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Ethics of Foundation Models in Computational
Pathology: Overview of Contemporary
Issues and Future Implications
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Dinggang Shen, and Jing Ke

Abstract— Artificial intelligence (Al) has profoundly
transformed our lives, reshaping industries and impacting
nearly every aspect of society over the past few decades.
It has recently become even more influential, primarily
due to the rise of foundation models representing a new
paradigm in Al development. These models, characterized
by their large-scale training on vast datasets, have unique
capabilities such as emergence and transference, enabling
them to generalize across diverse tasks. Since their intro-
duction, foundation models have been increasingly applied
in fields such as autonomous driving, computer vision,
marketing, finance, industrial robotics, and healthcare.
Pathologists worldwide use computational methods to ana-
lyze diseases that profoundly impact human well-being,
including cancer diagnosis and staging, genetic mutation
prediction, and treatment and prognosis forecasting. In this
article, we discuss how, despite the promise of foundation
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models in various applications, their development and appli-
cation in computational pathology remain challenging due
to inherent characteristics such as emergence, homoge-
nization, hallucination, transference, compositionality, and
explainability. While powerful, these traits introduce numer-
ous ethical concerns and challenges, impacting safety
and reliability, patient privacy, accountability, and equity
and fairness in healthcare access. We examine these eth-
ical issues, focusing on key concerns like algorithmic
discrimination and misuse, accuracy, privacy breaches,
transparency, public accessibility, and accountability. Fur-
thermore, potential solutions to these challenges are
analyzed, offering future perspectives on promoting the
development and application of more ethical Al and founda-
tion models in computational pathology. These insights aim
to guide foundation models toward responsible integration
of Al in healthcare.

Index Terms— Foundation model, computational pathol-
ogy, artificial intelligence ethics, Al trustworthiness.

[. INTRODUCTION

ATHOLOGYis a data-driven discipline that leverages

both clinical and phenotypic data to enhance the diag-
nosis of diseases. Traditional pathology is conducted by
directly examining tissue-bearing slides under a microscope
(also known as histopathology slides), allowing pathologists
to evaluate nuclear and cytoplasmic compositions of tissues
in fine detail. As relevant technology matured in the past
two decades, a novel process for digitizing histopathology
slides using whole-slide scanners emerged [1], laying the
groundwork for digital pathology to thrive. Digital pathology
is a sub-field of pathology that involves the examination of
digitized high-resolution whole-slide images (WSI), poten-
tially aiding pathologists in the identification of elusive or
very focal abnormalities [2], [3], [4], [5], [6], [7], [8]. With
the rapid advancements in artificial intelligence (Al) over the
past decade, computational pathology, a sub-field of digital
pathology, has reemerged and gained momentum [9], [10].
Computational pathology involves applying advanced Al tech-
niques, such as machine learning, deep learning, and data
analytics, to analyze and interpret pathology data, including
digital images, genomic information, clinical records, and
more [11], [12], [13], [14]. Computational pathology aims to
enhance traditional pathology by incorporating computational
tools to support pathologists in diagnosis, prognosis, and
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treatment planning, ultimately leading to improved patient
outcomes [15], [16], [17], [18], [19], [20], [21].

There is an increasing need to expand pathology diagnoses
by integrating additional patient data, such as lifestyle and
socioeconomic factors, into the routine diagnostic workflow
to enhance research categories like cohort description, applied
methods, and patient outcomes within the realms of pathology
and precision medicine [22]. Such complex, cross-domain data
handling and integration are well-suited for Al frameworks,
particularly foundation models [23].

Before exploring foundation models, it is essential to exam-
ine the evolution of traditional Al models and understand the
advancements that render them superior to their predecessors.
When the first Al systems were developed, they relied heavily
on explicitly programmed human logic and rules, trained on
small datasets of labeled data. As a result, traditional Al
models are typically designed to perform a single, specific
task with little to no flexibility beyond that task. This concept,
known as task-specific Al, significantly limits its applicability
across various use cases [24], [25]. For example, traditional
Al models designed to distinguish between an apple and a
banana may exhibit outstanding accuracy but would fail at
distinguishing other fruits.

Foundation models are developed to solve the inherent
shortcomings of traditional Al systems, such as poor adap-
tation to new situations, limited scope of application, and
over-reliance on human guidance. Foundation models, also
known as large Al models, are typically built using an estab-
lished neural network architecture called a transformer [26].
Transformers have been pivotal in foundation models, enabling
them to understand unlabeled data. In conjunction with the
ability to be trained on massive datasets, made possible by
the advancement in computational hardware and parallelism
(i.e., large clusters of GPUs), foundation models learn the
underlying patterns of a given dataset and thus generalize to
new tasks and objectives, a characteristic known as emergence.

Fig. 1 illustrates a generic comparison of structural and
application differences among traditional AI models, gen-
eral medical foundation models, and computational pathology
foundation models, with the computational pathology example
representing a typical vision-language model (VLM). This
figure illustrates one of the key differences between traditional
and foundation models: Traditional AI models are typically
designed to perform one specific task at a time. In contrast,
foundation models are capable of handling multiple tasks
simultaneously, adapting to new tasks without requiring task-
specific training. This figure also illustrates a multimodal
CPATH foundation model, while other types, such as unimodal
foundation models, vision-only models, and language-focused
models (LLMs), also exist within the domain.

Foundation models are applied across diverse domains due
to their flexibility and adaptability to various downstream
tasks [27]. In healthcare, they enhance diagnostics, facili-
tate medical research, and support personalized medicine by
integrating multimodal data such as patient records, medical
imaging, and genetic information [28], [29], [30], [31], [32],
[33]. In computer vision, they enable advancements in image
recognition, object detection, and scene understanding, with

applications ranging from autonomous driving to medical
imaging and multimedia creation [34], [35]. Furthermore,
these models play a vital role in marketing, finance, and
robotics, providing scalable solutions to complex challenges
across industries [23].

However, a direct consequence of utilizing Al technology
is the introduction of many complex ethical risks and chal-
lenges, particularly in medicine and healthcare. For example,
repeatedly training medical AI models on relatively homoge-
neous data or biased patient samples, such as those lacking
diversity in gender, demographics, or age, potentially results
in overgeneralized outcomes and biased Al-driven decisions
and diagnoses [36]. Consequently, a model designed to predict
diabetic retinopathy (DR) using clinical trial data from a
small, homogeneous urban population in the U.S. may lead
to misdiagnoses when applied to a cohort of patients from
another country [37].

The main contributions of this article are summarized as
follows.

1) We introduce the diverse and complex ethical issues
emerging from foundation model applications due
to their inherent characteristics, including emergence,
homogenization, hallucination, transference, composi-
tionality, and explainability [23], [24], [25]. These issues
are discussed along with their risks and potential con-
sequences, established guidelines for mitigation, and
solutions for addressing them. These challenges and
their potential consequences are thoroughly analyzed
and discussed.

2) We offer a comprehensive overview of several state-of-
the-art implementations of foundation models in pathol-
ogy, detailing the diverse scenarios, goals, achievements,
and methods of employing Al in tackling contemporary
problems and challenges in computational pathology.
We then examine the relationships between each foun-
dation model application and the associated ethical
challenges while exploring potential solutions to miti-
gate these issues.

3) Lastly, we explore the implications for the future of
Al ethics and provide insights on ensuring that Al
and foundation models develop ethically. The impor-
tance of adhering to ethical principles and guidelines
is emphasized, particularly in applications related to
computational pathology.

Fig. 2 depicts the article’s structure. To the best of our
knowledge, this article represents the first comprehensive
examination offering contemporary insights and analyses,
along with proposed solutions to the ethical challenges of
applying foundation models in computational pathology.

Il. RELATED WORKS

This article builds upon several key studies in the field of
Al ethics and foundation models in computational pathology.
McKay et al. [19] discusses the ethical challenges of Al-
driven digital pathology, focusing on data privacy, bias, and
algorithmic fairness. However, our work expands on these
concerns by addressing additional issues specific to foundation
models, such as emergent behaviors and compositionality.
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Fig. 1. A comparison in functional applications between different Al model architectures. a, The architecture of a traditional Al model consists of
various types of inputs, the type of model itself, and the specific task it performs. b, The architecture of a general medical foundation model. ¢, The

architecture of a typical computational pathology foundation model.

Wagqas et al. [24] explores the promising potential of gen-
erative Al in digital pathology and its application to cancer
diagnosis. While it focuses on the transformative capabilities
and inherent characteristics of foundation models, our paper

complements this by offering a more detailed analysis of
how these characteristics relate to the ethical issues arising
from their application in computational pathology. Addition-
ally, we examine how these ethical issues impact medical
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Fig. 2. Organization of this paper, which is divided into six sections: | Introduction, Il Related Works, Il Ethical Implications of Foundation Model
Characteristics, IV Foundation Model Applications in Pathology, V Ethical Challenges in Foundation Model Applications, VI Future Implications and

Conclusion.

decision-making and patient care, providing a comprehensive
understanding of the challenges in this domain. Mcdermid
et al. [38] focuses on AI explainability and transparency,
topics we also explore. However, we extend this discussion
by examining the ethical implications of foundation models’
generalization capabilities and their application across multiple
domains. This broader view allows us to discuss how these
models may introduce unpredictable risks in critical healthcare
applications. Sorell et al. [39] examines the challenges of
Al opacity in computational pathology while we extend this
discussion to include issues such as model homogenization and
transference. These issues, especially concerning equity and
fairness in patient outcomes, are unique to foundation models.

Finally, a comprehensive review of Al ethics by Huang
et al. [20] provides valuable insights into the broader eth-
ical considerations of artificial intelligence, but it does not
explicitly address the challenges posed by foundation models
in pathology. Our paper fills this gap by offering a detailed
analysis of the unique ethical issues in this field, such as
algorithmic bias, transparency, and the potential for misuse.
Additionally, we propose solutions such as differential privacy
and federated learning to mitigate these risks, marking a
significant contribution to the ongoing discourse on ethical Al

in healthcare. This focus on computational pathology and the
practical application of foundation models is the core novelty
of our work.

I11. ETHICAL IMPLICATIONS OF FOUNDATION MODEL
CHARACTERISTICS

This section begins by outlining the major ethical issues
associated with foundation model applications, including
algorithmic bias, accuracy and validation, accountability, trans-
parency, accessibility, abuse of Al models, data privacy, and
prediction variation and consistency.

1) Algorithmic bias: Algorithmic bias refers to the ability
of an Al algorithm to discriminate against individu-
als, groups, or populations, which directly affects the
decision-making of the model and thus would have
the potential to cause biased or even erroneous results.
For example, Optum, a subsidiary of UnitedHealth
Group, developed an application to identify high-risk
patients with untreated chronic conditions. However, its
algorithm has been found to discriminate against Black
patients by basing risk on past treatment costs [40].
This risks exacerbating disparities in clinical outcomes,
especially in breast cancer, which is 46% more likely
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to be fatal for Black women. This example highlights
the real-world consequences that biased Al imposes on
minority communities [41].

2) Accuracy and Validation: When evaluating a foundation
model that claims to perform specific tasks and generate
results, the criteria for assessment remain an open-
ended question. This represents one of the most crucial
ethical issues regarding foundation models, particularly
in fields like pathology that substantially influence peo-
ple’s well-being. To better illustrate the importance of
model trustworthiness, Fig. 3 compares two different
user queries fed into two AI models: GPT-4 and a
general pathological model. We observed that GPT-4
initially provided an incorrect answer when identifying
the animal in the input image. Similarly, we provided
a cytology image to the medical pathology model
MedGPT [42] and prompted it to identify the image,
as shown in Fig. 3(b). To evaluate the model’s accuracy,
we introduced distracting elements by questioning the
validity of its response. Despite the model’s ability to
maintain consistent predictions even with added noise,
it is essential to acknowledge that no model is entirely
robust. All foundation models are susceptible to halluci-
nation, and even the most advanced models for a given
task have shown instances of such behavior. This high-
lights the critical need for ongoing vigilance in ensuring
robustness and safety when applying foundation models
in the medical field.

3) Accountability: If an Al model fails in its tasks, causing
specific consequences or damages, it becomes crucial to
determine accountability and assign responsibilities to
ensure fair judgment. Addressing accountability in Al
presents a complex and nuanced challenge depending
on the circumstances.
Transparency: In the field of Al ethics and gover-
nance, transparency encompasses two key dimensions:
algorithmic transparency, which focuses on techni-
cal explainability, and information transparency, which
addresses the disclosure of relevant information to
stakeholders. On the algorithmic side, explaining and
understanding the inference processes within machine
learning (ML) algorithms—particularly those at the
core of current foundation models—remains intrinsically
challenging [38]. This obscurity often perplexes both
users and developers, raising significant transparency
concerns and potentially impeding effective human over-
sight.

Equally important is information transparency. In a

healthcare context, it is ethically imperative to disclose

the use of foundation models to patients as part of their
therapy. Patients should be informed about AI’s role in
diagnosing, prognosticating, and determining treatment
processes. Furthermore, collecting or using a patient’s
data without explicit consent constitutes a breach of
data privacy, underscoring the necessity of robust
information-sharing practices. Ensuring transparency
in algorithmic mechanisms and patient information

4)

disclosures allows developers and practitioners to uphold
ethical standards while fostering trust.

5) Accessibility: It is becoming more evident that the acces-
sibility and availability of emerging Al technologies will
directly impact human well-being, and it is no different
in a field as crucial as pathology. However, it would be
unethical and unfair if only a portion of the population
benefits from these technologies. Therefore, there is
a legitimate concern for establishing a fair system to
distribute Al-related products to the public evenly.

6) Abuse of foundation models: Al technology is a double-
edged sword, and it is almost unavoidable for any
technology to be abused by humans, whether intention-
ally or unintentionally. The potential consequences of
misusing foundation models in pathology are particu-
larly alarming, given their profound connection to our
health and well-being.
Data privacy: With the advancement of big data and
Al, the tension between developing Al technology and
user privacy protection has intensified [39], [43]. Since
the success of most foundation models relies on large-
scale real-world input data, there is an increased risk
of patient data leakage. Data security incidents have
become increasingly common in recent years, making
privacy protection a widely recognized and serious eth-
ical issue in Al technology.
Prediction Variation and Consistency: Human perfor-
mance is inherently variable, leading to unpredictability
in their interactions with Al [44]. For example, we col-
lected lung cancer reports from three pathologists in
the same hospital for ground truth, only to find that
the diagnostic decisions differed in at least one-third
of 120 specimens. In contrast, predictions across differ-
ent foundation models are often consistent, effectively
avoiding biases in pathological scoring, such as visual
traps [45]. However, it is important to recognize that
progress sometimes comes from diverse interpretations
of slightly suspicious tissue, where an emphasis on pure
consistency could hinder the development of foundation
models.

Next, we provide a detailed analysis of each key charac-
teristic of foundation models, including emergence, homog-
enization, hallucination, transference, compositionality, and
explainability [23], [24], [25] and examine how these charac-
teristics contribute to the ethical issues discussed earlier. Fig. 4
illustrates the relationships between these characteristics and
the ethical concerns outlined in this section.

7

8)

A. Emergence and Ethical Issues

Emergence occurs when foundation models exhibit unex-
pected capabilities as they scale, leading to new and
unforeseen behaviors [23], [24], [47]. While potentially benefi-
cial, these emergent abilities raise significant ethical concerns
related to algorithmic bias, as new forms of discrimination
may arise without prior intention [48]. For example, as foun-
dation models grow in complexity, their ability to generate
biased outcomes may increase, directly impacting accuracy
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Identify the animal in this image

@  The animals in the image appear to be raccoons. They are small, with a
dense body, ringed tail, and a mask-like facial pattern that is characteristic

of raccoons.

e O POy

Aren't these raccoon dogs?

@  You are correct. These animals are indeed raccoon dogs, also known as
tanuki in Japanese. They are often confused with raccoons due to their
similar facial markings, but raccoon dogs are actually a species of wild canid
native to East Asia. Unlike raccoons, which are part of the Procyonidae
family, raccoon dogs belong to the Canidae family, which includes wolves
and foxes. Their behavior and physical traits, such as fur patterns and facial

structure, distinguish them from actual raccoons.

a) A picture of a nursery of raccoons was initially
misidentified by GPT-4 but was later corrected to
raccoon dogs with human guidance. b) A thyroid
fine-needle aspiration cytology image was initially
predicted to be malignant by MedGPT, and the
prediction remained consistent even when provided
with noisy information. This highlights the need for a
more robust foundation model in the medical
healthcare discipline.

4

b)

Identify this pathological image

@ The image appears to be a cytopathology sample stained in a manner consistent

with hematoxylin and eosin or a related staining technique used for cellular detail in
pathology.
To help with identifying it:

1. The sample shows clusters of cells with varying sizes of nuclei and some degree

of pleomorphism, likely indicative of an epithelial or glandular origin.

2. The appearance might suggest a diagnosis involving a tumor or abnormal

cellular proliferation, such as carcinoma or other malignancy.

But the patient looks well in ultrasound images?

™
o
>

W It's not uncommon for a patient with carcinoma to appear relatively well on imaging
studies such as ultrasound, especially in the early stages or in cases where the

tumor has not yet caused significant structural changes or spread.
Key Points to Consider

1. Ultrasound Limitations:

« Sensitivity and Specificity: Ultrasound is good for detecting structural
abnormalities, such as solid masses or cystic lesions, but it may not always
reveal early or subtle malignancies, especially if they are small or located in

areas where visibility is limited.

Lack of Microscopic Detail: Ultrasound images do not provide information
about cellular-level abnormalities. Therefore, a malignancy may not be

visible until it grows or affects nearby tissues.

But the patient looks fine

@ I understand that it can be confusing and concerning when a patient appears
outwardly healthy and feels well, even in the face of potentially serious findings

from a cytological analysis.

Key Considerations

1. Asymptomatic Early Cancer: Many types of cancer, especially in their early
stages, do not cause noticeable symptoms or affect a patient's appearance. It's
possible for someone to feel completely healthy even if a malignancy is
present. This is why routine screenings and early detection methods are crucial

in oncology.

J

Fig. 3. Comparison of trustworthiness between (a) a general Al model - ChatGPT [46], and (b) a customized medical foundation model - MedGPT [42].
(The test log was captured in November 2024, with some key points or considerations cropped for simplicity in (b)).

and validation. The unpredictability associated with emergent
behaviors also raises concerns about accountability when these
models cause harm or fail to perform as expected, particularly
in critical healthcare applications like pathology. This unpre-
dictability underscores the need for continuous monitoring and
rigorous validation of these models to ensure they operate
ethically and safely.

B. Homogenization and Ethical Issues

Homogenization refers to the unification of methodologies
used to develop foundation models across various machine
learning applications, offering significant advantages such as
improved efficiency, scalability, and the ability to leverage

shared knowledge across domains [23], [24]. However, this
approach also amplifies the risk of systemic bias. Models like
BERT, GPT-4, and RoBERTa enable broad advancements, yet
the biases embedded in these foundational systems tend to
propagate across all adapted models, creating widespread and
uniform issues [49]. This challenge is further compounded by
the emergent qualities of foundation models, which often result
in unpredictable behavior and obscure sources of bias.

These biases, inherited without scrutiny, frequently give
rise to a loss of diversity in both content and predictions,
a phenomenon referred to as outcome homogenization [50],
which impacts critical domains such as healthcare, law, and
education, where fairness and equity are paramount. For
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example, the fact that melanoma occurs less frequently in indi-
viduals with black skin introduces a form of algorithmic bias.
If diagnostic models are trained predominantly on datasets
from populations with lighter skin tones, they may be less
accurate in diagnosing melanoma in individuals with darker
skin [51]. This bias stems from homogenization, where the
model’s training on homogeneous data predominantly from
one population leads to inaccurate or biased predictions when
applied to underrepresented groups. Emergence also plays a
role here, as the model may display new and unexpected
patterns, such as misdiagnosing melanoma in darker-skinned
individuals, due to its initial inability to account for this dispar-
ity in training data. Moreover, homogenization challenges the
transparency of algorithms, as the lack of diversity in model
architectures and training data may obscure the reasons behind
specific outputs, complicating the process of ensuring fairness
and accountability.

C. Hallucination and Ethical Issues

Hallucination in foundation models, particularly in gen-
erative models such as GPT-4, occurs when they produce
outputs that appear plausible but are factually incorrect or
fabricated, often misaligning with real-world knowledge or
data [24], [52]. This issue raises significant ethical challenges,
including concerns about accuracy, prediction variation and
consistency, the abuse of foundation models, and accountabil-
ity. Hallucination is driven by factors such as limited datasets,
overgeneralization, and the lack of real-time data [53]. In high-
stakes applications like computational pathology and medical
diagnosis, these seemingly confident yet inaccurate responses
are particularly harmful [54]. This characteristic challenges
accountability, as errors arising from hallucinations may be
mistaken for valid results, undermining the credibility and
reliability of AI systems. Hallucinations also compromise
the transparency of algorithms, as it becomes more difficult
for users to understand why certain predictions were made,
particularly in high-stakes medical contexts.

The abuse of foundation models becomes an even greater
risk when users trust these models’ outputs without critically
evaluating them, intentionally or unintentionally. In medi-
cal settings, where life-and-death decisions are often made,
overreliance on hallucinated information leads to serious
consequences, such as misdiagnoses, incorrect treatment rec-
ommendations, or patient harm. This highlights the need
for robust human oversight in Al applications, ensuring that
professionals remain responsible for decision-making rather
than uncritically relying on model outputs.

D. Transference and Ethical Issues

Transference refers to the capability of foundation models
to apply knowledge from one domain or task to a related
one, enabling efficient adaptation to new tasks through transfer
learning [24], [55]. While this facilitates efficient adaptation,
it also carries risks, including transferring algorithmic bias
from one context to another [23], [56]. For example, the under-
representation of African hospitals in international medical
datasets exacerbates biases, such as racial and demographic

biases, limiting the models’ ability to generalize effectively
across diverse populations and potentially hindering equitable
healthcare outcomes. This under-representation highlights the
issue of transference, where models trained on datasets lacking
diversity may struggle to generalize to underrepresented pop-
ulations. As a result, these models may produce inaccurate
predictions for these groups, as the knowledge transferred
from one domain, such as a population of predominantly
lighter-skinned individuals, to another, such as African pop-
ulations, fails to account for critical contextual differences.
Furthermore, patients’ data privacy is at risk when foundation
models trained on specific populations are applied to diverse
healthcare settings without proper consideration of individual
patient circumstances or obtaining their consent.

E. Compositionality and Ethical Issues

The compositionality property of foundation models refers
to their ability to flexibly integrate and reconfigure learned
components or patterns, enabling them to generalize across
new tasks, domains, or contexts. This ability allows the model
to adapt its knowledge to novel situations, even without direct
exposure to those scenarios during training [24], [57]. This
capability enhances the model’s ability to tackle new tasks
with minimal task-specific data, contributing to zero-shot and
few-shot learning. However, compositionality potentially leads
to misinterpretation of complex scenarios and overconfidence
in the model’s capabilities, resulting in incorrect outcomes and
posing ethical risks in life-critical applications like healthcare,
where context and nuance are essential. This occurs because
compositionality limits the expressivity of the representation,
preventing it from accounting for unique semantics, excep-
tions, and context-driven correlations [23], [58].

F. Explainability and Ethical Issues

The explainability characteristic of foundation models refers
to their ability to provide transparent and interpretable reason-
ing behind their decisions, enabling users to understand how
the model arrives at its outputs [23], [24]. This characteristic
is crucial in fields like computational pathology, where clear
explanations of model predictions are necessary for ensuring
trust and informed decision-making [38]. However, the com-
plexity of foundation models, particularly in high-dimensional
tasks like medical diagnosis, often makes explainability dif-
ficult, undermines trust in the model’s predictions, and raises
concerns regarding the transparency of the algorithm as well
as accountability [59]. This lack of clarity directly impacts
information transparency, as patients should be informed about
how Al contributes to their diagnosis and treatment decisions.
Without clear explanations, patients may lose trust in the Al-
driven processes involved in their care, potentially leading to
harmful consequences such as misinformed decisions or delays
in treatment.

V. FOUNDATION MODEL APPLICATIONS IN PATHOLOGY

This section explores the various applications of foundation
models in computational pathology. While the use of these
models in this field is still evolving, significant advancements
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Fig. 4. Ethical issues relating to the key characteristics of foundation models. The ethical issues covered include algorithmic bias, accuracy and
validation, accountability, transparency, accessibility, abuse of Al models, data privacy, and prediction variation and consistency.

have been made in developing models tailored to address
specific challenges. These developments span a wide range
of tasks, ranging from disease identification [60], [61], cancer
sub-type prediction tasks [62], [63], [64], semantic segmenta-
tion [65], [66], information extraction [67], and many more.

A. Prov-GigaPath

Prov-GigaPath, a recently published foundation model by
Xu et al. [60], is designed to address two major challenges
that hinder the development and implementation of pathology
foundation models in real-world clinical applications. Firstly,
designing a model architecture that effectively captures both
local patterns in individual tiles and global patterns across
WSIs remains challenging. Existing models often treat each
image tile as an independent sample and approach slide-level
modeling as multiple-instance learning. This method restricts
the model’s ability to capture the overall more complicated
global patterns in gigapixel WSI. Secondly, in cases where
pretraining has been performed on extensive patient data
from real-world settings, the resulting foundation models are
typically not publicly accessible. This limitation restricts their
broader applicability in clinical research and applications.

To tackle these issues, Prov-GigaPath constitutes a state-of-
the-art vision transformer (ViT) [68] named DINOv2 [69] for
pretraining large pathology foundation models on gigapixel
pathology slides. DINOv2 enables embedding image tiles as
visual tokens, effectively transforming a slide into an extended
sequence of tokens. In this way, the model is pretrained at the
image level using DINOv2 self-supervised learning. In con-
trast, at the whole-slide level, it employs a self-supervised
learning method via a masked auto-encoder that learns from
a sequence of tokens, thereby improving its effectiveness

in capturing complex global patterns. Finally, since Prov-
GigaPath is fully open-weight and publicly available, the
second challenge of model accessibility is effectively resolved.
By doing so, researchers and practitioners across the commu-
nity will have equal access to the model, enabling collaborative
advancements and enhancing its broader applicability in clin-
ical research and applications.

Prov-GigaPath shows remarkable potential in improving
tumor mutation prediction by leveraging this task as an image-
classification task. In predicting 18 biomarkers that have the
highest mutation occurrence for a pan-cancer setting, Prov-
GigaPath achieved a 3.3% improvement in macro-area under
the receiver operator characteristic (AUROC) and an 8.9%
improvement in macro-area under the precision-recall curve
(AUPRC) when compared to other best methods [60]. For the
task of identifying nine major cancer subtypes, Prov-GigaPath
also demonstrated better performance than other competitive
models, suggesting that the integration between DINOv2 and
auto-encoders improves the extraction of meaningful features
at both the image-level and whole-slide-level.

B. UNI

Despite the advent of various foundation models designed to
address challenges in computational pathology, only a few are
capable of generalizing tasks across different domains [70].
The development of UNI by Chen et al. [62] introduces
a general-purpose, versatile ViT model that utilizes transfer
learning [71] to combine multiple tasks, including ROI-level
classification, segmentation, image retrieval, and slide-level
weakly supervised learning. Transfer learning is an ML tech-
nique in which a model’s knowledge learned from one task
is reused to improve its performance on another related task.
Using transfer learning, UNI shows substantial performance
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uplift in various diagnostic tasks, such as cancer detection,
cancer grading and subtyping, nuclear segmentation, organ
transplant assessment, and several pan-cancer classification
tasks. The UNI model is pretrained on Mass-100K, a dataset
of over 100 million tissue patches from 100,426 H&E whole-
slide images (WSIs) spanning 20 tissue types. It is evaluated
on 34 computational pathology tasks, including cancer sub-
typing, biomarker screening, and segmentation, using diverse
datasets like the OncoTree cancer classification system and
curated slides from Brigham and Women’s Hospital, ensuring
robust testing of its generalization capabilities.

C. CONirastive Learning From Captions for
Histopathology (CONCH)

After discussing UNI, we must also highlight another
foundation model known as CONCH, as both models
were developed by researchers at Harvard Medical School’s
Brigham and Women’s Hospital and presented in two com-
panion papers published in Nature Medicine [72]. Although
both models share similar goals in attempting to overcome
the limitations of usage scenarios common in many current
Al systems, Lu et al. [63] developed and trained CONCH
to understand both pathology images and language. CONCH
is trained on a database comprising more than 1.17 million
image-text pairs, enabling pathologists to query tissue sample
images according to certain features of interest. In their study,
Lu et al. analyzed the accuracy of CONCH in recognizing up
to 30 categories of brain tumors, which are all classified as
rare cancer types according to the RARECARE project’s def-
inition [73]. The results show that CONCH is able to produce
strong-performing classification accuracy when combined with
weakly supervised learning, achieving a balanced accuracy of
68.2% that surpasses the vision-only self-supervised learning
CTransPath model as well as other visual-language pretrained
models, including PLIP [74], OpenAICLIP [75], and Biomed-
CLIP [63], [76].

D. Segment Anything Model (SAM)

Semantic segmentation of pathological entities holds sig-
nificant clinical value in computational pathology workflows.
Semantic segmentation involves dividing sample images into
discrete regions corresponding to various tissue structures,
cell types, or sub-cellular components. Accurate and efficient
semantic segmentation is critical for multiple pathological
applications, including tumor detection, grading, prognosis,
and examining tissue architecture and cellular interactions.

The Segment Anything Model (SAM) is a recently devel-
oped foundation model by Kirillov et al. [65] from Meta Al,
designed for universal application in segmentation tasks. SAM
is inspired by Natural Language Processing (NLP) models
with a unique characteristic of utilizing prompt engineering.
Hand-crafted text is used to prompt the language model to
generate a valid textual response. Similarly, SAM takes in seg-
mentation prompts, such as various sub-cellular structures, and
then returns valid segmentation masks correspondingly. SAM
aims to develop a promptable model capable of generalizing
segmentation tasks. SAM is pretrained on a dataset (SA-1B)

comprising over 1 billion masks across 11 million images,
enabling it to segment objects based on various user-defined
features, including dots, bounding boxes, and text. SAM’s
evaluation highlights its impressive zero-shot performance
(the ability to complete a task without having received any
prior training examples), often matching or even exceeding
previous fully supervised models across a wide range of tasks.
Under such conditions, SAM is fine-tuned to perform spe-
cialized semantic segmentation tasks crucial in computational
pathology.

E. Segment Anything for Microscopy (. SAM)

Archit et al. [77] recently introduced u SAM, a foundation
model designed to improve segmentation and tracking in
multi-dimensional microscopy data. Leveraging Meta Al’s
Segment Anything Model (SAM) [65], u© SAM is fine-tuned
specifically for microscopy applications, enhancing segmen-
tation quality under various imaging conditions. It supports
interactive and automatic segmentation for 2D and 3D data
and tracking for time-series data. Additionally, u SAM demon-
strates improved results compared to other proposed models
fine-tuned on tasks such as segmenting cells and nuclei in light
microscopy and mitochondria in electron microscopy. This
advancement represents a significant step forward in utilizing
vision foundation models for microscopy, aiming to simplify
image analysis in biological research.

F. Pathology Language and Image Pretraining (PLIP)

As mentioned, a significant challenge in training Al models
in pathology is the lack of large-scale annotated publicly
accessible medical images. To address this issue, Huang et al.
[74] sought opportunities on public forums and crowd plat-
forms, such as medical Twitter, to collect pathology images.
As a result, they created OpenPath, the largest publicly avail-
able dataset of pathology images annotated with natural text,
comprising over 208,414 images. To demonstrate the utility
of OpenPath, Huang et al. [74] designed and trained a visual-
language foundation model called PLIP, utilizing this dataset
for its training.

Unlike other supervised learning and segmentation pathol-
ogy models trained solely on categorical labels, visual-
language models utilize both image data and semantic
knowledge from corresponding natural text, making PLIP
perform exceptionally well in zero-shot image classification
tasks. During the training phase, the PLIP model generates two
embedding vectors using both the image and text encoders.
These are then optimized through contrastive learning to be
similar for each paired image and text vector and dissimilar
for non-paired images and texts. By leveraging the benefits of
contrastive learning and semantic descriptions from the Open-
Path database, PLIP is capable of handling a wide range of
inferences across various medical applications. As an example,
when given an image and multiple disease descriptions, PLIP
identifies which description best matches the image, making
PLIP a powerful tool for computational pathology. This func-
tionality does not require explicit training and differentiates
PLIP from other supervised foundation models.
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G. PathologyBERT

Another challenging problem in computational pathology
is text mining, which refers to the process of transforming
unstructured text into a structured format in order to identify
meaningful patterns effectively. Text mining is a difficult task
due to the variability in the structure and format of reports and
the frequent introduction of new cancer subtype definitions in
pathology. The development of more advanced NLP models
promotes a better understanding of contextual relationships in
pathology text mining by utilizing attention-based Encoder-
Decoder architectures. One of the most popular modern NLP
models is the Bidirectional Encoder Representations from
Transformers (BERT) [78], a contextualized language repre-
sentation model employing a multi-layer bidirectional encoder.
The BERT model constitutes a transformer neural network that
uses parallel attention layers instead of sequential recurrence,
which enables BERT to be capable of representing words
or sequences in ways that capture contextual information,
allowing the same sequence of words to have different rep-
resentations and meanings depending on the context in which
they appear.

PathologyBERT, developed by Santos et al. [67], is a
specialized adaptation of the BERT model designed to address
the shortcomings of general language models in pathology
by incorporating domain-specific knowledge. Unlike standard
transformer models that rely on generic medical vocab-
ulary, PathologyBERT is pretrained on pathology-specific
texts, allowing it to understand specialized terminology and
contextual nuances better. By leveraging a domain-adapted
vocabulary and fine-tuned tokenization strategies, Pathology-
BERT improves performance on pathology-related NLP tasks,
such as masked language prediction, information extraction,
and report classification. This specialization allows it to over-
come the limitations posed by traditional WordPiece [79]
tokenization, making it a more effective tool for pathology-
related text analysis.

H. Med-Gemini

In this section, we will focus on the pragmatic aspects of
a particular foundation model in helping pathologists perform
their tasks more effectively. One of the most well-known Al
models recently is ChatGPT, developed by OpenAl, with its
latest and most powerful iteration named GPT-4 [46]. GPT-
4 has significantly advanced natural language understanding
and generation, featuring improved performance, accuracy, and
contextual comprehension. As a result, it has inspired the
development of numerous fine-tuned models tailored to spe-
cific fields of study, such as Med-Gemini [80], the successor
to Med-PalLM 2 [81], both developed by Google Research.

Unlike Med-PalLM 2, which is primarily a large language
model (LLM) designed for text-based tasks, Med-Gemini
is a family of multimodal foundation models that integrate
both text and image data. This expanded capability allows
Med-Gemini to provide more comprehensive insights for
healthcare professionals, including clinical decision support,
patient history summaries, and evidence-based treatment rec-
ommendations. By incorporating visual data alongside textual

information, Med-Gemini offers a more holistic approach to
medical diagnostics and decision-making than its predecessor,
which relied solely on text-based inputs. It also serves as a
first-line source of medical information for patients, answering
common health questions and guiding them when to seek pro-
fessional care. Additionally, Med-Gemini excels at extracting
information from clinical notes and reports, an error-prone
task for pathologists. For example, determining the presence
or absence of cancer in a report is challenging due to context-
sensitive terms like ‘“carcinoma,” leading to confusion or
mistakes [82].

A significant advantage of Med-Gemini is its multimodal
capabilities, which combine text and image data to provide
more accurate, context-aware insights. Analyzing both clinical
notes and medical images allows it to identify patterns that
text-only models might overlook. Large multimodal founda-
tion models like Med-Gemini excel in these scenarios [83],
[84], integrating complex data to capture subtle nuances,
enhancing diagnosis accuracy, and improving decision-making
in clinical settings.

1. Clinical Histopathology Imaging Evaluation Foundation
(CHIEF) Model

The CHIEF model, developed by Wang et al. [70], is a
general-purpose Al framework designed to support cancer
diagnosis and prognosis. Unlike traditional models tailored
to specific diagnostic tasks, CHIEF utilizes both unsuper-
vised and weakly supervised pretraining methods on a large,
diverse dataset of histopathology images, enabling it to
recognize a wide range of pathology features. CHIEF demon-
strated enhanced performance and generalizability in cancer
cell detection, tumor origin identification, molecular char-
acterization, and survival prediction, outperforming existing
deep learning models across multiple independent datasets.
CHIEF’s application extends to survival prediction, where it
reliably stratified patients based on prognosis in both training
and independent datasets, offering insights into morphological
indicators of survival outcomes.

V. ETHICAL CHALLENGES IN FOUNDATION MODEL
APPLICATIONS

The ethical issues and risks outlined in Section III for
each foundation model application are discussed here, along
with possible solutions for addressing these issues. Many of
these ethical issues are interconnected, and addressing one
often contributes to resolving others. Table I illustrates the
relationships between each foundation model, its applications,
and their correlating ethical challenges. It is important to note
that shared ethical issues may exist across different models.
Fig. 5 illustrates the relationships between each foundation
model discussed, their applications in pathology, and their
corresponding ethical issues.

A. Ethical Issues of Prov-GigaPath

Prov-GigaPath, by nature, is a foundation model that
integrates the DINOv2 transformer with its masked auto-
encoder to capture both local patterns in individual pathology
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TABLE |

SOME TYPICAL EXAMPLES OF PATHOLOGICAL FOUNDATION MODELS, APPLICATIONS, AND RELATED ETHICAL ISSUES

Foundation Models

Applications

Common Ethical Issues

Prov-GigaPath [60]

Classification tasks, Diagnosis report, Prediction

UNI[62] ROl classification, ROl retrieval, Prediction, Segmentation, Slides classification

CONCH [63] Disease cl?ssification, Few-shot classifica'tion tasks, Prediction, Segmentation,
Zero-shot image-to-text, Zero-shot text-to-image

SAM [65] Zero-shot semantic image segmentation

uSAM [77] Zero-shot semantic image segmentation

PLIP [74] Prediction, Text-to-image, Zero-shot semantic image classification

PathologyBERT [67]

Med-Gemini [80]

Classification tasks, Language prediction, Text mining

Classification tasks, Diagnosis report, Image-to-text, Prognosis, Zero-shot capabilities

Med-PaLM 2 [81]

Diagnosis report, Few-shot multi-choice queries, Prognosis

Accountability

Abuse of Foundation Models

Data Privacy

Transparency

Accessibility

Prediction Variation and Consistency

CHIEF [70] Biomarker prediction, Classification, Prognosis
UNI[62]
Visual Models Algontl;ﬂc Bias
USAM[77] @ Classification
Accuracy and
Validation
CHIEF [70]
@ Image-to-text ®
Accountability
CONCH [63] ®
@ Segmentation
Visual-Language Transparency
. Models SAM [65] .
Computational
Pathology @ Prognosis [ ] .
Foundation Models . Accessibility
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PLIP [74] Models
@

Med-Gemini [80]

Large-Language

Models Med-PaLM 2[81]

PathologyBERT [67]

@ clinical Report
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Inquir
@ inquiry Prediction Variation
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Fig. 5. A breakdown of the list of typical foundation models in this paper and their associated ethical issues. The left side of the figure shows the
computational foundation models discussed, divided into three groups according to their types. Various tasks the models perform are shown in the
center of the figure. On the right side of the figure, common ethical challenges of the discussed foundation models are shown.

images and global patterns at the whole-slide level. Since
Prov-Gigapath is mostly a prediction model for pathological
diseases, there are inevitably ethical implications for using it
at a clinical level, which will be analyzed in the following
subsections.

1) Algorithmic Bias: Firstly, Prov-GigaPath is subjected to
algorithmic bias since Prov-Path, the database it pretrained
on, may contain degrees of bias due to data gathered from
more than 28 different cancer centers. In particular, the patient
data extracted from the 28 cancer centers may include varying
degrees of bias related to race, ethnicity, age, gender, health
conditions, and other demographic factors of the patients from
whom the data is collected. As a result, biases from the data

source may propagate to Prov-Path, creating uncertainty about
the extent of bias introduced when training Prov-GigaPath on
these pathological image tiles [36]. Consequently, while Prov-
GigaPath may excel at accurately predicting various diagnostic
tasks, there remains a risk that its performance may be subop-
timal for specific patient groups due to algorithmic bias [85],
[86]. This raises significant ethical concerns regarding accu-
racy and accountability in patient care. However, the effects
of algorithmic bias may be mitigated if strict quality control
is implemented on the training data. For instance, experienced
pathologists and related professionals play a crucial role in
analyzing datasets to ensure high data quality standards before
they are trained on models such as Prov-GigaPath.
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2) Accuracy and Validation: Given that Prov-GigaPath may
contain algorithmic bias, its results directly impact a patient’s
ministration. It is crucial that thorough testing is done to
validate the accuracy of its predictions. For example, having a
competent and recognized third party to test and validate the
model is desirable. Such organizations include The Academy
of Clinical Laboratory (ACLPS), The American Society for
Clinical Pathology (ASCP), and many more.

B. Ethical Issues of UNI

The uniqueness of the UNI model lies in its utilization
of transfer learning to generalize a variety of tasks relating
to pathological domains. However, the concern arises as to
whether UNI’s performance in each of these tasks matches or
even exceeds that of other models specialized in performing
specific tasks. Therefore, the most critical ethical issues that
need to be addressed by UNI are accuracy and validation.

1) Accuracy and Validation: Ensuring the quality of UNI’s
results requires a robust and systematic testing proce-
dure that includes comprehensive evaluation across various
tasks and datasets. UNI has already established a thorough
benchmarking framework, incorporating several well-regarded
benchmarks such as the OT-108, WILDS, and ChampKit.
These benchmarks enable the comparison of UNI’s perfor-
mance against other specialized models tailored to specific
tasks within computational pathology, including disease clas-
sification, segmentation, and diagnosis prediction [87], [88].
The evaluation is based on various metrics, such as precision,
recall, Fl-score, and area under the curve (AUC), to assess
UNTI’s effectiveness on each task.

Additionally, it is essential to implement cross-validation
techniques [66], [89], where UNI is trained on one dataset
and tested on multiple unseen datasets from different pop-
ulations or medical conditions. This would allow a proper
assessment of how well UNI generalizes across diverse real-
world scenarios. The model’s performance on rare or minority
cases, such as specific cancer subtypes, should also be closely
evaluated to ensure that the model does not introduce bias or
underperform in these areas, a common issue in Al models
trained on unbalanced datasets.

C. Ethical Issues of CONCH

Since CONCH’s objectives are almost identical to UNI’s,
we will also focus on the accuracy and validation concerns of
the CONCH model’s philosophy. However, with the additional
query functionality that allows pathologists to search for
particular pathological images based on features of interest,
the accuracy of such queries performed by CONCH must also
be examined.

1) Accuracy and Validation: Similar to UNI, to validate the
accuracy of CONCH’s capability to generalize distinct tasks,
it needs to be tested in parallel with supplementary models for
each type of task. Testing CONCH’s query feature should be
a relatively simple task, as pathologists provide CONCH with
test query prompts and observe the algorithm’s accuracy with
the expected images.

D. Ethical Issues of SAM

SAM is a promptable model that utilizes prompt engineering
to generalize segmentation tasks, including semantic segmen-
tation, that is commonly used in computational pathology Al
applications. In the case of performing semantic segmentation
tasks, SAM is challenged to divide sample images into discrete
regions according to numerous tissue structures, cell types,
or sub-cellular components. Therefore, the accuracy of SAM’s
semantic segmentation determines its success or failure at
performing its job. As SAM is pretrained on the SA-1B dataset
constructed by the model’s founders, the likelihood of dataset
bias cannot be overlooked. Consequently, algorithmic bias is
also another potential issue of SAM.

1) Algorithmic Bias: The SA-1B dataset, used to pre-
train SAM, raises significant concerns due to its lack of
transparency. For instance, the dataset claims to contain
over 1 billion masks for 11 million licensed pathological
images, yet there is minimal publicly available information
regarding its data collection process, curation methodology,
or the diversity of its sources. The only known detail
about its origin is that the dataset was sourced from a
large photo company, as stated on Meta AI’s official web-
site: https://ai.meta.com/datasets/segment-anything. This lack
of transparency regarding the dataset’s origin is a critical issue,
as it raises doubts about the dataset’s diversity, representa-
tiveness, and potential biases. Without clear documentation
about the diversity of the data sources and how it was curated,
it is difficult to assess the degree of bias present in the
dataset, which may adversely affect the performance of SAM,
especially when applied to new, diverse, or underrepresented
medical datasets.

To mitigate these concerns, it is crucial to establish a
rigorous auditing process for the dataset, focusing on iden-
tifying and addressing biases across different demographic
groups, diseases, and imaging modalities. One potential solu-
tion is conducting a thorough bias analysis, including testing
the model on data from diverse populations, ensuring that
the dataset adequately represents various ethnic groups, age
ranges, and medical conditions. Moreover, data augmenta-
tion techniques could be employed to artificially balance
underrepresented classes and reduce bias in the training data
[90], [91].

Additionally, it is essential to implement continuous mon-
itoring of SAM’s performance when deployed in real-world
healthcare settings, especially in regions or populations not
represented in the training data. Regular performance eval-
uations, along with the integration of feedback loops from
clinicians, could help identify any emerging biases or discrep-
ancies in the model’s outputs. These feedback mechanisms
should be designed to allow for dynamic model updates that
adapt to new data, ensuring that the model evolves with
changing clinical practices and diverse patient populations.

2) Accuracy and Validation: As SAM is pretrained on a vast
dataset, it has the confidence to perform general segmenta-
tion tasks such as differentiating pedestrians from vehicles,
roads, trees, etc. On the other hand, SAM’s effectiveness in
executing more specialized semantic segmentations has yet
to be proven. As a result, the direct application of SAM on
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segmenting pathological images should be exercised with sub-
stantial caution due to the need for more training and testing
on pathology datasets. Consequently, the application of SAM
on semantic segmentation tasks remains a primary ethical
concern regarding its segmentation accuracy. To address this,
future endeavors to apply SAM to semantic segmentations are
encouraged, and with enough testing and fine-tuning, SAM
has the potential to become a reliable model for performing
tasks within the domain of computational pathology.

E. Ethical Issues of i SAM

As 1 SAM is considered an extension of SAM and is
also used for segmentation tasks, it shares the same ethical
challenges as SAM, notably algorithmic bias and segmenta-
tion accuracy. The fine-tuned nature of © SAM gives it an
advantage in identifying features of objects in microscopy
images, such as cells and nuclei in light microscopy (LM)
or cells and organelles in electron microscopy (EM) [77].
Although & SAM is trained on LiveCELL [92], one of the
largest publicly available datasets for cell segmentation, there
is still potential for sampling biases. The fact that © SAM
is one of the first foundation models to apply segmentation
tasks to microscopy images means that its accuracy and
validation will be iteratively improved. Therefore, in order to
enhance performance, . SAM should be trained on additional
microscopy datasets and thoroughly evaluated for accuracy.

F. Ethical Issues of PLIP

PLIP is a unique foundation model in that it is trained
on datasets gathered from crowdsourcing platforms, including
medical Twitter. The advantage of PLIP over other competitive
models, such as SAM, is that it is a visual-language model that
leverages both image data and semantic knowledge from cor-
responding natural text, enhancing its performance on image
classification tasks. However, the crowdsourced database that
it is trained on raises concerns for accuracy and validation and
algorithmic bias, which is similar to that of Prov-GigaPath.

1) Algorithmic Bias: Pathological data collected from public
sources, such as medical Twitter, is inherently more vulnerable
to bias and imprecision since there are more inconsistencies
with the quality of data from sources that may or may not be
credible. The decision to use a crowdsourced database stems
from PLIP’s aim to address clinical pathology data scarcity.
As a result, assessing the extent of bias within PLIP’s database
remains challenging.

One potential solution to mitigate these issues is implement-
ing bias detection and correction algorithms. These algorithms
analyze the dataset to identify patterns of bias, such as under-
representation of certain groups, and adjust for these biases
during the training process. This helps mitigate issues related
to biased data in the publicly sourced dataset and enhances
the overall fairness and accuracy of the model’s predictions.

2) Accuracy and Validation: An immediate disadvantage of
using a publicly sourced database, such as medical Twitter,
is the difficulty in validating the legitimacy of its data sources.
Consequently, PLIP’s crowdsourced database may contain

fraudulent or inaccurate information, potentially compromis-
ing the accuracy of its results. To address these challenges,
it is essential to implement robust data validation procedures.
These procedures could involve cross-referencing publicly
sourced data with verified clinical databases to identify and
eliminate inaccuracies or inconsistencies. Additionally, expert
review by medical professionals should be incorporated to
evaluate the credibility of the data and ensure its alignment
with current medical knowledge. Such a validation process
will help improve the accuracy and reliability of PLIP, ensur-
ing that the model produces trustworthy results in clinical
applications.

G. Ethical Issues of PathologyBERT

PathologyBERT is a robust foundation model that excels
in text-mining tasks for computational pathology applications.
However, since it exclusively processes textual information,
it is susceptible to biases within word embeddings.

1) Algorithmic Bias: Biases in word embeddings are often
challenging to detect. For instance, word embeddings were
widely used across industries before their hidden stereotypical
biases were discovered [93]. Although the existence of these
word embedding biases is now recognized, the process of
how these biases are learned from training data is not well
understood. For this reason, extra caution should be exercised
when analyzing results from PathologyBERT to account for
potential word embedding bias, especially if the data contains
sensitive subjects of matter.

H. Ethical Issues of Med-Gemini

Med-Gemini is a compelling model that is excellent at
natural language understanding and is capable of providing rel-
atively intelligent answers to prompts and questions. However,
models as powerful as Med-Gemini are more easily abused by
users.

1) Abuse of Foundation Models: The generative capability
of Med-Gemini is particularly prone to human abuse. For
instance, excessively or carelessly relying on Med-Gemini’s
responses in the field of pathology could result in uninten-
tional misuse or abuse of its algorithm, potentially leading
to severe consequences such as incorrect diagnoses and the
oversimplification of complex medical conditions. In cases
where multimodal models like Med-Gemini produce seem-
ingly sound answers to prompts, they give users a false
sense of trust when, in reality, they provide answers that
deviate significantly from the truth [94], which relates to the
hallucination issue of foundation models.

Recent research has shown that despite advancements,
multimodal large language models often produce outputs
inconsistent with input data, especially in high-accuracy fields
like healthcare [95]. These models sometimes generate infor-
mation that seems plausible but is ultimately misleading.
Potential solutions include improving cross-validation across
modalities, enhancing multimodal training with integrated
data, and performing regular audits in real-world settings
to ensure consistent and reliable outputs. These measures
help reduce hallucinations and improve the trustworthiness of
multimodal foundation models.
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|. Ethical Issues of CHIEF

The nature of CHIEF as a pure classification model and
its reliance on weakly supervised learning makes its pre-
dictions challenging for clinicians to interpret. This lack of
interpretability leads to potential accountability concerns.

1) Accountability: Since CHIEF’s decision-making process
is not fully explainable, it becomes difficult to pinpoint the
source of errors or misdiagnoses. In medical applications,
where Al systems influence critical decisions, it is essential to
establish clear accountability. If CHIEF produces an incorrect
diagnosis or recommendation, determining whether the error
lies with the model, the dataset, or the human user interpreting
the output is challenging. This ambiguity regarding responsi-
bility complicates legal and ethical considerations, particularly
in cases where inaccurate Al-driven decisions cause harm to
patients. Clear guidelines must be established to delineate
the roles of both developers and clinicians in overseeing and
validating model outputs. Additionally, incorporating human-
in-the-loop systems, where clinicians review Al suggestions,
ensures that accountability for patient care remains with
healthcare providers.

J. Common Ethical Issues of Pathological Foundation
Models

The following ethical issues apply to all foundation models
introduced in Section IV, as they present common challenges
in computational pathology. This subsection examines these
concerns in greater detail to highlight their impact and poten-
tial solutions.

1) Accountability: In unforeseen and unfortunate scenarios
where an Al model fails at its designed tasks and causes
adverse consequences, the question of responsibility arises.
This is one of the most complicated yet crucial ethical issues
involving pathological foundation models, as the lives of
patients seeking treatments may be at the mercy of some of
these models in the most critical cases. Several factors con-
tribute to the potential failure of foundation models, including
defect algorithms, biased input data, improper operation or
application, or other elements, including human errors.

Since foundation models cannot be held responsible directly
in cases of failure, accountability falls upon the human factors
in the design, implementation, deployment, and use of these
models. Accountability ensures that if an Al model makes
a mistake or causes harm, a responsible party is identified,
whether it be the designer, developer, the organization using
the model, or a combination of these. In cases where damages
have already occurred, accountability is crucial to ensuring
that the affected victims and their families receive adequate
compensation for their loss. Simultaneously, there is also a
dire need for appropriate laws and judicial rules to be reviewed
and updated frequently to uphold justice and fairness in Al
systems.

2) Abuse of Foundation Models: Although recorded cases
of abuse of AI algorithms relating to pathology are rare,
their potential impact on patients and society should not be
underestimated. Human abuse of AI models falls into two
categories: intentional and unintentional abuse, both of which

have the potential to result in adverse consequences. In regards
to pathology, an example of deliberate abuse of Al technology
might be the unethical and unauthorized use of pathological
data for malevolent intentions, such as developing biological
weapons.

As an example of an unintentional abuse of AI models,
an incorrect application of a foundation model caused by
human error may be life-threatening to patients who have
placed their trust in the therapy. Unfortunately, there are
countless examples of human abuses of Al technology, even
within the domain of pathology. Therefore, society must
be prepared to address Al applications’ potential risks and
consequences. Providing guidelines, strict management, and
protection of clinical data and AI models is a crucial first
step in minimizing the risk of intentional misuse of these
models.

Due to its subtle nature, unintentional abuse of AI models
caused by human error is more difficult to resolve. Establishing
appropriate testing and validation principles and procedures
should decrease the chance of algorithmic errors. Providing
adequate and abundant training to pathologists and other
professionals who utilize foundation models is an excellent
approach to reducing the possibility of human errors.

3) Data Privacy: In computational pathology, the scarcity of
real-world clinical data creates a dilemma: On the one hand,
there is an urgent need for clinical data, but on the other
hand, the more data gathered, the more likely that patients’
privacy is violated. To address this dilemma, pathologists
must ensure respect for privacy and data protection when
applying Al systems throughout their lifecycles. This involves
implementing effective administration and management for all
data used and generated by the AI systems. In particular, the
collection, usage, and storage of all sensitive data must meet
compliance with relevant data privacy laws and regulations.

Additionally, data and algorithms must be safeguarded
against theft. In the event of data leakage or loss, the respon-
sible party must promptly inform the affected individuals to
minimize the loss or impact. To address data privacy concerns,
one of the main approaches to privacy-preserving machine
learning algorithms and data analysis, called differential pri-
vacy, is introduced [96]. Differential privacy is a mathematical
framework designed to protect individuals when their data is
being used in data sets.

Differential privacy ensures that a data analyst cannot obtain
additional information about any individual after analyzing
the data. It also ensures that other analysts will not form
significantly different perceptions of an individual after access-
ing the database. Differential privacy operates by introducing
randomness into the dataset, which does not impact the overall
analysis. Furthermore, current and future sources of auxiliary
information from other datasets must not compromise individ-
ual privacy.

Furthermore, a new ML paradigm called federated learning
has been proposed to mitigate the risk of privacy leakage
in ML processes [97]. Federated learning focuses on settings
where a single ML model is collaboratively trained by different
clients using decentralized, heterogeneous data from each
client, and the model is iteratively improved until it is fully
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trained. This way, there is no data exchange between clients,
so the chance of leaking more sensitive data is minimized.

4) Transparency: Transparency, understood as both algorith-
mic and informational, is critical to the responsible use of
machine learning (ML) and foundation models. Algorithmic
transparency concerns the technical explainability of these
models, focusing on how and why an algorithm produces
particular outputs. One of the core challenges in achieving
algorithmic transparency is the “transparency problem” [98],
which refers to the inherent difficulty in understanding and rea-
soning about the inference processes of complex ML systems.
This lack of clarity undermines end-user trust in the produced
outputs. To overcome this issue, proposals have centered
on three key techniques: model approximation techniques,
visualization techniques, and intrinsic explanation methods.

« Model approximation techniques: Involve using simpler,
more interpretable models, such as decision trees or
linear regression, to approximate the behavior of com-
plex models. Examples of popular model approximation
techniques include LIME (Local Interpretable Model-
Agnostic Explanations) [99], Anchors [100], and the
concept of knowledge distillation through the teacher-
student model framework [101].

o Visualization techniques: Aim to help users better
understand Al models visually. Feature importance visu-
alizations constitute bar charts or heatmaps that help
users identify which variables most influence a model’s
decisions, such as the Grad-CAM (Gradient-weighted
Class Activation Mapping) method [102]. Meanwhile,
DeepLIFT is a method for visualizing and understanding
the contributions of individual neurons to a model’s
output through backpropagation, offering a way to inter-
pret complex neural networks [103]. Other visualization
techniques, such as t-SNE, are used to visualize high-
dimensional data, providing insights into how models
process and interpret the data [104].

o Intrinsic explanation methods: Design Al models with
architectures that incorporate interpretability into their
structure, primarily using attention mechanisms that
highlight the most relevant components of the input
for a prediction. ASDNet [105], MedSkip [106], and
DeepCIN [107] are examples of such models that utilize
attention mechanisms to generate predictions.

In addition to these proposed solutions, there are auxil-
iary measures that further mitigate the transparency problem.
For instance, developers are encouraged to provide publicly
accessible documentation and guides that help end-users better
understand their models. At the same time, users should take
responsibility for thoroughly learning about the model and
recognizing the associated risks and potential consequences.

Information transparency, particularly relevant in healthcare,
is essential to ensuring that stakeholders are fully informed
about the role of AI in clinical decision-making. Patients,
for instance, must be explicitly informed if Al technologies
have been utilized to diagnose or treat their conditions. Such
disclosures are ethically imperative as they uphold patient
autonomy and reinforce trust between patients and medical
professionals.

Equally important is the transparent handling of patient
data. The collection and use of personal information without
informed consent violate privacy and erode confidence in
Al-driven healthcare systems. To address this, organizations
should adhere to established data privacy frameworks such as
the General Data Protection Regulation (GDPR) [108] or the
Health Insurance Portability and Accountability Act (HIPAA)
[109] in their respective jurisdictions. These frameworks pro-
vide guidelines for obtaining informed consent, anonymizing
sensitive data, and ensuring data usage aligns with the patient’s
consented purposes. Mitigating these risks further requires the
implementation of clear regulatory guidelines and ethical data
management practices. This involves adopting methodologies
like the Privacy Impact Assessment (PIA) to evaluate the
potential risks associated with data collection and usage.

By integrating algorithmic and information transparency,
practitioners create an environment of trust, facilitate informed
participation from all stakeholders, and promote responsible
innovation. Specifically, methodologies such as the Explain-
able Al (XAI) program are applied to enhance algorithmic
transparency, ensuring that AI decision-making processes
are interpretable and accessible to clinicians and patients
alike [110]. Together, these measures provide a robust foun-
dation for the ethical and transparent use of machine learning
and foundation models in healthcare.

5) Accessibility: Al foundation models have the potential to
transform healthcare by improving accessibility and efficiency,
but they may also deepen global disparities. Advanced Al
models enhance diagnostics and personalize treatment in well-
resourced areas, yet they often require significant investment
and infrastructure lacking in low-resource settings. Addressing
this disparity requires a commitment to developing Al tools
that are adaptable, affordable, and accessible globally. This
involves creating technology in diverse and resource-limited
environments while fostering collaboration, training, and pol-
icy support to ensure equitable distribution. The responsibility
of evaluating Al models falls under several parties, such as
pathology associations, research organizations, governments,
and public safety agencies. In doing so, Al models are lever-
aged to improve healthcare outcomes across all populations,
helping to close existing gaps and contribute to a more
inclusive, globally equitable healthcare system.

6) Prediction Variation and Consistency: Given the current
experimental results, combining Al and human expertise offers
a viable approach to achieving diagnostic accuracy while
maintaining a safety net in clinical imaging. Incorporating
different experiences from various pathologists may add to
the diversity of predicted results.

VI. FUTURE IMPLICATIONS AND CONCLUSION

In prediction tasks involving pathological image foundation
models, it is evident that numerous ethical issues remain
and require solutions based on the discussions above. It is
crucial to mitigate, prevent, and prepare for the potential con-
sequences that may impact our well-being in the present and
future. Given the unpredictable and unforeseeable nature of
Al advancement, it is impossible to provide an exhaustive list
of ethical challenges, encompassing those currently affecting
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society and new challenges that may emerge in the future.
Nevertheless, various perspectives exist on how Al and foun-
dation models evolve to align more closely with established
ethical principles. We have summarized these perspectives into
four key areas: multidisciplinary collaboration, technological
approaches, societal engagements, and continuous monitoring
and evaluation.

Al ethical issues are complex and multifaceted, involv-
ing not only technical challenges but also social, legal, and
philosophical considerations. Undoubtedly, the discipline of
Al ethics, both within and beyond the field of computational
pathology, requires collaboration among multiple parties,
including Al scientists, engineers, ethicists, governments, and
the general public. Integrating expert knowledge will achieve
a more holistic understanding and evaluation of Al ethics. For
example, ethicists highlight the moral implications of a new
foundation model deployment, while social scientists examine
its impact on various communities.

Regarding technological approaches, Al scientists and
developers should embrace ethical Al design and develop-
ment methodologies, such as WHO guidance on “Ethics and
governance of artificial intelligence for health” [111]. This
includes adhering to established ethical principles, such as
transparency, accountability, and fairness [112]. Organizations
should establish ethics committees to review and approve Al
projects, ensuring they align with these ethical principles.
Additionally, human-in-the-loop (HITL) methods should be
implemented to incorporate human oversight into foundation
models, particularly in high-stakes applications, to ensure that
ethical decisions are made [44], [113], [114].

Addressing Al ethical challenges requires a collective effort
from society, particularly through regulation, policy devel-
opment, and enforcement. Government regulations such as
the EU Artificial Intelligence Act [115] are pivotal in setting
standards for the ethical development, deployment, and over-
sight of foundation models. These regulations establish clear
transparency, accountability, and fairness guidelines, ensuring
that Al technologies are used responsibly.

In computational pathology, such policies could mandate
transparency in the use of Al for diagnostic tasks by requir-
ing healthcare providers and developers to disclose how Al
systems are integrated into clinical workflows. For exam-
ple, regulations might compel developers to provide detailed
documentation on the datasets used for training models, the
algorithms’ decision-making processes, and the limitations
or uncertainties inherent in Al-generated outputs. This trans-
parency would enable clinicians to understand better and
trust the system’s recommendations while allowing patients to
make informed decisions about their care. Additionally, these
policies could enforce the use of explainable AI methodologies
to ensure that Al-generated results are interpretable and acces-
sible to medical professionals and patients, fostering greater
trust and accountability in healthcare applications.

Continuous monitoring and evaluation are crucial to main-
taining the ethical integrity of AI systems throughout their
lifecycle. This approach involves conducting regular ethical
impact assessments to gauge the ongoing effects of Al on soci-
ety, ensuring that any unintended consequences are promptly

identified and addressed. Feedback loops are essential in this
process, providing mechanisms for users, stakeholders, and
developers to offer input and continuously refine the system.
Post-deployment monitoring enables organizations to observe
Al systems in real-world settings, adjust to new ethical chal-
lenges, and ensure continued alignment with evolving ethical
standards.

We hope this article illuminates the intricate ethical
challenges associated with applying foundation models to
computational pathology, thereby raising public awareness of
these critical and impactful issues. By embracing the per-
spectives on ethical Al development and regulation presented
here, we foster a future for Al that is more transparent, less
biased, and increasingly accountable and trustworthy. This is
especially vital for foundation model applications in fields as
significant and sensitive as computational pathology.
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