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A Lightweight Network With Embedded Soft
Constraints on Approximate Spectral Features
for Real-Time Water Body Segmentation
in Remote Sensing Images

Qingqing Cao, Boya Zhao ", Zijin Li

Abstract—Real-time extraction of water bodies from remote
sensing images captured by unmanned aerial vehicles (UAVs) or
satellites is challenging due to the difficulty in performing pre-
cise atmospheric correction and other preprocessing steps. In this
article, we propose a lightweight network with embedded soft
constraints on approximate spectral features for real-time water
body segmentation in remote sensing images. First, we introduce
approximate spectral feature indices as auxiliary interband fea-
ture information. A lightweight pseudo-siamese feature extraction
network (LPSE) is designed to separately extract features from
visible bands and the approximate spectral indices. Second, we
develop an approximate spectral feature soft constraint fusion
mechanism (ASFC) that utilizes spatial attention to selectively
fuse effective target features from the visible bands and approx-
imate spectral indices. Third, we incorporate an atrous spatial
pyramid pooling module for edge feature enhancement within a
self-distillation edge-aware lightweight decoder. Finally, the pro-
posed network is accelerated and quantized using TensorRT and
deployed on the embedded device Jetson Orin NX. Experimental
results show that the model achieves an intersection over union
accuracy of 70.74% on the FloodNet dataset and 92.26% on the
GF-FloodNet dataset. With only 0.22 million parameters and a
computational cost of 0.32 GFLOPs, the inference time per image is
6.45 ms. The proposed method demonstrates significant advantages
in segmentation accuracy and computational efficiency, making it
highly promising for real-time water body segmentation on edge
computing platforms, such as UAVs or satellites.

Index Terms—Lightweight, real-time, self-distillation, soft cons-
traints on approximate spectral features, water body segmentation.
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I. INTRODUCTION

ITH the advancement of remote sensing techniques
Wfor Earth observation missions, the timely extraction
of information from remote sensing images captured by un-
manned aerial vehicles (UAVs) or satellites is challenging, es-
pecially in response to sudden Earth surface anomalies, such
as flood disasters, watershed environmental pollution incidents,
earthquake-induced barrier lakes, landslides and debris flows,
and forest and grassland fires [1]. In the wake of such events,
the traditional process—where users passively request Earth
observation data, the ground control center uploads observation
instructions, and raw data are transmitted back to users for
processing and analysis after imaging—fails to meet the strin-
gent timeliness requirements of these applications. Real-time
processing of sensor-acquired remote sensing images, which
involves performing preprocessing and extracting target infor-
mation on edge computing platforms aboard UAV's and satellites,
represents a novel edge computing scenario. This approach
enables the instantaneous conversion of remote sensing images
into effective thematic information immediately after sensor
imaging, transforming the “Big Data” of raw remote sensing
images into the “small data” of specific targets. Such real-
time processing significantly reduces data transmission burdens
and provides immediate remote sensing information to support
decision-making in time-sensitive application scenarios [2]. For
example, during flood disasters, real-time extraction of water
body distribution facilitates the spatiotemporal characterization
of inundated areas, which is crucial for promptly understanding
flood dynamics and enhancing emergency response capabilities.

This article investigates real-time methods for extracting sur-
face water bodies. In remote sensing images, water bodies typ-
ically represent weak information sources; the signals received
by sensors aboard UAVs and satellites are mainly composed
of atmospheric reflection, water surface reflection, and water
body radiation, with the latter accounting for only about 10%
of the total signal. Moreover, the morphological characteristics
of surface water bodies are complex and highly variable. The
spectral characteristics of water bodies vary across regions and
types [3] due to differing constituents, such as silt, phytoplank-
ton, and suspended sediments, present in various local areas
within large scenes, leading to spectral variability. In addition,
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the irregularity and complexity of water body boundaries further
increase the difficulty of semantic segmentation tasks in remote
sensing images [4]. These boundaries are often not clear lines
but transitional zones, making the accurate extraction of water
body boundaries during segmentation even more challenging.

In remote sensing imagery, different surface features exhibit
distinct reflection and absorption characteristics across various
electromagnetic wavelengths, forming unique spectral signa-
tures [5]. Water indices are commonly employed to extract water
regions from such images [6], including the normalized differ-
ence water index (NDWI) [7], the modified normalized differ-
ence water index (MNDWTI), and the automated water extraction
index (AWEI) [8]. While these band math methods are simple
and effective, applying them to real-time onboard processing
tasks on UAVs or satellites presents significant limitations. First,
they rely on accurate calculations of water spectral reflectance;
however, atmospheric correction for remote sensing images is
highly complex and requires the simultaneous acquisition of
various atmospheric parameters. Second, threshold selection
lacks universality; different thresholds must be adjusted when
binarizing water bodies across different scenes.

Deep learning methods have been applied to the processing of
remote sensing images [9] [10]. Semantic segmentation models,
such as UNet [11], PSPNet [12], and DeepLabv3+ [13], employ
an encoder—decoder architecture, extract deep semantic features
from input images through downsampling and then progres-
sively reconstruct high-resolution feature maps via upsampling
from the encoded features. However, these semantic segmenta-
tion models tend to underutilize the implicit spectral characteris-
tics of water bodies across different bands in remote sensing im-
ages. Moreover, their high computational complexity and large
number of parameters make real-time segmentation challenging
on edge computing platforms aboard UAVs or satellites.

To tackle these challenges, we propose a lightweight network
for real-time water body segmentation in remote sensing images,
which incorporates soft constraints derived from approximate
spectral features (ASFC-LNet), specifically designed for real-
time water extraction tasks. The ASFC-LNet operates on raw
digital number (DN) or top-of-atmosphere (TOA) radiance im-
ages without the need for atmospheric correction. Approximate
spectral feature indices are derived from band math and integrate
these spectral features as soft constraints during deep feature
extraction. Furthermore, a self-distillation mechanism is intro-
duced [14], the method mitigates interference from pixel values
of nonwater objects resulting from the lack of atmospheric
correction. This approach enables more precise real-time seg-
mentation of water bodies in complex remote sensing scenarios.

The ASFC-LNet model encompasses the following aspects.

1) We introduce approximate spectral feature indices as
auxiliary inter-band feature information. A lightweight
pseudo-siamese feature extraction network (LPSE) is de-
signed to separately extract features from visible bands
and the approximate spectral indices.

2) We develop an approximate spectral feature soft constraint
fusion mechanism (ASFC) that utilizes spatial attention to
selectively fuse effective target features from the visible
bands and approximate spectral indices.
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3) We incorporate an atrous spatial pyramid pooling (ASPP)
module for edge feature enhancement within a self-
distillation edge-aware lightweight decoder. The decoder
dynamically generates self-distillation edge labels, which
guide the edge decoder to progressively learn edge features
without additional computational cost during inference.

4) Finally, for model deployment and real-time inference, the
proposed ASFC-LNet is accelerated and quantized using
TensorRT and deployed on the embedded device Jetson
Orin NX.

The rest of this article is organized as follows. Section II
introduces the related work. Section III presents the proposed
method. Section IV describes the experimental data, computa-
tional environment, and results. Finally, Section V concludes
this article.

II. RELATED WORK

A. Surface Water Extraction From Remote Sensing Images
Using Spectral Features

Extracting water bodies from remote sensing images based
on spectral features primarily employs thresholding techniques
applied to water indices. Appropriate spectral bands are selected
to construct water index models. These models are then used
to compute single-band spectral feature grayscale maps. The
grayscale distributions of these images are analyzed to determine
suitable thresholds for binarization. By applying these thresh-
olds to binarize the grayscale images, the spatial distribution of
water bodies is effectively obtained.

McFeeters [7] introduced the NDWI, which exploits the low
reflectance of water bodies and the high reflectance of vegetation
in the near-infrared (NIR) band. By calculating the normalized
difference between the green band and the NIR band, NDWI ef-
fectively suppresses vegetation signals to extract water informa-
tion. Klemenjak etal. [15] proposed the RE-NDWI, replacing the
NIR band in the NDWI formula with the red-edge band, applied
on RapidEye satellite images. This substitution enhances the
suppression of background information such as vegetation and
soil, improving water body extraction. Wang et al. [16] devel-
oped the EWI, introducing a weighting factor into the denomina-
tor of the MNDWI. This adjustment accentuates water features
and prevents anomalous results when the normalized difference
vegetation index values of water pixels are zero or negative.

Shadow in remote images is also a challenging problem,
and many publications investigated shadow removal of remote
images [17]. To mitigate the interference caused by shadows [18]
in water body extraction, Feyisa et al. AWEI [8] introduced the.
AWEI employs five spectral bands from the Landsat 5 and
maximizes the separability between water and nonwater pixels
by differencing and summing these bands with specific coeffi-
cients. Yao et al. [19] presented the high-resolution water index
(HRWI), which utilizes the red and green visible bands along
with the NIR band. The optimal coefficients for HRWI using
a support vector machine method. By incorporating building
shadow detection techniques, they suppressed interference from
building shadows, enabling the automatic extraction of urban
water bodies. Wu et al. [20] developed the two-step urban water
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index (UWI), which combines the UWI and the urban shadow
index. This composite index effectively distinguishes water bod-
ies from shadows in urban environments. Xie etal. [21] proposed
the NDWI-morphological shadow index (MSI) index, which
integrates the NDWI with the MSI, applied to WorldView-2
satellite images. This integration enhances the delineation of
water bodies while suppressing shadow regions. Li et al. [22]
extended the MNDWI by proposing two new indices: the con-
trast difference water index (CDWI) and the shadow difference
water index (SDWI). The CDWI effectively enhances water
features by incorporating each pixel’s maximum and minimum
reflectance information into the MNDWI. The SDWI efficiently
suppresses shadows by adding blue and green band reflectance
information into the MNDWI. By applying a background regu-
larizer to locally weigh the CDWI and SDWI, they derived the
background difference water index for extracting surface water
in complex backgrounds.

B. Water Extraction From Remote Sensing Images Using
Semantic Segmentation Networks

Convolutional neural network (CNN)-based semantic seg-
mentation has been extensively applied to processing re-
mote sensing images [23]. The fully convolutional network
(FCN) [24] is a pioneering end-to-end semantic segmentation
model that leverages deep learning techniques. Building upon
the foundation established by FCN, UNet [11] introduced an
encoder—decoder architecture for image semantic segmentation.
The encoder consists of multiple convolutional and pooling lay-
ers that extract features and reduce spatial resolution, while the
decoder progressively restores the original resolution through
upsampling operations. SegNet [25] enhances this approach
by utilizing max-pooling indices to preserve spatial location
information within feature maps, enabling the decoder to more
accurately recover fine details during upsampling. PSPNet [12]
incorporates a pyramid pooling module that performs pooling
operations on high-level features at multiple scales, generating
subregions of different sizes. Transformer architectures have
further improved segmentation tasks. Swin Transformer [26]
applies a hierarchical Transformer structure to image segmen-
tation, efficiently capturing global contextual information. Seg-
Former [27] employs a Transformer-based encoder in conjunc-
tion with a lightweight multilayer perceptron decoder, achieving
high precision and efficiency in semantic segmentation.

Chen [28] significantly advanced semantic segmentation with
DeepLab series of models. In DeepLab vl, they introduced
conditional random fields as a postprocessing step to smooth seg-
mentation results, thereby reducing boundary inaccuracies and
eliminating small erroneous regions. DeepLab v2 [29] removed
certain pooling operations within the network and replaced
standard convolutions with atrous (dilated) convolutions. This
modification enabled dense feature extraction and expanded the
receptive field without increasing computational cost. DeepLab
v3 [30] further enhanced the ASPP module by optimizing the
atrous rate settings, which improved the model’s ability to cap-
ture multiscale contextual information effectively. In DeepLab
v3+ [13], the Xception architecture was employed as the
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backbone network, depthwise separable convolutions were uti-
lized to reduce model parameters, and max-pooling operations
were substituted with convolutions, collectively enhancing seg-
mentation performance. HRNet [31] maintains high-resolution
representations by connecting multiple resolution branches in
parallel and performing multiscale feature fusion, thereby pre-
serving detailed spatial information throughout the network.

Semantic segmentation methods have been applied to water
body extraction in remote sensing images. Li et al. [32] in-
troduced the dense-local feature compression network, which
extracts water bodies from high-resolution remote sensing im-
agery. Guo et al. [33] proposed the multiscale water extrac-
tion network, where encoder feature maps are fed into dilated
convolutions with varying dilation rates to capture multiscale
features. Wang et al. [34] developed a water body extraction
method for remote sensing images, employing a dual attention
module to enhance global dependencies across both spatial and
channel dimensions. Safavi and Rahnemoonfar [35] compared
the performance of various semantic segmentation networks
on aerial imagery, evaluating them using the FloodNet dataset.
Duan and Hu [36] proposed a multiscale refinement network
for water body segmentation, leveraging multiscale features to
achieve more precise results.

To address the challenge of extracting water body bound-
aries, Chen et al. [37] proposed a hybrid semantic segmentation
method based on K-Net, achieving high-precision lake water
extraction through iterative refinement of feature information.
Freitas et al. [38] utilized PlanetScope Dove satellite imagery
with the mask R-CNN model, analyzing performance at dif-
ferent confidence thresholds to select the optimal threshold
that balances precision and recall. Xiang et al. [39] introduced
the dense pyramid pooling module (DensePPM) to mitigate
discontinuities in water body predictions caused by outliers in
aerial imagery. Liu et al. [40] proposed a multiscale feature
extraction network for water body segmentation, employing
contrastive learning to reduce the requirement for large sample
sizes. Miao et al. [41] presented the RRF DeconvNet, which
combines DeconvNet, residual units, and an edge-weighted loss
function to make the network more sensitive to water body
boundaries.

Moreover, spectral features have been incorporated into deep
neural networks for semantic segmentation. In [42], a lake
reservoir extraction method was proposed, which combines the
NDWTI with thresholding in the NIR band. Ma et al. [43] intro-
duced a water extraction network that integrates water indices
with the Swin Transformer. Li et al. [44] proposed a spectral
index-driven, weakly supervised method for water body extrac-
tion. Broni-Bediako et al. [45] improved water body segmen-
tation accuracy by incorporating NIR band features alongside
RGB image bands.

C. Remote Sensing Image Segmentation Using Lightweight
Networks

Lightweight neural networks hold significant potential in
resource-constrained environments, such as UAVs and satellites.
Tandola [46] proposed SqueezeNet, a lightweight and efficient
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Fig. 1. Overall architecture of the proposed ASFC-LNet network.

CNN with a compressed model size of 0.48 MB. The au-
thors in [47], [48], and [49] introduced the MobileNet series,
designed for mobile devices and embedded systems. ResNet
and DenseNet have demonstrated that reusing features can
effectively improve network performance and accelerate con-
vergence. MobileNetv2 introduces inverted residual structures
with linear bottlenecks to enhance efficiency. Zhang et al. [50]
proposed ShuffleNet, which employs group convolution and
channel shuffling to reduce computational complexity. Face++
introduced ShuffleNet v2 [51], incorporating pointwise group
convolution and channel reordering, achieving a model with
1.8 million parameters and a computational complexity of 146
MFLOPs while maintaining high efficiency.

Siam et al. [52] explored combinations of encoders and
decoders to construct frameworks for lightweight segmentation
networks. For example, VGG16 and ResNetl8, as well as
MobileNet and ShuffleNet, were utilized as feature extraction
encoders, while networks like UNet served as decoders.
Paszke et al. proposed ENet [53], designed for mobile applica-
tions, achieving a parameter count of only 0.36 million and a
computational complexity of 3.8 GFLOPs. Zhao et al. [54] in-
troduced ICNet, which employs a multiresolution cascade struc-
ture; low-resolution branches capture coarse semantic features,
while high-resolution branches recover and refine detailed fea-
tures. Romera et al. [55] presented the Efficient ConvNet model,
which combines residual connections and factorized convolu-
tions by decomposing 3 x 3 convolutional kernels into sequen-
tial 3 x 1 and 1 x 3 convolutions, significantly reducing com-
putational cost. EDANet [56] utilizes asymmetric convolutional

LPSE--Spectral Feature Extraction Branch

Training Phase

dense modules that decompose n x n convolution kernels into
n x 1 and 1 x n kernels for enhancing segmentation efficiency.
ESPNet [57] employs a modular design that combines spatial
pyramids of dilated convolutions and pointwise convolutions,
achieving a 0.36 million parameters and an inference speed of
approximately 112 FPS. ESPNetv2 [58] introduces grouped
pointwise convolutions to enhance interchannel information
exchange.

III. METHODS
A. Overview

We propose a lightweight network (ASFC-LNet) for real-
time segmentation of water bodies in remote sensing images,
integrating soft constraints based on approximate spectral fea-
tures. The ASFC-LNet operates on raw DN or TOA radiance
images without the need for atmospheric correction. The pro-
posed network primarily comprises three modules: a lightweight
pseudo-siamese feature extraction network (LPSE), an approx-
imate spectral feature soft constraint for multi-scale fusion
(ASFC), and an edge constraint lightweight decoder using self-
distillation. The overall architecture of the proposed network is
illustrated in Fig. 1.

The lightweight pseudo-siamese feature extraction network is
designed to separately extract spatial and spectral features from
visible bands and the approximate spectral indices. Specifically,
the approximate spectral indices are calculated by band math.
The features are fused selectively in the feature fusion module
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TABLE I
STRUCTURE OF THE SPATIAL FEATURE EXTRACTION BRANCH
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TABLE II
STRUCTURE OF THE SPECTRAL FEATURE EXTRACTION BRANCH

Stage Layer Stride  Repeat Output Params Stage Layer Stride  Repeat Output Params
Input 512x512x3 Input 512x512x3
Conv2d 2 1 256x256x24 o Conv2d 2 1 256x256x24
Max Pooling 2 1 128x128x24 Max Pooling 2 1 256x256x24
Stagel DownSar‘nplmg Block 2 1 64x64x48 6936 Stagel DownSar'nphng Block 2 1 64x64x48 3912
Basic Block 1 3 64x64x48 Basic Block 1 1 64x64x48
Satge2 DownSa@plmg Block 2 1 32x32x96 45552 Satge2 DownSar-nphng Block 2 1 32x32x96 24240
Basic Block 1 7 32x32x96 Basic Block 1 3 32x32x96
Satge3 DownSar.nplmg Block 2 1 16x16x192 89952 Satge3 DownSaI'nphng Block 2 1 16x16x192 50208
Basic Block 1 3 16x16x192 Basic Block 1 1 16x16x192
Sum 143136 Sum 79156
ASFC. The fused features are then fed into a water body de-
coder and an edge decoder to predict the water body and its Spatial
edges. During training phase, self-supervised edge labels are Feature
dynamically generated based on the predictions from the water P;f:s':);e
body decoder and the ground truth, guiding the model to focus
more on edge. During inference phase, the edge decoder and
self-supervised process are omitted and the complexity of the Spectral
model is not influenced. Feature
B. Lightweight Pseudo-siamese Feature Extraction Network
Fig. 2. Visualization of the fused heat map resulting from the combination of

Both branches of the pseudosiamese feature extraction net-
work are designed with a streamlined architecture that retains
only channels highly relevant to the target features, effectively
reducing redundancy.

1) Spatial feature extraction branch: We adopt a progressive
feature extraction architecture consisting of an initial convolu-
tional layer followed by three stages. By gradually reducing
the resolution of the feature maps, the network effectively ex-
tracts multiscale spatial information at each stage, capturing
features ranging from local details to global structures. Each
stage comprises an efficient downsampling block and multiple
basic blocks.

DownSampling block: Downsampling is achieved using
depthwise convolution with a stride of 2. In both branches,
a1 x 1 convolution is employed to adjust the number of chan-
nels. After merging via concatenation, the spatial dimensions
of the feature map are halved, and the number of channels is
doubled.

Basic block: The input feature channels are split into two
branches using channel splitting. Each branch extracts features
using 1 x 1 and 3 x 3 convolutions, respectively. After merging
through concatenation, a channel shuffle operation is applied.
As a result, both the spatial dimensions of the feature map and
the number of channels remain unchanged.

Table I shows the details of the spatial feature extraction
branch, which adopts the structure of stage=[4, 8, 4]. The out-
puts of the max pooling layer and the three stages are selected as
multiscale features, with feature map sizes of [128 x 128 x 24],
[64 x 64 x 48], [32 x 32 x 96], and [16 x 16 x 192].

2) Spectral feature extraction branch: By reducing the num-
ber of basic blocks in each stage, the lightweight approximate
spectral feature extraction network decreases network depth,

spatial and spectral feature extractions.

complexity, and parameter count, while preserving the ability
to perform multiscale feature extraction.

Spectral feature extraction branch is designed by reducing
the number of basic blocks in each stage, thereby decreasing
the network depth, complexity, and number of parameters while
still retaining the ability to extract multiscale features.

Specifically, the number of basic blocks is reduced by 2, 4, and
2 for the three Stages based on spatial feature extraction branch,
resulting in a stage configuration of [2, 4, 2]. To ensure effective
fusion of spectral and spatial features, the spectral feature maps
are at the same scale as the spatial feature maps, which include
the outputs from the max pooling layer and three stages. As
shown in Table II, the size of output multiscale feature maps
are [128 x 128 x 24], [64 x 64 x 48], [32 x 32 x 96], and
[16 x 16 x 192].

C. Approximate Spectral Feature Soft Constraint for
Multiscale Fusion

As shown in Fig. 2. exclusively on spatial features can lead to
missed extraction of small water bodies, while depending solely
on spectral features may introduce interference from spectral
variability due to imprecise atmospheric correction. To fully
exploit the complementary advantages of both feature types
and mitigate the impact of interference in spectral data, we
introduce an attention mechanism. This mechanism generates
fusion weights based on attention maps, enabling multiscale
feature fusion with soft constraints provided by approximate
spectral features.
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The spatial attention mechanism aims to focus on the im-
portant regions of the feature map along the spatial dimension.
The structure of the spatial attention mechanism is illustrated
in Fig. 3. In order to obtain the overall distribution and locally
spatial feature, the input feature map X € RH*W*C is fed into
the global average pooling and the global maximum pooling.
The input feature maps are aggregated along the channel di-
mension to obtain two single-channel feature maps. The two
single-channel feature maps are concatenated along the channel
dimension to form a feature map containing two kinds of spatial
information. Further, the two kinds of spatial feature are fused
by the convolution, and the values of the spatial weight map are
mapped to the range [0, 1] by the Sigmoid function. Finally,
the output is the spatial attention weight map. This weight map
represents the importance of pixels. The larger the value, the
more significant of the pixel. The spatial attention is defined
as follows:

Xmax = MaxPooling(X) (1
Xave = AveragePooling(X) 2)
Xeoncat = Concat [Xax, Xave) 3)
My = o (Conviyxi (Xeoncat)) (@)

where Xy« and X,,, denote the feature maps after maxi-
mal and average pooling, Xiax, Xavg € RIXWXL X (o de-
notes the feature map containing two kinds of pooling, Xoncat €
RH>W>2 "and M, the spatial attention weight map, o denotes
the Sigmoid function, and M, € RH>*Wx1,

Furthermore, we propose a soft-constrained spectral fusion
module for approximate spectral features, which jointly consid-
ers the spatial attention of both feature types to extract key spatial
information and generate shared fusion weights. Specifically the
following holds.

When discrepancies exist in the target attention features be-
tween the visible bands spatial features and the spectral features,
the weight generation phase fuses the spatial information from
both to achieve a comprehensive and accurate representation of
the target region.

When the spatial features and spectral features exhibit high
spatial consistency, with similar salient regions and target dis-
tributions, sharing a common spatial weight map effectively
reduces redundant computations [59]. This approach ensures
that the spatial information in both feature branches remains
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() (b) (c)

Fig.5. Heat map distributions for water feature extraction: (a) original remote
sensing image, (b) ground truth water labels, and (c) heat map of water features.

consistent, avoiding issues of inconsistent feature representa-
tions that may arise from independent weights.

Fig. 4 shows the architecture of soft-constrained spectral
feature Fusion module. Algorithm 1 outlines the process of
soft constrained spectral feature fusion. The two attention maps
generated from spatial and spectral features are concatenated.
The feature maps X € RT*W>2 contain the target attention
information of the two features. A convolution is applied to
the concatenated feature map, which extracts effective target
attention. The fusion feature weight is generated using the Sig-
moid function, where each value of the weight map represents
the importance of the feature at the corresponding pixel in the
feature map. The higher the value of the weight map, the more
significant the feature at that pixel, and the greater its impact on
the final segmentation result. The adaptive weight feature fusion
is defined by the (5) and (6) as follows:

Weight = o (f (SA (Featurespatial )
+ SA(Featurespecirar)) ) 5)
Flusion = Featuregpyia X Weight

+ Featuregpecral X Weight (6)

where Featuregpeal denotes spectral features, Featuregp,ga de-
notes spatial features, SA denotes spatial attention computation
process, f denotes convolutional layer, o denotes Sigmoid func-
tion layer, and Weight denotes shared feature fusion weight, and
Flusion denotes the feature after fusion.
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Algorithm 1: ASFC Module.

Input: Spatial features F'eaturegspatiar and spectral
features Featurespectral
1: Spatial attention computation: Compute the attention
maps of Featuregpqatiar and Featuregspeciral-

M spatia = SA (Featurespatial)
Mg spectrat = SA (Featurespectral)

2: Spatial attention feature stacking: Concatenate the
attention maps generated from spatial and spectral
features.

Mconcar = Concat[My.spatiat, Ms-spectral)
3: Shared attention weight generation:
Weight = o (f (Meoncat))
4: Spatial feature fusion weighting:
Frusion = Featurespatiat X Weight

+ Featurespectrar X Weight

D. Edge Constraint Lightweight Decoder Using
Self-Distillation

In the scenario illustrated in Fig. 5, the surface water body
exhibits intricate boundaries, and the color of the water near
these edge regions differs from that of the central area. This
inconsistency leads to weaker model responses at the edges,
making it difficult to accurately capture the water body bound-
aries. To address this issue, we design a lightweight edge-aware
decoder based on self-distillation. As shown in Fig. 6, this
decoder incorporates a multiscale context feature extraction

f —> Looe
Self-Distillation Predicited[Edge
j Edge

Architecture of edge constraint lightweight decoder using self-distillation.

module, specifically the ASPP, to extract multiscale information
from the edge regions. Dynamic self-distillation signals are
generated based on the predictions of the water body decoder
and the ground truth labels, constraining the output of the edge
decoder.

During the training phase, the water edge decoder and the
water body decoder share the feature extraction network. By
utilizing dynamic labels and a self-distillation edge loss, we
guide the shared layer features to focus more on the edge regions.
In the inference phase, the edge decoder is removed, and the
model completes the segmentation task using only the water
body decoder. This approach enhances boundary segmentation
accuracy while ensuring computational efficiency.

The water body decoder processes the fused features to pro-
duce the segmentation results for water bodies. This decoder
utilizes a 1 x 1 convolution layer to generate the probability
map of the target class. The design of the 1 x 1 convolution not
only keeps the network lightweight but also allows for efficient
adjustment of the number of channels. Then, the output is upsam-
pled to the original resolution of the input image using bilinear
interpolation. This results in a segmentation prediction map that
matches the input dimensions, enabling precise identification of
water body regions.

To optimize the output of the water body segmentation de-
coder, ground truth labels are used to supervise the segmenta-
tion predictions. For the primary segmentation task, the binary
cross-entropy loss function is employed to enhance the model’s
performance by minimizing the discrepancy between the pre-
dicted probability distribution and the ground truth distribution.
The loss function is defined as follows:

Lwp = — ) [G(z.y)log P(x,y)

(z,y)

+ (1= G(z,y)log (1 - P(z,y))] )
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where G(x,y) denotes the ground truth, P(z,y) is the proba-
bility map, and (z, y) represents the position of the pixel in the
images.

For edge constraint, a multiscale context feature extraction
module (ASPP) is introduced to capture multiscale information
in boundary regions. The ASPP module significantly expands
the receptive field for feature extraction by employing convo-
lution operations with various dilation rates (6, 12, and 18),
thus balancing local details and global context information at
different scales. Convolutions with smaller dilation rates focus
on local features near edges, such as texture details and subtle
transitions, while larger dilation rates capture broader back-
ground information and the global structural characteristics of
boundaries. Finally, the convolution outputs from each branch
are fused through a concatenation operation, followed by a 1 x 1
convolution to reduce dimensionality, generating a feature map
enriched with detailed edge information.

The ASPP module generates a feature map enriched with
detailed edge information, which is then passed to the water
edge decoder for further processing. The water edge decoder
mirrors the structure of the water body decoder, employing 1 x 1
convolutions and upsampling to progressively decode deep edge
features into edge prediction results.

To effectively guide the training of the edge features, we in-
troduce a dynamic self-distillation mechanism. This mechanism
generates self-distilled edge labels by combining the predictions
from the water body decoder with the ground truth boundary
labels. It is defined by the following formula:

SDcdge = G(z,y) x Edge_Extract (R(x,y)) (8)

where SD.gq4. denotes the dynamically generated self-
distillation edge label; G(z,y) € {0, 1} denotes the ground truth
of pixel(x,y); R(x,y) denotes the binarized result of the output
of the water body decoder; Edge_FExtract() denotes the edge
extraction.

To compute the self-distillation edge loss, we compare the
predicted outputs of the water edge decoder with the dynamically
generated edge labels. The loss function is defined as follows:

2 Z(Ly) Pedge (.f, y)SDedge (l‘, y)

(2,y) Peage(r,y)* + Z(I,y) SDeage(,y)?
9

where Peqq¢(2, y) is the probability map of edge. The dynamic
edge label SD. 4. is derived by combining the ground truth with
the edge prediction results of the water body decoder. It guides
the network to focus on learning the correctly predicted areas of
the water body decoder. This process gradually expands to in-
clude low-confidence or complex edge, achieving optimization
of edge from simple to complex.

Therefore, the final loss function is defined as the sum of these
two terms

Lspr =1~
>

L = Lwg + Lspg. (10)
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Orin NX

Fig. 7. High-performance computing platform for ground-based training
(left); Embedded computing platform for real-time inference on UAVs or
satellites (right).

TABLE III
GPU SPECIFICATIONS OF THE TRAINING AND INFERENCE PLATFORMS

NVIDIA Jetson

Parameter NVIDIA RTX A6000

Orin NX 16GB
CUDA Cores 10752 1024
Tensor Cores 336 32
Memory 48G 384-bit GDDR6  16GB 128-bit LPDDRS
Memory Bandwidth 768GB/s 102.4GB/s
Power 300W 10 -25W
Performance 309.7 TFLOPS 100 TOPS

IV. EXPERIMENTS AND RESULTS
A. Description of Computing Facilities

1) High-performance computing platform for ground-based
training:

For model training, we utilize high-performance NVIDIA
RTX A6000 GPUs (48 GB) and computers equipped with Intel
Xeon Gold 5320 CPUs (2.20 GHz) and 256 GB of memory, as
shown on the left side of Fig. 7.

2) Embedded computing platform for real-time inference on
UAVss or satellites:

To evaluate the real-time inference capabilities of the water
segmentation models on edge computing platforms, such as
UAVs and satellites, we conducted inference tests using a Jetson
Orin NX embedded computing board, as shown on the right side
of Fig. 7. The GPU specifications of the training and inference
platforms are listed in Table III.

B. Parameter Settings for Semantic Segmentation Models

We implemented the models using the PyTorch framework
and trained it on a NVIDIA A6000 GPU. The model was trained
for 50 epochs with a batch size of 64 using the Adam optimizer.
The initial learning rate was set to 0.0005 and decayed to a
minimum of 0.000005 following a cosine annealing schedule; a
weight decay of 0.0001 was also applied.

To facilitate model quantization and embedded deployment
on the NVIDIA Jetson Orin NX platform, we converted the
trained model to ONNX format. TensorRT 8.5.4.2 was employed
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TABLE IV
SEMANTIC CLASSES AND LABEL ENCODING OF THE FLOODNET DATASET

Semantic class Original label Merged label
Background 0 0
Flooded Buildings 1 0
Nonflooded Buildings 2 0
Flooded Roads 3 1
Nonflooded Roads 4 0
Water 5 1
Trees 6 0
Vehicles 7 0
Pools 8 1
Grassland 9 0

for quantization and deployment. The inference time after de-
ployment was measured using the built-in trtexec tool.

C. Datasets

1) UAV Remote Sensing Dataset: FloodNet [60]: FloodNet
is a UAV-based aerial remote sensing dataset designed for se-
mantic segmentation with pixel-level annotations. It consists
of 2343 aerial images at a size of 3000 x 4000 pixels, each
containing RGB three-band data. The dataset is partitioned into
a training set of 1445 images, a validation set of 450 images,
and a test set of 448 images. It encompasses ten different
semantic categories, as listed in Table IV. The original images
have not undergone atmospheric correction and are stored in
JPEG format, while the semantic label images are stored in PNG
format.

To evaluate the effectiveness of various methods for water
body extraction in remote sensing images, we processed the orig-
inal FloodNet dataset by merging the classes. Flooded roads are
defined as areas where the road surface is directly covered by wa-
ter. In contrast, flooded buildings refer to buildings surrounded
by flood waters but where the building surfaces themselves are
not submerged. Consequently, the three classes—flooded roads,
water, and swimming pools—were merged into a single class
labeled water (label 1). The remaining classes, including flooded
buildings, were combined into a background class (label 0).

2) High-resolution satellite remote sensing dataset: GF-
FloodNet [61]: The GF-FloodNet dataset comprises 13 388
multispectral images of size 256 x 256 pixels captured by
China’s Gaofen-2 satellite. The images have not undergone
atmospheric correction, and the spatial resolutions include 1.5,
2.5, and 4 m. The dataset contains two classes: water bodies
(label 1) and background (label 0). It encompasses four spec-
tral bands: red, green, blue (RGB), and NIR. The wavelength
information for each spectral band is provided in Table V.

The GF-FloodNet dataset covers multiple regions worldwide.
Variations in background across different regions lead to an
imbalanced data distribution. If the training set includes samples
from only certain regions, the model may not learn features
representative of other regions, resulting in poor generalization
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TABLE V
BAND AND WAVELENGTH INFORMATION CONTAINED IN THE GF-FLOODNET
DATASET
Band Wavelength (nm)
Blue 4507520
Green 5207590
Red 6307690
INR 7707890

in those areas. Therefore, when partitioning the dataset, samples
from all regions were included in both the training and validation
sets, maintaining a training-to-validation ratio of 1:1.

D. Evaluation Metrics

In remote sensing image processing tasks involving water
body segmentation, the number of pixels representing water is
often significantly smaller than that of nonwater background
pixels, leading to a data imbalance between target and back-
ground classes. This imbalance can adversely affect evaluation
metrics commonly used in traditional semantic segmentation,
such as OA and mean intersection over union (IoU), rendering
them incapable of accurately reflecting the model’s performance
in segmenting water bodies. To address the bias in accuracy
assessment caused by the predominance of background pixels,
this study employs metrics, such as IoU, precision, recall, and
F1, to evaluate the segmentation accuracy of water bodies in
remote sensing images. The evaluation metrics utilized in this
experiment are as follows.

1) Precision: It is used to measure the accuracy of the model
when predicting a specific category. It represents the proportion
of correctly predicted samples for a category out of all samples
predicted as that category. The formula is

TP
TP+ FP’

2) Recall: Itis used to measure the model’s capacity to identify
samples that actually belong to a specific category. It represents
the proportion of correctly predicted samples for a category out
of all samples that actually belong to that category. The formula
is

Precision =

(1)

TP
TP+ FN’
3) IoU: Tt represents the ratio of the intersection to the union
of the predicted and true target areas. The value ranges from 0

to 1, with a higher value indicating better model performance.
The formula is

Recall = (12)

B TP
TP+ FN+FP’

4) FI: It is the harmonic mean of precision and recall, used to
evaluate the model’s precision and recall ability simultaneously.
The formula is

ToU (13)

- 2 x Precision x Recall

14
Precision + Recall s
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TABLE VI
EXPERIMENTAL RESULTS ON THE FLOODNET DATASET

Method IoU Water (%) Precision (%) Recall (%) F1 (%) Params (M) GFLOPs Inference Time (ms)
Deeplabv3+ [13] 62.95 84.58 80.01 82.23 54.85 236.54 80.23
UNet [11] 70.67 85.37 80.40 82.81 24.89 225.85 30.56
PSPnet [12] 70.18 85.68 79.50 82.47 48.96 61.63 25.58
HRnet [31] 70.19 83.61 81.39 82.48 9.64 18.66 36.61
SegNet [25] 70.42 84.42 80.93 82.63 29.44 160.68 -
ABCNet [62] 69.82 84.58 80.01 82.23 13.33 15.36 23.89
UNetFormer [63] 61.34 80.92 76.23 78.51 11.3 46.9 50.43
SegFormer [27] 67.14 83.56 78.91 81.17 372 6.41 38.47
MCCANet [64] 68.88 83.35 81.29 82.30 42.29 104 69.21
Ewas [65] 70.06 83.98 80.35 82.12 44.68 50.50 33.69
ASFC-LNet 70.74 84.11 81.65 82.86 0.22 0.32 6.45

The bold values indicate the best performance among the methods.

where TP denotes true positives,; FP denotes false positives; and
FN denotes false negatives

5) Parameters: It refers to the total number of parameters
that need to be trained in the model, reflecting the model’s
complexity. The number of parameters in a convolutional layer
is calculated as

Params = kj, X kyy X Ciy X Cout (15)

6) Floating Point Operations (FLOPs): It refers to the total
number of FLOPs required by the model to process a single
input. The FLOPs of a convolutional layer is calculated as

FLOPs = [(Cin X kuy X kp) + (Cin, X kyy X kp — 1)]

X Cou X W x H (16)

where ky, is the height of the convolution kernel, k,, is the width
of the convolution kernel, Cy, is the number of input feature map
channels, and Cyis the number of output feature map channels.

7) Inference time: It refers to the time required for the trained
model to make predictions on new data, reflecting the real-time
performance of the model.

E. Results

To validate the effectiveness of the proposed ASFC-LNet
water body segmentation method, we compared it with ten
existing semantic segmentation algorithms on the UAV dataset
FloodNet and the satellite dataset GF-FloodNet. The algorithms
used for comparison include Deeplabv3+, UNet, PSPNet, HR-
Net, SegNet, ABCNet, UNetFormer, SegFormer, MCCANet,
and Ewas. All experiments were conducted using the computing
facilities described in Section IV-A.

Table VI presents the experimental results on the FloodNet
dataset, where bold values indicate the best performance among
the methods evaluated. Compared to general deep segmentation
models, such as DeepLabv3+, UNet, and PSPNet, the proposed
ASFC-LNet method outperforms these models in terms of IoU,
Recall, and F1, while also demonstrating higher efficiency in
model parameter size and inference time. Specifically, compared
to DeepLabv3+, which has the largest number of parameters,

our method achieves a 7.79% higher IoU, reduces the parameter
count by approximately 54 million, and decreases inference time
by over 70 ms. Compared to PSPNet, our method improves
IoU, Recall, and F1 by 0.56%, 2.15%, and 0.39% respectively,
reduces the parameter count by 48.74 million, and shortens
inference time by 19.13 ms.

Compared with other lightweight models such as UNet-
Former, SegFormer, and ABCNet, the proposed ASFC-LNet
method also demonstrates significant advantages in IoU, Re-
call, and F1, while achieving higher efficiency in terms
of model parameter size and inference time. Specifically,
compared to SegFormer, which has the smallest parame-
ter count, our method achieves a 3.60% higher IoU and a
1.69% higher F1, and reduces inference time by 32.02 ms.
Compared to ABCNet, a lightweight model with relatively
good accuracy, our method improves IoU, Recall, and F1 by
0.92%, 1.64%, and 0.63%, respectively, reduces the parame-
ter count by 13.11 million, and decreases inference time by
17.44 ms.

Table VII presents the experimental results based on the
GF-FloodNet dataset, where values in bold indicate the best
performance among the methods evaluated. Compared with
general deep segmentation models, such as DeepLabv3+, UNet,
and PSPNet, the proposed ASFC-LNet method outperforms
these models on key metrics including IoU, Recall, and FI,
while significantly reducing the number of parameters and in-
ference time. Specifically, compared with DeepLabv3+, which
has the largest parameter count, our method achieves 0.17%
and 1.50% higher IoU and Recall, respectively, while reducing
the parameter count by 54.63 million and shortening inference
time by 73.78 ms. Compared with HRNet, our method im-
proves IoU by 0.95%, F1 by 0.51%, and reduces inference time
by 30.16 ms.

Compared with other lightweight models, such as UNet-
Former, SegFormer, and ABCNet, the proposed ASFC-LNet
method also demonstrates significant advantages in IoU, Recall,
and F1, while achieving higher efficiency in terms of model
parameter size and inference time. Specifically, compared with
SegFormer, which has the smallest number of parameters, our
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TABLE VII
EXPERIMENTAL RESULTS ON THE GF-FLOODNET DATASET

Method IoU Water (%) Precision (%) Recall (%) F1 (%) Params (M) GFLOPs Inference Time (ms)
Deeplabv3+ [13] 92.09 98.06 93.79 95.88 54.85 236.54 80.23
UNet [11] 90.99 96.14 94.44 95.28 24.89 225.85 30.56
PSPnet [12] 90.70 96.57 93.28 94.90 48.96 61.63 25.58
HRnet [31] 91.31 96.52 94.42 95.46 9.64 18.66 36.61
SegNet [25] 90.95 95.31 95.22 95.26 29.44 160.68 -
ABCNet [62] 89.81 95.83 93.46 94.63 13.33 15.36 23.89
UNetFormer [63] 88.86 94.11 94.09 94.10 11.30 46.90 50.43
SegFormer [27] 90.25 95.89 94.60 95.24 3.72 6.41 38.47
MCCANet [64] 89.96 95.42 94.78 95.10 42.29 104 69.21
Ewas [65] 91.08 96.12 94.59 95.35 44.68 50.50 33.69
ASFC-LNet 92.26 96.66 95.29 95.97 0.22 0.32 6.45

The bold values indicate the best performance among the methods.

(e)

Fig. 8.

(2

(h)

Visual comparison of segmentation results using different models on Scene 1 of the FloodNet dataset. (a) Original UAV remote sensing image. (b)

Approximate spectral feature map. (c) Ground truth labels. (d) DeepLabv3+ segmentation result. (e) UNet segmentation result. (f) PSPNet segmentation result. (g)
Ewas segmentation result. (h) Segmentation result of the proposed ASFC-LNet method.

method improves IoU and F1 by 1.99% and 0.73%, respec-
tively, and reduces inference time by 32.02 ms. Compared with
ABCNet, a lightweight model with relatively good accuracy,
our method increases IoU and F1 by 2.45% and 1.34%, respec-
tively, while reducing the parameter count by 13.11 million and
decreasing inference time by 17.44 ms.

To summarize the above analysis, based on the quantitative
evaluation metrics, the ASFC-LNet method proposed in this
study exhibits significant lightweight advantages compared to
models such as DeepLabv3+, UNet, and PSPNet. Utilizing
only 0.22 million parameters and 0.32 GFLOPs, it achieves
an IoU of 70.74% on the FloodNet dataset and 92.26% on
the GF-FloodNet dataset. This method significantly reduces
the number of model parameters and computational complexity
while maintaining excellent segmentation performance. These

results demonstrate its great potential for application in real-time
water body segmentation on edge computing platforms, such as
UAVs and satellites.

To further evaluate the visual effectiveness of water body
segmentation, we conduct a detailed comparison of the proposed
ASFC-LNet method with other approaches, particularly empha-
sizing its capability to accurately segment small water bodies and
preserve edge details.

Addressing water body segmentation scenarios involving sig-
nificantly disparate area sizes, as illustrated in Fig. 8, we present
the segmentation results of different models on the FloodNet
dataset. Fig. 8(a) shows the original UAV remote sensing image,
which contains two water bodies with different colors and shapes
in the visible bands, one larger area in the upper right corner
and a smaller area in the upper left corner. Fig. 8(b) shows
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(d)
(h)

Visual comparison of segmentation results using different models on Scene 2 of the FloodNet dataset. (a) Original UAV remote sensing image. (b)

Approximate spectral feature map. (c) Ground truth labels. (d) DeepLabv3+ segmentation result. (e) UNet segmentation result. (f) PSPNet segmentation result. (g)
Ewas segmentation result. (h) Segmentation result of the proposed ASFC-LNet method.

the approximate spectral features obtained through interband
calculations, demonstrating that the two water bodies have con-
sistent spectral characteristics. Fig. 8(c) provides the ground
truth labels. Fig. 8(d) presents the result of the DeepLabv3+
method, which fails to detect the small blue water body in
the upper left corner. Fig. 8(e) shows the result of the UNet
method, and Fig. 8(g) shows the result of the Ewas method; both
methods can detect the two water bodies but exhibit incomplete
boundary detection of the small water body in the upper left
corner. Fig. 8(f) illustrates the result of the PSPNet method,
showing extensive false detections in the building areas. Fig. 8(h)
presents the result of our proposed ASFC-LNet method, which
demonstrates the best visual performance among all methods by
accurately detecting both the large and small water body regions
and precisely extracting their boundaries.

Fig. O presents the segmentation results of different models
on another scene from the FloodNet dataset. Fig. 9(a) shows
the original UAV remote sensing image, which contains two
water bodies exhibiting different colors and shapes in the visible
spectrum: a larger area on the right and a smaller area on
the left with algal blooms on its surface. Fig. 9(b) displays
the approximate spectral features obtained through inter-band
calculations. Fig. 9(c) provides the ground truth labels. Fig. 9(d),
(f), and (g) illustrates the results of the DeepLabv3+, PSPNet,
and Ewas methods, respectively. While these three methods
detect both water bodies, they fail to fully delineate the edges
of the left-side water body with algal blooms. Fig. 9(e) shows
the result of the UNet method, which misses the left-side water
body. Fig. 9(h) presents the result of our proposed ASFC-LNet
method. Among all methods, our approach yields the best visual
results, accurately detecting both the left and right water regions
and precisely extracting their boundaries, with almost no missed
detections or false positives. The detection performance closely
approximates the ground truth labels.

Fig. 10 illustrates the segmentation results of various mod-
els applied to Scene 3 of the FloodNet dataset, which fea-
tures water bodies with complex and intertwined boundaries,
such as those occluded by trees. Fig. 10(h) presents the re-
sults of the proposed ASFC-LNet method, which outperforms
all other methods. Notably, small water bodies are com-
pletely detected, and the water body boundaries are clear and
well-defined.

To evaluate the segmentation performance in the transition
regions between water bodies and shorelines, Fig. 11 presents
the results of various models applied to Scene 4 of the FloodNet
dataset. Most of the compared methods fail to accurately delin-
eate the boundaries of the water bodies. In contrast, Fig. 11(h)
shows the results of our proposed ASFC-LNet method, which
outperforms all other methods. It accurately segments the water
body regions and effectively captures the fine details in the
transition areas.

To address the challenge of water body segmentation in
large-area and complex scenes, Fig. 12 presents the detection
results on a full-scene remote sensing image of an Australian
region captured by China’s GF-2 satellite. The image has a size
of 5376 x 2560 pixels. This scene contains various types of water
bodies, including rivers, lakes, and reservoirs, with significant
differences in color spectra and morphology features. In the
approximate spectral map, the water bodies and the background
display distinct values, which provide valuable segmentation in-
formation. The proposed ASFC-LNet method accurately detects
the different types of water bodies and precisely extracts their
boundaries.

F. Ablation Study

Table VIII shows the results of the ablation study on the
Floodnet dataset. When only using the baseline method, where
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Fig. 10.  Visual comparison of segmentation results using different models on Scene 3 of the FloodNet dataset. (a) Original UAV remote sensing image. (b)
Approximate spectral feature map. (c) Ground truth labels. (d) DeepLabv3+ segmentation result. (e) UNet segmentation result. (f) PSPNet segmentation result. (g)
Ewas segmentation result. (h) Segmentation result of the proposed ASFC-LNet method.

Fig. 11.  Visual comparison of segmentation results using different models on Scene 4 of the FloodNet dataset. (a) Original UAV remote sensing image. (b)
Approximate spectral feature map. (c) Ground truth labels. (d) DeepLabv3+ segmentation result. (¢) UNet segmentation result. (f) PSPNet segmentation result. (g)
Ewas segmentation result. (h) Segmentation result of the proposed ASFC-LNet method.

TABLE VIII
ABLATION EXPERIMENTS ON THE FLOODNET DATASET

Method ASFC Edge Decoder IoU Water (%) Precision (%) Recall (%) F1 (%) Params (M) GFLOPs

Baseline 67.66 83.53 78.08 80.71 2.15 3.56
Baseline v 70.64 83.84 81.77 82.79 2.20 3.68
Baseline v v 70.74 84.11 81.65 82.86 0.22 0.32

The bold values indicate the best performance among the methods.
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(d)

Segmentation results on the full-scene GF-2 remote sensing image of the Australian region. (a) Original full-scene remote sensing image captured by

the GF-2 satellite, without atmospheric correction. (b) Remote sensing images of four local regions. (c) Ground truth water body labels for these local regions.

(d) Segmentation results produced by the proposed method.

the ASPP module is in the water body segmentation branch,
the IoU reaches 67.66%, the Precision is 83.53%, the Recall is
78.08%, and the F1 is 80.71%. The number of parameters is
2.15 M, and the FLOPs are 3.56 G. After the introduction of
the approximate spectral feature soft constraint for multiscale
fusion, the IoU is increased to 70.64%, the Precision is increased
to 83.84%, the Recall is significantly increased to 81.77%, the
F1 is also increased to 82.79%, the number of parameters are
increased to 2.2 M, and the FLOPs are increased to 3.68%.
The ASPP module introduces a high number of parameters and
computational complexity, and we optimized the architecture
by relocating the ASPP module to the water edge decoder using
self-distillation. This strategy significantly reduces the number
of parameters and improves segmentation performance. The IoU
reaches 70.74%, Precision is 84.11%, Recall is 81.65%, and F1
is 82.86%. The number of parameters are reduced to 0.22 M,
and the FLOPs are reduced to 0.32 G.

The results of the ablation study on the GF-FloodNet dataset
are shown in Table IX. When only using the baseline method,
where the ASPP module is in the water body segmentation
branch, the IoU of the model reaches 89.81%, the Precision
1s 95.83%, the Recall is 93.46%, the F1 is 94.63%, the number
of parameters is 2.15 M, and the FLOPs are 3.56 G. After the in-
troduction of the approximate spectral feature soft constraint for
multiscale fusion, the IoU of the model is increased to 92.10%,
Precision is increased to 96.32%, Recall is increased to 94.23%,
F1isincreased to 95.26%, the number of parameters is increased
to 2.2 M, and the number of FLOPs is increased to 3.68 G.
The ASPP module introduces a high number of parameters and
computational complexity, and we optimized the architecture
by relocating the ASPP module to the water edge decoder using
self-distillation. This strategy significantly reduces the number
of parameters and improves segmentation performance. The loU
of the model reaches 92.26%, Precision is improved to 96.66%,
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TABLE IX
ABLATION EXPERIMENTS ON THE GF-FLOODNET DATASET

Method ASFC Edge Decoder IoU Water (%) Precision (%) Recall (%) F1 (%) Params (M) GFLOPs
Baseline 89.81 95.83 93.46 94.63 2.15 3.56
Baseline v 92.10 96.32 94.23 95.26 2.20 3.68
Baseline v v 92.26 96.66 95.29 95.97 0.22 0.32

The bold values indicate the best performance among the methods.

Recall is increased to 95.29%, and F1 is improved to 95.97%,
and at the same time, the number of parameters is reduced to
0.22 M, and FLOPs are reduced to 0.32 G.

The ablation experiments incorporating spectral adaptive fu-
sion and boundary feature constraints significantly enhanced
the model’s detection accuracy. During the inference phase,
structural optimization substantially reduced the number of
parameters and computational complexity while maintaining
accuracy.

V. CONCLUSION

To address the challenge of real-time water body extraction
in UAV or satellite remote sensing imagery, we propose a
lightweight real-time segmentation network that embeds soft
constraints of approximate spectral features (ASFC-LNet). This
method effectively leverages both the morphological character-
istics and approximate spectral features of water bodies, over-
coming limitations of traditional methods that rely on precise
atmospheric correction and exhibit poor universality in threshold
selection. The main contributions of this work are as follows:
1) A lightweight pseudo-siamese feature extraction network
(LPSE) is designed to separately extract spatial morphological
features and approximate spectral features. By employing a
lightweight architecture, the model significantly reduces the
number of parameters and computational complexity. 2) A
multiscale feature fusion mechanism with soft constraints on
approximate spectral features (ASFC) is introduced, enabling
flexible fusion of spectral and spatial features. This approach dy-
namically adapts to the distribution of feature importance across
different spatial locations. 3) An ASPP module for edge feature
enhancement within a self-distillation edge-aware lightweight
decoder is developed, which enhances learning in edge regions
by generating dynamic self-edge labels. Experimental results on
datasets, such as the UAV aerial remote sensing dataset FloodNet
and satellite remote sensing dataset, GF-FloodNet demonstrate
that the proposed method achieves optimal segmentation accu-
racy, boundary preservation, and inference speed without the
need for strict atmospheric correction preprocessing. This work
provides an effective solution for real-time water body extraction
in UAV or satellite remote sensing applications.
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