluding with depression
recognition.

The ALO-MARL algorithm is run for different values for k,
i. e., the number of features we wish to include in the model.
The value of the upper boundary on the number of features
to be included in the model is varied from 5 to n (i. e., the
size of the initial screening feature subset). Further, for our
method using RL, we fixed the parameters α = 0.2, ϵ = 0.5,
α decay rate = 0.995, and ϵ decay rate = 0.995. The number
of episodes we train our model is kept to 100. In addition, the
number of independent executions is set to 10. Furthermore,
independent executions are performed to avoid random results
of a particular classifier.

The details of the parameter settings of the ALO algorithm
are kept fixed in each independent execution to obtain the
results. In addition, the population size (i. e., the number
of independent executions) and the maximum number of
iterations are set to 20 and 100, respectively [3]. Additionally,
we utilize a 10-fold cross-validation approach to evaluate the
model’s performance. This method entails dividing the training
dataset into 10 subsets, reserving one for model validation and
employing the remaining nine for training. The procedure is
executed ten times, yielding ten distinct models. The overall
model performance is determined by averaging the results
obtained from these ten iterations.

B. Classification Methods
To validate the effectiveness of the feature selection meth-

ods, this study employs several classical ML methods for
classification, which are commonly used in affective comput-
ing and emotion recognition. A total of 6 classifiers are used
to obtain the classification results.

1) k-Nearest Neighbor (k-NN): As a widely used
instance-based and supervised ML algorithm, k-NN is com-
monly applied in both classification and regression tasks [49].
In this study, the ALO-MARL algorithm was utilized to
identify the optimal value of k, enhancing classification per-
formance.

2) Support Vector Machine (SVM): SVM, grounded in
statistical learning theory, is a supervised ML algorithm known
for its low computational complexity and strong classification
capabilities [3]. In this study, an SVM classifier with a Radial
Basis Function (RBF) kernel was employed.

3) Naive Bayes (NB): NB is one of the simplest forms of
Bayesian network classifiers and is a supervised ML algorithm
commonly applied to classification tasks [50].

4) Decision Tree (DT): DT is a nonparametric, super-
vised ML method used for both classification and regression
tasks, offering high classification accuracy and robust perfor-
mance [51].

5) Random Forest (RF): RF is a supervised ML algorithm
that performs well across a wide range of classification and
regression tasks [52].

6) XGBoost: XGBoost is an ensemble ML algorithm based
on decision trees, utilizing a Gradient Boosting framework to
enhance performance [53].

C. Comparison With Different Feature Selection
Methods Based on Different Classifiers

In this study, the proposed ALO-MARL algorithm is
systematically compared with both traditional and state-of-
the-art feature selection methods. Traditional methods include
LASSO [14], Correlation-Based Feature Selection (CFS) [54],
RF [52], Infinite Feature Selection (IFS) [55], ReliefF [56],
Fisher Score [57], Information Gain (InfoGain) [58], Sup-
port Vector Machine-Recursive Feature Elimination (SVM-
RFE) [59], and Genetic Algorithm (GA) [60], all of which
are widely employed in prior research. In addition, the study
evaluates the ALO-MARL algorithm against several recent
state-of-the-art techniques, such as Standard Deviation and
Exponent Cosine Similarity-Based Feature Selection (SCEFS),
Standard Deviation and Reciprocal Cosine Similarity-Based
Feature Selection (SCRFS) and Standard Deviation and Anti-
Cosine Similarity-Based Feature Selection (SCAFS) [61].
These methods represent advancements in feature selection
and provide a broader context for comparison.

The methods are categorized based on their selection strat-
egy: embedded, filter, and wrapper approaches. Embedded
methods include LASSO, SVM-RFE, and RF, which incor-
porate feature selection as part of the model training process.
Filter methods, such as Fisher Score, CFS, InfoGain, ReliefF,
IFS, SCEFS, SCRFS, and SCAFS, evaluate features indepen-
dently of the model using statistical criteria. Wrapper methods,
including GA, ALO, MARL, and the proposed ALO-MARL
algorithm, involve iterative optimization to identify the best
subset of features. All traditional methods are implemented
using Python’s Feature Selection Library within the PyCharm
environment, employing their respective default parameter
settings.

Tables I-VI present the classification results for distin-
guishing between normal and depressed subjects using
different feature selection methods and classifiers. Among
the six classifiers and various feature selection strategies, the
wrapper-based feature selection method consistently yields the
best classification performance, particularly in terms of F1-
score, accuracy, sensitivity, and specificity. Notably, within
the wrapper-based feature selection methods, our proposed
ALO-MARL algorithm demonstrates superior performance
across all evaluation metrics, underscoring its effectiveness in
both feature selection and classification tasks.
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TABLE I
EVALUATION OF DEPRESSION RECOGNITION PERFORMANCE OF

DIFFERENT FEATURE SELECTION METHODS BASED ON k -NN
CLASSIFIER (MEAN±SD%)

TABLE II
EVALUATION OF DEPRESSION RECOGNITION PERFORMANCE OF

DIFFERENT FEATURE SELECTION METHODS BASED ON SVM
CLASSIFIER (MEAN±SD%)

In this study, we focus primarily on three algorithms:
the ALO, MARL, and the proposed ALO-MARL algorithm,
which are employed for feature fusion analysis. After per-
forming feature selection using these algorithms, we optimize
the hyper-parameters of a ML classifier to effectively identify
individuals with depression. This process enables the accurate
recognition of depression in individuals.

TABLE III
EVALUATION OF DEPRESSION RECOGNITION PERFORMANCE OF

DIFFERENT FEATURE SELECTION METHODS BASED ON NB
CLASSIFIER (MEAN±SD%)

TABLE IV
EVALUATION OF DEPRESSION RECOGNITION PERFORMANCE OF

DIFFERENT FEATURE SELECTION METHODS BASED ON DT
CLASSIFIER (MEAN±SD%)

The feature selection process using the ALO algorithm
is performed independently in each execution, with different
feature subsets selected for training. The results of 20 indepen-
dent executions are averaged to provide the final performance
of the classifier. As shown in Tables I-VI, all six classifiers
achieve strong results, with k-NN and XGBoost showing the
best performance. Specifically, k-NN achieves an F1-score of
88.19% and accuracy of 91.21%, while XGBoost reaches an
F1-score of 88.18% and accuracy of 91.24%.

For feature fusion analysis using the MARL algorithm,
a total of 10 independent experiments are conducted. In each
experiment, a feature subset is selected for a particular classi-
fier, and the classifier’s performance is evaluated. The results,
presented in Tables I-VI, show that the XGBoost classifier
outperforms the others, achieving an F1-score of 90.02%,
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TABLE V
EVALUATION OF DEPRESSION RECOGNITION PERFORMANCE OF

DIFFERENT FEATURE SELECTION METHODS BASED ON RF
CLASSIFIER (MEAN±SD%)

TABLE VI
EVALUATION OF DEPRESSION RECOGNITION PERFORMANCE OF

DIFFERENT FEATURE SELECTION METHODS BASED ON XGBOOST

CLASSIFIER (MEAN±SD%)

accuracy of 92.21%, sensitivity of 85.56%, and specificity
of 96.85%. In contrast, the NB classifier demonstrates the
worst performance, with an F1-score of 79.76%, accuracy of
84.60%, sensitivity of 72.08%, and specificity of 93.70%.

Finally, when applying the ALO-MARL algorithm for fea-
ture fusion analysis, the process begins with initial feature
subset screening using the ALO algorithm. This subset serves
as the starting point for the subsequent RL process. The feature
selection problem is framed as an RL task, where each feature
is treated as an agent. The actions taken by each agent are
binary (0 or 1), where 0 indicates exclusion and 1 indicates
selection. Through interaction between the agents and the
environment, the optimal feature set is obtained, resulting in
improved classification performance.

TABLE VII
AVERAGE SIZE OF THE FEATURE SUBSETS FOR DIFFERENT METHODS

OF FEATURE SELECTION (TIMES)

As shown in Tables I-VI, the ALO-MARL method sig-
nificantly enhances classification performance. The XGBoost
classifier achieves the highest results with an F1-score of
91.82%, accuracy of 93.69%, sensitivity of 88.60%, and
specificity of 97.08%. In contrast, the NB classifier again
shows the worst performance, with an F1-score of 80.14%,
accuracy of 86.46%, sensitivity of 72.13%, and specificity of
95.20%.

Table VII presents the feature subset lengths for the three
feature selection methods across the six classifiers. The
ALO-MARL method consistently selects smaller feature sub-
sets for each classifier, which not only leads to reduced model
complexity but also results in better recognition performance.
This demonstrates that the ALO-MARL method can achieve
superior classification results with a more compact set of
features.

The above analysis indicates that our proposed approach,
utilizing the ALO-MARL algorithm for feature fusion analy-
sis, along with the optimization of ML classifier parameters,
is the most effective for depression recognition.

In the case of using the ALO-MARL algorithm for feature
selection while simultaneously using the XGBoost classifier
for depression recognition, after conducting 10 independent
executions, we exclude 8 features from the model and retain
11 features. These features include the Mean-PSD in all
3 leads, the Max-PSD in the second lead, the Min-PSD in the
first and third leads, the SampEn in all 3 leads, and the REn in
the first and second leads. We utilize these features to improve
the classification results of the model. Later, we utilize these
features to improve the classification effect of the model and
perform post-model explanations.

The results of the XGBoost classifier parameter optimiza-
tion are: the values of colsample_bytree, gamma, max_depth,
min_child_weight, and n_estimators equal 0.8, 0.5, 7, 3, and
100.

Table VII presents the average size of the feature sub-
sets obtained after conducting multiple feature selection
experiments using the ALO, MARL, and ALO-MARL algo-
rithms. The concurrent examination of Table VII reveals that
the ALO-MARL method, in comparison to both the ALO
and MARL approaches, is capable of achieving satisfactory
recognition outcomes with a relatively reduced subset of
features. Furthermore, for the six classifiers considered, the
ALO-MARL algorithm exhibits a conspicuous enhancement
in the identification performance for depression, particu-
larly in the case of the SVM, DT, and RF classifiers.
The various details pertaining to the optimization of model
hyper-parameters are delineated in Table VIII.
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TABLE VIII
SUMMARY OF MODEL HYPERPARAMETERS

D. Computational Complexity of Different Feature
Selection Methods

We also analyze and compare the computational complexity
of different feature selection methods. The computational
time is calculated as the difference between the time when
prediction ends after the feature subset is selected and the
time before feature selection begins. All experiments are run
on a computer with Windows 11 OS, a 13th Gen Intel(R)
Core(TM) i7-13700F with 16 GB RAM.

As shown in Table IX, the proposed ALO-MARL algorithm
demonstrates comparable, if not shorter, computation time
compared to other wrapper-based feature selection meth-
ods, making it feasible to complete computations within a
reasonable timeframe. However, due to the inherent com-
putational inefficiency of wrapper-based methods, embedded
and filter-based feature selection methods exhibit significantly
shorter computation times than ALO-MARL.

Although ALO-MARL requires slightly more runtime
than embedded and filter-based methods, the results in
Tables I, II, III, IV, V, and VI reveal its superior performance
metrics. The feature subsets selected by ALO-MARL signifi-
cantly enhance model accuracy and generalization capability,
highlighting its advantages in performance. This outstanding
performance offsets the algorithm’s runtime disadvantage,
making ALO-MARL highly competitive in applications where
high precision is required.

In conclusion, the ALO-MARL algorithm is a feature
selection method that balances computational efficiency and
performance effectively.

E. Results for the Model Explanations With the XAI
Methods

From the analysis presented above, it is clear that the
XGBoost model, enhanced by the ALO-MARL feature fusion
algorithm, demonstrates the best performance in depres-
sion recognition. The following section delves into the
post-interpretation results using XAI methods based on this
model.

Fig. 3. Boxplot grouped by feature. The vertical coordinate is the value
of the impact on the performance of the model after randomly shuffling
the feature values. The horizontal coordinate is the features selected by
the algorithm.

Fig. 3 illustrates the feature importance based on PFI tech-
nique. It is evident that among the various features considered,
three features stand out in terms of their contribution to
the model. Specifically, the minimum value of PSD in the
third lead emerges as the most influential feature, followed
closely by the SampEn in the second lead. This suggests that
these features play a crucial role in distinguishing depression,
as compared to the other features included in the analysis.

Additionally, the SHAP values provide further insight into
the XGBoost model’s decision-making process. The SHAP
summary plot, shown in Fig. 4, serves as an alternative to the
typical feature importance bar chart, offering a comprehensive
overview of each feature’s impact. The plot not only identifies
the most significant features but also highlights the range of
their effects across the dataset. Notably, the color gradients
in the plot vividly reveal the correlation between variations
in feature values and the corresponding changes in depres-
sion detection. Strong correlations are particularly observed
between the PSD and SampEn features and their contribution
to depression recognition.

Furthermore, the SHAP values indicate that for most of the
features, an increase in feature values leads to an increase in
the SHAP values, particularly for features such as mean_3,
min_3, SampEn_2, and REn_2, which exhibit more pro-
nounced effects. This provides a clearer understanding of the
relationship between feature changes and the model’s output,
enhancing the explainability of the depression classification
process.

F. Internal State Transition of Brain Activity in Depression
The number of states of the TDE-HMM model is a hyper-

parameter that needs to be determined before the model is
trained. After several experiments, we find that 7 hidden states
can fully describe the brain activity process under different
audio stimulation.
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TABLE IX
COMPUTATIONAL COMPLEXITY AND TIME OF DIFFERENT FEATURES SELECTION METHODS

Fig. 4. SHAP summary plot. The ranking of feature importance is
displayed. We can see that the most important factor for depression
detection according to the model is the indicator of the minimum values
of PSD.

Next, we analyses the internal state transition under various
audio stimulation by using the TDE-HMM model. Fig. 5
shows the average probability series of 7 HMM states in
12 time phases (As mentioned above, the 12 time phases are
alternated between a 6-second resting state and a 6-second
audio stimulation state, as shown in Fig. 1). At the beginning,
states 4, 5, and 6 have the highest occurrence probability,
while states 1, 2, 3, and 7 have the lowest probability. As the
audio stimulation proceeds, the probability of state 4, 5, and
6 decreases, and the probability of state 2, 3, and 7 increases
as the resting state changes to the stimulated state. During
phases 1-4 (neutrally-valenced audio stimulation), state 3 has

Fig. 5. Establishment of the TDE-HMM model. Average probability
values over time of internal states activation. Each state corresponds to
a probability series. The amplitude of the probability series represents
the probability of the state activation, and the time series is consistent
with the sampling frequency of the EEG. The sum of the probabilities of
all states at each time point is 1.

the highest probability of occurrence, and states 2, 5, 6, and
7 have similar probabilities. In phases 5-8 (negatively audio
stimulation), state 3 continues to increase, and in the last
phase, state 2 is equal to state 3, while states 7 and 5 fluctuate.
During phases 9-12 (positively-valenced audio stimulation),
state 2 has surpassed state 3 and becomes the most frequent
state, while states 7 and 5 converge, state 6 continues to
decrease, state 1 tends to rise, indicating an enhanced regula-
tory effect, accelerating the internal state transition, and state
4 appears least frequently.
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Fig. 6. The state transition probability matrix. The horizontal and vertical
axes of the matrix represent the label of the state. The value of each
pixel represents the transition probability between states.

Fig. 7. The topological graph of the state transition. The thicker the
line, the stronger the transition probability. The blue circle represents
the resting-state, the red circle represents the set of stimulated states,
and the number 1 marked in gray indicates the regulator that regulates
the transition between stimulated states.

Furthermore, the state transition probability matrix pre-
sented in Fig. 6 reveals that there is a considerable probability
of transition within the states in different stimulation phases
and the resting-state phase. Interestingly, state 1 can be used
as a moderator to smooth the transition to different audio
stimulation phases. These results are consistent with the above
analysis. Based on the state transition probability matrix, the
topological graph is obtained, as shown in Fig. 7.

IV. DISCUSSION

A. Depression Recognition Models
In this work, we propose a feature selection model for

depression detection based on the ALO-MARL algorithm.
To ensure the robustness of the ALO-MARL algorithm,
we mix data from 70 depressed patients and 108 healthy con-
trols for training and testing. We have carried out experiments
in several aspects.

1) Comparison of Different Feature Selection Algorithms:
The study evaluates different classifiers using three feature
fusion strategies and four evaluation metrics. As shown in
Tables I-VI, the XGBoost classifier performs the best, while

the NB classifier performs the worst due to feature elimination
in the ALO-MARL algorithm. Furthermore, the proposed
ALO-MARL feature fusion method consistently outperforms
other methods in terms of recognition effectiveness for most
classifiers, except for some cases where specificity remains
comparable.

The ALO-MARL algorithm shows considerable improve-
ment in the effectiveness of the SVM classifier, with notable
enhancements in sensitivity and F1-score metrics compared to
the ALO and MARL algorithms. For instance, this algorithm
exhibits a notable enhancement of 15.10% in sensitivity
metrics compared to the ALO algorithm, and respective
improvements of 13.55% and 26.71% in F1-score and sensi-
tivity metrics compared to the MARL algorithm. Additionally,
the algorithm demonstrates superior learning capabilities with
smaller feature subsets, as indicated in Table VII.

2) Comparison of Previous State-of-the-Art Models: We
present a comprehensive review of previous studies employing
prefrontal-lobe three-lead EEG data for depression recogni-
tion. Reference [15], [34], and [62] have attained classification
accuracies of 83.07%, 86.98%, and 79.27%, respectively.
Notably, our innovative approach, developed through the
integration of the ALO-MARL algorithm and the XGBoost
classifier, demonstrates a commendable classification accuracy
of 93.69%.

The identical auditory stimuli EEG dataset employed in [3]
is utilized in this investigation. In [3], the ALO algorithm
is applied for both feature selection and weighting, in con-
junction with a k-NN classifier for depression recognition.
The resulting metrics, including F1-score, accuracy, sensitivity,
and specificity, are reported as 87.33%, 90.70%, 81.79%,
and 96.53%, respectively. In contrast, our study employs
the ALO-MARL algorithm for feature selection, followed by
XGBoost for depression recognition. Notably, the achieved F1-
score, accuracy, sensitivity, and specificity in our model are
considerably elevated, reaching 91.82% 93.69%, 88.60%, and
97.08%, respectively. This performance surpasses the efficacy
demonstrated by the proposed methodology in [3].

In the field of medical diagnostics, the effectiveness of a test
relies on striking a delicate balance between sensitivity and
specificity. Our innovative approach demonstrates outstanding
performance, achieving an accuracy of 93.69%, an elevated
F1-score of 91.82%, a high sensitivity of 88.60%, and an
enhanced specificity of 97.08%. These results highlight the
significant potential of our method in advancing the diagnosis
of depression.

3) Discussion on Cross Validation: While cross-validation
is widely used to evaluate classification performance, it may
still lead to overestimation of performance metrics, such as
accuracy and F1 score, due to the potential for information
leakage between training and testing sets. To address this
issue, nested cross-validation is considered a more robust
method [63], as it evaluates the model’s performance by
incorporating an additional layer of cross-validation for model
selection. However, nested cross-validation is computationally
expensive, especially for large datasets, and is often imprac-
tical for complex algorithms like the ALO-MARL approach
used in this study.
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In this work, we employed standard cross-validation, which
has been shown to yield reliable estimates of model perfor-
mance under certain conditions, such as when the dataset size
is sufficient and the model is well-regularized. Although this
method may still lead to slight overestimation of performance
metrics, it remains a widely accepted practice in machine
learning.

For future research, we recommend considering nested
cross-validation to further enhance the reliability of perfor-
mance evaluation. Additionally, other methods like repeated
random splits or stratified sampling could be explored to
mitigate potential biases in performance estimation.

4) Computational Complexity: This study employs
ALO-MARL as the feature selection algorithm due to
its significant advantages as a wrapper-based method.
By iteratively evaluating the performance of feature subsets,
ALO-MARL effectively captures complex relationships
between features, thereby enhancing the overall performance
of the model. Although ALO-MARL involves higher
computational costs in terms of model construction and
runtime compared to embedded or filter-based methods, its
notable improvements in performance metrics validate its
suitability and superiority for feature selection tasks.

At the same time, to address the issue of feature dimension-
ality, this study employs a portable three-lead EEG acquisition
device for EEG signal analysis. Currently, most commercial
portable EEG devices support data acquisition for up to
8 or 16 channels. For data from large-scale EEG channel
devices, the proposed ALO-MARL algorithm exhibits a linear
increase in computational complexity as the number of fea-
tures grows, and this complexity is also related to the number
of selected features specified by the algorithm. Compared to
other feature selection methods, although all methods expe-
rience some degree of reduction in computational efficiency,
the experimental results show that the ALO-MARL algorithm
outperforms others in terms of performance metrics.

When using RL to address feature selection, the need for
training and prediction at each step results in substantial com-
putational overhead. However, with sufficient computational
resources, such as GPUs or parallel computing, this high com-
putational demand may not pose a significant bottleneck. For
instance, in many scenarios, the model optimization process
can be conducted offline, and the optimized feature subset
can subsequently be used for rapid prediction in real-time
applications, striking a balance between computational cost
and operational efficiency.

For applications with low real-time requirements, such as
medical diagnostics or other offline analysis tasks, longer
training times are acceptable. In such cases, even though
the computational efficiency may be lower, the substantial
improvements in model performance justify the adoption of
this method.

B. XAI for Model Post Interpretation Results
The classification model undergoes post-interpretation

employing two XAI methodologies. The results, as depicted
in Fig. 3 and Fig. 4, reveal a congruence in the interpretative
outcomes derived from both methods. Notably, the minimal

value of PSD, SampEn, and REn collectively exert the most
pronounced influence on the model.

The observation underscores the critical importance of these
three factors in the context of depression recognition, positing
them as indispensable contributors that demand careful con-
sideration. Omitting any of these factors may compromise the
accuracy and efficacy of the model.

C. Internal State Transition Within the Brain
Numerous scholarly articles currently address issues related

to state transitions in EEG studies. In [64], the authors aim
to elucidate the spatiotemporal complexity of whole-brain
networks and state transitions during sleep. Their results unveil
critical trajectories governing transitions within and between
sleep stages based on EEG data. Reference [65] reveals
substantial alterations in brain activity and connectivity during
epileptic seizures, as the brain network transitions from a
balanced resting state to a hyperactive and hypersynchronous
state. In [48], an experiment is designed to validate the impact
of acupuncture stimulation on the human brain. Experimental
results indicate that acupuncture can activate novel brain
states, with different acupuncture techniques inducing state
transitions along independent pathways. The focus of this
present study lies in examining the state changes in EEG
patterns of individuals with depression under various auditory
stimuli.

Many conclusions can be drawn from the previous analyses,
especially through the topological graph as well as the state
transition probability matrix. It can be found that except for
state 1, the other states are activated periodically, which is
closely related to the phases of time. In particular, states 4, 5,
and 6 are mainly activated during the resting-state, while the
states 2, 3, and 7 are closely related to different audio stimu-
lation. The states of different audio stimulation are all within
one set. The study shows that the internal state transition in
the brain of depressed patients appears flexible and that these
states seem activated alternating over time. Furthermore, such
transitions appear not only induced within the overall state of
the audio stimulation, but appear also activated between the
resting state and the stimulation phase.

The most obvious finding from Fig. 7 is that there is a
direct state transition pathway between the resting-state and
the stimulated states. Furthermore, there are differences in the
transition pathways between resting and stimulated states. For
example, there are multiple transition pathways (states 5-3,
states 6-3, and states 6-7) from the resting-state phase to the
stimulation phase, but only 2 transition pathways (states 3-5
and states 3-6) from the stimulation phase to the resting-state
phase. So far, these findings suggest that audio stimulation can
modulate brain states in patients with depressive disorders and
that different audio stimulation can induce state transitions in
a hybrid pathway.

D. Analysis of the Advantages and Innovations of the
ALO-MARL Algorithm

Although the ALO-MARL algorithm has a disadvantage
in terms of computational complexity, specifically longer
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training time, it offers several advantages in feature selection,
as detailed below.

1) Accuracy Improvement: The primary advantage of
ALO-MARL lies in its enhanced classification accuracy,
achieving 93.69% compared to approximately 90% with tra-
ditional feature selection methods like Fisher, SVM-RFE, and
CFS. Although the training and prediction time is longer, the
increased accuracy is significant, especially for high-stakes
applications such as medical diagnostics, where even a small
improvement in accuracy can result in substantially better
outcomes.

2) Suitability for Complex Datasets: ALO-MARL is partic-
ularly effective with high-dimensional datasets, such as EEG
data with numerous variables and channels. Traditional meth-
ods like Fisher, SVM-RFE, and CFS may face performance
limitations as feature dimensionality increases. In contrast,
ALO-MARL’s MARL component enables effective feature
fusion and selection, allowing for better feature representation
and generalization on complex datasets.

3) Quality of Feature Selection: ALO-MARL’s combination
of optimization and feature fusion results in selected features
that not only enhance classification performance but may also
exhibit greater interpretability and stability. This aspect is
crucial in medical domains, where selected features should
ideally reflect meaningful neurophysiological insights rather
than being purely optimized for mathematical purposes.

4) Long-Term Cost Trade-off: Although ALO-MARL has a
longer training time, the model can be deployed for fast predic-
tions once training is complete, making the increased training
time acceptable in scenarios involving one-time optimization
or offline analysis. Additionally, as computational resources
and hardware continue to improve, ALO-MARL’s computation
time can be reduced without compromising its high accuracy
in complex feature selection tasks.

5) Novelty and Research Value: The ALO-MARL algorithm
offers a novel approach to feature selection, integrating MARL
in a way that is relatively rare in current feature selection
methodologies. Its innovation adds significant research value
and can be further substantiated by a detailed comparison with
traditional methods to illustrate its scope and advantages.

Through a detailed analysis of these aspects, it is possible
to argue that, although the computational cost of ALO-MARL
is higher, its advantages in terms of selection accuracy, suit-
ability for high-dimensional data, feature selection quality, and
novelty make it a highly competitive approach for EEG data
processing tasks.

E. Limitations and Future Work

This work still faces some limitations. The proposed
ALO-MARL algorithm, as a wrapper-based feature selection
method, has a higher computational complexity compared to
other embedded and filter-based feature selection methods.
However, its computational complexity is moderate when
compared to other wrapper-based methods, remaining within
a reasonable range. Despite this, the outstanding performance
of the ALO-MARL algorithm can somewhat compensate for
the drawbacks associated with its computational complexity.

Future work will focus on optimizing the computational
complexity of the algorithm. In terms of model development,
efforts will be made to achieve model lightweighting, such as
through pruning and distillation techniques, while maintaining
the performance advantages of the model. When using RL
to solve feature selection tasks, the need for training and
prediction at each step can significantly increase computational
costs. To address this, future work will explore strategies to
reduce computational demands, such as using lighter proxy
models to approximate performance evaluation during the
RL process (e.g., simple models based on prior knowledge).
Additionally, the training time can be reduced in intermediate
steps of feature selection optimization, with the main model
being used only in the final evaluation phase. If resources
permit, the training process may also be distributed across
multiple devices or nodes to execute in parallel, aiming
to significantly accelerate the feature selection optimization
process. Although using RL for feature selection presents
challenges in computational efficiency, it is hoped that these
challenges can be mitigated through appropriate optimization
strategies, particularly in offline analysis or when distributed
computing is feasible. Future work will also focus on the
analysis of low-dimensional manifold dynamics of the human
brain. Low-dimensional dynamics and neural manifolds can
help understand the temporal dynamics and dynamic changes
of the human brain during audio stimulation, providing a new
perspective for further improving the clinical application of
music therapy for depression.

V. CONCLUSION

This paper provides a post-interpretation of a classification
model to clarify which features have a stronger impact on
the classification task and to reveal important factors affecting
depression detection. We implemented EEG feature selection
using the ALO-MARL algorithm, ultimately identifying fea-
tures highly relevant to the depression recognition task. The
depression recognition accuracy achieved was 93.69%. Further
research was conducted on the internal state transition of the
brain in patients with depression under audio stimulation to
reveal the modulation effect of external stimulation and further
explain the results of depression recognition. Post interpre-
tation of depression recognition results using XAI methods
showed that the PSD and SampEn are strongly correlated with
depression recognition. This study enhances the explainability
of the depression recognition task. Furthermore, the internal
states of the brain in depression during audio stimulation were
inferred with a TDE-HMM. It was observed that the brain
activity was best modelled as transitioning within an ensemble
of states and that audio stimulation appears to be able to evoke
new brain states. The obtained results could give an insight
into how audio stimulation can improve the brain cognition
by regulating internal state transition, and explain the results
of depression recognition to further reveal the mechanism of
depression activation.

For clinicians, this type of neural feature information may
provide valuable insights to uncover additional associations
related to depression. For neuroscientists, it offers a deeper
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understanding of the pathophysiological mechanisms under-
lying depression. For fellow researchers, the introduction of
MARL presents a novel and more effective approach to EEG
feature selection.
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