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Sonar-Based Deep Learning in Underwater Robotics:
Overview, Robustness, and Challenges

Martin Aubard , Ana Madureira , Senior Member, IEEE, Luís Teixeira , and José Pinto

Abstract—With the growing interest in underwater exploration
and monitoring, autonomous underwater vehicles have become
essential. The recent interest in onboard deep learning (DL) has
advanced real-time environmental interaction capabilities relying
on efficient and accurate vision-based DL models. However, the
predominant use of sonar in underwater environments, character-
ized by limited training data and inherent noise, poses challenges
to model robustness. This autonomy improvement raises safety
concerns for deploying such models during underwater operations,
potentially leading to hazardous situations. This article aims to
provide the first comprehensive overview of sonar-based DL under
the scope of robustness. It studies sonar-based DL perception task
models, such as classification, object detection, segmentation, and
simultaneous localization and mapping. Furthermore, this article
systematizes sonar-based state-of-the-art data sets, simulators, and
robustness methods, such as neural network verification, out-of-
distribution, and adversarial attacks. This article highlights the
lack of robustness in sonar-based DL research and suggests future
research pathways, notably establishing a baseline sonar-based
data set and bridging the simulation-to-reality gap.

Index Terms—Autonomous underwater vehicle (AUV), data sets,
deep learning (DL), robustness, sonar-based.

I. INTRODUCTION

IN Recent decades, the world’s oceans have become a focal
point for numerous subjects of interest to scientists, indus-

tries, and military organizations, including underwater archae-
ology [1], maritime exploration [2], transportation logistics,
renewable energy initiatives [3], and military applications [4].
These applications share a common challenge: conducting safe
surveys, explorations, or data collection in the often unpre-
dictable and hazardous underwater environment. Autonomous
underwater vehicles (AUVs), used to collect data and perform
operations underwater, have emerged as indispensable tools in
addressing this challenge. AUVs come equipped with various
sensors and instruments collecting underwater data, including
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measuring temperature, salinity, currents, and cataloging marine
species and seabed structures. However, the underwater envi-
ronment presents challenges for navigation and environmental
understanding due to its inherent physical uncertainties. Radio
waves are rapidly absorbed by water, restricting the use of radar
and global positioning system (GPS) sensors. Underwater vision
is limited by reduced luminosity, turbidity, and the necessity
for proximity to capture clear imagery. These challenges affect
traditional vision sensors, such as red–green–blue (RGB) and
grayscale cameras, and light detection and ranging (LiDAR)
systems due to the significant scattering and absorption of light.
On the other hand, sonar sensors, relying on sound waves that
propagate efficiently and consistently underwater, provide a
viable alternative for underwater sensing and navigation.

A. Sonars

Sonars, classified as active or passive, offer distinct under-
water exploration and monitoring methodologies. Passive sonar
captures the ambient underwater environment without emitting
any signals, which is primordial for furtive surveillance. In con-
trast, active sonar emits sound pulses reflecting on underwater
objects, marine life, or the seabed. By analyzing the return sig-
nals, we can determine object distances (time between emission
and reception) and identify object types (variations in sound
intensity), primordial for mapping and navigation (e.g., obstacle
avoidance), providing comprehensive underwater environment
information. In addition, the choice of operating frequency af-
fects sonar performance since it directly influences the system’s
range and resolution as well as the level of penetration into
soft bottoms, such as mud. Lower frequencies provide higher
propagation distances but at the cost of detail, whereas high
frequencies offer superior resolution but with reduced operating
range. Thus, sonar data collection requires a tradeoff between
range and resolution. Synthetic aperture sonar (SAS) has re-
cently addressed this limitation by providing higher resolution
without sacrificing ranges, making it a promising technology for
underwater exploration.

Active sonars can also be categorized by configuration, such
as single-beam and multibeam types. Single-beam offers a
singular sound measurement for determining altitude, aiding
navigation tasks (e.g., bottom tracking). In contrast, multi-
beam sonar, including side-scan sonar (SSS) and multibeam
echo sonars (MBES), are designed to simultaneously capture
a broader range of data points. MBES provides a bathymetric
mapping from beneath the vehicle, whereas SSS focuses on
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Fig. 1. Sonar perception with SSS [5] and FLS [6]. This figure represents the
setup and visual information from the multibeam echo sonar (MBES), SSS, and
FLS. It shows that while the SSS provides information on past data from the
port to the starboard, the FLS gives current information from the front of the
AUV and the MBES from beneath the vehicle.

generating high-resolution seafloor imagery on both sides of
the vehicle (port and starboard). In addition, forward-looking
sonar (FLS), whether single-beam or multibeam, maps the area
directly ahead of the vehicle. A single-beam FLS might only
provide distance measurements to upcoming obstacles, whereas
a multibeam FLS offers a detailed representation of the area in
front of the vehicle, enhancing obstacle avoidance and naviga-
tion. Fig. 1 represents three sonar sensors: an SSS on both port
and starboard sides, an MBES beneath, and a multibeam FLS in
front of the vehicle. Due to the position of the SSS, the usual SSS
image lacks information between the two transducers, which is
called the nadir gap; however, in this graphical representation,
the MBES fills the nadir gap.

B. Deep Learning (DL) and Robustness

Artificial intelligence (AI) has emerged as a crucial solution
to enhance the performance and capabilities of AUVs. AI’s
ability to process and interpret large data sets, identify pat-
terns, and make informed predictions can significantly improve
AUV navigation, collision avoidance, and real-time decision-
making [7]. Over the past decade, machine learning (ML) and
DL techniques have been applied to improve feature detection
in data collected by AUVs, such as identifying mines [8] or
shipwrecks [9]. Traditionally, ML and DL methods have been
used in postprocessing vision-based data, where collected data
are processed offline to detect features. This approach reduces
the time needed for target identification, which typically requires
domain expertise. However, due to the time-consuming nature
of offline processing, AUVs cannot interact with potential un-
derwater objects while surveying. Recently, the focus has shifted
toward integrating DL algorithms directly onboard AUVs to
enable real-time interaction with the underwater environment,
enhancing responsiveness to environmental changes and im-
proving the autonomy of AUVs [10]. This real-time approach
enables AUVs to adapt their navigation dynamically in response
to detected objects or obstacles, streamlining survey times and
improving data quality [11]. However, relying on DL models
for interpreting environmental data in real time raises essential
questions about the reliability of sonar-based DL outputs.

The central question, “How can we rely on real-time sonar-
based DL models?” raises several related issues regarding the
robustness of DL models and the true meaning of robustness.
Robustness refers to the ability of AI systems to handle errors or
inconsistencies during their operation [12]. It is a subcategory
of the broader concept of Safe AI, including Explainable AI
(XAI), interpretability, privacy, and security. Safe AI aims to
ensure the reliability of algorithms, vehicle safety, and the safety
of surrounding environments [13]. Due to their opacity, DL
algorithms are often considered opaque systems [14], as their
reasoning process is unclear, requiring measures to ensure ex-
pected performance while mitigating unintended consequences
and potential harm [15]. The challenge lies in balancing the
benefits of AI with managing the risks of misuse or malfunction.
XAI [16] provides insights into the training and implementation
processes, helping users understand AI behaviors, identify is-
sues, and improve system architecture. The EU’s General Data
Protection Regulation [17] enforces a “right to explanation,” al-
lowing individuals affected by AI decisions to request an expla-
nation of how those decisions were made. Interpretability Gilpin
et al. [18] further supported understanding the model structure,
aiding in reliability assessments, diagnostics, and corrections.
While Safe AI has seen significant progress in terrestrial appli-
cations, such as autonomous driving, there has been less focus
on ensuring the safety of underwater perception systems, par-
ticularly sonar-based systems. Underwater environments pose
unique challenges, including unreliable GPS positioning, poor
visibility for optical sensors, noisy sonar data, strong currents,
and constantly changing conditions. Hence, implementing DL
onboard AUVs raises questions about vehicle safety, where for
the AUV itself, safety means ensuring that it does not collide
due to unreliable model behavior, does not get lost, and collects
data accurately.

C. Motivations

DL models’ robustness examination aims to consistently
ascertain their ability to make accurate predictions under all
conditions. Furthermore, it is essential to understand the factors
that could lead to erroneous sonar-based DL outputs. The data-
driven nature of DL models requires relying on the integrity
and relevance of training data, which brings up the following
critical considerations: 1) Adequate data volume in the train-
ing set is essential for comprehensive learning and recognition
abilities upon deployment. 2) The relevance of data to the op-
erational environment is vital, prompting questions about what
constitutes the resemblance of data to the deployment context
regarding environmental and sensor data distributions. Those
considerations are even more critical for sonar-based data sets
due to their open-source accessibility limitation. Thus, if the
available data prove insufficient, operators face the following
alternatives: 1) collecting more data (time and cost-consuming);
2) utilizing simulators for data generation, requiring high fidelity
to real-world conditions; or 3) leveraging generative models
to increase the data set volume. Nevertheless, even with pre-
cise data, model-induced errors remain possible, underscoring
the significance of neural network verification as a discipline
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seeking to mathematically validate model reliability within de-
fined noise thresholds. However, the current state of neural
network verification tools reveals limitations in applicability
across tasks and constraints related to model size or activation
functions. Adversarial attack and out-of-distribution (OOD) de-
tection emerge, focusing on identifying and mitigating noise
that could deceive the DL model, emphasizing the importance
of incorporating adversarial attack defenses as part of the pre-
deployment model evaluation process. Sonar data is affected by
various underwater noise sources, including self-noise (system-
generated noise), multipath reflections (reflected signals from
the ocean surface and bottom), interference from other sonars
(external interference), ambient noise from marine life and
oceanic activity (environmental noise), as well as speckle noise
inherent in sonar imaging (imaging artifact) [19]. Furthermore,
the disparate distribution between sonar brands can also mislead
DL output. Thus, those pre-deployment steps remain essential
for reducing unpredicted noises potentially encountered during
a mission.

This document aims to guide practitioners in deploying DL
models for sonar on AUVs, emphasizing model robustness
considering the uncertainties inherent in sonar data. Such model
presents unique challenges that are less documented than tra-
ditional optical data, requiring specific focused handling uncer-
tainties and ensuring reliable model performance. The following
sections explore the complexities of utilizing sonar-based DL in
underwater robotics and provide a comprehensive overview of
improving the robustness of these applications. The objective is
to demonstrate how leveraging sonar-based DL can significantly
enhance AUV capabilities while ensuring the safety and success
of underwater missions. Section II reviews existing literature,
positioning this work as a pioneering effort in addressing the ro-
bustness of sonar-based DL models. Section III discusses essen-
tial sonar-based tasks enabled by DL, including classification,
object detection, segmentation, and simultaneous localization
and mapping (SLAM). Section IV explores the current state
of robustness in sonar-based applications, highlighting state-of-
the-art open-source data sets, simulators for underwater sonar
environments, and synthetic data generation techniques. It also
emphasizes the emerging field of neural network verification
in sonar contexts and discusses methodologies for OOD detec-
tion, adversarial attacks, and uncertainty quantification. Finally,
Section V concludes this article.

II. SONAR-BASED DL-RELATED SURVEYS

The exploration of DL in sonar imagery for underwater ap-
plications is captured through the following insightful review
papers, each delving into different aspects and methodologies
in the field of sonar-based DL. First, D. Neupaneand Seok [20]
broaden the discussion by emphasizing the importance of sonars
in underwater object detection and the challenges posed by the
lack of accessible data sets. The article provides a structured
analysis that spans sonar principles, the utility of DL over tradi-
tional AI and ML-based methods, and a detailed examination of
data sets, preprocessing technologies, and DL architectures for
automatic target recognition (ATR), highlighting the intrinsic

challenges of sonar data, such as nonhomogeneous resolution
and acoustic shadowing. The review underscores the need for
high-quality, shared data sets to advance the field. It recom-
mends detailed documentation of data sets, simulators for data
generation, and a more nuanced approach to data augmentation
for enhancing ATR in sonar-based studies. Steiniger et al. [21]
distinguishes itself by concentrating on SAS and SSS data,
areas not extensively covered in prior reviews. Acknowledging
the foundational work in [20], this article narrows its focus
to SSS and SAS, excluding FLS and MBES from its anal-
ysis. It rigorously compares simple convolutional neural net-
works (CNN) algorithms across various tasks, such as feature
extraction, classification, object detection, and segmentation,
highlighting a comprehensive examination of over 60 publi-
cations related to SSS object detection. This article critically
notes the absence of open-source SSS image data sets, which
hampers the comparability of research outcomes, and suggests
data augmentation and the generation of simulated data us-
ing generative adversarial network (GAN) models as potential
remedies. However, it also highlights the scarcity of shared data
sets and models that could facilitate broader research collabo-
ration. Khan et al. [22] presented a selection of cutting-edge
algorithms developed over the past seven years, filling gaps
that have yet to be addressed by existing surveys and catalogs
the applications for underwater object detection. It provides
a succinct overview of architectures, including a comparative
analysis of various you only look once (YOLO) versions and
other CNN-based models, termed “ConVNNs.” This article calls
for a more diversified and balanced data set, exploring deep
transformer models and developing hybrid detection techniques,
among other future directions. Teng and Zhao [23] conducted
a comprehensive survey of DL-based detection methods for
mines and manmade targets using underwater RGB and sonar
imagery. They thoroughly examine the various types of noise
encountered in sonar images and discuss methods to mitigate
these noises during data processing. In addition, they evaluate
several SOA models using identical data sets to benchmark
performance for RGB image analysis. Tian et al. [24] work is
the pioneering and sole survey paper on sonar segmentation.
It meticulously reviews existing sonar segmentation literature,
outlines the current challenges in the field, and proposes 12
research directions to advance sonar segmentation studies. Ex-
panding the scope of our analysis, we study sonar applications
in fish identification and shoreline surveillance. Yassir et al. [25]
focused on fish classification and segmentation, comparing SOA
DL models. In contrast, Chai et al. [26] provided an extensive
survey covering fish classification, detection, segmentation, and
denoising of sonar images. However, the comparison by Yassir
et al. [25] across models trained on diverse data sets complicates
definitive conclusions due to the potential variability in data
set characteristics. Domingo et al. [27] explored DL methods
for shoreline surveillance by classifying underwater vessels
using passive sonar. This review highlights the adaptability of
DL methods to several aspects of underwater exploration and
monitoring, showcasing the breadth of potential applications
for sonar technology. In synthesizing these reviews, it becomes
evident that while significant strides have been made in applying
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TABLE I
COMPARATIVE ANALYSIS BETWEEN THE SURVEYS ON SONAR-BASED DL

DL to sonar imagery for underwater detection, the field still faces
substantial limitations, such as the critical need for open-source
data sets, a more granular understanding, and explanation of DL
models tailored to sonar data. However, because of the need for
a sonar baseline data set, comparing all the DL models does
not give concrete insight into which one is the most suited for
sonar images. Table I highlights a detailed comparative analysis
of surveys on sonar-based DL models. This comparison under-
scores the singularity of our contribution relative to previous
works in the scope of sonar-based DL. Our survey is the first to
provide an in-depth comparison of current sonar open-source
data sets and simulators and to address the robustnesses of
sonar-based DL models, delving into critical areas such as OOD
detection, adversarial attacks, and uncertainty quantification.
This comprehensive approach aims to provide valuable insights
into the current SOA of sonar-based DL in terms of models, data
sets, simulators, and methods to improve the robustness of the
DL prediction.

III. SONAR-BASED DL PERCEPTION

This section describes the principal tasks achievable by ap-
plying sonar-based DL onboard AUVs, explicitly focusing on
classification, object detection, segmentation, and SLAM. This
discussion includes a historical overview of the model devel-
opments and highlights the SOA models for these tasks. In
this article, we consciously abstain from directly comparing
the performance of published sonar-based DL models. This
decision is twofold; first, as indicated in Section II, drawing
direct comparisons across models is challenging due to the uti-
lization of disparate data sets collected under varying conditions
with different sonar equipment, most of which are not publicly
accessible. Second, prior survey papers, including [20], [21],
and [22], have already undertaken comprehensive comparisons
of sonar-based DL models published respectively in 2020, 2022,
and 2024. We direct interested readers to these surveys for
in-depth comparisons. Conversely, our section’s objective is
to furnish readers with an encompassing perspective on the
assortment of models deployable for sonar-based DL tasks, such

as classification, object detection, segmentation, and SLAM,
offering insights into the evolving landscape of DL.

A. Classification and Object Detection

Classification and object detection integrated into underwa-
ter vehicles effectively enhance the situational awareness and
navigation in a complex underwater environment. Classification
algorithms allow for categorizing underwater objects or features
into predefined classes, which is essential for tasks, such as ma-
rine life monitoring, habitat mapping, and underwater archaeol-
ogy. Object detection, on the other hand, extends this capability
by identifying these categories and locating and tracking objects
within the sonar imagery, which is crucial for obstacle avoid-
ance, target tracking, and detailed environmental assessment.
The history of DL classification has seen significant evolution,
especially with the advent of CNNs. Since the breakthrough
achievement of AlexNet in 2012 [28], CNNs have become
a staple in computer vision tasks, including object detection,
segmentation, and classification. They leverage convolutional
layers to reduce image size and enhance pattern recognition
capabilities effectively. AlexNet, a successor to LeNet [29],
introduced more filter layers and demonstrated remarkable clas-
sification abilities across over a thousand classes using RGB
images. ResNet [30] further revolutionized DL by introducing
residual networks with “skip connections” to combat the vanish-
ing gradient problem, improving accuracy even as network depth
increased. In the domain of object detection, the last decade has
witnessed remarkable progress. It encompasses crucial tasks,
such as object localization and classification within images,
facilitated by both one- and two-stage detectors. Two-stage
detectors excel in accuracy by separately addressing localization
and classification, but often at the cost of efficiency. The incep-
tion of R-CNN in 2014 [31], followed by advancements, such
as Fast [32] and Faster R-CNN [33], highlighted the efforts of
optimizing the balance between accuracy and efficiency, mainly
through innovations like Region of Interest pooling and separate
networks for region proposal predictions. The emergence of
one-stage detectors, notably through the YOLO [34] series,
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underscored a pivotal shift toward real-time object detection
by merging localization and classification tasks. Despite ini-
tial trade-offs in accuracy, subsequent iterations of YOLO and
single shot detector (SSD) [35] have improved the efficiency
and effectiveness of object detection models. These models,
particularly YOLOv4 and its successors, have set new bench-
marks in real-time detection capabilities, addressing challenges
like small object detection through innovations like FPP necks
and CSPDarkNet53 backbones. Initially introduced for natural
language processing (NLP), transformers [36] have broadened
their application to include computer vision tasks. Their archi-
tecture, centered around the self-attention mechanism, facilitates
a deeper contextual understanding of input sequences and has
proven particularly effective in overcoming the limitations of
sequential models, such as recurrent neural networks [37] and
long short-term memory [38], offering enhanced data handling
and processing capabilities. Adapting transformer technology
to vision tasks, as demonstrated by detection transformer [39]
and visual transformer (ViT) [40], signifies a paradigm shift in
object detection, achieving unparalleled accuracy and context
awareness, although with higher data and computational require-
ments. Due to these requirements, their applicability in under-
water scenarios is limited by significant data and computational
demands. These models typically require extensive data sets to
achieve performance comparable to conventional CNN-based
SOA, a challenging underwater detection precondition due to the
scarcity of large-scale data sets. Nevertheless, recent efforts have
explored integrating transformer layers with CNNs to leverage
the transformers’ superior feature extraction capabilities while
mitigating their data requirements, leading to the development
of models, such as YOLOv5-TR [42], where the transformer
layer is located between the neck and the backbone layers,
demonstrating improved performance with the complexities of
underwater environments in SSS images. Aubard et al. [43] com-
pared the YOLOv5 with its transformer version YOLOv5-TR
and a novel anchor-free object detection of the YOLOX [44]
with an SSS wall data set. They conclude that YOLOv5-TR im-
proved the classic version, whereas YOLOX gives the best result.
Recently, the authors proposed the YOLOX-ViT model [45] in
SSS images, improving its previous version implemented by a
ViT layer, and proposed a lightweight version of their model
called KD-YOLOX-ViT using knowledge distillation. Two ob-
ject detection sonar samples are represented in Fig. 2. The left
sample represents the RBoxNet rotation bounding end-to-end
detector [41] detecting a shipwreck using an FLS. In contrast, the
right sample shows the YOLOv5-TR [42] detecting shipwrecks
on SSS images. Although both detections detect shipwrecks,
those samples show the detection representation of shipwrecks
on SSS and FLS images.

B. Segmentation

The goal of segmentation in underwater imagery is to cat-
egorize each pixel of an image into meaningful classes, which
can significantly assist in tasks, such as habitat mapping, species
identification, and monitoring underwater infrastructure, or eco-
logical changes. The journey of DL-based segmentation began

Fig. 2. Samples of object detection on sonar images. (a) Object detection
model prediction for a vessel on a FLS image. (b) Object detection model
prediction for a shipwreck on a SSS image.

with fully convolutional networks [46], which marked a depar-
ture from traditional patch-based classification methods by pro-
cessing an entire image in a single forward pass and outputting a
pixel-wise annotation map. U-Net’s architecture [47], character-
ized by its symmetric expanding and contracting paths, was de-
signed to capture context and localize features effectively. This
model became a blueprint for many follow-up studies, including
those focusing on underwater imagery, due to its efficiency in
handling small data sets with high performance, a common
scenario in underwater research. As the field progressed, models
like DeepLab [48] and PSPNet [49] introduced approaches to
capture broader context and achieve more precise segmentation
boundaries. These models enhanced the segmentation of com-
plex scenes, where the variability in scale and appearance of
objects poses significant challenges. As for the object detection
field, introducing attention mechanisms and transformers into
segmentation models marked another improvement. Attention
U-Net [52], for instance, adapted the U-Net architecture by
incorporating attention gates, which help the model focus on
relevant features while suppressing less important ones. This
capability is particularly beneficial in underwater segmenta-
tion, where foreground–background contrast can be low, and
objects of interest may be obscured. Models like SETR [53]
and ViT-Seg [54], which leverage the transformer’s ability to
handle long-range dependencies, offer promising results for
feature extraction of underwater segmentation into sonar images,
such as MiTU-Net [55] a mix of a Transformer and U-Net
used on FLS images. However, transformer-based models for
feature extraction in sonars can be unstable due to unpredictable
noise; He et al. [56] have proposed a hybrid CNN-Transformer-
histogram of oriented gradient framework for FLS segmentation
to address this challenge, outperforming the previous CNN and
CNN-Transformer-based sonar segmentation. Most underwa-
ter segmentation studies predominantly utilize RGB images,
reflecting a broader trend within computer vision [57], [58].
However, there is a notable gap in the availability of data sets
derived from sonar imaging. This scarcity is compounded by the
significant time and resources required for data set annotation,
particularly for segmentation tasks. Segmentation, by its nature,
demands detailed pixel-wise labeling, which is considerably
more time-consuming and labor-intensive than the bounding
box annotations used in object detection. Each image must be
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Fig. 3. Samples of segmentation on sonar images. (a) Segmentation model
prediction on a FLS image. (b) Segmentation model prediction on a SSS image.

meticulously analyzed to ensure accurate classification of all
pixels, which can be incredibly challenging in underwater envi-
ronments where distinguishing between different elements can
be complicated due to poor visibility, sound reflection/refraction,
overlapping objects, and variable lighting conditions. The sub-
stantial annotation effort required for segmentation data sets
sometimes aligns with the limited resources and time available
to research teams. Fig. 3 represents two segmentation samples;
the one on the left represents a saliency segmentation method
for pipeline recognition on FLS [50], whereas the right sample
is an SSS image where a combined residual and recurrent CNN
called R 2 CNN is applied on a fishing net data set [51].

C. Simultaneous Localization and Mapping

The final subfield in computer vision addressed in this section
is SLAM, commonly known as SLAM [59]. In contrast to
detecting and localizing objects, SLAM focuses on mapping
an unknown environment while simultaneously tracking the
robot’s position. SLAM algorithms are crucial in robotics and
autonomous vehicle navigation, especially in scenarios where
GPS is unreliable or unavailable, such as underwater. It usu-
ally employs probabilistic algorithms, such as Kalman filters
(KF) [60] or Graph SLAM [61], to represent uncertainty in both
the map and the robot’s position estimate. These algorithms can
handle several types of sensor data, including vision (optical
and sonar), range, or odometry measurements, and fuse these
measurements to create a consistent environment map while
estimating the robot’s pose. Deep SLAM [64] is an emerging
research area that combines DL models with traditional SLAM.
DL models enhance feature extraction, depth estimation, and
image alignment in SLAM systems [65], [66], [67], [68]. How-
ever, implementing SLAM in underwater environments poses
several challenges, such as limited visibility (due to turbid-
ity or darkness), underwater currents (causing AUVs to drift,
leading to errors in localization and mapping), sensor noise
(which affects pose estimation accuracy), and computational
complexity (due to limited power and processing capacity of
AUVs). In addition, the lack of GPS underwater requires reliance
on KF [69] to estimate vehicle position based on the last GPS
fix and subsequent movements. Despite using KF or extended
Kalman Filters (EKF), the ground truth is still an “estimated”

Fig. 4. Samples of SLAM on sonar images. (a) SLAM detected keypoint
correspondence prediction on a MSIS image. (b) SLAM detected keypoint
correspondence prediction on a SSS image. These points refer to identifying
specific points of interest (key points) across multiple observations or images
considered at the same physical location in the environment.

ground truth [70]. Recent methods combine MBES and optical
data to leverage the strengths of both sensors while mitigating
their limitations [71]. A detailed overview of the challenges
and technologies for underwater SLAM using sonar and op-
tical sensors can be found in [72]. However, sonar-specific DL
SLAM remains underdeveloped, presenting opportunities for
future research, such as using a CNN-based model for feature
extraction by Yang et al. [73]. Fig. 4 showcases two sonar
samples where non-DL SLAM algorithms are applied. On the
left, an EKF SLAM algorithm using speeded-up robust features
for feature extraction is applied to mechanical scanning imaging
sonar (MSIS) images [62]. On the right, Graph SLAM uses the
scale invariant feature transform for feature extraction in SSS
images [63].

D. Challenges

The primary concern when applying DL for sonar vision is
the availability and quality of data for training the DL mod-
els. Regrettably, many companies and laboratories opt to keep
their data sets private due to the high costs associated with
data collection. Furthermore, there is a lack of comparative
studies on sonar data sets in the literature, which could help
practitioners train their models more effectively. On occasions
when open-source data sets are available, they often do not
match the specific objects, environmental conditions, sensors,
or noise characteristics, resulting in an unusable data set. Con-
sequently, many underwater robotics researchers must collect
and annotate their data, which is time-consuming and costly.
The quality of the sonar data is paramount for practical training,
such as interference from other sonar devices, marine life, or
general ambient noise, which can distort sonar data [74]. Thus,
through this article, we encourage researchers and practitioners
to compare new models across data sets with varying character-
istics when publishing to help readers understand the model’s
performance under different sonar conditions and environments,
as demonstrated in [75]. To help researchers and practitioners
Section IV-A aims to present in a single document the SOA data
sets for sonar-based tasks, such as classification, object detec-
tion, and segmentation collected with SSS and FLS. Although
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the lack of a data set is the main critical point for applying reliable
sonar-based DL for underwater tasks, the difference between
training and deployment data is another important one. Indeed,
as previously explained, sonar sensors suffer from different
potential noise sources, which can differ drastically from the
images in training. This discrepancy can lead to DL model
errors, such as misclassification or failure to detect objects.
Much research focuses on denoising sonar images to mitigate
this issue, aiming to preprocess data to remove noise [76], [77],
[78]. While denoising is critical in sonar-based applications due
to inherent noise issues, it faces three primary limitations. First,
the unpredictability of underwater noise may lead to scenarios
where the denoising process is ineffective, leaving residual noise
that can still fool DL models. This limitation underscores the
challenge of ensuring comprehensive noise removal without sac-
rificing crucial data features. Another limitation is the potential
loss of critical information during the denoising process. While
denoising aims to improve image clarity by removing noise,
it can inadvertently eliminate important features for accurately
detecting and classifying underwater objects. Finally, recent
denoising approaches for sonar images rely on autoencoders [79]
and deep autoencoder [80], which, to be effective in real-time
applications, must operate swiftly to avoid delaying the vehicle’s
interaction with potential objects. This requirement for speed can
compromise the denoising quality or the overall system’s effi-
ciency, posing a tradeoff between noise removal and operational
effectiveness. Thus, even though denoising data increases the
clarity of sonar images, more is needed to ensure the correctness
of DL model prediction. Other alternative approaches, such
as neural network verification, adversarial attack defenses, and
OOD detection, need further study to enhance the robustness of
DL models in sonar applications beyond denoising techniques.
Thus, the four last sections of Section IV aim to provide the
first robustness study under the scope of sonar neural network
verification, adversarial attack, and OOD instead of denoising
data.

IV. SONAR-BASED DL: TOWARD ROBUSTNESS

This section aims to comprehensively summarize available
open-source sonar data sets mostly for FLS and SSS sensors. It
also covers the synthesis of simulators for generating simulated
sonar data and explores various methods for generating synthetic
data. In addiiton, this section addresses the robustness of sonar-
based DL models, detailing approaches like neural network
verification, adversarial attacks, OOD detection, and uncertainty
quantification. Conclusively, we propose a structured framework
designed to enhance the robustness of sonar-based DL models,
ensuring their reliability before deployment for real-world ap-
plications.

A. Data Set—State of the Art

In underwater exploration and research, sonar data sets are
indispensable, offering a broad spectrum of applications from
geological surveys to object detection. The previous section
spotlighted the lack of open-source sonar data sets. Thus, this
section is a detailed narrative synthesis of several notable data

sets, highlighting their characteristics, utilities, and the nuances
of their collection methods, aiming to provide better knowledge
for researchers of open-source sonar data sets: The UCI ML
Repository—Connectionist Bench (Sonar, Mines versus Rocks)
Data Set [81] specializes in sonar signal intensity data for clas-
sifying mines and rocks. This data set’s strength lies in its focus
on sonar signal characteristics, offering a resource for models
designed to operate in environments where optical clarity is com-
promised. However, its specific focus on mines and rocks limit its
direct application to broader image recognition or segmentation
tasks. Sugiyama et al. [82] published SSS data from ice terraces
in Glacier Grey, Patagonia [83] illuminating glacier formations.
While offering ecological insights, this data set’s utility could
be more constrained by the need for specialized software to
interpret the data. Ireland’s Open Data Portal presents an eclectic
collection of 14 sonar data sets [84], whose variety spans a
broad spectrum of potential applications. Despite this diversity,
the lack of detailed descriptions regarding the inclusion of SSS
images or the nature of the data sets poses a challenge in
identifying their applicability to specific research questions or
projects. The U.S. Government’s Open Data portal [85], with
its range of data sets, including sonar data, promises a wealth
of data for various applications. However, the expansive scope
of the portal makes locating specific types of sonar data, such
as SSS images, a daunting endeavor that demands considerable
time and effort. The Marine_PULSE data set [86], introduced
by Du et al. [87], features SSS images focusing on underwater
objects, such as pipelines, cables, and engineering platforms.
While the data set’s grayscale, object-focused images provide
specificity, they are limited by low resolution and a lack of
broader contextual features, which could impede comprehensive
model learning.

The Northern Adriatic Reefs data set [88] offers georefer-
enced SSS mosaics of biogenic reefs off Venice. Although these
low-resolution, whole-mosaic images capture broader geologi-
cal formations, their format may need to be more conducive to
training models to detect specific objects or features within a
diverse underwater environment. The Seafloor Sediments data
set [91] boasts over 434 164 images derived from SSS water-
falls, showcasing a variety of seafloor types along the coast of
Catalunya. The data set’s large scale and seafloor-type diversity
are invaluable. However, the lack of detailed information on
the specific conditions of image collection (e.g., sonar range,
altitude) might influence the generalizability of models trained
on this data. The UXO data set [90] focuses on unexploded ord-
nance detection in underwater environments, containing 74 437
frames collected using the ARIS Explorer 3000 sonar in a
controlled pool environment, with 48 462 corresponding Go-
Pro optical frames. Annotations, including bounding boxes and
object types, are available for camera frames, supporting object
detection tasks. Similarly, SSS Imaging for Mine Detection [92],
with 1170 annotated images for distinguishing mine-like and
nonmine-like objects, directly facilitates training in underwater
mine detection. Despite its utility, the data set would benefit
from additional details on the original image sizes, sonar range,
and AUV altitude during data collection, which is essential for
understanding the detected object scale and appearance. Despite
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its data augmentation potential, the focus on FLS images and the
collection in a pool environment may only partially capture the
complexities and variations of oceanic environments. The under-
water acoustic target detection (UATD) data set [75] is an FLS
data set for object detection, which provides 14 639 annotations
among 9200 images. It provides a complete dual-frequencies
data set (720 kHz, 1200 kHz) with 10 classes: cubes, balls, cylin-
ders, human bodies, planes, circle cages, square cages, metal
buckets, tires, and bluerovs. The data collection setup is de-
scribed in detail in [75], benefiting potential users using the data
set under the same conditions. Dual-frequency identification
sonar (DIDSON) data set [93] provides a fish data set collected in
the Rhode River, MD, USA, Indian River Lagoon, FL, USA, San
Fransisco Bay, CA, USA, and Bocas del Toro, Panama, resulting
in 100 h of data where 1000 frames were extracted with eight
fishes species labeled for segmentation model showcased by
Perivoliot et al. [94]. The data set requires the DIDSON-V5 soft-
ware provided by Sound Metrics to convert the DDF format files.
The Marine Debris Turntable (MDT) data set [95] presented by
Singh et al. [96] contains 2471 FLS images with 12 classes
of objects, including bottles, pipes, platforms, and propellers
annotated for the segmentation task. The Synthetic Aperture
Sonar Seabed Environment Data Set (SASSED) [97] provides
129 complex-valued, high-frequency sonar snippets depicting
various seafloor textures, such as hardpack sand, mud, sea grass,
rock, and sand ripple. Each snippet includes a hand-segmented
mask image, which groups similar textures without necessarily
representing ground truth labels, providing a valuable resource
for training and testing sonar-based ML models.

The AI4Shipwreck data set [89] contributes to underwater
archaeology and research. This data set comprises 286 high-
resolution SSS images collected from 24 distinct shipwreck sites
within the Thunder Bay National Marine Sanctuary, utilizing the
EdgeTech 2205 SSS technology. A notable aspect of this collec-
tion is its focus on shipwrecks, offering a lens through, which
the underwater past can be explored and studied. Each image
within the data set has been annotated for segmentation tasks.
The NKSID data set [98], introduced by Jiao et al. [99], provides
a total of 2617 FLS images split into eight classes among big
propellers, cylinders, fishing nets, floats, iron pipelines, small
propellers, soft pipelines, tires, which makes it the most signif-
icant data set for classification task among our data set compar-
ison. The data collection occurred in Bohai Bay with an ROV
set-up with dual frequency (550 kHz, 1.2 MHz) Oculus M750 d
as FLS. The SubPipe data set [57] encompasses a compre-
hensive underwater collection, uniquely combining grayscale
and RGB camera imagery with SSS images to offer a holistic
view of underwater pipeline environments. Alongside vision
(optical and sonar) data, this data set enriches its offering with
conductivity, temperature, and depth readings and navigational
information, providing a multifaceted underwater exploration
and analysis approach. Utilizing the Klein3000 sonar system at
dual frequencies of 455 and 900 kHz, the data set captures high-
quality imagery conducive to detailed study and model training.
Annotations and benchmarks within the SubPipe data set are
tailored to evaluate SOA models across various applications,
including segmentation, SLAM utilizing RGB data, and object

detection using SSS images. The SSS data set section of the
Subpipe data set counts 10 030 images, making it the biggest
open-source SSS object detection data set in our comparison.
Sonar wall detection data set (SWDD) [5] comprises 864 SSS
images of walls, meticulously annotated following the COCO
format, providing a resource for training and testing object
detection models. The data set includes an SSS waterfall video
spanning 6 min and 57 s, from which 6243 images have been
extracted and annotated to support benchmark validation efforts
further. Including YOLOX [44] and YOLOX-ViT [45] models
in the data set’s benchmarking process highlights the explo-
ration of advanced object detection techniques in the context
of SSS data. Utilizing the Klein3000 sonar at frequencies of
455 and 900 kHz, the data set offers high-resolution imagery
conducive to detailed object detection tasks. It serves as a testing
ground for innovative model architectures like YOLOX-ViT. In
addition, an extended version of the data set has been recently
introduced through [100], where three data sets were collected
under different weather conditions to improve object detection
model comparison. These additional data sets include a total
of 797 SSS images, which complement the original data set.
The Aurora data set [101] provides a multisensor collection
for underwater exploration, integrating sonar, camera, and in-
ertial sensors to facilitate the development of SLAM algorithms
across different underwater environments. This comprehensive
multisensor approach enriches SLAM research by enabling
fusion between different types of sensory data, helping address
the complexity of underwater localization and mapping. Kras-
nosky et al. [102] presented a data set that offers bathymetric
surveys using MBES, complemented by high-precision GPS-
based ground truth, which is particularly valuable for enhancing
SLAM and bathymetric mapping methods. Similarly, Mallios
et al. [103] capture sonar imaging of underwater caves, a unique
and highly challenging environment for SLAM testing. Those
SLAM data sets highlight the importance of comprehensive
sensory data and ground-truth validation to advance SLAM
capabilities in diverse and demanding underwater environments.
Fig. 5 represents some samples of those data sets. Each data set’s
detailed account of data collection methods, including sonar
range and environmental conditions, enriches underwater sonar
research. Their diverse focuses—from geological formations
to object detection—underscore the critical role of detailed
documentation and the necessity for a broad range of data sets to
address the multifaceted challenges of underwater exploration
and monitoring.

With the advent of DL on sonar data, a significant demand
exists for data sets. Unlike uncrewed aerial vehicles (UAVs)
or autonomous ground vehicles, AUVs face unique data col-
lection challenges due to the complexities of the underwater
environment. This data set comparison aims to highlight current
sonar-based data sets. Traditionally, open-source sonar data sets
for DL applications were rare, hindering the ability to compare
different models effectively due to the utilization of disparate
data sets. However, recently, a promising trend towards the pub-
lication and availability of such data sets, from Aubard et al. [5],
Tuñón et al. [57], Sethuraman et al. [89], Jiao et al. [98], Dahn
et al. [90], and Santos and Moura [92] emerging in early 2024,
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Fig. 5. Samples of underwater sonar data sets. (a)–(h) Illustrate various SOA sonar data sets, including GeoTiff [88], SSS [89], FLS [90] images with different
objects, such as pipelines [57], walls [5], and shipwrecks [89].

Fig. 6. Comparison between training and validation data sets [57]. (a) Training
SSS image and (b) shows a validation SSS image from the same location,
collected on different dates and at different altitudes. This comparison highlights
the impact of variations, such as AUV altitude on SSS images, which can reduce
the accuracy of DL models. Thus, several parameters, such as AUV’s altitude,
must be carefully considered when creating a training data set.

alongside Martinez-Clavel et al. [91], Ogburn et al. [93], and
Xing et al. [86] from 2023. This growing repository, although
still modest in volume, signals a shifting paradigm towards
enhancing the reproducibility of experiments and incentiviz-
ing collaborative data collection efforts within the research
community. Despite these advancements, sonar technology’s
inherent characteristics still require a delicate approach from
training to inference data. Tuñón et al. [57] illustrated how model
performance may vary between training and operating data sets.
They compare data sets collected at different dates and vehicle
altitudes, resulting in 98% in the average precision AP50–90 for
training, whereas only 15% of AP50–90 for inference data. Fig. 6
represents two samples from the training and validation data set,
where the pipeline size and shadow are different on both images
despite the same environment. This variability underscores the

importance of considering environmental and operational fac-
tors for training and operating. Table II compares the SOA to
the sonar data sets described. To the best of authors’ knowledge,
this is the most complete sonar data set comparison. It presents
a comprehensive overview of sonar data sets, including 10 SSS
and 6 FLS data sets, encompassing 4 for classification, 5 for
detection, 5 for segmentation, and 3 for SLAM, alongside two
data sets lacking annotations. It reveals that the NKSID [98] pro-
vides the most images in classification with 2617 images, while
SubPipe [57] and UXO [90] in detection respectively with 10 030
and 74 437 images. In contrast, UATD [75] offers a broader scope
with 10 distinct classes across 9200 images. The most complete
data set for segmentation is Seafloor Sediments [91], boasting
434 164 images.

Moreover, unlike terrestrial and aerial optical images, which
can be benchmarked with established data sets like COCO [105],
or ImageNet [106] (for object detection), sonar data sets have
yet to establish a universally recognized baseline data set. This
absence complicates direct model comparisons, highlighting a
current limitation for future development within the community.
Establishing such a benchmark would greatly facilitate advance-
ments in sonar-based DL, improving the field toward greater
standardization and comparability. Thus, due to this limitation,
we have created a dedicated GitHub repository centralizing cur-
rent open-source underwater sonar data sets, providing a foun-
dation for future benchmarking efforts. In addition, researchers
and practitioners are encouraged to contribute by adding new
data sets, ensuring the resource remains comprehensive and up
to date. The repository is available online.1

1[Online]. Avilable: https://github.com/remaro-network/OpenSonarDatasets

https://github.com/remaro-network/OpenSonarDatasets
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TABLE II
COMPARISON OF THE OPEN SOURCE STATE-OF-THE-ART SONAR UNDERWATER DATA SETS

B. Synthetic Data

Given the limited open-source sonar data set, a novel research
trend relies on simulated data for real-world implementations,
known as Simulation-to-Real [117]. The goal is to reduce the
costly and time-consuming process of underwater data collec-
tion by relying on underwater simulators equipped with sensor
payloads to generate simulated data, resulting in the develop-
ment of multiple open-source simulators. UWSim [107] is the
first underwater simulator designed for marine robotics appli-
cations, built on the OpenSceneGraph and osgOcean libraries
to provide realistic underwater vision and physics that support
various sensors and vehicles. Gwon et al. [108] improved the
UWSim simulator by proposing an SSS plugin. DAVE [111] and
UUV Simulator [109], anchored in the ROS [118] and Gazebo
framework, primarily support conventional cameras and FLS
to enhance acoustic visualization, making them ideal for users
engaged with the ROS ecosystem. Furthermore, DAVE provides
an underwater point cloud LIDAR sensor. Stonefish [112] uses
ROS for publishing virtual sensor measurements and includes
cameras, FLS, and SSS images, underscoring its proficiency
in simulating custom acoustic data. However, the quality of
simulated SSS images still needs to match actual SSS data.
UNavSim [113], compatible with ROS and leverages high-
detail rendering Unreal Engine 5 and AirSim [119], brings
camera and underwater LIDAR technologies. MARUS [114],
also compatible with ROS, offers a comprehensive sensor suite
including underwater LIDAR, cameras, and FLS, highlighting

the simulator’s commitment to providing diverse and realistic
sensor data for underwater research. HoloOcean [115] also
generates camera and FLS imagery to craft realistic underwater
scenarios. Furthermore, Potokar et al. [116] recently improved
their HoloOcean simulator by implementing multibeam imag-
ing, multibeam profiling, SSS, and echo-sonar, which makes it
one of the most complete simulators for simulated sonar im-
ages. Cerqueira et al. [110] presented ImagingSonarSimulator,
a sonar simulator for FLS and MSIS. Using the Rock-Gazebo
framework [120], it models physical forces in the underwater
environment, providing real-time simulation for a virtual AUV.
The simulator uses the OpenGL shading language [121] on a
GPU to emulate sonar devices based on parameters, such as
pulse distance, echo intensity, and field-of-view. Furthermore,
the simulator is compatible with ROS 1. Ciuccoliet al. [122] pro-
vided a deeper review of sonar and nonsonar simulator analysis.
This comparison underscores that while underwater simulators
are progressively advancing as a research domain, offering in-
creasingly lifelike representations of underwater environments
through cameras and FLS, they still confront challenges in
providing and accurately replicating the nuances of real SSS
imagery. Table III systematizes the underwater simulators by
highlighting their vision-based sensors, such as camera and
underwater LIDAR, providing 3-D point cloud, FLS, SSS, and
MSIS. This comparison shows that most simulators focus pri-
marily on rendering camera images, while HoloOcean [116] and
Stonefish [112] provide an extensive range of realistic sonar ca-
pabilities. The GitHub repository MASTODON [123] provides
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TABLE III
COMPARATIVE ANALYSIS OF THE OPEN-SOURCE UNDERWATER SIMULATORS

a novel sonar image simulator, as described by Woods [124].
However, this article is not open-access, limiting detailed infor-
mation availability. This section analysis focuses exclusively on
open-source sonar simulators to support reproducible research
and open-access studies. Nevertheless, nonopen-source sonar
simulators, such as Coiras et al. [125], are also available in the
literature.

However, despite reducing data collection time, simulated
data sets usually represent ideal conditions, while the real world
contains many uncertainties. For instance, sonar images may
require adding noises to align them with real-world sonar data.
This difference between simulated and real data is known as the
sim-to-real gap, an ongoing research topic providing promis-
ing results for object detection [126] and segmentation [127].
GANs [128], traditionally used in tasks like NLP [129] and
image generation, have emerged as a promising avenue for
underwater image generation. Current research explores the
potential of GANs to merge simulated and real data, thereby
producing expansive data sets [130]. Jaber et al. [131] used
conditional GAN (cGANs) for increasing their FLS data set
collecting with the Stonefish simulator and validating it in a pool
environment. Similarly, Lee et al. [6] addressed the scarcity of
sonar imagery by employing a Pix2Pix-based cGAN to generate
synthetic sonar images. This method enhances segmentation
model training by simulating diverse underwater conditions,
leading to improved performance when real data is limited,
highlighting that GANs could offer a viable solution to the
prevailing challenge of insufficient underwater data. Diffusion
models [132], another emerging class of generative models,
employ a sophisticated process of progressively adding then
removing noise from images, offering stable training and diverse
outputs, and showing improvement in SOA object detection on
sonar images [133]. In contrast, GANs create data through a
competitive process between a generator and a discriminator,
known for producing highly realistic images but with potential
training instability. G. Huo et al. [104] proposed a semisynthetic
data generation method to generate data from optical to sonar
data of airplanes and drowning victims using image segmenta-
tion with intensity distribution. This semisynthetic method aims
to crop the object on optical images and add specific shadows,
sonar backgrounds, and sonar distributions, resulting in an image
that looks like a sonar image. Following the same principle, Bai

et al. [134] proposed a global context external-attention network
(GCEANet), which, from optical images, produces pseudo-SSS
images corresponding to the absent categories for zero-shot
SSS image classification. Furthermore, Data augmentation and
transfer learning, two well-known methods for improving DL
outputs, can also be implemented during the DL training pro-
cess to improve the accuracy and robustness of models. Data
augmentation [135] increases the size of the data set by filtering,
rotating, and adding random noises in the original data set,
improving the accuracy and model performance against noise.
Transfer Learning enhances the model’s accuracy [104]. Instead
of starting the DL model training from scratch, pretrained DL
weights with bigger data sets are transferred into the DL model
before training with the underwater data set.

C. Neural Network Verification

Neural network verification [136] in the context of sonar aims
to ensure that DL models can accurately interpret data under
various noise conditions within defined boundaries. It validates
the model’s predictions against expected outcomes across all
potential sonar inputs, ensuring reliability in diverse underwater
environments. Applying DL to real-world scenarios, especially
in challenging underwater settings, requires robust verification
to ascertain reliability and robustness [137]. In image pro-
cessing, DL models typically incorporate various layers—such
as convolutional, pooling, and fully connected—and nonlinear
activation functions, such as ReLU, softmax, and sigmoid. The
challenge of verification is amplified by the high-dimensional
input space and the complex nonlinearities introduced by activa-
tion functions. Several tools have been developed to address this
challenge. Alpha-Beta-CROWN [138] uses optimized bound-
ing methods to determine neuron activation bounds, efficiently
reducing computational demands. ERAN [139] and Deep-
Poly [139] utilize abstract interpretation techniques to balance
verification precision and scalability, while Reluplex [140] and
Marabou [141] focus on verifying ReLU-based networks, with
Marabou extending support to more architectures and activation
functions. These tools are valuable for ensuring robustness in DL
models used for image classification and object detection, where
reliability is critical. However, despite the advancements in
neural network verification, current tools are primarily designed
for classification tasks and face limitations when applied to
other areas, such as object detection, segmentation, and SLAM.
In addition, adapting these methods to sonar data introduces
new challenges due to the unique uncertainties of underwater
environments, which require greater focus in future research.

D. Adversarial Attack

Neural network Verification methods often fail to keep pace
with the growing complexity of SOA DL models, leading to
significant demands on computational resources due to the non-
linearities and high dimensionality of DL models, making scal-
ability a critical concern for researchers and practitioners [142],
[143]. The fast gradient sign method (FGSM) [143] is the first
white-box adversarial attack methodology that leverages the
gradients of a neural network to craft adversarial examples
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Fig. 7. Comparison between SSS images with and without loss of information
from [100]. (a) SSS image with black lines caused by loss of information during a
mission where the vehicle surfaced in windy weather, resulting in the transducer
going out of the water. This noise caused wall nondetection, highlighting the
lack of model robustness. (b) Clean SSS image with a nadir gap filtering applied.

efficiently and quickly. Building upon FGSM’s foundation, Pro-
jected Gradient Descent (PGD) [144] introduces an iterative
approach that enhances the basic concept. PGD refines FGSM’s
technique by applying multiple small-step adjustments to the
input, ensuring the perturbation remains within a defined epsilon
neighborhood of the original input, enhancing the adversarial
example’s effectiveness while maintaining its subtlety. Deep-
Fool [145] diverges from PGD and instead focuses on the
precision of perturbations; it seeks the minimal change required
to alter a model’s classification, providing a more nuanced
estimation of model robustness. Carlini and Wagner’s (C&W)
Attack [142] identifies the minor possible perturbation that
can still mislead a model, comparable to DeepFool’s principle
of minimal disruption. However, C&W designs their attack
to be effective even against models fortified with defensive
measures. In a targeted vector, the Jacobian-based saliency
map attack (JSMA) [146] focuses on strategically modifying
input features. By exploiting the output gradient concerning the
input, JSMA identifies critical pixels whose alteration would
specifically misguide the model into a chosen misclassification.
As highlighted by Papernot et al. [147], transfer attacks exploit
the phenomenon of perturbation transferability, highlighting the
ability of adversarial examples to mislead different models.
Query-based strategies, explored by Chen et al. [148] involved
iterative input adjustments based on model feedback, aiming to
find adequate adversarial inputs without accessing the model’s
gradients. Decision-based attacks, such as those by Brendel
et al. [149], refine adversarial inputs using model outputs, score-
based attacks, and Ilyas et al. [150] using confidence scores.

Most perception studies focus on grounded or aerial data
sets for UAVs [151], predominantly working with RGB im-
ages [152]. However, underwater robots that rely mostly on
sonar vision require a study of their specific uncertainties, which
differ from RGB cameras. Fig. 7 shows an SSS sample with
and without signal loss from [100], characterized by black
lines in the image. These samples were collected at the surface
during a storm, causing the sonar transducers to emerge from
the water, resulting in missing data occasionally. Although this
information loss is not adversarial noise in the traditional sense, it

Fig. 8. Sonar-based DL—robustness workflow. This proposed workflow in-
troduces two main steps: the pretraining step, represented by blue boxes (define
well-suited computer vision model, transfer learning, define well-suited data
set and data augmentation), and the posttraining steps before deploying a
sonar-based DL model, represented by orange diamond, which should result in
better model prediction under unexpected noises (neural network verification and
adversarial attack detection) and underwater characteristics (OOD, epistemic
uncertainty). Finally, suppose the output of the OOD, uncertainty quantification
(epistemic and aleatory), and neural network verification (or adversarial attack
detection) do not return any error; the sonar set-up from the data set collection
should be reproduced (frequency, vehicle altitude) to ensure the correct model
behavior during inference.

is a natural adversarial scenario, highlighting the unpredictable
environmental conditions that can affect model performance.
Such scenarios can be leveraged in adversarial retraining to
enhance model robustness. Several laboratories are exploring
adversarial methods for sonar images due to the growing interest
in underwater tasks. ROSAR framework, proposed by Aubard
et al. [100], utilizes PGD attacks to target specific safety prop-
erties of SSS, similar to the type of signal loss shown in Fig. 7.
When these properties are compromised, the method generates
counterexamples for adversarial retraining, resulting in up to
1.85% in detection model robustness. Ma et al. [153] proposed
the noise adversarial network (NAN), which introduces noise
into the data set and applies it to the Faster R-CNN object
detection model, enhancing robustness by 8.9% mAP on a sonar
data set. Furthermore, Ma et al. [154] presented the Lambertian
Adversarial Sonar Attack (LASA), an adversarial attack for
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SSS images based on the Lambertian reflection model. They
compare LASA with FGSM, PGD, and Deepfool and conclude
that LASA significantly improves the robustness of sonar-based
classifiers. Feng et al. [155] examined the impact of adversarial
noise on both CNNs and transformers when applied to sonar
spectrograms.

E. Out-of-Distribution

Sonar images suffer from the disparity between training data
and real-world sonar inputs, variations in sonar brands, operating
frequencies, and environmental conditions, which presents a
substantial challenge known as OOD [156]. Hendricks and
Gimpel [157] introduced softmax probabilities to distinguish
between correctly classified, misclassified, and OOD examples
within neural networks. Building on this, Liang et al. [158]
enhanced the model’s ability to differentiate in-distribution (ID)
from OOD data through temperature scaling and input prepro-
cessing, introduced by their ODIN technique. Lee et al. [159]
proposed the Mahalanobis distance for a sophisticated similarity
measure between input features and class-conditional distribu-
tions, improving the efficacy of OOD detection. Generative
models, such as GANs and variational autoencoders (VAEs)
have enabled the identification of OOD inputs by learning latent
representations of ID data. Kingma and Welling’s [160] work,
alongside Higgins et al.’s [161] introduction of β-VAEs, fur-
ther enhance this by controlling differentiation in latent spaces,
thereby improving OOD detection.

In applying these advancements to sonar imaging, Gerg and
Cotner [162] directly addresses OOD detection by incorporating
a perceptual metric prior (PMP) within the training classification
loss. This approach notably improves the robustness of models,
especially for sonar image classification tasks characterized by
limited data and subtle distribution differences. It presents an
innovative alternative to conventional methods like data aug-
mentation and hyperparameter tuning, specifically tailored to
overcome the unique challenges posed by sonar data analysis.
Furthermore, Jiao and Zhang [163] introduces the balanced en-
semble transfer learning (BETL) framework to address the com-
pounded challenges of long-tail and few-shot classification in
sonar images. This framework enhances classification accuracy
while optimizing memory and inference time, indirectly aiding
OOD detection by improving model performance on sparsely
represented classes that often resemble OOD samples. As an ex-
tension of [163], Jiao et al. [99] presented the first comprehensive
examination of open-set long-tail recognition specifically for
sonar images, marking an improvement in sonar-specific OOD
detection. This work navigates into the difficulties of classifying
sonar data and setting new benchmarks by evaluating SOA
algorithms and proposing the novel Push the Right Logit Up and
the wrong Logit Down (PLUD) loss function. Cook et al. [164]
used their null space analysis (NuSA) approach, which aims to
detect outliers while testing for classification tasks, to detect
unknown objects during ATR tasks in sonar data [165], and
conclude that NuSA applies to sonar images outperform the
OOD methods, such as unsupervised self-supervised outlier
detection (SSD) [166] and rectified activation [167].

F. Uncertainty Quantification

Uncertainty quantification in DL models serves as a criti-
cal framework for assessing the confidence and reliability of
predictions. It is categorized into two main types: aleatory
uncertainty, coming from the inherent noise and variability
in the data [168], and epistemic uncertainty, which stems
from the model’s lack of knowledge or uncertainty about the
model itself [169]. Techniques for addressing these uncertainties
have been extensively reviewed, highlighting the dual nature
of predictive uncertainty within supervised learning frame-
works [170], [171]. The methodologies range from Bayesian
inference, which offers a deep-rooted framework for epistemic
uncertainty, to heteroscedastic neural networks that effectively
model aleatory uncertainty by allowing variance in predictions
based on data noise [172]. Monte Carlo Dropout, introduced
by Gal and Ghahramani [173], presents a more computationally
feasible approximation of Bayesian inference, balancing prac-
ticality and theoretical rigor. Addressing aleatory uncertainty,
heteroscedastic neural networks, as explored by Kendall and
Gal [172], propose a model adjusting its confidence levels based
on the inherent noise present in input data. This approach models
uncertainty as a function of the data, allowing predictions to re-
flect the variability in the underlying data distribution. Ensemble
methods, introduced by Lakshminarayanan et al. [174], emerge
as a robust approach to encapsulate both types of uncertainty
by aggregating predictions from a collection of models, which
can capture model variance and reflect data variability. Despite
their effectiveness, ensembles require multiple models to be
trained and maintained, which may not be feasible in resource-
constrained environments. When applied to sonar-based data,
uncertainty quantification in DL models becomes crucial for
enhancing the robustness and reliability of underwater object
detection and classification tasks. Fuchs et al. [175] proposed a
pipeline for generating simulated FLS data using cycleGAN and
ensuring the quality of the simulated images for real deployment
by analyzing the data uncertainty for detection and classification
tasks. Tarling et al. [176] combined self-supervised learning
with uncertainty quantification to improve training and measure
prediction uncertainty for fish detection on FLS images. By
estimating the noise variance of the data set images, they adjust
the loss function to regulate the aleatoric uncertainty.

G. Limitations and Workflow

Section IV aims to help researchers and practitioners inter-
ested in leveraging sonar-based DL perception tasks by compar-
ing and reviewing state-of-the-art sonar data sets and simulators
into a consolidated document, facilitating access to simulated
and field-collected data set. Surprisingly, our research revealed a
lack of comprehensive surveys of these data sets, mainly because
researchers were not used to revealing their data sets. However,
this scenario is gradually changing with a novel trend toward
data sharing, as evidenced by the recent availability of numerous
open-source data sets from 2023 and 2024. This shift under-
scores a growing commitment within the research community
towards openness and collaboration, significantly benefiting the
field. The section also highlights the unique sonar uncertainties
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TABLE IV
COMPARATIVE ANALYSIS OF THE PREVIOUS WORKS FOCUSED ON SONAR-BASED ROBUSTNESS SEPARATED INTO THREE MAIN SECTIONS: OOD, ADVERSARIAL

ATTACK, AND UNCERTAINTY QUANTIFICATION

encountered underwater, affecting DL models’ performance.
Discrepancies between training and operational data, including
variations in environmental conditions, sonar setup, and seabed
characteristics, can potentially mislead models. Presently, the
focus within sonar methodologies leans heavily toward image
denoising before model inference rather than supporting the in-
trinsic robustness of the models themselves. Consequently, this
section presents strategies for addressing uncertainties inherent
in sonar imaging and the first survey focusing on robustness
for sonar-based DL models. However, this preliminary survey
highlights a noticeable scarcity of research explicitly addressing
neural network verification (0 papers), adversarial attacks (4 pa-
pers: [100], [153], [154], [155]), OOD detection (4 papers: [99],
[162], [163], [165]), and uncertainty quantification (2 papers:
[175], [176]), as detailed in Table IV. Through this article, we
encourage further research into the robustness of sonar-based
DL models, which would enhance the safety and autonomy of
underwater robotic systems.

To ensure the robustness of sonar-based DL model imple-
mentation into AUVs, we support our document by propos-
ing a framework describing the specific steps improving the
models’ robustness. Fig. 8 describes a comprehensive workflow
by selecting a well-suited computer vision model and data set,
applying transfer learning and data augmentation. If the unsafe
output corresponds to OOD data or uncertainty quantification,
the data set requires refinement to enhance detection reliabil-
ity. Furthermore, the model must undergo either a neural net-
work validation or adversarial attacks under specific underwater
noises. If those two steps are invalid, the model is considered
“unsafe,” requiring a revision of the model and training data
set. “Safe output” signifies the model’s ability to perceive its
environment, resulting in potential correct vehicle behavior.
However, the training data set setup should match the inference
setup, including sonar frequency, color map, and vehicle altitude.
In the context of “unsafe,” decisions by the autonomous vehicle
driven by the DL model could engender unwanted outcomes,
resulting in hazardous scenarios. For such AUVs relying on DL
perception for navigation and decision-making, the goal remains

to reduce DL model output uncertainties, ensuring the vehicle’s
and its surroundings’ safety.

V. CONCLUSION AND FUTURE RESEARCH TRENDS

The growing interest in underwater exploration, inspection,
and monitoring has led to a specific need for underwater data
collection and interaction, resulting in underwater robots like
AUVs. While AUVs, mean autonomy under real-time human
operators’ supervision, they still seek fully autonomous actions
and interactions in the deep sea. In contrast with other au-
tonomous vehicles, such as autonomous cars and UAVs, AUVs
suffer from a lack of communication, visibility, and available
data, which results in an uncertain and dangerous environment
for vehicles to perform tasks autonomously. Furthermore, au-
tonomous behaviors rely on sensors that capture and understand
the vehicle’s surroundings to adapt to the vehicle’s trajectory
in real-time. Because of the often bad quality of underwater
camera images, underwater vision mainly relies on sonars (e.g.,
SSS, FLS, MBES) to map and collect data from the underwa-
ter environment. Thus, improving AUVs’ autonomy requires
understanding the sonar data while surveying, which results
in implementing computer vision DL models, such as classi-
fication, object detection, segmentation, and SLAM. However,
implementing such a model onboard requires a safe DL model
without real-time supervision and communication. Thus, the
challenge is finding the tradeoff between autonomy and safety
to improve the vehicle’s autonomy without compromising its
safety and the safety of its surroundings. In this article, we
tackled the robustness of the sonar-based DL model with the
following question: “How can we rely on a real-time sonar-based
DL model?” aiming to spotlight the current research topics and
method that can be applied to reduce the sonar-based DL models
uncertainties. We compared previous surveys on sonar-based
DL models, highlighting the need for robustness focus. Indeed,
current surveys mostly compare sonar-based DL models and
highlight the lack of open-source data sets but without referring
to the robustness of the model itself, which is primordial to
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ensure its good behavior. By presenting and critically analyzing
19 sonar data sets and comparing various underwater simulators,
we have offered a comprehensive resource for accessing and
generating open-source data crucial for advancing DL underwa-
ter applications. In addition, to support the need for accessible
data sets, we provide a novel GitHub repository that clusters
the sonar data sets in a single place, open for community
contributions. The discussion on robustness, through the lenses
of neural network verification, adversarial attacks, and OOD
detection, underscores the need for the resilience of sonar-based
DL models. The proposed workflow for enhancing model ro-
bustness aims to mitigate uncertainties, resulting in more reliable
and safer underwater robotic operations. This increased imple-
mentation of onboard DL for underwater missions results in the
need for robustness of sonar-based DL models, which will play
a pivotal role in ensuring mission success and safety by bridging
the gap between theoretical robustness and practical, real-world
efficacy. Advancing this frontier will provide new potential in
autonomous underwater navigation and data collection. This
paper encourages future research to focus on sonar DL models’
uncertainties to improve their robustness. Future work should
reduce the gap between sim-to-real for sonar data collection and
validation, improving the current SOA data sets by publishing
collected data to create a baseline data set. Finally, the current
method for DL robustness, such as neural network verification,
adversarial attack, and OOD, in the scope of sonar images
require a specific focus to ensure reliable DL predictions and
AUV safety.
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