
1252 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 33, 2025

Koopman-Based Model Predictive Control of
Functional Electrical Stimulation for Ankle
Dorsiflexion and Plantarflexion Assistance
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Abstract— Functional Electrical Stimulation (FES) can
be an effective tool to augment paretic muscle function
and restore normal ankle function. Our approach incor-
porates a real-time, data-driven Model Predictive Control
(MPC) scheme built upon a Koopman operator theory
(KOT) framework. This framework adeptly captures the
complex nonlinear dynamics of ankle motion in a lin-
earized form, enabling the application of linear control
approaches for highly nonlinear FES-actuated dynamics.
Our method accurately predicts the FES-induced ankle
movements, accounting for nonlinear muscle actuation
dynamics, including the muscle activation for both plan-
tarflexors and dorsiflexors (Tibialis Anterior (TA)). The
linear prediction model derived through KOT allowed the
formulation of the MPC problem with linear state space
dynamics, enhancing the FES-driven control’s real-time
feasibility, precision, and adaptability. We demonstrate the
effectiveness and applicability of our approach through
comprehensive simulations and experimental trials, includ-
ing three participants with no disability and a participant
with Multiple Sclerosis. Our findings highlight the potential
of a KOT-based MPC approach for FES-based gait assis-
tance that offers effective and personalized assistance for
individuals with gait impairment conditions.

Index Terms— Functional electrical stimulation (FES),
extended dynamic mode decomposition (EDMD), model
predictive control (MPC), gait assistance, nonlinear dynam-
ics.

I. INTRODUCTION

NEUROLOGICAL conditions such as stroke, spinal cord
injury (SCI), cerebral palsy, and multiple sclerosis (MS)
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often impair ankle function, necessitating specialized rehabil-
itation interventions. Functional Electrical Stimulation (FES)
can restore ankle function by eliciting artificial muscle con-
tractions in paralyzed plantarflexor and dorsiflexor muscles
through the application of noninvasive electrical stimulation,
thereby facilitating improved joint function [1].

To effectuate a natural and efficient walking pattern,
FES-based ankle assistance requires accurate timing and mod-
ulation of the stimulation input to the Gastrocnemius (GAS)
muscle for plantarflexion during the push-off phase and to
Tibialis Anterior (TA) for dorsiflexion during the swing phase
of the gait cycle. Various control strategies for ankle rehabilita-
tion [2], [3], [4] demonstrate the effectiveness of FES in gait
rehabilitation. Gil-Castillo et al. [5] comprehensively review
FES based control methods for assisting ankle function.

Among contemporary control methodologies, Iterative
Learning Control (ILC) has been often used for FES-based
assistance to correct ankle condition, called drop-foot [6]. ILC
schemes are often model-free or rely on linear time-invariant
dynamics, simplifying implementation. For instance, Seel et al.
[6] used ILC with six inertial sensors to estimate ankle
angles in post-stroke patients, achieving rapid convergence
but introducing discontinuities by resetting control inputs after
each gait cycle and requiring substantial sensor data. Page
and Freeman [7] improved the ILC design by developing a
continuous repetitive control scheme, eliminating reinitializa-
tion, reducing computational burden, and enhancing trajectory
tracking. Similarly, Jiang et. al. [8] designed a framework
for dorsiflexion assistance using dual parameters to reduce
stimulation intensity and mitigate muscle fatigue. Müller et. al.
[9] extended ILC to assist both knee and ankle motion,
showing adaptability for individual stimulation patterns but
requiring refinement to address sensitivity to knee angle
resets.

ILC-based FES designs, including those in [7] and [8],
are often developed under linear system assumptions with-
out explicitly addressing nonlinearities in muscle recruitment.
While these approaches have demonstrated impressive kine-
matic tracking for cyclical tasks of walking, their reliance
on linearized models leave room for exploring nonlinear
approaches, which can lead to better stimulation design,
mitigating its adverse effects. Nonlinear control of FES for
ankle control was demonstrated by Zhang et. al. [10], where
ultrasound-derived muscle activation was integrated into a
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nonlinear model for drop foot correction. However, their
state feedback-based dynamic surface controller (DSC) lacked
optimization of a performance index and constraint handling
of FES input constraints, which may risk overstimulation and
rapid muscle fatigue.

Moreover, results on FES based gait assistance/improvement
presented in [6], [7], [8], [9], and [10] have primarily focused
on drop foot correction. In these results, FES mainly targets
the TA muscle during the swing phase, foregoing stimulation
of plantarflexors, which are critical for push-off [11]. Efficacy
of FES stimuli to plantarflexor muscles has been shown
for correcting post-stroke gait deficits [3] and improving
walking after SCI [12]. It was noted in [3] and [11], that
applying stimulation to both plantarflexors and dorsiflexors
results in improved gait that is closer to the normal gait
cycle in chronic stroke survivors. Despite the evidence on the
significance of FES-elicited plantarflexion, closed-loop control
of both FES-evoked plantarflexion and dorsiflexion remains
unexplored.

In this paper, we present a novel Koopman Model Pre-
dictive Control (KMPC) framework for Functional Electrical
Stimulation (FES)-based gait assistance, applying optimally
designed stimulation signals to both plantarflexor and dor-
siflexor muscles throughout the gait cycle. By employing
Koopman Operator Theory (KOT), we capture the system’s
nonlinearities through the linear evolution of lifted observable
functions of the states, facilitating the application of linear
control techniques for the MPC framework. We derive a linear
representation of the inherently nonlinear ankle dynamics,
enabling real-time prediction and control of the full gait cycle.
The data-driven operator converts the nonlinear ankle motion
dynamics into linear dynamics, which eases MPC formulation
and real-time implementation [13], [14], [15]. The KMPC
formulation performs optimal feedback control in real-time,
utilizing the Koopman-based FES actuated ankle model to
solve the moving horizon optimization problem under FES
stimulation input constraints.

For ankle assistance control, [16] used an MPC to design
optimal muscle excitation for the TA muscle for adequate
toe/foot clearance. While constraints on ankle and control
inputs were considered, a formal closed-loop stability and
control feasibility analysis were missing. As the effectiveness
of MPC depends on model accuracy, necessitating extensive
system identification, especially for complex neuromuscular
dynamics. Addressing nonlinear dynamics and constraints can
increase computational demands, posing challenges for real-
time implementation. To mitigate these issues, [17] used a
Koopman-based data-driven MPC control to calculate optimal
FES stimulation for the TA muscle to correct drop foot during
the swing phase to avoid toe drag. In this paper, we extend the
data-driven MPC to design optimal FES stimulation for ankle
assistance for both plantarflexors and dorsiflexors to provide
assistance during a complete gait cycle. To the best of our
knowledge, this is the first implementation of an FES-based
optimal control strategy for the gait cycle in real-time.

The paper is organized as follows – II describes the ankle
dorsiflexion and plantarflexion motion dynamics actuated
under FES. III discusses the overview of the Koopman-based

data-driven model of ankle dynamics and the subsequent
formulation of the MPC-based control synthesis problem
in Section IV. Experimental setup, simulation, and experi-
ment results are presented in V. VI includes a discussion
on experimental results and their comparison with existing
FES-based ankle assistance approaches, limitations of the
KMPC approach, and future directions.

II. ANKLE JOINT GAIT DYNAMICS

During a gait cycle, the ankle movement is modeled as
continuous dynamics within swing and stance phases with a
discrete transition event between the two phases. Therefore,
the ankle dynamics, modeled as a switched system to accom-
modate for the transition, is given as[

J P θ̈ + f P
J (θ, θ̇)

J D θ̈ + f D
J (θ, θ̇)

]
=

{
τ P

+ τext t ∈ tst

τ D, t ∈ tsw
(1)

where the net torque about the ankle is defined as τ ζ
=

gζ
J (θ, θ̇uζ ) ∈ R, where ζ = P, D represent the ankle dynam-

ics driven by ankle plantarflexors during the stance phase and
ankle dorsiflexors during the swing phase, respectively. The
net torque terms, gζ

J (θ, θ̇uζ ), include the torque-angle and
torque-angular velocity terms, and and uζ

∈ R, which is the
FES modulated parameter (current, pulse width, or frequency)
applied on the GAS, and TA muscles [18]. During the stance
phase, the ankle torque is influenced not only by muscle
activations (modulated by u P ) but also by external torque,
τext = r(θ)FG RF (t), due to an additional moment arising
from the ground reaction force (GRF) FG RF (t) acting with
a moment arm, r(θ), from the ankle joint to the point of
application of the GRF.

The stance and swing phases are timed as tst :=

[tstart , tstance] and tsw := [tswing, tend ], respectively. J ζ
∈ R+

is the unknown inertia term of the foot along the dorsiflexion
and plantarflexion axis of rotation, and θ(t), θ̇ (t), and θ̈ (t) ∈ R
denote the angular position, angular velocity, and angular
acceleration, respectively. f ζ

J (θ, θ̇) in (1) is composed of
the musculoskeletal viscosity torque term, musculoskeletal
elasticity, and the gravitational term. The explicit definitions
of the functions can be obtained from [18].

For each phase tst and tsw, we can rewrite the system
dynamics in (1), by selecting θ1 = θ and θ2 = θ̇ .The
equivalent state space representation for can be formulated as

ẋa =

{
f P
a (xa) + gP

a (xa, u P , t) ∀ t ∈ tst

f D
a (xa) + gD

a (xa, u D) ∀ t ∈ tsw
(2)

where ẋa =
[
θ̇1 θ̇2

]T , f ζ
a (xa) ∈ R2 are the system dynamics,

and gζ
a (xa, uζ ) ∈ R2 are the actuation dynamics.

We can now set up the optimal tracking problem by defining
a tracking error e(t) ∈ R2, which is defined as

e = xa − xd , (3)

where xd ∈ R2 is a bounded desired trajectory for the desired
position and velocity. It is assumed that xd and its first
derivative, ẋd = hd(xd) ∈ R2, are Lipschit z continuous.
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By defining an augmented state as x =
[

eT xT
d

]T
∈ R3,

the system dynamics can be written as ẋ = f ζ (x)+gζ (x, uζ ),

where the system matrices f ζ (x) and gζ (x, uζ ) matrices

become f ζ (x) =

[
f ζ (e + xd) − hd(xd)

hd(xd)

]
; gζ (x, uζ ) =[

gζ (e + xd)

0

]
.

Using zero order hold approximation the continuous-time
system above can be discretized and described as

xk+1 =

{
f P (xk) + gP (xk, u P

k ) ∀ t ∈ tst

f D(xk) + gD(xk, u D
k ) ∀ t ∈ tsw

(4)

We can define an indicator function σk based on the gait phase
time intervals for the stance and swing phases as

σk =

{
0 ∀ t ∈ tst

1 ∀ t ∈ tsw,
(5)

where the phase indicator σk takes the value 0 for the stance
phase and 1 for the swing phase. Upon incorporating the phase
indicator the complete ankle motion dynamics during a gait
cycle can then be described as

xk+1 = (1 − σk)
(

f P (xk) + gP (xk, u P
k )

)
+ σk

(
f D(xk) + gD(xk, u D

k )
)

. (6)

Assumption 1: Based on human ankle kinematic data [19],
ankle position, velocity, and moment are continuous. There-
fore, at slow gait cycle speed, f ζ (.) and gζ (.) are assumed
to be Lipschitz at the switching instant. We utilize this
assumption in subsequent sections to derive the linear predictor
model using Koopman operator. Switching criteria for similar
systems with continuous states, but discrete actuation have
been considered in [20], where the switching between different
muscle groups is represented by their respective actuation
matrices which are bounded.

III. KOOPMAN-BASED MODEL PREDICTIVE CONTROL

This section provides the mathematical framework for pre-
dicting the nonlinear ankle joint dynamics actuated by FES
using Koopman Operator Theory (KOT).

A. Prediction/Identification
We consider the dynamics in 4 where the controlled state

xk ∈ X , input uk ∈ U are sampled to form a finite set, Nc. The
Koopman operator acts on a function space F of mapping from
X into R, referred to as observables. The Koopman operator,
K, is an infinite-dimensional linear operator that models the
time-based evolution of a composite function Λ(xk) ∈ R∞,
which act as the koopman observables, forward in time.
Koopman operators are parameterized by xk, uk as follows

KΛ(xk) = Λ( f (xk, uk)), Λ ∈ F (7)

where K maps observables to the original state space dynamics
in 4. A subspace is Koopman-invariant if

KΛ ∈ F̄ , ∀Λ ∈ F̄ , ∀u ∈ U (8)

A dictionary of observables, χ : X → RN , is Koopman-
invariant if its elements span a Koopman-invariant subspace.
Since evaluation of the dictionary often involves “lifting” of
the original state vector to a higher dimensional space, χ(xk),
which is commonly referred to as the lifted state. χ(xk) is
composed of the original state themselves, or nonlinear func-
tions of state that are Lipschit z continuous. The extension
to non-autonomous systems has been researched extensively
recently, see [13], [14], [21]. The extension to non-autonomous
system is given as

K(Λ(xk, uk)) = Λ( f (xk, uk), h(xk, uk)) ∀Λ ∈ F , (9)

While this operator renders an infinite-dimensional sys-
tem and accurately describes a nonlinear system through
a linear system, but is practically infeasible to implement.
For practical feasibility, the infinite-dimensional operator, K,
is approximated using a finite dimensional operator, defined
as K̃, which is calculated using the Extended Dynamic Mode
Decomposition (EDMD) [13].

To derive the Koopman operators for each phase, we collect
the time-series data snapshots of the state data as {xk}

M
k=1

where xk represents the state at time step k, and control input
data as {uζ

k }
M
k=1 where uζ

k represents the control input at time
step k during the stance and swing phases.

We define the lifted-space Koopman observable, 9k(x, u) ∈

RP , to set up an EDMD problem to predict the linear evolution
of the Koopman observable vector using

9k+1(x, u) = K̃9k(x, u), (10)

where K̃ is the finite-dimensional Koopman operator which
maps the lifted-state observables forward in time. Using the
state and control time-series snapshots we populate the lifted-
space matrices, as

Dζ
k =

[
9(x1, uζ

1) · · · 9(xM−1, uζ
M−1)

]
Dζ

k+1 =

[
9(x2, uζ

2) · · · 9(xM , uM )

]
where Dζ

k , Dζ
k+1 ∈ RP×M

∀ k = 1, . . . , M , are the collected
observable block snapshots from FES inputs and IMU state
measurements for each gait phase. The Koopman observable
vector dynamically evolves as

Dk+1 = K̃Dk, (11)

where Dk = 9k(x, u) =
[
9x (xk) 9u(uk)

]T . To obtain the
control state and control flow maps in the lifted space, the
approximated Koopman operator, K̃ can be further subdivided
as

K̃ =

[
K̃xx K̃xu

K̃ux K̃uu

]
, (12)

where K̃xx represents the influence of the state observables,
9x (xk), on the future state observables, and K̃xu represents
the influence of the control observables, 9u(uk), on the future
state observables. The terms K̃ux , K̃uu in 12 refers to mappings
that evolve the observations on control which are ignored here.

To determine the Koopman operator for each phase, ζ =

{P − stance phase, D − swing phase}, we set up a
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least-squares regression problem wherein the error difference
between the observed next step data Dk+1, and the prediction
from K̃ζDk , described as

K̃ζ
= arg min

K̃

M−1∑
k=0

∥∥∥∥[
9x (xk+1)

9u(uk+1)

]

−

[
K̃ζ

xx K̃ζ
xu

K̃ζ
ux K̃ζ

uu

] [
9x (xk)

9u(uk)

]∥∥∥∥∥
2

The least-squares solution for K̃ is given as

K̃ = FG†, (13)

where

F =
1
M

M−1∑
k=0

Dk+1DT
k ,

G =
1
M

M−1∑
k=0

DkDT
k , (14)

where pseudoinverse G† is utilized. Using the indicator func-
tion in 5 and the phase-based Koopman operator, the ankle
motion dynamics during a complete gait cycle can then be
represented as[

9x (xk+1)
]

= (1 − σk)
[
K̃P

xx K̃P
xu

] [
9k(x, u P )

]
+ σk

[
K̃D

xx K̃D
xu

] [
9k(x, u D)

]
(15)

To obtain the prediction dynamics for the original state
in (4), we compute the flow map between lifted-space observ-
ables, 9k(x, u) and original state dynamics, xk . We redefine
the state vector xk as zk to avoid any notational confusion
with (II). To recover zk , we can describe the mapping between
Koopman observable, 9k(x, u), and zk as zk = C9k(x, u),
where C ∈ R3×P denotes the mapping. To obtain C , we solve
the following least-squares problem

arg min
C

M−1∑
k=0

1
2
||C9k(x, u) − zk ||

2. (16)

By solving (16), and plugging 9k(x, u) = C−1zk into the
lifted-space flow map 10, we obtain the linear prediction model
for phase-based FES-driven ankle motion dynamics during a
complete gait cycle as

zk+1 = Ãζ zk + B̃ζ uζ
k , (17)

where

Ãζ
= ˜CKζ

xx C−1
; B̃ζ

= CK̃ζ
xuC−1. (18)

Using the indicator function, σk , the combined state dynam-
ics can be written as

zk+1 = (1 − σk)
(

ÃP zk + B̃ P u P
k

)
+ σk

(
ÃDzk + B̃ Du D

k

)
(19)

where zk =
[

eT xT
d

]T
∈ R3 is the state vector. AP , AD

∈

R3×3,B1, B2 ∈ R3×1 are the Koopman operator based linear
state space mappings, and u P

k , u D
k ∈ R are the FES control

input vector for assisting ankle plantarflexion and dorsiflexion
during a gait cycle.

B. Koopman Observables
The choice of basis functions for constructing the dictionary

of observables significantly impacts the performance of the
Koopman operator [13]. Appropriate choice for basis func-
tions can be found in [22]. The accuracy of the Koopman
operator improves with the length, P , of the observable vector,
9k(x, u). As P → ∞, the Koopman operator, K̃, accurately
describes linear prediction dynamics for the original nonlinear
system [23].

We set a prediction accuracy threshold, ||xk − zk ||
2

≤ η,
for η ≤ 0.5 RMSE for ankle motion during a gait cycle.
We achieved the threshold for P = 13. For the ankle assistance
control with state as joint angles - θ(t) and θ̇ (t), our Koopman
observable library included a custom library: linear terms - θ1,
θ2, θ̇1, θ̇2, and nonlinear terms - sin(θ1), cos(θ1), sin(θ2),
cos(θ2), θ2

1 , θ2
2 , θ1θ2, θ̇1θ̇2. The choice of observable is

dictated by the ankle dynamics that exhibit nonlinear effects
due to muscle activation, phase transitions, and joint stiffness.
Observables like sin(θ) and θ2 can theoretically capture such
effects by approximating periodic and quadratic relationships
seen in ankle motion, respectively. Including higher-order
terms (e.g., θ̇2, sin(θ)) helps approximate the nonlinearities
associated with force-length and force-velocity relationships
in muscle dynamics.

Remark 1 (Koopman Invariance):
To maintain Koopman invariance, the observables should

be chosen to cover the system’s entire dynamic range, while
upholding Assumption 1. Theoretically, the observables should
be designed to provide a stable, controllable Koopman linear
system approximation. Also, to uphold Assumption 1, we use
the same set of observables for both stance and swing phase.

C. Koopman Model Prediction Accuracy
Accuracy of K is tested with simulation results. Simulation

were performed by using the parameters from [18] with
different initial conditions to obtain the samples of actual
system trajectories. The dataset used to train the Koopman-
based MPC framework for gait rehabilitation was derived from
150 gait cycles. Each gait cycle consists of 200 samples, with
an even split between the stance and swing phases to capture
phase-specific dynamics. This sampling approach resulted in a
dataset with approximately 30, 000 samples. To construct the
dataset, we first sample initial states (x, ẋ, u f es) ∈ [25,−20]×

[−2, 2] × [0, 50]. Here, x represents the initial position, ẋ
represents the initial velocity, and u f es denotes the FES
(Functional Electrical Stimulation) input level. These ranges
were chosen to account for variability in patient gait patterns,
the extent of ankle joint movement during gait cycles. The
control inputs were linearly varied within the range of 0 to
30 m A. This ensured that the dataset captured the system’s
response to different stimulation levels. A sampling frequency
of 200 Hz was used. With the generated dataset the Koopman
operator was designed. Based on the prediction dynamics,
simulation results for a nominal sinusoidal trajectory tracking
of the ankle joint dynamics for different observables are given
in Fig. (1).

Another important criteria for prediction accuracy of K̃ζ

is the number of past states considered in the observables
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Fig. 1. Prediction results - Plot shows the ankle motion prediction
during a gait cycle under test FES actuation for different observables
(states, custom, trigonometric). The dynamics approximated from (19)
are utilized to predict the approximate dynamics.

Fig. 2. Comparison of actual and predicted (zk) ankle motion angles
using different embedding lengths (L) in the Koopman-based pre-
diction framework. The black solid line represents the actual ankle
motion trajectory, while the dashed lines correspond to predictions with
embedding lengths L = 1 (yellow), L = 8 (orange), and L = 50
(red). Increasing the embedding length improves prediction accuracy,
as evidenced by the closer alignment of the L = 50 prediction with
the actual trajectory. The results highlight the importance of appropri-
ate embedding length selection in achieving accurate Koopman-based
predictions.

referred as the embedding length.We considered different
sample ranges to compare the prediction accuracy of the
approximated Koopman operator, K̃ζ , for different embedding
lengths. Prediction for sample ranges L = 1, 8, 50 are plotted
in Fig. (2).

IV. DATA-DRIVEN MODEL PREDICTIVE CONTROL

A. Koopman Model Predictive Control
Let the decision and state variables be defined as

zk = [ zi
k|k . . . zi

k+N |k ]; (20)

uk = [ ui
k|k . . . ui

k+N−1|k ], (21)

where the vectors zk,uk ∈ R3, R are the state and control
vectors written in the standard MPC notation.. Using the
indicator function in (5), we can describe both the stance and
swing phase, timed as [Tstart , tstance] and [tswing, Tend ], linear
prediction dynamics. The model predictive problem can then
be formulated as follows

min
u p,ud

J (zk, uk|k) =

TU∑
i=1

l(.) + VTN (22)

TABLE I
ROOT MEAN SQUARE ERRORS (||x̃k||) AND STANDARD DEVIATION (σ)

FORSELECTING APPROPRIATE DICTIONARY (DICT.). CUSTOM,
ORIGINAL STATE,TRIG. - TRIGONOMETRIC FUNCTIONS

subject to zk+1+ j |k = (1 − σk)
(

AP zk + B P u P
k

)
+ σk

(
ADzk + B Du D

k

)
(a)

zk|k ∈ Ωζ
χ , uk|k ∈ Ωζ

υ (b)

1zk+TN ∈ Ωχ+ , (c) (23)

where l(.) = ||z̄T
k+1||

2
Q1

+(1−σk)||u PT

k+1||
2
Rζ +σk ||u DT

k+1||
2
Rζ and

VTN = zT
k+TU

Sζ zk+TU are the running and terminal cost. TU is
the prediction horizon. Based on the indicator function, σk , TU
represents the prediction horizon for the gait intervals tst and
tsw. The indicator function during experiments is implemented
based on ground reaction forces (GRF) which is non-zero
during the stance phase and zero during the swing phase. The
running cost, l(.), is the performance measure penalizing the
kinematic state and control inputs considered over the control
horizon, TU , for both stance and swing phase. Q ∈ R2×2

and R ∈ R are positive definite weighting matrices penalizing
the individual states and control inputs and ensures l and
V are positive definite (PD) and radially unbounded (RU).
Sζ

∈ R2×2 is the terminal cost weighting matrix. Ωυ denotes
the FES stimulation bounds and Ωχ denotes the set of the
state constraints. (As the current time step is fixed based on
the number of samples, zk will be used instead of zk|k , and
system matrices derived over M samples will be denoted by
Aζ , Bζ to simplify the notations). Ωχ+ denotes the terminal
set defined to ensure that the state remains within a stabilizable
region at the end of the prediction horizon. Gait phase based
terminal weighting matrix

Sζ
=

{
S P , if σk = 0
SD, if σk = 1,

(24)

is derived for both the stance and swing phase by solving the
discrete-time algebraic Riccati equation (DARE)

Sζ
= K̃T

ζ

xx Sζ K̃ζ
xx

− K̃T
ζ

xx Sζ K̃ζ
xu(R + K̃T

ζ

xu Sζ K̃ζ
xu)−1K̃T

ζ

xu Sζ K̃ζ
x

+ Q, (25)

where K̃ζ
xx , K̃ζ

xu are obtained from the Koopman predic-
tion model.. We define the terminal set as Ωχ+ = {z |

(zk+TU )T Sζ zk+TU ≤ ϵ}, such that there exists a stabilizing
terminal control law, such as an LQR policy, where uζ

TN
=

π(zTN−1) ∈ Ω
ζ
υ which ensures that the closed-loop stability
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criteria, VTN +1 ≤ VTN − (l(z̄TN , τ̄TN −1, φ̄TN −1)), is satisfied
for the MPCA problem in 22. The set is parameterized by
ϵ which ensures that the terminal state remains bounded and
controllable.

V. EXPERIMENTAL RESULTS

A. Data Collection
The study was approved by the Institutional Review Board

(at North Carolina State University (IRB Protocol number:
20602).

Participants: Three non-disabled subjects (A1, A2, A3,
age: 27.4 ± 3.1 years, height: 1.73 ± 0.15 m, mass:
82.0 ± 7.1 kg) without any neuromuscular or orthopedic
disorders were recruited. One subject (S1, age: 62years,
height 1.53 m, mass: 49kg) with multiple sclerosis (MS) was
recruited.

System I D task: For the data collection pertaining to
walking tasks, the experimental setup was designed to capture
the dynamics of gait on a treadmill. Both non-disabled and MS
subjects, designated as A1, A2, and A3, and S1, respectively,
walked at a controlled speed of 0.1 m/s, 0.2 m/s, and 0.3 m/s,
to accommodate the slow speed and no volition of subject with
Multiple Sclerosis (MS). This setup aimed to collect com-
prehensive Inertial Measurement Unit (IMU) data reflecting
joint angles, as well as stimulation currents (plantarflexion =

10 − 25m A, dorsiflexion = 10 − 20m A, frequency = 33H z)
directed at the TA and GAS muscles. The stimulation param-
eters, specifically the current and frequency, were maintained
consistently across trials, with FES stimulation current as
decision variable. This approach allowed for the collection
of detailed data on how varying the control input influence
the muscles’ response during the walking task for accurate
Koopman operator derivation. Each subject underwent three
trials for the first two sessions to ensure a robust data set for
accurate koopman operator derivation.

Experimental protocol: A wearable sensing system,
based on [24], was used to measure the ankle joint kinematics.
Along with measuring the ankle kinematics, IMU and ground
reaction forces (GRF) measurements were also used for gait
phase detection based on methods discussed in [25],. A real-
time target machine (Speedgoat Inc., Liebefeld, Switzerland)
was used for experiments with integrated GRF, IMU signals,
and FES stimulation through MATLAB 2019b. The data is
sampled at a sampling frequency of 200 Hz. The prediction
horizon, TU , is selected based on the average duration of a gait
cycle of individuals, which was an average of 2−4 seconds for
the speeds 0.1m/s, 0.2m/s, and 0.3m/s. A prediction horizon
of 100 − 200 ms were chosen.

To prevent muscle fatigue, particularly in the TA and
GAS muscle, sufficient rest periods were integrated into the
experimental protocol. The treadmill was equipped with GRF
sensors. GRF measurements enabled describing the indicator
function, σk which facilitates precise triggering of the stance
and swing phases’ FES stimulation. The data garnered from
these walking tasks, including IMU readings of joint angles
and FES stimulation details, were used to populate the observ-
able matrix.

B. Experiments & Results

The participants walked on a treadmill with FES applied
on on the TA and GAS muscles during the swing and
stance phases, respectively. The walking setup is illustrated in
Fig. (3). The FES electrodes were placed on the fibular head
and the lateral malleolus of the TA muscle. For plantarflexion,
the negative electrode is placed on the head of GAS muscle
and the positive electrode is placed above the Achilles tendon.
The DDMPC algorithm described in (22) computed FES
inputs to TA and GAS muscles. The switching between them
was implemented with ground reaction force based gait phase
detection indicator function, σk , to trigger stance and swing
optimal stimulation for plantarflexion and dorsiflexion. The
primary objective of these task was to avoid any foot drag
and achieve adequate foot clearance (pitch, 20deg > x1 >

−20deg.) for each gait cycle during the entire trial.
The real-time implementation was implemented in

MATLAB/Simulink (R2019b, MathWorks, MA, USA) and
executed on a Speedgoat target machine (Speedgoat Inc.,
Liebefeld, Switzerland). The Koopman Model Predictive
Control (MPC) was implemented using the Gradient-based
Receding Horizon Model Predictive Control (GRAMPC)
solver [26]. The GRAMPC algorithm used a prediction
horizon of 0.1 seconds and a sampling rate of 200 Hz.
The solver uses a gradient-based optimization approach,
dynamically switching between controlling the tibialis
anterior (TA) and GAS muscles based on a GRF-based gait
phase detection indicator function.

The experiments were divided into 8 sessions where the
first 2 sessions were used to generate Koopman operator
characteristics. For implementing Koopman MPC, in each
session we conducted 4 trials each at speeds 0.1m/s, 0.2m/s,
and 0.3m/s, that is 12 trials in total per session. Each trial was
conducted with rest intervals of 5-7 minutes to recover from
muscle fatigue. In total, 4 trials each at 3 different speeds
across 3 sessions were conducted for each subject, that is,
36 trials in total.

For each speed the first trial showed the best tracking results.
The mean trajectory tracking plots for both plantarflexion and
dorsiflexion for first trials across all speeds and sessions are
presented in Fig. (4) and the RMSE metrics are presented
in (II). The treadmill walking speeds in the current study were
selected as 0.1m/s, 0.2m/s, and 0.3m/s, due to the targeted
clinical population with little to no volition in their affected
leg. Successive trials across all sessions and speeds showed a
drop in trajectory tracking due to muscle fatigue.

Trajectory tracking showed consistent ankle plantarflexion
and dorsiflexion response actuated by FES using Koopman
MPC. We observe that FES input saturated only for participant
A3 but maintained good trajectory tracking. FES input for TA
muscle always remained within the prescribed limits, which is
an improvement to our past results presented in [17] and shows
the benefit of using gait-specific MPC controller to design
FES input ankle assistance during gait constrain the inputs.
Effect of FES-driven gait assist in S1 is described in Fig. (7).
Fig. (6) shows the trajectory tracking results for a single gait
cycle. For experiments, the reference trajectory consists of set
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Fig. 3. The experimental setup DDMPC framework for FES-driven gait assistance are illustrated - . The participant walks on a treadmill
equipped with ground reaction force (GRF) sensors to detect gait phase transitions (stance and swing phases). FES electrodes are placed on
the Gastrocnemius (GAS) and Tibialis Anterior (TA) muscles to induce plantarflexion and dorsiflexion, respectively, with stimulation parameters set
at f = 33 Hz, i = uk |k mA. Kinematic data sensors record ankle motion dynamics, while the treadmill enables constant-speed walking. Phase-
based data collection captures state measurements (xk) and FES inputs (uk) during walking, dividing the gait cycle into stance and swing phases.
The raw data is lifted to a higher-dimensional space using Koopman observables, which capture nonlinear dynamics in a linear framework. The
Koopman operator predicts the system dynamics via the lifted representation: zk+1+j|k = (1 − σk)(APzk + BPuP

k ) + σk(ADzk + BDuD
k ), where σk

distinguishes stance (σk = 0) and swing (σk = 1) phases. The Koopman MPC optimizes FES inputs to minimize a task-specific performance
measure while adhering to state and control constraints, enabling real-time, phase-specific gait assistance. This framework effectively coordinates
plantarflexion and dorsiflexion to support natural walking patterns.

points representing the adequate plantarflexion and dorsiflex-
ion angles for the stance, swing, and rest phases of the gait
cycle (green dashed line). The tracked trajectory (blue solid
line) demonstrates the controller’s ability to accurately follow
these set points. Subplot (left) illustrates the trajectory tracking
performance, while subplot (right) shows the corresponding
control input (red solid line) applied to achieve the tracking.

Remark 2: (Reference Trajectory for Slow Speed Walking)
The desired trajectories used in the experiments do not

strictly satisfy the Lipschitz continuity assumption on veloc-
ity, but the slow gait speed ensures that the transition
between phases remains physically realizable. Moreover, the
ability of the Koopman-MPC framework to successfully
track these trajectories despite their high-velocity transitions
demonstrates the controller’s robustness in handling such
conditions. Walking at very slow speeds (0.1 to 0.2m/s) is
common for rehabilitation applications, hence the transition
between the stance and swing phases is assumed to be
smooth. In the experiments, the reference trajectory is defined
based on comfortable plantarflexion and dorsiflexion angles,
ensuring that the desired motion aligns with natural ankle
movements.

VI. DISCUSSION

In this work, we used the KOT approach that can effi-
ciently linearize the nonlinear dynamics of human ankle

allowing for the application of a linear MPC strategy for
both plantarflexion and dorsiflexion control. This linearization
facilitates the formulation of the MPC problem as a real-time
solvable quadratic program. This approach also offers a high
degree of adaptability. By continuously incorporating new
data, the model can dynamically adjust to changes in the
patient’s gait, such as variations in walking speed. This
makes the system highly personalized, as it can cater to
the specific requirements and progress of each individual
patient. This approach is particularly suited to the complex
neuromuscular ankle motion dynamics as it accounts for
human variability in muscle response due to FES stimula-
tions, but doesn’t actually require the exact individual system
parameters.

We hypothesize that incorporating volitional muscle activity
should lead to optimal design of GAS and TA FES stimulation
levels which mitigate muscle fatigue effects which is a future
direction for this work. For S1, we observe that swing phase
is consistently of longer duration as compared to non-disabled
subjects. Moreover, the trajectory tracking performance deteri-
orated over time. This is as expected as there is no volition for
S1 in their left ankle. We now intend to combine a closed-loop
ultrasound informed muscle activity information, described
in [10], in our data-driven optimal FES control framework
to improve trajectory tracking for longer duration of walking
and at higher speed.
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Fig. 4. Trajectory tracking of ankle motion using DDMPC FES for subjects A1, A2, A3, and S1 (clockwise). The figure illustrates ankle motion
trajectory tracking performance when the muscles are fully rested. The tracking achieved in this condition demonstrates a Root Mean Square Error
(RMSE) of 1.625◦, highlighting the system’s effectiveness in accurate control under optimal muscle conditions. Note, only absolute values of FES
stimulation, u, are provided for both phases.

TABLE II
MEAN AND SD VALUES OF ANKLEJOINT TRAJECTORY TRACKING FOR THE MEAN GAIT CYCLE FOR SUBJECTS FORBOTH PLANTARFLEXION

(LEFT) AND DORSIFLEXION (RIGHT) FOR TRIAL 1 AT SPEEDS 0.1m/s , 0.2m/s , AND 0.3m/s ACROSS ALL SESSIONS.12 TRIALS

PER SPEED IN TOTAL.(UNIT: ◦)

TABLE III
MEAN AND SD VALUES OFANKLE JOINT TRAJECTORY TRACKING FOR

THE Walking Task FORSUCCESSIVE TRIALS (TRIALS 2, 3 AND 4) FOR

SPEEDS 0.1m/s, 0.2m/s,AND 0.3m/s. 12 TRIALS PER SPEED PER

SESSION IN TOTAL.(UNIT: ◦)

A. Comparison With Existing Controllers

The table IV highlights the performance of the proposed
Koopman-MPC framework compared to ILC framework [6],
Iterative Timing Control [8], and Adaptive Control [10]
for FES-based gait assistance. Koopman-MPC achieves the
lowest trajectory tracking error (RMSE: 2–3◦). Unlike pre-
vious controllers, which primarily focus on the swing phase,
Koopman-MPC provides assistance during both the stance and

swing phases, offering more comprehensive gait support by
facilitating both dorsiflexion for toe clearance and plantarflex-
ion for push-off. Moreover, while traditional methods require
cycle-by-cycle resetting, Koopman-MPC performs continuous
real-time optimization, ensuring greater adaptability and sta-
bility. Additionally, Koopman-MPC allows for the potential
integration of physiological sensors (e.g., sEMG, ultrasound)
to enhance controller adaptability, whereas prior approaches
do not address this aspect, losing muscle activity-based perfor-
mance enhancement in FES design. Computational efficiency
is maintained at 30 ms per cycle, making it comparable to
adaptive controllers while offering better stimulation phase
coverage and lower RMSE. Performance metric can be adapted
to incorporate physiological sensor to account for muscle
activity and potentially mitigating muscle fatigue effects.

B. Limitations and Future Work
The Koopman operator framework provides a linear pre-

diction model for nonlinear dynamical systems, enabling
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Fig. 5. Ankle motion trajectory tracking results averaged over the final trial of each session for each participant A1, A2, A3, and S1 (clockwise).. The
figure illustrates trajectory tracking performance after 3–4 walking trials of 60 seconds each, reflecting the effects of muscle fatigue. The trajectory
Root Mean Square Error (RMSE) is 3.1◦, indicating the onset of fatigue-induced deviations in tracking accuracy.

Fig. 6. Comparison of the desired and tracked ankle pitch angle trajectories during a single gait cycle, achieved using a Koopman-based Model
Predictive Control (MPC) framework.

effective integration with Model Predictive Control (MPC).
However, it faces certain challenges, such as the need for
finite-dimensional approximations of an inherently infinite-
dimensional operator. The appropriate selection of observables
that accurately capture the system’s dynamics remains critical
for achieving robust and precise predictions. Limitations also
arise in handling muscle fatigue and real-time variability in
neuromuscular behavior, particularly in dynamic and repet-
itive tasks like gait rehabilitation. Future research will aim
to enhance the Koopman MPC framework by integrating

real-time feedback from physiological sensors, such as surface
electromyography (sEMG) and ultrasound, to account for
muscle activation and fatigue dynamics. Developing adaptive
Koopman operator update laws that incorporate this physi-
ological data will improve the MPC controller’s robustness
and adaptability to changing muscle conditions. Incorporating
muscle fatigue models directly as observables or leveraging
real-time sensor feedback will enable dynamic adjustments
to stimulation strategies, mitigating fatigue effects during
repetitive gait cycles.
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Fig. 7. Comparison of gait performance for Subject S1 before and after using the FES-driven gait assist controller. A: Foot/toe drag observed prior
to FES application, where the subject was unable to sustain walking on a treadmill at the lowest speed of 0.1 ms−1. B: No foot/toe drag observed
after applying the FES-driven controller, enabling sustained walking at treadmill speeds of 0.1, 0.2, 0.3 ms−1. Annotations highlight the transition
between pre-FES and post-FES conditions and the effectiveness of the proposed controller in supporting walking performance.

TABLE IV
PERFORMANCE COMPARISONBETWEEN PROPOSED KOOPMAN-MPC AND PAST CONTROLLERS - ILC, PID, ADAPTIVE- FOR FES-BASED ANKLE

JOINT FUNCTIONALITY IMPROVEMENT

Additionally, addressing stability challenges introduced
by switched dynamics between stance and swing phases—
especially at faster gait speeds—will require the development
of phase-specific stability laws based on minimum dwell
time based Lyapunov methods. Future directions also include
extending the Koopman MPC framework for multi-joint con-
trol and exploring scalable solutions for higher degrees of
freedom.

VII. CONCLUSION

We developed a data-driven Model Predictive Control
(MPC) framework to assist with achieving the normal range
of ankle motion during gait. Our approach leverages Koopman
Operator Theory (KOT) to transform the inherently complex
and nonlinear dynamics of FES-actuated ankle motion into
a linearized representation. This linearization enables the
application of efficient linear control techniques to a highly
nonlinear system. The linear prediction model derived through
KOT allowed us to formulate the MPC problem as a quadratic
program, significantly enhancing the real-time feasibility, pre-
cision, and adaptability of the FES-driven control system.

The effectiveness and stability of our approach were vali-
dated through experimental trials involving three participants
without disabilities and one participant with multiple sclerosis
(MS). The results demonstrated precise trajectory tracking
assistance for the developed Koopman MPC controller. The
developed KOT-based MPC framework can be used to deliver
effective, real-time, and personalized assistance for individuals
with gait-related impairments, including those caused by MS,
stroke, and incomplete spinal cord injury (SCI).
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