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ABSTRACT Vibration-based condition monitoring is a well-developed and established field in maintenance
engineering. Failure prognosis is a crucial aspect of condition monitoring, particularly Remaining Useful
Life (RUL) prediction. Over the last decade, the PRONOSTIA bearing dataset has become the standard
reference for testing these prognostic algorithms. However, the lack of standardized comparisons makes
it difficult to objectively assess the relative performance of different methods. This paper systematically
compares three established data-driven artificial intelligence approaches: classical machine learning, deep
learning, and transfer learning approaches. We analyze their application to the PRONOSTIA dataset,
providing detailed discussions of their relative strengths, limitations, and achieved performance. While this
study primarily serves as a benchmark for testing new prognostic algorithms in vibration monitoring, we hope
the insights will also broadly apply to other condition-monitoring techniques.

INDEX TERMS Condition monitoring, data-driven approach, RUL prediction, vibration data, machine

learning, deep learning, transfer learning.

I. INTRODUCTION

Rolling element ball bearings, mechanical devices consisting
of spherical rolling elements held between circular inner
and outer rings, are among the most common components
found in rotating machinery [1]. They help support rotating
shafts and reduce friction between these shafts and stationary
machine parts. The bearings are commonly used in machines
where the shafts need to rotate smoothly with minimal
friction, and their failure ranks as one of the leading causes
of machine breakdowns. More than half of rotary machine
system faults are due to the bearings, which also commonly
cause failures in equipment like high-voltage induction
motors, wind turbine gearboxes, and induction motors,
as discussed in [2]. Therefore, it is crucial to develop effective
methods to evaluate the current health status of bearings and
predict their Remaining Useful Life (RUL). RUL, defined as
the time until the end of useful life, is a critical metric in
Prognostics and Health Management (PHM). Accurate RUL
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predictions guide maintenance decisions, reducing downtime
and costs while improving reliability.

Estimating the RUL is essential for minimizing risks
and enhancing reliability in condition monitoring. Risk and
reliability are closely related in this context: lower risk
leads to higher reliability, and higher risk results in lower
reliability [3]. By accurately predicting the RUL, risks can
be effectively managed and mitigated, thereby improving
the overall reliability of the monitored equipment. RUL
prediction was used to assess bearing performance during
condition management. The bearing’s operational lifespan
in industrial systems depends on rotation speed, applied
load, and average life expectancy. The bathtub curve is
crucial in reliability practice, illustrating how bearing failure
rates change over time [4]. Like other industrial equipment,
bearing performance follows this curve, which includes three
phases: burn-in period (infant mortality), useful life (random
failure), and wear-out period (wear-out failure) [5]. During
the burn-in period, failure rates decrease after initial use.
In the useful life phase, failure rates increase due to random
factors affecting performance. In the wear-out phase, failure
rates rise rapidly as the bearing exceeds its design lifespan.
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Vibration-based condition monitoring has become a
well-established field with robust prognostic techniques.
Despite its maturity, researchers continue to explore ways
to enhance these methods, aiming for improved accuracy
and reliability. This ongoing advancement is significantly
supported by publicly available reference datasets, which
provide a valuable resource for evaluating and validating
newly developed algorithms. The PRONOSTIA-bearing or
FEMTO-bearing dataset, released over a decade ago, has
become a standard benchmark for evaluating prognostic
algorithms [6]. This dataset provides accelerated degradation
data, allowing researchers to test their methods on realistic
failure scenarios.

Bearing degradation is a complex, highly nonlinear process
influenced by many factors, such as structural, operational,
and environmental attributes. Thus, predicting the RUL of
bearings is a crucial and challenging issue in condition
management systems. Accurate RUL prediction allows for
economical operation by avoiding unnecessary maintenance
and replacement and minimizing downtime for critical
systems. This review provides a timely and comprehensive
examination of the latest trends in bearing RUL prediction,
focusing on data-driven models and evaluating them based
on error and accuracy scores using PRONOSTIA data.

A. RECENT ADVANCES AND CHALLENGES

Recent studies highlight advances in bearing prognostics
using machine learning and hybrid methods. Wei et al. [7]
proposed an attention-aware graph convolutional neural
network that achieved superior performance by capturing
both temporal and spatial dependencies in vibration signals.
Zhuang et al. [8] introduced a temporal partial domain
adaption framework that effectively handles varying oper-
ational conditions. These methods highlight a shift toward
architectures capable of addressing real-world complexities.
Multi-source adversarial distillation domain adaptation
network captures source-specific representation showed
more precise prediction results by avoiding the limita-
tion of direct single-domain adaptation [9]. He et al. [10]
proposed a data augmentation method that enhances
time-frequency features using dynamic attention for RUL
prediction.

Most research emphasizes accuracy, computational
resources, and time for online RUL prediction are equally
important [11]. CNN-based models have longer training
times due to feature extraction compared to RNNs [12]. The
FELM model excels in RUL prediction accuracy for small
sample environments, while the LSTM-UQ outperforms
traditional LSTM and CNN models with comparable
training times. The FFCGRU model further reduces training
and prediction times, making it suitable for real-time
applications [13].

Despite its widespread use, a comprehensive and standard-
ized comparison of different prognostic approaches using
PRONOSTIA is missing, and several critical challenges in
bearing prognostics remain unaddressed:
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1) The lack of standardized evaluation frameworks makes
it difficult to compare different prognostic approaches
objectively

2) The impact of operational conditions on prediction
accuracy is not fully understood

3) The integration of domain knowledge with Al-based
approaches remains limited

4) The practical implementation of prognostic systems
faces challenges in real-world industrial settings

B. PROGNOSTIC BASICS

Failure prognostics is a crucial aspect of condition-based
maintenance (CBM), focusing on predicting the RUL of
bearings using condition observation data. RUL, defined
as the estimated time until a bearing reaches the end
of its functional lifespan, is a pivotal metric in PHM.
An equipment failure prognostic program typically involves
four technical processes: data acquisition, constructing health
indicators (HI), dividing health stages (HS), and predicting
RUL [14]. By following ISO 13381 for machine health
prognostics and RUL prediction, organizations can enhance
their maintenance strategies, reduce downtime, and extend
bearing life [15]. Additionally, beginners in research can gain
valuable insights into the prognostics process, historical data
requirements, and various RUL estimation techniques. The
standard also provides guidelines for performance evaluation
and implementation. However, while these rules offer a solid
foundation, they should not constrain innovation and creative
thinking in the field.

There is no standard method for categorizing RUL
prediction approaches, leading to various classifications and
naming conventions. This lack of uniformity can confuse
readers trying to understand these different approaches.
We follow the meanings and coverage of four differ-
ent categories: physics-based approaches, statistics-based
approaches, Al-based approaches, and hybrid approaches as
in [14]. The scope of these prognostic techniques, including
datasets focusing on data-driven Al approaches, is shown in
Figure 1. The upper section highlights widely used publicly
available datasets for RUL prediction, such as XJTU, IMS,
and others. Emerging studies leverage multi-source domain
transfer learning to demonstrate superior prediction accuracy
by capturing greater variability and minimizing domain-
specific biases.

Physics-based models describe bearing degradation
through mathematical representations of failure mechanisms,
linking parameters such as material properties and stress
levels. These parameters are identified through experiments,
finite element analysis, or other techniques. However,
physics-based approaches are rarely used to predict bearing
RUL due to the complexity of failure mechanisms under
varying and severe conditions.

Statistics-based approaches use conditional probability
distributions to estimate RUL based on empirical data, inde-
pendent of physics-based assumptions [16]. They effectively
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FIGURE 1. Various types of RUL prediction approaches and the most commonly used open-source dataset for bearing degradation.

describe the uncertainty of the degradation process and its
impact on RUL prediction. Some of the works using statistical
approaches for bearing RUL prediction are shown in Table 1.
Moreover, these approaches require deep knowledge and
experience but still carry uncertainty.

Data-driven Al approaches learn bearing degradation
patterns directly from observational data, using machine
learning techniques rather than relying on physics-based or
statistical models. These methods can predict the RUL by
mapping condition monitoring data to RUL value without
needing expert knowledge or prior experience [24]. They
require minimal historical data, are less complex and expen-
sive, and offer a balanced trade-off between complexity, cost,
precision, and applicability. They are increasingly popular for
complex machinery prognostics, with the most publications
on bearing RUL estimation in the past decade. Furthermore,
Al approaches can be divided into three subcategories:
traditional machine learning-based, deep learning-based,
and transfer learning-based. This classification will help
in understanding and applying different Al methods more
effectively.

Each category has its own limitations in RUL prediction.
A hybrid approach aims to combine the strengths of different
methods to address these limitations [25]. A physics-based
RUL prediction approach was combined with a data-driven
Al approach to improve accuracy in [26]. The status degra-
dation function was used to describe the bearing degradation
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process, while a convolutional autoencoder deep learning
method was employed for data denoising, dimensionality
reduction, and feature extraction in RUL prediction.

C. MOTIVATION AND OUR CONTRIBUTION
Failure analysis is crucial for ensuring the safe operation of
bearings, with fault mode identification and RUL prediction
as key components. By identifying failure modes and causes,
we can propose effective measures to enhance bearing
service life and prevent potential accidents. A comprehensive
overview of the different bearing parts, their types, probable
damage locations, and causes of failure is presented in [27].
Incipient faults in one component can easily spread to
other components through frequent contact, leading to the
simultaneous occurrence of various fault patterns. If RUL
is accurately predicted following the initial fault detec-
tion [28], sufficient time is provided to ensure safety,
enhance reliability, and develop an effective maintenance
plan. Moreover, safety is paramount in modern industrial
processes as bearing degradation and failure pose significant
hazards. This has driven the adoption of real-time monitoring
and RUL prediction to prevent sudden failures and safeguard
life and property [29].

Condition monitoring (CM), decision-making, and RUL
prediction are closely interconnected in asset management.
Condition monitoring involves collecting real-time data on
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TABLE 1. Summary of statistical prognostic technique.

Basics

Applications

ARIMA [17]

It combines autoregressive
(AR) terms, differencing
(I), and moving average
(MA) terms to model tem-
poral dependencies

Used to forecast future
RUL values by modeling
the historical time series
data of system degradation

Random Coef-
ficient

Coefficients in regression
equations are allowed to
vary randomly across dif-
ferent entities between dif-
ferent instances of the
same process.

Can handle variability
in degradation patterns
among different units of
the same system

Wiener Process
(Brownian Mo-
tion) [18], [19]

It is a continuous-time
stochastic process with in-
dependent increments and
normally distributed incre-
ments

Can model the stochastic
nature of failure processes
over time

Gamma
Process [20]

It is a type of stochas-
tic process with gamma-
distributed increments and
is used in reliability en-
gineering to model the
degradation.

Can model the gradual de-
terioration of system per-
formance and predict the
RUL based on observed
degradation.

Gaussian  Pro-
cess [21]

It is a non-parametric ap-
proach to regression that
models distributions over
functions

Can provide probabilis-
tic forecasts of RUL by
modeling the underlying
distribution of degradation
paths.

Markov Model
[22]

It uses state transitions to
model systems that change
over time with probabil-
ities depending only on
the current state, not past
states.

First models the system’s
state transitions and esti-
mates the time until the
system transitions to a fail-
ure state.

Kalman Filter
[23]

It is an algorithm that uses
a series of measurements
observed over time to es-
timate unknown variables,
with applications in linear
dynamic systems

Can be used to estimate
the state of a system and
predict RUL by updating
predictions as new mea-
surements become avail-
able

Proportional
Hazard Model

They are used in survival
analysis to examine the ef-
fect of various factors on
the time until an event oc-
curs.

Can analyze the impact of
covariates on the survival
time and predict the RUL
based on these factors

equipment health to identify potential issues [30]. This
data informs decision-making, enabling timely actions to
prevent failures. These decisions then guide maintenance
planning, optimizing schedules, resources, and interventions
to ensure reliability and cost-efficiency [31]. Effective
decision-making relies on comprehensive insights derived
from fault detection, identification, quantification, and prog-
nosis to ensure accurate assessment and timely action [32].
Prognosis or forecasting, regardless of the term used, predicts
future outcomes based on current data and trends [33].
Forecasting supports planning in industrial maintenance by
predicting future equipment degradation conditions, resource
needs, and failures, enabling proactive interventions.

To address the challenges outlined above, this study
systematically compares three prominent data-driven Al
approaches for bearing RUL prediction: traditional machine
learning, deep learning, and transfer learning, specifically
focusing on the PRONOSTIA dataset. Our key contributions
are as follows:
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1) We establish a standardized framework for evaluating
and comparing the performance of different prognostic
algorithms on the PRONOSTIA dataset, addressing
the current lack of such a framework in the literature.
This framework considers various metrics, including
prediction accuracy (using error and score as defined
by the IEEE PHM 2012 Prognostic Challenge), com-
putational cost, and model complexity.

2) We conduct a detailed analysis of each Al approach
(traditional machine learning, deep learning, and
transfer learning) as applied to the PRONOSTIA
dataset. This includes examining the impact of dif-
ferent feature engineering techniques (time-domain,
frequency-domain, time-frequency domain), the role
of signal denoising, and the influence of various
model architectures and hyperparameters on prediction
accuracy. We analyze performance across all available
operating conditions present in the PRONOSTIA data.

3) Based on our findings, we provide practical guid-
ance for selecting the most appropriate Al approach
depending on specific application requirements, such
as desired prediction accuracy, available computational
resources, and the amount of labeled training data.
We highlight the strengths and limitations of each
method in the context of the PRONOSTIA dataset.
Furthermore, we offer insights into the challenges
of determining the optimal RUL prediction time and
discuss the trade-offs between early and late prediction.

4) By thoroughly analyzing a wide range of Al-based
prognostic models and identifying the current state-of-
the-art performance on the PRONOSTIA dataset (to the
best of our knowledge), this study establishes a clear
benchmark for future research. We identify limitations
of existing methods and suggest promising directions
for further advancements in bearing RUL prediction,
particularly in the areas of transfer learning across
different operating conditions and bearings, model
interpretability, and industrial implementation.

This review aims to be a valuable resource for researchers
and practitioners working on bearing RUL prediction.
By offering a structured and comprehensive overview of
existing techniques, along with a comparative analysis
using the PRONOSTIA dataset, we hope to facilitate
further progress in this critical area. Table 3 highlights the
gaps addressed by our work compared to other published
reviews. We focus on accuracy, model interpretability, and
computational efficiency. We also address the challenge of
determining the optimal RUL prediction time, balancing the
need for early warning with the desire for accurate forecasts.
Finally, we present the latest optimal accuracy achieved
on the PRONOSTIA dataset, establishing a baseline for
future improvements and suggesting directions to surpass this
current benchmark.

We conducted a thorough review using the Scopus database
to ensure a comprehensive and relevant literature search.
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TABLE 2. Search Strings and Research Articles Identified in Scopus.

Search string Journal | Conferenckstal Simila- | Selected
papers rity

RUL and Prediction 655 308 963 563 50

RUL and ML 98 75 173 57 15

RUL and DL 206 77 283 75 27

RUL and TL 39 10 49 38 25

RUL and PRONOSTIA | 567 141 708 343 34

TABLE 3. Comparison of the existing literature and our review. * indicates
topics covered in this work.

Datasets| Feature | TraditionalDeep | Transfer| CompargtRerspectjve

Engi- | Machine | Learn- |Learn- | study
neering | learning |ing ing

(37] *

[27] *

[34] * *

[14] * * B3

39] * * *

[40] * *

review

We employed various search strings, detailed in Table 2,
to identify pertinent articles published after the release of
the PRONOSTIA dataset in 2012. The authors note the
inclusion of 1176 papers using the PRONOSTIA dataset,
published in Mechanical Systems and Signal Processing
between 2012 and early 2024.

A benchmark study for bearing diagnostics is already avail-
able [34]; however, a comparative study on RUL prediction
remains currently unavailable. A comprehensive evaluation
of deep learning-based fault diagnosis models was provided
as a benchmark study in [35]. No comprehensive study
has explored data-driven approaches for RUL prediction in
bearings. To our knowledge, this is the first comprehensive
literature review that thoroughly explains various Al-based
RUL prediction techniques for a common benchmark. Table 3
compares existing literature reviews, highlighting the unique
aspects of our work, while Table 2 details the search strings
used and the number of articles identified.

Il. DATASETS AND EVALUATION METRIC
To evaluate and benchmark RUL prediction methods, numer-
ous studies have employed publicly available datasets. Exam-
ples include open-source datasets like IMS bearing [41]and
XJTU-SY [42], as well as closed-source datasets [43].
Among these, the PRONOSTIA accelerated degradation
dataset has become a widely recognized benchmark for
prognostic research. It provides vibration and temperature
signals collected across the full lifespan of bearings during
accelerated degradation experiments.

The PRONOSTIA dataset, developed by the FEMTO-
ST Institute, captures bearing degradation under controlled
conditions without pre-seeded faults. Figure 2 illustrates the
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experimental platform used to collect this data. Introduced
during the IEEE International Conference on PHM 2012, the
dataset has since been extensively used to evaluate prognostic
algorithms [6].

The PRONOSTIA experiments aimed to simulate accel-
erated degradation within a short timeframe by applying
a radial force exceeding the bearings’ maximum dynamic
load capacity. The rotational speed was maintained constant
during each test, while vibration and temperature signals
were continuously recorded using two DYTRAN 3035B
accelerometers and a platinum RTD PT100 PROSENSOR
thermocouple. The degradation process concluded when
the vibration signal amplitude exceeded 20g, marking the
bearing’s end of life.

NI DAQ card | \I Pressure regulator I [(‘ylmdc. Pressure H Force sensor Hl}mnng tested ] I Accelerometers I

FIGURE 2. Overview of the PRONOSTIA experimental platform.

A total of 17 experiments were conducted under three
distinct operating conditions, detailed in Table 4. Each
condition varies in terms of load and rotational speed,
enabling analysis across different stress scenarios.

TABLE 4. Operating condition of various experiments.

Condition 1 Condition 2 Condition 3
Load (Newton) /|4000/ 1800 4200 /1650 5000/ 1500
Speed (RPM)
Training sets Bearingl_1 Bearing2_1 Bearing3_1

Bearingl_2 Bearing2_2 Bearing3_2
Testing sets Bearingl_3 Bearing2_3 Bearing3_3

Bearingl_4 Bearing2_4

Bearingl_5 Bearing2_5

Bearingl_6 Bearing2_6

Bearingl_7 Bearing2 7

The division of experiments into training and testing
sets ensures that all operating conditions are represented
in both phases. Specifically, six experiments were used
for training, while the remaining eleven experiments were
reserved for testing. This setup reflects real-world challenges,
as extracting degradation patterns from training bearings and
applying them to testing units is inherently complex.

While the PRONOSTIA dataset has proven valuable
for RUL prediction, it has limitations. Only two failure
causes—radial load and rotational speed—are considered,
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excluding other potential factors like contamination or
bearing currents, which are critical in industrial settings.
Additionally, the dataset lacks intermediate inspections of
rolling surfaces, limiting its ability to correlate physical
degradation with signal features.

Evaluation of RUL prediction models require a variety of
metrics. The he IEEE PHM 2012 Prognostic Challenge used
a scoring function to evaluate percentage errors, penalizing
overestimation and underestimation differently. Figure 3
visualizes this scoring function. The average accuracy score
is calculated as in Equation (1)-(3). Additional metrics are
widely used, such as mean absolute error (MAE) [44],
mean absolute percentage error (MAPE) [45], mean square
error (MSE), root mean square error (RMSE) [46], relative
accuracy (RA), cumulative relative accuracy (CRA) [47], and
R2 [8], [24]. These metrics are described mathematically
in Equation (4)- 8): Where y; is the actual RUL and 3
is the predicted value. MSE measures the average squared
difference between estimated and actual values. It indicates
the risk of prediction error and is always non-negative, with
values closer to 0 being preferable. Lower MAE, RMSE, and
higher R? reflect better estimator performance.

Vi — i
— X

Er; = 100. (1)
Yi

o exp(—1n(0.5) - (Er;/5), ifEr; <0 @

| exp(+1n(0.5) - (Er;/20), ifEr; > 0

1 m

Score = . ZI:A,- 3)
1 n

MAE = ;leuyi—m (4)
1 n

MAPE = ;;Kyi—j\)ﬂ x 100 6)
1 n

MSE = p Zl:(yz' —9)? (6)

1 n
RMSE = - ;()’i — ) (7)
1 252
RR_l_n 2100 — 5 ®

LSy — 52

Ill. DATA DRIVEN PROGNOSTIC PROCESS

A data-driven prognostic process typically involves four
technical steps: data acquisition and signal preprocessing,
health indicator construction, detection of anomaly or RUL
prediction time, and RUL prediction model. The following
subsections describe each step in detail.

A. DATA ACQUISITION AND SIGNAL DENOISING
As previously mentioned, directly measuring vibration
signals is challenging due to their intricate structures.
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FIGURE 3. The scoring function evaluates RUL estimates based on their
percentage error.

The accelerometer, typically mounted on the outer case,
captures vibration signals from various sources, some of
which introduce noise. During the run-to-failure period, the
vibration data exhibits a non-stationary nature.

Data cleaning removes errors from time-series data,
improving analysis accuracy. A separation-based algorithm
for signal denoising effectively isolates the desired signal
from noise by leveraging decomposition, noise estima-
tion, thresholding, and reconstruction steps. Wavelet-based
methods effectively enhance signal quality by isolating
relevant features from noise by analyzing different frequency
components [48]. Time Synchronous Averaging (TSA) is
another signal denoising technique widely used in vibration
analysis and fault diagnosis of bearings [29]. It enhances
the signal by isolating its periodic components, identifying
anomalies and specific fault types more easily.

The linear rectification technique denoises a signal by
applying a linear transformation that suppresses noise
while preserving the underlying signal structure, effectively
smoothing spurious local fluctuations [49]. Moving aver-
ages smooth short-term fluctuations, highlighting trends for
feature extraction [50]. EMD was effective for denoising
vibration data in RUL prediction due to its ability to handle
non-linear and non-stationary signals [51]. Autoencoder-
decoder architectures were used for advanced signal denois-
ing [49], [52]. The encoder extracts features from the
noisy signal, and the decoder reconstructs a cleaner version,
leveraging deep learning to effectively remove noise. LSTM-
Autoencoder was used for reducing noise in raw vibration
data in [53]. A two-step signal denoising method: first, the
vibration signal is denoised using a local projective noise
reduction method, then recurrence plots of the denoised sig-
nals are drawn to achieve a higher diagnosis rate was applied
in [54]. Hou et al. [55] introduced a cross-transformer net-
work paired with an unsupervised data-cleaning algorithm.
A stack denoising autoencoder was used in [56]. While vari-
ous signal denoising techniques are essential for improving
the accuracy and reliability of RUL prediction, the choice
of method depends on specific prediction requirements,
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the availability of preprocessing models, and resource
constraints.

B. HEALTH INDICATOR CONSTRUCTION

Observing bearing damage is challenging due to limited
shutdown opportunities and the microscopic scale of early-
stage faults, which require specialized instruments. Internal
faults within rollers are also hard to identify without
disassembly. As a result, constructing reliable HIs is essential
for accurate RUL prediction. The construction of effective
Hls is critical for bearing failure prognostics, as a well-
designed HI simplifies prognostic modeling and improves
prediction accuracy. Since HI construction involves fitting
the degradation process, feature selection based on criteria
such as trend, monotonicity, and robustness provides a more
accurate reflection of bearing failure, thereby enhancing
predictability. A suitable HI should exhibit monotonicity,
accurately reflecting the irreversible degradation over the
bearing’s operational life [57]. Just like monotonicity,
robustness is an inherent characteristic of a HI.

HI construction’s fundamental concepts and theories were
categorized into statistical parameter-based methods, signal
preprocessing-based methods, and machine learning-based
methods in [36]. Feature fusion combines multiple features
to create a comprehensive health indicator. Various time,
frequency, and time-frequency domain features were used
for HI construction in [58]. A quadratic function-based
deep convolutional auto-encoder was developed for HI
construction in [59]. State space model was used to construct
probabilistic entropy-based HI, which is less sensitive to
high probabilistic distribution data and noise, making it
effective under varying load and speed conditions [60]. While
various HI construction techniques have pros and cons,
feature extraction and selection are crucial for Al-based RUL
prediction.

Raw vibration signals acquired from accelerometers con-
tain extensive information regarding bearing degradation.
However, these signals alone cannot directly depict the trend
of bearing life degradation and often contain redundant
data. Therefore, effective feature extraction across multiple
domains is performed to derive comprehensive and accurate
degradation features, enhancing the understanding of bearing
degradation.

1) TIME DOMAIN FEATURES

Different mechanical faults, such as unbalance, misalign-
ment, and bearing defects, often have unique waveforms.
Time-domain analysis extracts characteristic features (like
maximum, minimum, mean, peak, peak-to-peak interval,
standard deviation, crest factor, root mean square, skewness,
kurtosis, coefficient of variation, crest factor, clearance
factor, waveform factor, pulse factor and so on) to capture
dynamic signal changes effectively and are crucial for trend
prediction. A detailed description, formulas, and the physical
significance of time-domain features were presented in [57].
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2) FREQUENCY DOMAIN FEATURES

While time-domain features are valuable for early fault
detection, their inability to specify fault types or provide
detailed insights into degradation processes hinders a deeper
understanding of RUL prediction [61]. Frequency domain
features reveal failure trends via spectral data and enhance
analysis when combined with statistical methods. Spectrum
analysis using fast Fourier transform (FFT) is the most
common method. While the power spectrum is widely
accepted, other spectra offer advantages in specific cases.
The Hilbert transform is useful for envelope analysis,
and the cepstrum can detect harmonics and sideband patterns
in the power spectrum [62]. Frequency-domain analysis
extracts characteristic features from the frequency spectrum,
such as spectral peaks, frequency bands, harmonics, side-
bands, spectral centroid, spectral variance, spectral skewness,
spectral kurtosis, total harmonic distortion, frequency ratios,
cepstrum, etc., enhancing the ability to detect, diagnose,
forecast the failure. A detailed description, along with
formulas and the physical significance of frequency-domain
features, were presented in [57].

3) TIME-FREQUENCY DOMAIN FEATURES

A limitation of frequency features is their inability to
handle non-stationary signals, common with bearing faults.
To address this, time-frequency analysis, which examines sig-
nals in both time and frequency domains, offers a more com-
prehensive signal characterization. Different time-frequency
domain features, including Short-Time Fourier Transform
(STFT) [63], wavelet transform [48], Hilbert-Huang Trans-
form (HHT) [51], spectrogram and S-transform (combines
elements of both wavelet transform and STFT) are used in
RUL prediction.

Empirical mode decomposition (EMD) can extract
time-frequency features while staying in the time domain,
making it easier to analyze [64]. Wavelet analysis is com-
monly used in bearing RUL prediction for feature extraction,
breaking down vibration signals into basic waveforms, and
analyzing their spectral characteristics with wavelet packet
transform (WPT) and Fourier analysis. Discrete wavelet
transform (DWT) decomposes a signal in a multiscale
manner to separate high- and low-frequency components.
Wavelet-based features can generally be grouped into four
main categories: entropy-based, energy-based, spectral-
based, and statistical-based [65]. Entropy-based features
measure irregularities in vibration signals, aiding fault
identification, while energy-based features detect faults by
analyzing changes in wavelet subband energy, supporting
RUL prediction. Spectral and statistical features are typically
applied to the basic waveforms reconstructed from wavelet
decomposition coefficients.

Besides these features, other hybrid features are also
extracted to reflect the degradation mechanism. Since no
single feature captures all information from time-varying
signals, multidimensional representation is essential for
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effective HI construction. Deep learning has been employed
as a feature extraction technique capable of operating
directly on raw data. By transforming vibration data into
spectrograms, wavelets, or other representations, the ability
of CNNs to detect meaningful patterns is significantly
enhanced. A deep CNN-based spectrum-principal-energy-
vector feature extraction method was used in [66]. CWT-
CNN image feature-based HI was used in [48]. A semi-
supervised double attention-guided assessment approach was
used to incorporate local semantics in feature extraction
in [67]. Generative Adversarial Networks (GANs) were used
for generalized multiscale feature extraction in [68]. Feature
extraction from convolutional autoencoders combined with
status degradation functions for RUL prediction showed
better accuracy than many state-of-the-art methods in [26].

Feature selection removes irrelevant features, reducing
computation time and improving model accuracy [69].
Feature selection methods are commonly classified into
filters, wrappers, embedded, and hybrid methods [70].
Filter-based feature selection includes Pearson’s Correlation,
Spearman’s Correlation, Kendall’s Tau, Distance Correlation,
Mutual Information, Laplacian Score, Monotonicity, Spec-
trum Graph, and robustness values [71]. Principal Component
Analysis (PCA) reduces the dimensionality of a feature set
with many correlated variables while retaining as much
variation as possible and was used as a feature selection
technique in [72]. Relief-based algorithms (RBAs) have
gained popularity by effectively balancing computational
efficiency with sensitivity to complex patterns of association
while also being adaptable to regression features [73].
The wrapper method selects the best features by testing
different combinations and using the model’s performance
to find the best subset without looking inside the model.
These techniques are more popular in classification problems
rather than regression, and moreover, they are classified
based on information gain, Chi-square tests, Fisher score
ranking, and the ratio of missing values in the features.
Embedded methods combine the strengths of filter and
wrapper methods, using algorithms with built-in feature
selection. Popular examples include LASSO and RIDGE
regression, which use penalization functions to reduce
overfitting. SHapley Additive exPlanations (SHAP) is often
considered an embedded method in feature selection, as it
helps understand each feature’s contribution to the model’s
predictions and explains the output of machine learning
models [43].

In deep learning models, features are automatically
selected for RUL prediction model, and the integration of
attention layers with encoder-decoder architectures further
enhances prediction accuracy [7], [74], [75]. To make
consistency across selected features, feature scaling or
normalization is used to enable accurate and balanced health
indicators. To eliminate the negative impact of varying value
ranges on RUL prediction, normalization methods (robust
scaler) were applied to standardize the range of feature
values [76].
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C. RUL PREDICTION TIME (RPT)

Bearings only start to degrade after some use, so predicting
their RUL before any signs of degradation is both unreliable
and unnecessary [53]. HI, division points represent thresholds
that mark significant changes in bearing degradation. These
points, called RPT, help predict when the bearing will reach
a critical failure point. Condition monitoring divides bearing
health into two or more stages to track degradation. In a
two-stage division, a distinction is made between healthy
(nominal operating) and degraded (anomalous) states to
trigger the RUL prediction time. Many existing approaches
select the RUL prediction time subjectively, which can either
include unrelated noise or omit critical degradation infor-
mation. However, they agree that the first initial occurrence
of abnormalities or anomalies during bearing operation is
referred to as the basis of RUL prediction time.

An exponential regression-based local degradation model
was used to find RUL prediction time in [77]. An alarm
bound technique (ABT) using a linear regression model was
proposed to detect the onset of bearing degradation, and the
gradient of the bearing health index, also determined through
linear regression, was used to establish the failure threshold
in [78]. A GAN was employed to model the distribution of
healthy state data, and a HI is created to predict the initial
failure time [79]. Since failure criteria are subjective for
bearing in different applications, the RUL prediction time
is not universally agreed upon. As a result, multiple RUL
prediction times have been using in the PRONOSTIA dataset.

D. PROGNOSTIC MODELS

Prognostic algorithms rely heavily on time series data
collected during the bearing degradation. These algorithms
can be categorized into three main types based on their model
complexity and learning mechanisms: traditional machine
learning-based methods, which use established algorithms to
analyze and predict based on historical data; deep learning-
based methods, which leverage advanced neural networks
to learn complex patterns from large datasets automatically;
and transfer learning-based methods, which adapt pre-trained
models to new but related domains to improve prediction
accuracy with limited data.

1) CLASSICAL MACHINE LEARNING
Machine learning algorithms analyze historical data to
predict RUL, effectively modeling nonlinear systems. The
classical algorithms can generally be classified into super-
vised and unsupervised. The primary purpose of supervised
learning is to find the optimal mapping from inputs to target
outputs. In contrast, unsupervised learning algorithms work
with input-only data without labeling, aiming to analyze the
data distribution to uncover helpful information about its
underlying structure. Prediction is a form of regression that
forecasts future values in a time series.

The feature-based method is one of the oldest and most
widely used approaches for fault prognosis. Researchers have

VOLUME 13, 2025



H. Dhungana et al.: Bearing Prognostics Using the PRONOSTIA Data: A Comparative Study

IEEE Access

proposed many classical ML models including support vector
regressor (SVR) [50], [72], [80], hidden Markov models
(HMM) [22], random forest [43], and self-organizing maps
(SOM) [64]. A hybrid approach combining sparse vector
machine regressions with exponential degradation models
and Fréchet distance achieved superior accuracy compared
to state-of-the-art methods [42].

2) DEEP LEARNING (DL)

DL has become a leading approach for RUL prediction due
to its ability to model complex patterns through multiple
non-linear processing layers that learn hierarchical represen-
tations of data. Classical ML-based RUL prediction relies
on shallow learning architectures, explicit model equations,
and extensive prior knowledge, limiting its effectiveness in
the age of big data [45]. DL methods excel at automatic
feature extraction and systematic pattern modeling, offering
superior accuracy for large datasets [76], [81]. Based
on evaluation metrics MAE and RMSE, the DL model
consistently outperformed the classical ML models across
all proportions of testing data. There is no consensus on
the number of categories for classifying the DL model [35],
[82]. However, it is categorized into five types: multi-layer
perception (MLP) [45], [83], Auto-encoders (AE) [26], [83],
Convolutional Neural Networks (CNN) [48], [84], [85], [86],
Recurrent Neural Networks (RNN) [58], [87], and generative
models [88].

a: MLP-BASED

An MLP, proposed as a prototype for ANN, is a fully
connected network with multiple hidden layers. The MLP
is commonly used for comparison, usually with one hidden
layer and a reasonable number of neurons. The number
of hidden layers, weights, biases, and activation functions
significantly affect its performance. The training uses
backpropagation and regularization methods to help prevent
overfitting. However, training an MLP to predict the RUL of
bearings is challenging due to the large number of parameters
involved. Overfitting, which leads to good performance on
the training dataset but poor performance on the testing
dataset, is a common issue. Dropout is a simple and effective
method to address this and improve the generalization ability
of the neural network [89]. Deep NNs share similar depth
with deep CNNs and offer a fair comparison, given that
deeper architectures are often challenging to train effectively.

b: AUTO-ENCODERS (AE) AND ITS VARIANTS

An AE is an unsupervised learning algorithm that seeks
to learn a condensed representation of the input data by
encoding it into a lower-dimensional space and then recon-
structing the original input from this representation [90], [91].
After training, the encoder component of the autoencoder
can be used to extract features from new data, which
can then be input into a regression model to predict
RUL [92]. The reconstruction error from an autoencoder can
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reveal deviations from normal operating conditions, which
can serve as a basis for RUL estimation. Convolutional
autoencoder along with status degradation model was used
to predict RUL [26]. VAEs, an extension of AEs, learn prob-
abilistic latent variables. A fully convolutional variational
autoencoder was used for feature extraction, and a domain
adaptation method based on the dynamic benchmark was
tested for its performance in incremental predictions [93].

c: CNN AND ITS VARIANTS
A CNN is commonly used for tasks involving spatial
data, such as images, but it can also be applied to
1D time series vibration data by converting it into 2D
representation. Various signal conversion methods can be
used, including data matrix transformation, pixel intensity
representation, Gramian angular field [94], Markov transition
field [95], recurrence Plot [54], WPT, STFT, and so on.
A CNN uses convolutional layers and pooling layers to
extract spatial features. A regression model can then predict
RUL using the trained CNN’s output. The STFT-CNN
approach significantly reduces the computational burden
and memory usage while preserving resolution, resulting in
superior accuracy compared to DNN [63]. WPT-based time-
frequency representation and multiscale CNN (MSCNN)
showed smaller errors compared to a standard CNN in [84].
This improvement is due to combining the final convolu-
tional layer and the final pooling layer, which effectively
utilizes local and global features the high-level layers learn.
Moreover, MS-CNN integrated dilation has smaller errors
than MS-CNN due to the detailed information extracted by
low-level dilation layers. Temporal adjacent discrete cosine
transformation CNN was proposed to reduce the load and
complexity of wavelet-based CNN in [86]. CNN-bootstrap
integrated method was proposed in [96], producing superior
performance than MSCNN. The deep convolutional autoen-
coder combined with CNNs (DCAE-CNN) was used in [97].
The Double-CNN model architecture had a more powerful
feature extraction capability than a standard CNN, leading
to higher prediction accuracy and greater robustness [47].
The Transformer model is a highly versatile and robust
architecture that utilizes self-attention and parallel processing
to handle sequential data efficiently [98]. The Convolutional
Transformer (CoT) showed better than CNN, MSCNN,
DCNN, and DSCN in [59].

TCNs combine the strengths of CNNs and RNNs,
a variation of CNN for time series modeling, offers a large
receptive field with minimal memory requirements [99],
[100], [101], [102]. By incorporating dilation, TCNs achieve
a larger receptive field without adding more parameters,
enabling them to capture long-range dependencies and
improve accuracy. A dual competitive attention module with
multidimensional competition enhanced the accuracy of RUL
prediction [103], [104], [105]. An adaptive degradation stage
division and TCN-based piecewise RUL estimation method
were proposed, demonstrating superiority over basic CNN
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and RNN models in [101]. EMD-TCN were applied in [85],
yielding a 10-20% improvement in average scores over tra-
ditional convolutional algorithms. The integration of a causal
dilated convolution structure with a residual self-attention
mechanism in the TCN improved computational efficiency
and demonstrated clear superiority in accuracy over both
TCN and TCN-SA [102].

d: RNN AND ITS VARIANTS

An RNN contains feedback connections from the hidden
or output layers to the preceding layers, enabling it to
process dynamic information. RNNs, Gated Recurrent Unit
(GRU), and Long Short-Term Memory (LSTM) networks
are designed to handle sequential data and are effective at
capturing temporal dependencies [49], [106], [107], [108],
[109], [110], [111], [112],. Traditional RNNs struggle to
capture long-term dependencies due to the vanishing gradient
problem; however, gated architectures like LSTM and GRU
address this issue by maintaining a more stable gradient.
LSTMs can model long-term dependencies in time-series
data, such as the progression of machinery degradation
over time. Performance degradation assessment model of
bearing was built using LSTM recurrent network in [111].
An end-to-end deep framework for RUL estimation, utilizing
convolutional and LSTM recurrent units, was demonstrated
in [113]. Vanilla LSTM, with a single hidden layer and a
prediction layer [114], serves as a basic LSTM configuration.
Variants like CNN-LSTM [115], Convolution-LSTM [63]
and Bidirectional LSTM [24], [35], [116] were utilized for
RUL prediction.BiLSTM captures bidirectional dependen-
cies over long distances and selectively learns to remember
and forget information, capturing more context and depen-
dencies in the data. Conv-LSTM integrates CNN layers
for feature extraction with LSTMs for sequence prediction,
where each LSTM unit includes a convolutional processing
of the input, similar to CNN-LSTM. The Encoder-Decoder
LSTM addresses sequence-to-sequence prediction by using
two sub-models: one encodes the input sequence into a
fixed-length vector, and the other decodes this vector to
predict the output sequence. Fast Fourier convolution GRU
showed better prediction than encoder—decoder RNN [44].
A dual-stage attention GRU (DA-GRU) achieves a lower
RMSE than a standard GRU, while a parallel GRU out-
performs the DA-GRU. The parallel DA-GRU achieves
the lowest RMSE of all [110]. The attention mechanism
assigned greater weights to important features and time steps,
enabling attention-based LSTM to outperform basic LSTM in
prediction accuracy [117].

e: GENERATIVE MODEL

A deep belief network (DBN) is a generative model
consisting of multiple layers of stochastic, latent variables.
It is typically trained using unsupervised learning algorithms
like RBMs. In RUL prediction, a DBN can learn hierarchical
representations of time series data, and each layer in the
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network captures increasingly abstract features. After train-
ing, the features learned by the DBN can be used as input for
a supervised learning algorithm, such as a regression model,
to predict RUL. The key advantage of DBN is compelling
pre-training on large amounts of unlabelled data, which
enhances the learning and generalization of RUL prediction
models. The deep adversarial methodology achieved superior
RUL prediction performance and demonstrated its ability to
predict the RUL even with a small percentage of labeled
data [88]. GANSs generate synthetic vibration data that mimics
training data, helping to augment datasets and enhance model
robustness. A combined approach involving a diffusion
process and a temporal attention-based data augmentation
mechanism was employed to enhance prediction accuracy
in [118].

f: META-HEURISTIC ALGORITHMS IN DL

Meta-heuristic algorithms, originating in the 1970s with
evolutionary-based methods, have since expanded to include
physics-based, human-based, swarm-based, and hybrid
approaches [119]. Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) are the most widely used for
their predictive power and serve as benchmarks for new
algorithm development. The integration of DL models
with meta-heuristic algorithms offers a powerful approach
to RUL prediction by combining the strengths of both
techniques. DL models excel in capturing complex patterns
and nonlinear relationships from datasets, providing accurate
feature extraction, whereas PSO was used in kernel parameter
optimization in relevance vector machines [115]. Moreover,
they can be applied in various stages of DL-based RUL
prediction tasks, such as feature selection, hyperparameter
optimization, weight initialization, and data augmentation.
Five metaheuristic algorithms named GA, PSO, Ant
Colony Optimization (ACO), Teaching-Learning-Based
Optimization (TLBO), and Evolutionary Mating Algorithm
(EMA)—strategically enhanced feature selection to improve
neural network forecasting accuracy in [120]. This hybrid
approach enhances predictive performance by optimizing DL
models for better generalization and robustness, effectively
addressing the complexities of RUL prediction.

3) TRANSFER LEARNING (TL)

Collecting labeled data for RUL predicting models is
particularly challenging in industrial settings, where sensor
data may be scarce or difficult to label. As a result, classical
ML and DL methods often struggle to achieve high accuracy
in RUL prediction due to the limited availability of training
data. Furthermore, many DL approaches assume that training
and test data come from similar distributions, but this
assumption is frequently violated in real-world applications,
leading to reduced prediction performance. To overcome
these limitations, TL has been introduced as a solution,
enabling the transfer of knowledge from other data or
models. TL leverages its strong feature learning and domain
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transfer capabilities to improve model performance, even
when limited labeled data is available for the target task [2],
[92], [121]. By using information from different sources,
TL enhances the generalization ability of RUL models,
making them more robust and accurate in industrial contexts.

Feature learning is a specific approach within inductive
TL, where the learned features from the source domain
are transferred to the target domain. In DL models, this
often involves reusing the lower layers of a neural network
and fine-tuning the higher layers on the target data [122].
These features encapsulate the knowledge gained from the
source domain into the target domain by freezing the lower
layers. Domain adaptation techniques reduce the distribution
discrepancy between the source and target domains, where
data distributions can vary significantly due to different
operating conditions or different bearings. Fine-tuning allows
the model to adjust its learned representations better to fit the
specific characteristics of the small target dataset.

There is no universally accepted standard for categorizing
TL. However, commonly used TL techniques in RUL
prediction include model-based, discrepancy metric-based,
and adversarial training-based methods [2].

Model-based TL methods assume that source and target
domains share some parameters or prior distributions of
hyperparameters [ 123]. Fine-tuning transfers network param-
eters from a source domain to a related target domain.
By learning shared parameters and prior knowledge, a well-
trained network structure from the source domain can quickly
adapt to test data in the target domain. Fine-tuning involves
pre-training a network on the source domain, then freezing
or gradually unfreezing its hidden layers while adjusting
parameters for the target domain. A depth-wise separable
convolution recurrent network (DSCRN) is presented for
RUL estimation of bearings and compared with MLP, CNN,
LSTM, CLSTM, and GRU models, demonstrating superior
performance in [123]. Additionally, the transfer strategy
across different operating conditions further reduces the
NRMSE. However, TDSCRN’s use of depth-wise separable
convolution and BLSTM involves higher computational costs
during model training.

Discrepancy metric-based TL methods aim to minimize
the difference in feature distributions between source and
target domains [124], [125], [126]. The PRONOSTIA
dataset exhibits significant distribution differences across
domains due to varying operating conditions. However, these
differences can be mitigated by minimizing the distribution
distance using specific discrepancy metrics. Once aligned
in a common feature space, the RUL prediction model
trained on the source domain can effectively generalize
to target domain data, aided by calculating typical dis-
crepancy metrics. Domain adaptation technology addresses
inconsistencies in feature distribution across different failure
behaviors, with TCNN achieving higher accuracy than
TMLP and domain-adversarial training of neural networks
DANN [126]. An advanced feature representation method
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called contractive denoising autoencoder was used to extract
deep features from the HHT marginal spectrum alongside
Transfer Component Analysis (TCA) [125]. The TBiGRU
model, which utilizes feature extraction from DTW and
Wasserstein distance, outperforms TMLP, TDANN, TCNN,
and TCA models [124]. A cross-domain transfer prediction
using TBi-LSTM and multi-kernel maximum mean dis-
crepancy was proposed, demonstrating better performance
than TMLP, tDANN, TCNN, and TCA models [127].
A cross-domain transfer prediction method using a TCN
with residual self-attention was presented, outperform-
ing DCNN, MSCNN, and BiLSTM models [128]. Deep
transfer metric learning for kernel regression was intro-
duced, outperforming DANN, TMLP, TCNN, and TCA
models [129].

Adpversarial training, commonly used in unsupervised TL,
draws inspiration from GANs [79], [122], [130], [131],
[132], [133]. Its goal is to align feature space distributions
by adjusting feature representations rather than applying
geometric transformations. The network consists of three
main components: (a) a feature extractor for deep feature
extraction from data in both source and target domains, (b)
a regressor that uses these features for RUL prediction, and
(c) a domain classifier to distinguish the origin domain of the
training data.

A deep domain adaptive network (DDAN) based TL model
with selective convolutional RNN for feature extraction
has been proposed, and it performs more accurately than
DDAN, TCNN, TRNN, and TLSTM [130]. A Wasserstein
distance-based weighted domain adversarial neural net-
work (WD-WDANN) outperforms state-of-the-art methods
like Bi-LSTM and MSCNN [131]. A metric adversarial
domain adaptation (MADA) approach has been proposed,
demonstrating its superiority over LSTM, DSCN, TCA,
LSTM-DANN, and CADA [132]. A GAN learns the data
distribution, enabling a data alignment method to extract
entity-invariant features for RUL prediction, which was effec-
tively implemented even without a precise RUL prediction
time [79]. An unsupervised domain adaptation method called
deep residual LSTM with domain-invariance was applied and
achieved a higher score compared to other feature extraction
methods like Deep CNN, Deep LSTM, and Deep Residual
Network (DRN) [133]. The Sparse Domain Adaptation
Network (SDAN) is an adaptive mechanism for extracting
domain-invariant features across varying operational condi-
tions. Its denoising capabilities allow SDAN to capture more
degradation information, resulting in higher accuracy than
1-D CNN, LSTM, and BiLSTM [122]. Dynamic Domain
Adaptation (DDA) with fuzzy set theory for conditional
distribution discrepancy loss and a dynamic adaptive factor
was proposed for predicting bearing RUL across multiple
working conditions. DDA combines the benefits of both
marginal and conditional distribution adaptation while miti-
gating the impact of distribution weight fluctuations on model
performance [134].
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Besides the three categories mentioned above, various
hybrid TL models, including (DTL-SAE [92], TPDAN [135],
TMLP [136]. LSTM-DANN [137]) have also been used
for the PRONOSTIA dataset. The multisource-multitarget
domain adaptation transfer learning model enhances the
prediction precision and generalization of RUL prediction
models [138]. The deep subdomain adaptive regression
network demonstrated strong cross-domain generalization for
RUL prediction of bearings under various operating condi-
tions using multichannel time-frequency vibration data [139].
A Bayesian dual network with unsupervised domain adapta-
tion was proposed for cross-domain RUL prediction, using
different datasets, outperforming MLP-DA, TCA, DANN,
and ATNN [140]. A deep feature disentanglement TL
network was introduced to extract domain-invariant features,
achieving the smallest error in most prediction tasks com-
pared to SOTA methods [141]. A TPDAN for transferable
RUL prediction across different working conditions was
introduced, demonstrating superior performance compared to
the same model without transfer learning, as well as DANN
and MMD, with MMD proving more effective than DANN
in feature alignment [135]. In comparison to TCN-SA,
TCN, TCN-SECA, and TCN-ECA, the multi-stage shrinkage
attention temporal convolutional network model not only
significantly reduces prediction errors such as MAE and
RMSE but also increases SCORE in [142].

IV. RESULTS

This section explores the characteristics of the raw vibration
datasets, the construction of health indicators using domain-
specific features, and the evaluation of prediction models
ranked by accuracy. We discuss experimental results, their
implications, and key trends in RUL prediction.

A. DATA ACQUISITION AND SIGNAL DENOISING

We have considered all six training sets and 11 test sets. Each
test set includes multiple sub-files recorded every 10 seconds,
with each acceleration sub-file containing 2,560 rows of
vibration data. This large dataset is sufficient to illustrate
the degradation process. The temperature sub-file includes
600 rows of temperature readings. The statistical correlation
between vibration characteristics, surface temperatures, and
bearing service life suggests that temperature has a lesser
impact on degradation monitoring [143]. Consequently,
like most researchers, we included data only from the
accelerometer, as temperature sensors provide less sensitive
information.

Figure 4. displays the complete lifetime vibration signals
from horizontal and vertical directions for six training sets
of three working conditions; the red plot shows the data
collected by the horizontal accelerometer, and the green
color shows the data collected by the vertical accelerometer.
Despite being under the same working conditions, these
signals exhibit significant differences in degradation trends
and lifetimes. The amplitudes of vibration signals increase
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over time, highlighting the considerable role of vibration
signals. The data’s limited quantity and instability make
predicting the bearings’ RUL challenging.

Directly measuring vibration signals is challenging due
to their complexity. Accelerometers mounted on the outer
case often capture noise from multiple sources. Hence,
it is imperative to enhance fault information initially to
facilitate more representative feature extraction and accurate
fault prognostics. Figure 5. shows the simple vibration data
cleaning method, the top graph shows the raw vibration data
horizontal accelerometer before failure criteria, the following
graph shows a 3-point moving average filter, and the last
graph shows the TSA of five samples before the failure. TSA
enhances features by averaging the raw signal over several
cycles, reducing noise and interference. Moving average
filters and TSA effectively reduce noise and enhance signal
clarity, enabling more accurate analysis. An unsupervised
segmented data cleaning algorithm showed higher prediction
accuracy compared to uncleaned data, even with the same
hyperparameters across different DL models in [55]. This
is because the algorithm effectively removes noise and
irrelevant segments, enhancing the model’s ability to learn
meaningful patterns.

B. HEALTH INDICATOR CONSTRUCTION

HIs are typically constructed by combining features derived
from vibration signals. Accurate RUL prediction depends sig-
nificantly on the accuracy of HI representation. Constructing
a HI from feature fusion can comprehensively character-
ize the degradation process of machines. As previously
explained, feature extraction and selection are fundamental
in HI construction.

Figure 6. illustrates the variations in different domain
features named: time domain, frequency domain, and
time-frequency domain features over the entire life cycle,
along with spatial representations as 2D images. The top
graph shows the time domain features, such as Maximum,
Mean, RMS, Variance, Standard Deviation, Power, Peak,
P2P, Skewness, Kurtosis, and Crest Factor, which provide
insights into the overall behavior of vibration signals.
They capture signal morphology and amplitude changes,
which are essential for detecting early signs of bearing
degradation. The change processes of these features differ,
with each providing only partial details about bearing
degradation. The second graph shows the frequency domain
features like Maximum Frequency, Sum of Frequencies,
Mean Frequency, Variance of Frequency, Peak Frequency,
Skewness of Frequency, and Kurtosis of Frequency. These
features reveal the frequency content of the signals, helping
identify fault-related frequencies and patterns and enabling
better-trending ability compared to time domain features.
Specifically, time-domain features are more sensitive to
damage severity, while frequency-domain features are more
sensitive to the type of damage. Feature fusion was implied
in almost all works in Table 6 because it improves RUL
prediction by combining complementary information from
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FIGURE 4. Raw vibration signal of six training sets, the red graph shows the vibration data of horizontal accelerometer, and the green plot shows the

vibration data of vertical accelerometer.

multiple feature domains, enhancing the model’s ability to
capture complex patterns and dependencies in the data.

The third graph represents the rms of eight frequency
subbands generated by three-level wavelet packet transform.
This method integrates time and frequency information,
offering a comprehensive view of how signal dynamics
evolve and exhibit superior trend ability and monotonicity
compared to time-based and frequency-based features. WPT-
based features provide better RUL prediction accuracy
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because they effectively capture both time-localized and
frequency-specific information, enabling a more comprehen-
sive analysis of signal dynamics compared to SOTA in the
fifth column of Table 6. EMD features even offer richer
information by capturing the evolution of faults than WPT,
leading to improved prediction performance, as demonstrated
in the sixth column of Table 6.

The bottom graph displays a series of 2D images
representing vibration data that meets failure criteria, which
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FIGURE 5. Raw vibration data, Moving average, and Time synchronized
average of the horizontal accelerometer.

are used as input for CNN-based RUL prediction models.
In our recent work, the pixel intensity-based image classifi-
cation model demonstrated overall superior performance in
fault identification, particularly in terms of computational
resources and processing time [144]. For RUL predictions,
GAF is better suited due to its ability to preserve spa-
tial relationships and enhance feature extraction, whereas
MTF’s compact representation aligns well with the simpler
structures and computational needs of conventional machine
learning models [55].

The latter columns of Table 6. showed even higher
prediction accuracy, as the probabilistic entropy-based HI is
less sensitive to high probabilistic distribution data, making
it suitable for use under varying load and speed conditions.
HIs constructed using a residual hybrid network with a self-
attention mechanism, combined with a fitting interval selec-
tion method to address abnormal fluctuations in the health
curve, yield improved results. Additionally, the adaptive
multi-scale feature extractor from the GCU-TCN network
has achieved the highest accuracy to date because it can
model intricate, non-linear relationships and capture multi-
scale features, offering a more comprehensive representation
of the bearing degradation process.

Visual inspection of the line plots for the 3-point moving
average of RMS energy in the fifth sub-band wavelet feature
across six training datasets reveals neither a clear trend nor
smooth behavior, as shown in the top graph of Figure 7.
This indicates that relying on a single feature is insufficient
for practical health indicator construction due to significant
variability. Multiple features must be considered to create
a reliable HI with an irreversible degradation trend. The
features should be monotonically correlated with the degra-
dation process to discard irrelevant and redundant features
that do not adequately capture the degradation mechanism.
Therefore, a monotonicity-based feature selection criterion
using Kendall’s Tau coefficient was employed to create a bar
chart of ten time-domain features across six training datasets,
as shown in the bottom graph of Figure 7. Qin et al. [145]
constructed the HI by dynamically adjusting the weights of
metrics such as correlation, robustness, and monotonicity,
based on the system’s current state, data trends, and fault
progression, as shown in the last column of Table 6.
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FIGURE 7. The characteristics of the three-point moving average
wavelet-based feature were plotted across the entire lifetime of six
training sets and the monotonicity metrics of ten time-domain features
were evaluated across same six training datasets.

Correlation is more predictive during early degradation
stages, while monotonicity becomes crucial in later stages
when degradation trends stabilize. Additionally, robustness
is prioritized during noisy or fluctuating conditions to ensure
stable predictions, which contributes to the accuracy of the
prediction.

C. RUL PREDICTION TIME (RPT)

The IEEE PHM 2012 Prognostic Challenge revealed the
actual RUL for all 11 test experiments. Table 5 summa-
rizes diverse criteria researchers use for determining RUL
prediction times. RMS feature measures the energy content
of the vibration signal and is less sensitive to fluctuations
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and noise than other time domain statistical features.
Therefore, it was used for choosing the RUL prediction time
in [146]. A fault detection technique has been developed
based on multivariate statistical process control, utilizing the
wavelet packet method and considering only two stages:
the normal operating stage and the irreversible degradation
stage in [147]. The RUL prediction time was determined by
detecting bearing anomalies using an appropriate threshold
aided by a Box-Cox transformation in [148]. An Autoencoder
was used for initial fault detection in high-dimensional data
from multivariate industrial processes in [149]. Assessing
bearing performance degradation and finding the RUL
prediction time using a long short-term memory recurrent
network was presented in [111]. A hidden Markov model
(HMM) was employed to automatically detect state changes,
allowing the RUL prediction time to be determined in [136].
The RUL prediction time of bearing was obtained using
the logarithmic squared envelope spectrum-based diversity
entropy method in [45]. In [53], the 30 method, known for
its simplicity and efficiency in detecting the RUL prediction
point, is applied as per the literature. Information gain-based
temporal segmentation was used to divide the degradation
stages with different penalty factors for outlier removal,
and the RUL prediction time was determined based on the
identified transition point in [55].

Table 5 highlights variations in RUL prediction times based
on classification models. Still, the most effective approach
to finding RPT remains uncertain. The challenge lies in the
diverse nature of systems, degradation patterns, and fault
types, which means that the ideal RUL prediction time
method may vary depending on the specific application
and context, requiring further exploration and comparative
studies. However, most research papers adhere to the RUL
prediction times and failure criteria provided during the
data release. Therefore, the following section will focus on
achieving better accuracy scores based on time allocated
during data release.

D. PROGNOSTIC MODELS

The prediction accuracy of an RUL prediction model can
be assessed in two main ways. The first method follows
the theme of the PHM 2012 competition, which involves
evaluating the model based on specific competition criteria
and benchmarks. The top graph on Figure 8. shows various
time-domain features of vibration signals throughout the
entire lifetime of the bearing, highlighting their behavior over
time. The red line on the middle graph shows an example of a
feature fusion approach to construct HI. The vibration data is
given until the RUL prediction time, and the corresponding
HI values in each time sample are constructed. Random
fluctuations are typically present in an HI curve because
of measurement noise, the stochastic nature of degradation
processes, and variations in operational conditions. These
fluctuations can undermine the stability of prediction results.
Hence, we used a moving average smoothing technique
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to remove such interferences. After constructing the HI,
a forecasting model (curve fitting) is developed to project
the HI beyond the black vertical line, with the time samples
until the failure threshold is considered as the predicted RUL.
The second method involves a straightforward evaluation
of each sample’s prediction accuracy using supervised ML
models, where the accuracy is measured on a sample-by-
sample basis, as shown in the third graph. The orange line
shows the predicted RUL from CNN based DL model, and
the blue line shows the actual RUL labeling by piecewise
linear (PWL) function. The advantage of using PWL because
of its ability to simplify and stabilize the prediction process,
particularly in cases where very long RUL values could lead
to less reliable or meaningful predictions. As in [77], the
actual RUL is capped at a maximum value—set to 15,000
secs in all experiments—if it exceeds this limit.

Significant progress in RUL prediction is evident from
the dataset releases, with Table 6 showing a steady increase
in accuracy and a reduction in percentage error. This
improvement reflects the model’s enhanced performance
and provides researchers with baseline values for further
refinement. Some researchers demonstrate higher prediction
accuracy using only a few experimental datasets from the
11 test sets. However, for the entire set of 11 tests, the most
optimal RUL prediction model to date, to the best of our
knowledge, is [145]. This model achieves an absolute mean
percentage error of 5.71% and a score of 0.791, establishing
a baseline for future incremental prediction improvements.
It achieves the highest accuracy due to effective feature vector
extraction and an accurate prediction regression model.

1) STATISTICAL AND CLASSICAL ML-BASED

Classical supervised ML model learns the relationship
between input features (time domain, frequency domain, and
time-frequency domain) and the labeled RUL, enabling them
to predict the HI of similar, previously unseen data. After
that HI construction before the RUL prediction time, they
used either curve fitting (exponential, quadratic [78], double
exponential [58] etc.) or some other dynamic regression
model to get RUL time.
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TABLE 5. Various RUL prediction time were suggested by different health stage classification methods, with time measured in 10-second units.

Experiments End PHM chal- | RMS Wavelet | Anomaly | AE LSTM |CNN- |HMM |TPDNN| Robust- MLOF-
time lenge [146] [147] [148] [149] [111] |HS [136] [45] MBDL TSC
[150] [53] [55]
Bearingl_3 2375 1801 1676 891 1613 1494 1842 740 1684 1415 573 2251
Bearingl_4 1428 1138 1087 1083 1082 1085 1108 1880 1083 1090 339 1149
Bearingl_5 2463 2301 2410 1141 2306 2413 1653 1667 680 1206 161 2443
Bearingl_6 2448 2301 2407 1641 2035 2413 1656 2159 649 2019 146 2421
Bearingl_7 2259 1501 2201 885 2030 2199 2233 880 1026 1000 757 2214
Bearing2_3 1955 1201 1939 - - 1939 1983 1995 - 1129 753 1947
Bearing2_4 751 611 740 - - 735 763 743 - 560 139 737
Bearing2_5 2311 2001 2292 - - 2311 2287 930 - 979 309 2300
Bearing2_6 701 571 684 - - 685 712 687 - 519 129 682
Bearing2_7 230 171 221 - - 223 - 225 - 179 58 224
Bearing3_3 434 351 318 - - - 451 - - 313 82 421

TABLE 6. Data-driven Al-based RUL prediction results have evolved from 2012 to early 2024, with the most accurate methods of their time leading the

field.
Testing Eol RPT RUL |LS- EMD- |[MLE |[CWT- |RVM |Bi- New- | State- | CABLSTM CAE- | SDAGA Res- GCU-
datasets SVR SOM | [151] |CNN |[[42] GRU |RVM |space |[116] SDM | [67] HAS TCN
[72] [64] [48] [108] |[115] |[60] [26] [152] |[145]
Bearingl_3|23740 | 18010 |5730 |37 1.04 0.35 1.05 5.06 4.36 2.27 1.40 0.1 2.62 3.66 18.06 |6.23
Bearingl_4{ 11719 | 11380 | 339 80 2094 |5.6 20.35 |23.3 70.5 5.6 29.2 -3.4 17.4 2.65 10.26 | 8.1
Bearingl_5| 24620 |23010 | 1610 |9 278.26 | 100 11.18 |4.35 6.21 12.42 | 2.48 -1.94 5.59 4.35 12.46 |5.88
Bearingl_6| 24470 | 23010 | 1460 |5 19.18 |28.08 |34.93 |0.68 4.11 10.96 |8.9 -18.05 342 0.68 7.27 6.55
Bearingl_7| 22580 | 15010 | 7570 |2 7.13 19.55 |29.19 |42.54 |18.63 |-22.46 |2536 |1.72 1.06 10.57 |20.82 |0.79
Bearing2_3| 19540 | 12010 | 7530 |64 10.49 |[20.19 |57.24 |174 17.4 0.99 10.49 |0.85 29.96 |0.93 1.24 0.68
Bearing2_4| 7500 | 6110 1390 10 51.8 8.63 1.44 12.23 | 1.44 5.76 6.47 -9.98 2.88 5.76 4.76 10.28
Bearing2_5|23100 | 20010 [3090 |440 28.8 23.3 -0.65 |0.32 5.18 25.89 [20.71 |0.96 7.77 2.27 13.36 | 8.53
Bearing2_6| 7000 | 5710 1290 |49 2093 |5891 |-42.64 |2.33 16.25 |-10.85 | 4.65 2.2 13.95 [543 9.08 2.95
Bearing2_7| 2290 1710 | 580 317 44.83 |5.17 8.62 8.62 1034 | 1.72 1.72 -20.5 8.62 56.9 9.76 5.54
Bearing3_3|4330 |3510 |820 90 3.66 40.24 | 1.22 3.66 6.1 -3.66 |3.44 7.52 3.66 2.44 4.13 7.32
Mean 38.64 |16.08 [20.89 |[18.96 |2.07 12.79 [9.32 6.65 -4.08 6.24 5.33 9.88 4.71
Abs mean 100.27 [44.28 |[28.18 [25.59 |10.95 |14.59 |[12.57 |10.44 |6.11 8.81 8.69 10.11 |[5.71
Score 0.3066 | 0.355 |0.4285 | 0.57 0.6682 [ 0.619 |0.64 0.6233 | 0.6508 0.686 |0.6928 [ 0.707 |0.791

Linear regression is simple, but it often lacks the flexibility
to capture complex patterns in degradation data. SVMs can
handle non-linear relationships by mapping the input features
into higher dimensions to minimize prediction error within
a certain margin. Decision trees split the feature space into
regions based on the input features and then assign a labeled
RUL to each region. Random forests improve the labeling
by building multiple trees and averaging their predictions,
enhancing accuracy and robustness against overfitting [43].
Gradient Boosting is an ensemble method that builds decision
trees sequentially, where each tree corrects the errors of its
predecessor, offering better accuracy than single decision
trees or random forests by focusing on difficult-to-predict
instances [153]. Neural Networks can learn non-linear
relationships between features and HI; although they lack
temporal awareness, they were still effective for RUL
prediction tasks [136].

In summary, statistical and classical ML models are well-
understood, easy to implement, and interpretable and can
be highly effective with well-engineered features. However,
they often require extensive feature engineering and may
struggle with capturing complex, non-linear relationships
or temporal dependencies in degradation processes, limiting
their accuracy in some cases.
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2) DEEP LEARNING-BASED

Depending on the model type classified in Section III-D2,
the DL architecture is tailored to capture relevant features
and temporal dependencies. Here are some major works that
achieve lower prediction errors and higher accuracy, which
are summarized in Table 7. Using different features within
the same prediction model results in two varying accuracy
scores due to the distinct features used. This is because the
type and quality of features directly influence the model’s
ability to learn and make accurate predictions. Some features
may capture more relevant information or patterns from the
data, leading to higher accuracy, while others may not be as
informative, resulting in lower performance. Therefore, even
when the underlying algorithm remains constant, the choice
of features can significantly impact the model’s predictive
accuracy.

Besides the same features, the prediction model hyper-
parameter also determines model accuracy, For example,
The third and fourth columns of Table 7 show disparate
prediction outcomes of the CNN models due to differences
in their hyperparameters and architectural configurations
despite using the same input data. The model presented in
the third column employs three convolutional layers with
smaller kernel sizes (16x 1, 8x 1, and 4x 1) and fewer filters
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(4, 8, and 16), focusing on fine-grained feature extraction.
In contrast, the model presented in the fourth column uses
three layers with larger filters (64, 32, and 16) and deeper
fully connected layers, enabling broader feature capture and
richer representations. These variations in filter size, number,
and layer depth significantly influence the models’ feature
extraction and predictive performance.

Similarly, the LSTM model used in the eighth and ninth
columns used different numbers of network parameters can
produce varying results, even when the same raw vibration
data is used as input, as shown in Table. The hyperparameters
for each DL model are listed just below Table 7. This variation
occurs because different hyperparamaters are used to build
the model as presented in [105] and [106], respectively.
A model with too few parameters may struggle to capture the
complex patterns within the vibration data, leading to under-
fitting and poor performance. Conversely, a model with too
many parameters might overfit the training data, performing
well on training but poorly on new data. Therefore, finding
the right balance in the number of parameters is crucial for
achieving optimal results, even when the input data remains
unchanged.

The tenth column of Table 7 (CLSTM) provides higher
accuracy because it combines convolutional layers to capture
spatial features with LSTM’s ability to model temporal
dependencies, effectively learning both spatial and sequential
patterns in the data. The model CLSTM model used in
the eleventh column shows significant accuracy compared
to the model used in the tenth column because using two
sensor data in the same ConvLSTM model improves accuracy
because it provides complementary information, allowing the
model to capture a broader range of system behaviors and
anomalies. By combining the strengths of CNN and RNN,
the TCN model, as shown in the twelfth column, achieves
higher prediction accuracy. Stacking the soft threshold and
attention mechanism in TCN further improves prediction
accuracy, as shown in the thirteenth column. The third-to-
last and second-to-last columns display the prediction results
from the graph-based neural network. The model with the
self-attention mechanism achieves higher accuracy compared
to the others.By using advanced feature extraction with a
dual-stage attention mechanism and an advanced prediction
model like GRU, the authors achieve higher accuracy [110],
as shown in the last column of Table 7. This is because
probabilistic RUL prediction shows better than deterministic
RUL prediction because it accounts for uncertainty and
variability in the system’s degradation, providing a more
reliable and flexible forecast.

In summary, these DL techniques provide a broad
overview. Still, the exact implementation of the prognostic
model relies heavily on data preparation, including denoising,
feature engineering, model configuration, and the compu-
tational resources available. Experimenting with various
architectures and hyperparameters is typically required to
discover the most effective model for a particular task.
While we describe structural characteristics for comparison,
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detailed model descriptions are necessary for specific
contrasts.

3) TRANSFER LEARNING-BASED
Same-bearing RUL prediction involves using a model trained

on one operating condition (specific load and RPM) and
predicting RUL in another operating condition. In contrast,
cross-bearing RUL prediction allows a model trained on
one bearing to predict the RUL of a different bearing and
different operating condition [121], [138], [154]. A rolling
bearing accelerated life experimental dataset from Xi’an
Jiaotong University (XJUT) is like PRONOSTIA datasets,
and many researchers used that dataset as multisourse TL
to achieve higher accuracy [42]. Pre-trained models can be
quickly adapted to new bearings or conditions, reducing the
time and computational resources needed to train a model
from scratch. However, some reservations exist; significant
differences between the source and target domains can make
negative transfer learning, leading to worse performance.
When run-to-failure data is unavailable in the target domain,
it happens. Careful selection of source data and fine-tuning
strategies are required to avoid this [79].

Researchers used different experimental datasets and
varying numbers of experiments for the source and target
domains in TL studies. This inconsistency leads to biased
comparisons, even when testing on the same experiments,
as the differences in data and experimental setups can skew
the results. As a result, providing a comparative table for
TL outcomes across studies would be misleading. We have
avoided the comparison Table in this Section to maintain
fairness and accuracy.

In summary, TL learning provides a powerful approach to
RUL prediction, enabling the development of robust models
that can generalize across different machines, environments,
and operating conditions. By transferring knowledge from
source domains to target domains, TL models can achieve
high prediction accuracy even in challenging scenarios with
limited data. This makes them particularly valuable in
industrial applications where data availability varies widely,
and operational conditions change over time.

V. DISCUSSION

A. LESSON LEARNED FROM PROGNOSTIC MODELS
DL-based models generally outperform statistical and clas-
sical ML approaches in handling high-dimensional data
and capturing long-term dependencies for RUL prediction.
DL models, particularly AE, CNNs, LSTMs, and TCNs,
are used as a powerful approach to RUL prediction in
this dataset. DL models also automate feature extraction,
capturing non-linear relationships in vibration data, and are
scalable for large datasets.

In DNNs, raw data or time-frequency features can be used
for training, allowing for the extraction of more abstract
features. However, the training is time-consuming and prone
to local optima or overfitting. In DBN, stacked RBMs
followed by BP neural network learning fuse multi-feature
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TABLE 7. RMSE values of various DL models in RUL prediction.

Testing DNN |CNN |CNN |MS- |STFT- |CNN- |LSTM |LSTM |CLSTM|CLSTM|TCN |TCN- |GCN |AGCN | SAGCNP-DA-
datasets CNN |CNN |SA SA SA GRU
Bearingl_3 |22.54 |10.52 |33.7 8.98 9 239 28.02 | 14.68 |26.73 17.08 |12.9 11.7 |59 6.2 4.2 2.25

Bearingl_4 |36.27 |33.28 |28.9 |27.47 |24.4 104 |31.01 (3237 [26.83 |2393 |74 8.5 11.8 14.1 12.1 2.73
Bearingl_5 |32.15 |32.22 |13 2225 |222 16.7 |26.16 |32.05 |25.04 |13.87 |14.1 13 5.6 4.8 7.5 2.53
Bearingl_6 |38.43 |26.81 |143 |2295 |229 134|323 |29.08 |26.73 |15.31 13 119 |42 2.6 59 2.47
Bearingl_7 |32.6 17.96 |21.3 16.36 | 10.3 134 2234 |23.19 |26.81 |2043 |253 12.9 10.2 11.6 |38 6.2

Bearing2_3 |46.19 |31.36 |26 30.25 |40.2 | 343 33.99 |3458 |3239 |14.53 |23.1 23 8.4 7.6 6.9 1.65
Bearing2 4 |55.72 |39.04 |12.2 |28.69 |8.9 6.44 |3486 |40.7 |[3433 |1822 |75 642 |24.1 25.7 |244 |6.17
Bearing2_5 |41.03 2941 |314 |30.16 |31.6 |36.2 |36.26 |32.75 |35.12 |21.89 |314 16.1 28.1 246 229 |25

Bearing2_6 |39.85 |27.77 |18.6 |25.71 |25.7 16 3297 3622 |31.54 |17.1 18 13.8 127 |79 9.9 6.86
Bearing2 7 |44.21 |43.02 |42 30.26 |30.6 |34.6 [33.15 [33.68 [32.73 |23.68 |325 |25 258 253 |255 [445
Bearing3_3 |23.75 |21.83 20.07 |35.7 2474 12037 |22.74 |18.66 11.7 14.8 10.6 | 7.18
Mean 37.52 |28.47 |25.12 (2392 |23.8 |21.39 |30.52 |[29.97 [29.18 |[18.6 19.97 [14.8 13.5 13.2 12.15 |4.09

* The hyperparameters for each DL model are provided in the following references, listed sequentially from left to right [105], [105], [100], [105], [63], [100],

[106], [105], [106], [106], [100], [100], [71, [74], [7], [110].

data but face long training times and overfitting. Genetic
algorithms and Nesterov matrix optimization can address
these issues. DBN outperforms BPNN in prediction and
classification, learning directly from raw data without manual
feature extraction. Preprocessing methods like FFT and
integrated learning further improve DBN accuracy.

The LSTM method is less effective than CNN for feature
extraction from large datasets and requires significantly
more training time. LSTM effectively preserves valuable
time information from vibration data but requires more
extended training due to weight optimization. Heuristic
algorithms like particle swarm optimization can enhance
this process, and using methods like waveform entropy
can improve learning efficiency. GRUs balance performance
and efficiency, making them a preferred choice for RUL
prediction when computational resources are limited or faster
training is needed. Moreover, Bi-GRU often outperforms
GRU by integrating information from both directions of a
sequence, leading to better performance, especially in tasks
that require a nuanced understanding of data patterns.

Attention-based DL models enhance feature extraction by
focusing on the most relevant data, improving the capture
of critical patterns and dependencies. Attention mechanisms
refine feature extraction by integrating domain knowledge,
leading to more precise and context-aware predictions.

Bearings are used in various industries with diverse
purposes, such as ensuring safety, maintaining operational
efficiency, and supporting financial sustainability. Recent
advancements in prognostics have led to the development
of numerous RUL prediction models. However, industrial
adoption has faced challenges due to inherent assumptions,
data requirements, and practical implementation issues.
This work provides insights into selecting appropriate RUL
prediction models by offering a balance between mathe-
matical understanding and alignment with specific business
objectives, paving the way for more effective and practical
applications in industry.

B. CHALLENGES IN PROGNOSTICS
Accurately predicting the RUL of bearings from vibration
data presents several significant challenges. First, the limited

49450

availability of bearing degradation experimental data makes
building robust models that can generalize well across
different scenarios difficult. Second, determining the optimal
time to make RUL predictions is crucial; predicting too
early might result in inaccurate forecasts, while predicting
too late may not allow sufficient time for maintenance
interventions. Third, the interpretability of the prediction
models is often a challenge, as complex Al-driven approaches
like deep learning can act as black boxes, making it difficult
to understand how the model arrives at its predictions. Finally,
translating these RUL prediction models into practical
industrial applications poses another challenge, as models
must be reliable, prompt, scalable, and easy to integrate into
existing systems to be helpful in real-world settings.

1) LIMITED NO OF BEARING DEGRADATION EXPERIMENT
Limited experimental data complicates RUL prediction
due to uncertainties in degradation patterns. With fewer
experiments, the model may struggle to capture the full
range of wear and tear, leading to less accurate predictions
and increased difficulty in generalizing to different operating
conditions; as the percentage of training data increases,
the model’s prediction accuracy improves. Additionally,
increasing the proportion of labeled data reduces the
RMSE, enhancing prediction accuracy. This indicates that
the model’s ability to extract system health features and
understand the degradation process improves with more
comprehensive training data.

Noisy sensor readings and complex temporal dependencies
among machine components further hinder accurate predic-
tions. Addressing these challenges requires the effective use
of sensor data to capture machines’ intricate operational
behaviors.

2) OPTIMAL TIME TO MAKE RUL PREDICTIONS

Currently, widely used methods for RUL prediction are based
on ISO standards like the ISO/7919 and ISO/10816 series
or industry-specific standards such as VDI/3834 for wind
turbines. These standards only establish RUL prediction
times for certain existing original HIs. However, there is no
standard for determining the RUL prediction times for newly
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developed HIs, particularly those without clear physical
interpretations. The best time to predict RUL during the
degradation process is when there is enough data to capture
the initial signs of wear before the system experiences
significant failure-related behavior. Ideally, this is when the
degradation is steady and measurable, allowing the model
to accurately forecast the remaining life of the system while
still providing sufficient lead time for maintenance planning.
Premature predictions may lack precision due to insufficient
degradation data, while late predictions might not allow time
for intervention.

3) INTERPRETABILITY OF MODEL

Al approaches were traditionally seen as difficult to explain
due to their lack of transparency. However, Explainable Al
aims to make Al systems understandable to humans [155],
while Interpretable Al focuses on designing models that are
inherently clear and transparent [153], [156].

An interpretable deep transfer learning model based
on the transfer domain validity index was applied for
RUL prediction, successfully enabling transfer prediction
across different working conditions and different bearings
datasets [157]. The weak interpretability of the DL models
prevents their wide use in practical systems, and graph neural
network (GNN) is a scalable approach for semi-supervised
learning on graph-structured data [158]. Bearings’ time series
data was converted into a graph using regression shapelets,
followed by a deep GNN combined with a GRU for RUL
prediction in [159].

DL-based models remain difficult for humans to interpret
and are further categorized into explainable and black-
box models. Explainable ML clarifies why a model made
a particular prediction, focusing on making the model’s
outputs understandable to humans. GNNs are one of the
examples of an explainable ML model and operate within the
graph domain to address the limitations of black-box models
commonly found in many deep learning methods [160].
A comparative review of five explainable machine learn-
ing methods applied to RUL prediction and Grad-CAM
showed the most robust model in image processing [161].
Recent work on multiplex aggregation heterogeneous GNN
(MAHGNN) has shown more accurate prediction compared
with GNN-based SOTA [162].

Explainable machine learning techniques can be classi-
fied into two groups: model agnostic and model specific.
Model-agnostic techniques refer to methods that can be
universally applied across different ML models, irrespective
of their structure or type. Examples include LIME (Local
Interpretable Model-agnostic Explanations) [163] and SHAP
(SHapley Additive exPlanations) [164], which explain model
predictions by approximating the contribution of individual
features. These techniques are flexible and generalizable,
making them ideal for interpreting diverse models such
as decision trees, neural networks, and ensembles. On the
other hand, model-specific techniques are tailored to specific
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categories of ML models, leveraging their unique internal
structures or properties. Examples such as Grad-CAM [165],
saliency maps [166], and layer-wise relevance propagation
(LRP) [167] are predominantly used for deep learning mod-
els, utilizing gradients, activations, or learned representations
to interpret predictions in a manner specific to neural network
architectures.

4) INDUSTRIAL IMPLEMENTATION

The fourth challenge is aligning the design of RUL pre-
diction models with practical industrial implementation.
While experimental datasets in laboratories generate valuable
knowledge, the real value of RUL prediction models is
realized only when they are applied in real industrial
settings. This alignment is crucial because the ultimate goal
is to save costs and improve efficiency in the industry.
Therefore, it’s essential to harmonize the model creation
process (knowledge generation) with its industrial application
(knowledge utilization) to ensure the technology delivers
tangible benefits. Most RUL prediction models are developed
in straightforward laboratory settings; extracting high-quality
temporal features to minimize environmental noise is crucial.
More robust feature extraction techniques are needed for
real-world industrial applications.

In predicting bearings’ RUL, computation time is just as
critical as accuracy. Effective condition management requires
swift decisions to prevent failures and minimize downtime.
Quick computation allows for real-time monitoring and rapid
response, enabling timely interventions that can extend the
bearing’s life and optimize operational efficiency. Therefore,
balancing accuracy with fast computation is also challenging
in industrial applications.

5) RECOMMENDATION

For accurate RUL prediction, improvements can be made
across all three stages: data cleaning, effective feature vector
extraction, and enhancing prediction model performance.
Each stage showed ample cases for parallel exploration to
optimize the overall prediction accuracy by refining data
quality, extracting meaningful features, and fine-tuning the
model’s capabilities.

Researchers often use only horizontal accelerometer
data because it provides more information, but prediction
accuracy improves by including horizontal and vertical data.
To achieve more accurate predictions, we recommend utiliz-
ing both types of accelerometer data despite the increased
computational resource requirements.

Classical ML limited AI’s role in RUL prediction. DL has
revolutionized the field by enabling end-to-end prognostic
methods that link growing monitoring data directly to
machine health states. Future transfer learning approaches
aim to apply knowledge across tasks, addressing application
challenges.

DL methods require extensive historical data for training,
which can be time-consuming and computationally intensive.
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Predicting RUL using neural networks and deep learning
offers high model accuracy and a longer prediction horizon.
However, these methods come with significant challenges.
They require extensive condition monitoring data for accurate
predictions, involve high computation time, and can suffer
from overfitting. Determining the optimal network structure
is also challenging, and the neural network can be unstable,
producing different results across multiple runs.

Most existing studies predict RUL across different working
conditions within the same bearing dataset, making them
unsuitable for data with significant distribution shifts. Few
studies explore RUL prediction across different bearings and
those that rely heavily on the availability of large amounts of
labeled data. A multi-source adversarial transformer model
is required to achieve greater generality, which can promise
the current need for an industrial online accurate prediction
model.

TL success depends on the assumption of related degra-
dation behaviors across failures. If invalid, negative transfer
can occur, reducing RUL prediction performance. This
may happen if source domain degradation behaviors differ
from the target domain, as seen with bearings of varying
specifications. Metrics to assess cross-domain transferability
are needed to select relevant source domains and improve
model performance.

GANSs can generate synthetic high-transferability data to
enhance RUL prediction through transfer learning. However,
these models sometimes fail to capture related degradation
behaviors, and their transfer performance varies across
scenarios. Therefore, it is recommended that transitive
transfer learning be utilized to reuse source domain degra-
dation behaviors in the target domain to mitigate negative
transfer.

VI. CONCLUSION

This paper reviews state-of-the-art AI methods for bearing
RUL prediction, including traditional machine learning,
deep learning, and transfer learning on PRONOSTIA data.
The datasets exhibit highly non-stationary characteristics,
with end-of-life varying significantly even under the same
operating conditions. When testing new RUL prediction
algorithms, researchers are encouraged to compare their
proposed methods against the benchmark results from this
study. This could involve providing more comprehensive
RUL predictions for datasets that were only partially or
unsuccessfully predicted here or achieving comparable scores
with methods that offer better computational efficiency
or interpretability. Deep learning with transfer learning
achieves superior accuracy in RUL prediction. However, each
approach to signal denoising, feature engineering, and RUL
prediction has strengths and weaknesses. Layer combination
and parameter fine-tuning can further enhance prediction
scores. The experimental results demonstrate that deep
learning models with transfer learning capabilities achieve
higher accuracy in RUL prediction.
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