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A New Hyperspectral Reconstruction Method With
Conditional Diffusion Model for Snapshot Spectral

Compressive Imaging
Yifan Si , Zijian Lin , Xiaodong Wang , and Sailing He , Fellow, IEEE

Abstract— In the coded aperture snapshot spectral imaging
(CASSI) system, the coded and compressed single-channel mea-
surements need to be reconstructed into hyperspectral cubes.
Existing discriminative models reconstruct the spectral cube by
optimizing the mean squared error (MSE) between the ground
truth and the predicted image, employing peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) as metrics
to gauge the quality of reconstruction. However, these indicators
often possess significant limitations in mimicking human visual
perception and in discerning the impact of image distortions
on perceived visual quality. In this article, a new model named
CASSIDiff is proposed to reconstruct CASSI measurements,
achieving advanced results in perceptual loss-based evaluation
metrics such as learned perceptual image patch similarity
(LPIPS) and Fréchet inception distance (FID). The diffusion
model, which enjoys high accuracy and reliability in generative
tasks, is used for the first time for the hyperspectral reconstruc-
tion task. A feature fusion mechanism based on discrete wavelet
transform (DWT) is used to weaken the noise interference effect
in the conditional diffusion model. Considering the interspectra
similarity and long-range dependencies of hyperspectral data,
the spatial–spectral attention mechanism is also introduced.
Experiments show that CASSIDiff not only outperforms most
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existing algorithms in simulation datasets but also shows robust-
ness to real data published and collected in our home-built
CASSI system. The code and models are publicly available at:
https://github.com/YifanSi/CASSIDiff.

Index Terms— Coded aperture snapshot spectral imaging
(CASSI), conditional diffusion model, Fréchet inception distance
(FID), hyperspectral reconstruction, learned perceptual image
patch similarity (LPIPS).

I. INTRODUCTION

HYPERSPECTRAL imaging is a technique with high-
spectral resolution and wide wavelength coverage [1],

[2], [3], [4], [5], [6], [7], [8]. Unlike single-channel grayscale
images and three-channel RGB images, the number of chan-
nels of hyperspectral images is between dozens and thousands,
and its spectral resolution can reach several nanometers [9],
[10]. Based on the above characteristics, the hyperspectral
imaging has a wide range of applications, including art
identification [11], crop health [12], coastline mapping [13],
forests [14], mineral exploration [15], urban and industrial
infrastructure [16], production line product quality [17], envi-
ronmental monitoring [18], and more.

Hyperspectral imaging principles can be roughly divided
into four categories: grating spectroscopy [19], prism spec-
troscopy [20], tunable filter spectroscopy [21], and chip
coating [22]. Most of the traditional imaging methods, such
as spot scan [23], [24], [25] or line scan [26], [27], are time-
consuming, which makes it difficult to acquire high-precision
hyperspectral images of moving objects. The emergency of
snapshot compressive imaging (SCI) system [28], [29], [30]
has solved this problem. Examples include coded aperture
snapshot spectral imaging (CASSI) system [31], [32], [33]
and computational tomography imaging system (CTIS) [34],
[35], [36]. They are spatially and spectrally modulated and
compressed by different coding devices and then reconstructed
to hyperspectral data by corresponding algorithms.

In the current snapshot-based compression imaging system,
the CASSI technology is the most advanced and has the best
imaging quality, which has become the mainstream research
direction and promoted the development of related reconstruc-
tion algorithms. Some traditional model-based algorithms are
based on hand-crafted regularization terms, such as total varia-
tion prior terms [37], [38], [39] and low-rank prior terms [40],
[41], [42]. These algorithms suffer from poor reconstruction
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quality and long optimization times. With the rapid develop-
ment of deep learning, convolutional neural networks [43],
[44], [45] are capable of end-to-end reconstruction and can
directly restore 2-D compressed encoded data into 3-D hyper-
spectral data. The article [46] designed a deep convolutional
network to learn Gaussian mixed scale priors and proved that it
can learn more spatial–spectral correlations than hand-crafted
prior. The reconstruction accuracy of CNN-based correlation
network [47], [48], [49], [50] has made a qualitative leap
compared with traditional algorithms, but it lacks effective
solutions in the face of problems such as nonlocal correlations
and long-range dependencies, and it is difficult to correlate
features of different receptive fields. Relevant studies [51],
[52], [53] applied the attention mechanism in natural language
processing to the hyperspectral reconstruction algorithm to
extract and correlate features of spatial dimension and spectral
dimension, respectively. The TSA-Net [52] uses self-attention
mechanisms in three directions of x , y, and z for hyperspectral
feature vectors, and jointly models spatial and spectral correla-
tions in a sequentially independent manner. MST [53] not only
uses an attention mechanism for the spectral direction but also
introduces real mask information to make up for the missing
spatial features. However, the above algorithms still have great
room for improvement in both reconstruction accuracy and
quality.

All of the aforementioned algorithms aim to achieve higher
peak signal-to-noise ratio (PSNR) [54] and structural similarity
index (SSIM) [55] scores by minimizing the mean squared
error (MSE) [56]; yet, these metrics have been recognized for
their significant limitations across various scenarios [57], [58],
[59], [60], [61], [62], [63]. PSNR primarily assesses pixel-level
errors, quantifying image quality through the ratio of peak sig-
nal power to noise power. However, it falls short in accurately
emulating the human visual system’s perception of fine details
and complex visual scenes, and it lacks sensitivity to subtle
content changes within images [64]. SSIM improves upon
PSNR by incorporating considerations of luminance, contrast,
and structural information, thereby providing a more nuanced
simulation of human visual perception. Nonetheless, it may
still fail to fully encapsulate the spectrum of subjective human
responses to image quality [65]. In addition, both indices might
struggle to discern the impact of diverse image distortions—
such as those caused by compression, noise, or blurring—on
the perceived visual quality [57], [66]. Consequently, the
quality of reconstruction is not solely contingent on pixel-level
errors; the fidelity to human visual perception is equally indis-
pensable and should not be overlooked. Nonetheless, there is
a dearth of research dedicated to hyperspectral reconstruction
tasks within the CASSI system.

Generative models, particularly those evaluated through
perceptual loss, outperform discriminative models, yet they
are underutilized in hyperspectral reconstruction tasks. Our
work pioneers the application of a conditional denoising diffu-
sion probabilistic model (DDPM) for this purpose, achieving
advanced results in perceptual loss metrics (learned per-
ceptual image patch similarity (LPIPS) [57] and Fréchet
inception distance (FID) [67]). Fig. 1 illustrates our conditional
DDPM, with detailed mathematical foundations provided in

Fig. 1. Schematic of the conditional diffusion model. Also, the diffusion
process is from right to left, and the reverse process is from left to right. θ

in pθ is a learnable parameter, in other words, the parameter of conditional
noise predictor.

the Appendix. The reconstruction of hyperspectral data from
CASSI system measurements is inherently challenging due
to the ill-posed nature of deriving a 3-D cube from a 2-D
image, compounded by optical aberrations and noise. Unlike
super-resolution algorithms that focus on spatial dimension
expansion, hyperspectral reconstruction must also recover
spectral information. We introduce a novel approach by inte-
grating encoded 2-D measurements into the diffusion process
to guide the generation of accurate hyperspectral data.

Considering the spectral similarity and long-range depen-
dencies in hyperspectral data, we have designed a spatial–
spectral attention mechanism capable of capturing feature
connections across different scales. However, the diffusion
process’s Gaussian noise often obscures spatial features with
high-frequency noise, diminishing the effectiveness of direct
measurement integration. To address this, we employ a wavelet
transform-based structure that better fits high-frequency sig-
nals such as edges and object details, enabling the learning
of both explicit and implicit feature information. Leveraging
the diffusion model theory and the unique characteristics
of hyperspectral data, we present CASSIDiff, a generative
network that reconstructs high-fidelity hyperspectral cubes
from CASSI-generated measurements. The main contributions
of this article are as follows.

1) The proposed CASSIDiff applies a conditional diffusion
model to a CASSI optical system for hyperspectral
reconstruction tasks, demonstrating advanced recon-
struction performance in perceptual loss-based evalua-
tion metrics. We analyze the limitations inherent in the
current evaluation frameworks for hyperspectral recon-
struction quality and introduce the assessment method
that aligns more closely with human visual perception
for the first time. Experimental results have also shown
that our proposed CASSIDiff has significant advantages
in related matrics (LPIPS and FID).

2) A feature fusion mechanism based on wavelet trans-
form is introduced to effectively alleviate the noise
interference problem in the generation model. Also,
a spatial–spectral attention mechanism is designed to
deal with the spectral similarity and long-range depen-
dence of hyperspectral data.

3) Employing our home-built CASSI system, an empir-
ical dataset has crafted and published. It comprises
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Fig. 2. (a) Means coding principle of the CASSI system. (b) Means the reconstructed pseudo-color images of the single wavelength and spectral curves in
typical regions are shown. Two scenes in simulated data are included in the results. Zoomed-in-view for better view.

measurements from five different scenes, each with a
resolution of 728 × 512 pixels, covering a spectral range
from 450 to 650 nm. Concurrently, we have utilized a
QE PRO spectrometer from Ocean Optics to acquire
spectral curve data for specific regions, serving as a
reference. This dataset is invaluable for validating the
algorithm’s robustness across various scenarios.

II. METHOD

A. CASSI Optical System
The principle of the CASSI system is shown in Fig. 2(a).

On the left is the hyperspectral cube, denoted by F ∈

RH×W×Nλ , where H and W are the height and width of the
hyperspectral cube, respectively, and Nλ is the number of
channels. The encoding mask is recorded as M∗

∈ RH×W ,
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where H and W are the height and width, respectively, which
are equal to the spatial size. Its function is to modulate the
hyperspectral cube space. The mathematical expression is as
follows:

F ′(:, :, nλ) = F(:, :, nλ)
⊗

M∗ (1)

where F ′ represents the hyperspectral cube after spatial mod-
ulation, nλ ∈ [1, . . . , Nλ] represents the spectral channel, and⊗

represents the matrix dot product. For modulation of the
spectral dimension, prisms are added in the optical path. After
passing through the prism, F ′ is shifted along the y-axis.
F ′′

∈ RH×(W+d(Nλ−1))×Nλ represents the shifted hyperspectral
cube, where d represents the shifted length. Let λc be the
reference wavelength; that is, F ′′(:, :, nλc) does not shift along
the y-axis after passing through the prism. Then, the spectral
modulation of the prism is expressed as follows:

F ′′(u, v, nλ) = F ′(x, y + d(λn − λc), nλ) (2)

where (u, v) represents the plane coordinates of the detector,
λn represents the wavelength of the nλth channel of the
hyperspectral cube, and d(λn − λc) represents the spatial
offset of the nλth channel along the y-axis. Finally, the cube
modulated by space-spectrum is received by the detector and
is expressed as follows:

Y =

Nλ∑
nλ=1

F ′′(:, :, nλ) + G (3)

where Y ∈ RH×(W+d(Nλ−1)) represents the compressed
coded measurement received by the detector and G ∈

RH×(W+d(Nλ−1)) represents the noise added. Solving F–Y is
a typical ill-posed problem. We use the conditional diffusion
model to reconstruct F and denoising.

B. Structure of CASSIDiff

Similar to standard DDPM, we also estimate the error
through a designed U-Net structure. We use the encoded mea-
surement as a prior to guide the diffusion model to reconstruct
the hyperspectral cube. The mathematical expression is as
follows:

ϵθ (xt , M, t) = D
((

E M
t + E x

t , t
)
, t

)
(4)

where E x
t is the feature map of the current timestep and E M

t
is the conditional measurement. After feature extraction and
timestep embedding, the feature map is input into the decoder
D for reconstruction. The overall structure of U-Net is shown
in Fig. 3.

In other tasks based on conditional diffusion models such as
super-resolution, the prior image is usually input as an invari-
ant constant during feature embedding. The reason is that the
low-resolution image still restores complete spatial informa-
tion, which is not easily disturbed during the diffusion process.
However, the measurement E M

t encoded and compressed by
the CASSI system has been destroyed and reorganized in the
spatial and spectral dimensions. Therefore, directly embedding
it to the feature map generated during the diffusion process
will have a very poor reconstruction effect. Inspired by the

work [68], we adopt a dynamic encoding method to merge
hierarchically at the feature level. The effect is that different
levels of coding layers can, respectively, extract low-level
contour information, high-level detail feature information, and
spectral information in different areas, which can enhance
the features at the current step in the diffusion process and
accelerate retrieve of information. The specific method is to
input E x

t and E x
t into two encoders, respectively. One of

the encoders is part of U-Net in the diffusion model, and
their feature extraction layers are composed of similar blocks
like ResNet. The feature maps mM

k and mx
k with equal size

obtained after passing through the kth layer, respectively, will
be fused through calculation which is similar to the attention
mechanism. The mathematical expression is as follows:

A
(
mx

k , mM
k

)
=

(
LN

(
mx

k

) ⊗
LN

(
mM

k

)) ⊗
mM

k (5)

where LN represents the layer normalization and
⊗

represents
the matrix dot product. Two feature maps with the same
size obtained by the diffusion process and prior information,
respectively, are multiplied after layer normalization, and then
obtain a learnable attention map, which has the ability to learn
the weight distribution of features in the spatial and spectral
dimensions. Finally, the attention map and mM

k do a matrix dot
product to guide the diffusion process by prior information.

C. DWT-Based Attention Mechanism

There is a phenomenon in the experiment that directly
fusing the feature map in the diffusion process with the coded
measurement will result in a lot of noise in the generated
results, causing the object to be covered by noise. The
reason is that during the fusion process, E x

t will introduce
high-frequency noise that cannot be eliminated later. In this
article [68], the FF-Paser module based on the Fourier trans-
form is used to filter high-frequency noise. The feature map
can be converted from spatial domain to frequency domain
through the Fourier transform, so that the model can learn
the feature information covered by the noise and indirectly
filter out the high-frequency noise. The wavelet transform [69],
[70], [71] can express local features in the time domain (or
spatial domain), and also has better expression ability in the
face of mutation signals. Therefore, we designed an attention
mechanism based on the discrete wavelet transform (DWT),
which not only ensures high-quality reconstruction effects
but also has a faster convergence speed during training. The
specific structure is shown in Fig. 4.

A feature map in spatial domain m ∈ RH×W×C becomes
C(H/2)×(W/2)×4C after 2-D DWT, which is transformed into
frequency domain with size changing simultaneously. Each
channel represents the low-frequency and high-frequency fea-
ture maps in horizontal and vertical directions, respectively.
Let W[·] be the 2-D DWT, then M can be expressed as
follows:

M = W[m] ∈ C
H
2 ×

W
2 ×4C . (6)

For the feature map in frequency domain, we introduce a
learnable attention map A ∈ C(H/2)×(W/2)×4C , which can
automatically focus on the details in the frequency domain
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Fig. 3. Illustration of CASSIDiff. The principle of serial spatial–spectral attention mechanism and DWT-based attention mechanism in encoder and decoder
are given in the following sections.

Fig. 4. Illustration of DWT-based attention mechanism, where “C” stands
for concatenation operations in the channel dimension, and “A” stands for
matrix dot product operation. The notations “LL,” “HL,” “LH,” and “HH”
correspond to the low–low, high–low, low–high, and high–high frequency
subbands, respectively, capturing different aspects of the image’s texture and
details.

through training. The new feature map M ′ can be expressed
as follows:

M ′
= A ⊗ M (7)

where
⊗

represents the matrix dot product. The feature map
M ′ is transformed from frequency domain to spatial domain
through 2-D discrete wavelet inverse transform. The final
feature map m ′

∈ RH×W×C can be expressed as follows:

m ′
= W−1[M ′

]
(8)

where W−1 represents the 2-D discrete wavelet inverse trans-
form. The attention mechanism based on DWT can distinguish
different information in both spatial domain and frequency
domain, effectively characterizes global features while captur-
ing local details, and filters out most noise.

Fig. 5. Illustration of serial spatial–spectral attention mechanism. The input
feature mapping is performed by attention operation in spectral and spatial
dimensions, respectively, to extract the intrinsic correlation information.

D. Serial Spatial–Spectral Attention Mechanism

Different from tasks such as super-resolution and semantic
segmentation based on RGB images, dual reconstruction to
measurements collected by the CASSI system in spectral
and spatial dimensions requires rethinking the design of the
feature extraction module. The attention mechanism module
in the original U-Net network cannot fit well to the spatial
sparsity and spectral density of the hyperspectral cube. The
channel attention mechanism proposed in SEnet [72] can
not only reduce the amount of calculation and enhance the
expression ability of the model but also has a strong learning
ability for the weights between different wavelengths (or
channels). Therefore, we designed a serial spatial–spectral
attention mechanism for related characteristics. The specific
structure is shown in Fig. 5.

For the feature map m ∈ RH×W×C , the channel feature
Zc ∈ R1×1×C is first obtained after global pooling. This is
a process of global spatial information compression, and its
mathematical expression is as follows:

Zc =
1

H × W

H∑
i=1

W∑
j=1

m(i, j). (9)
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Algorithm 1 Training

Input: Measurement and ground truth pairs P =
{(

xk
M , xk

gt

)}K
k=1

, the total number of diffusion steps T
1: Initialize: get shifted measurement xs = S(xM) by shift back operation S and randomly initialize conditional noise predictor

∈θ

2: repeat
3: Sample

(
xs, xgt

)
∼ P

4: Sample ϵ ∼ N (0, I) and t ∼ Uni f orm({1, . . . , T })

5: Take a gradient descent step on ∇θ∥ϵ − ϵθ (xt , xs, t)∥, where xt =

√

ᾱt xgt +

√
1 − ᾱtϵ

6: until converged

Algorithm 2 Inference
Input: Measurement x , the total number of diffusion steps T

Initialize: get shifted measurement xs = S(xM) by shift back operation S
2: Load: conditional noise predictor ∈θ

Sample xT ∼ N (0, I)
4: for t = T, T − 1, . . . , 1 do

Sample Z ∼ N (0, I) if t > 1, else Z = 0

6: Compute xt−1 according to equation (12): xt−1 =
1

√
αt

(
xt −

βt

1−ᾱt
ϵθ (xt , xs, t)

)
+

∼

βt‡ =
1

√
αt

(
xt −

βt

1−ᾱt
ϵ̂
)

+
∼

βt‡
end for

8: return x0 as hyperspectral cube construction result

After further information compression and nonlinear mapping
through the fully connected layer and activation function layer,
the obtained weights are multiplied by the original feature
map. The mathematical expression is as follows:

m ′
= F[Zc] ⊙ m (10)

where F[·] represents the linear and nonlinear operations, such
as full connection and activation function, and ⊙ represents
channel multiplication. The feature map m ′

∈ RH×W×C can
focus on more effective information through channel weights
and reconstruct the spectrum. After completing the channel (or
spectral)-based attention mechanism, we implemented a spatial
attention mechanism on the feature map m ′. The mathematical
expression is as follows:

m ′′
= F ′

[
softmax

(
q · kT

√
d

)
· v

]
(11)

where q, k, v ∈ RH×W×C ′

are three tokens. d is the spatial
scale parameter, and F ′

[·] is operations such as convolution
and layer normalization, with the purpose of channel number
matching and normalization.

The serial spatial–spectral attention mechanism not only
allows the model to focus on important feature details of space
and spectrum but also reduces the network parameters and
computational cost. Experiments show that this mechanism
can effectively handle the hyperspectral reconstruction task
based on the CASSI system.

E. Algorithms

The hyperspectral reconstruction of the CASSI system
based on the conditional diffusion model is divided into
two stages: supervised training and inference, as shown in
Algorithms 1 and 2.

In the training stage, the preprocessed ground truth with
28 channels and the corresponding simulation-generated
single-channel measurements (which are subsequently restored
to 28 channels through a shift-back operation) are used as
the training set. Before training, the parameters of conditional
noise predictor ∈θ and the sampling timestep T are initialized.
In each loop during training, we randomly extract image pairs
with the number of minibatch from the training set, calculate xt

and feed it to conditional noise predictor together with current
t after embedding to obtain the prediction noise. We sample
noise from the standard Gaussian distribution and t from the
total timesteps. The noise predictor is then optimized via (19)
in the Supplementary Material.

In the inference stage, the measurement becomes the input
xs after shift back, and the same sampling timestep as in the
training stage is determined simultaneously. Inference begins
with t and sampling a latent variable xT from the standard
Gaussian distribution. In each loop of the inference, t will be
reduced by 1. xs , current xt , and t are fed to conditional noise
predictor, and xt−1 is obtained. When t = 1, the last loop is
completed and x0 is obtained, which is the final reconstruction
result.

III. RESULTS

A. Experimental Setup
Referring to the design of paper [53], we reconstructed

hyperspectral cubes with a total of 28 channels in the spectral
distribution from 450 to 650 nm. Two public hyperspectral
datasets: CAVE and KAIST are used for our experiments.
The CAVE dataset contains 32 images with a size of 512 ×

512, and each image contains hyperspectral information of
different objects. The KAIST dataset consists of 30 images
with a size of 2704 × 3376. Each image contains hyperspectral
information of different real scenes. The experiments verified
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the reconstruction effect of simulated data and real data (two
separate experiments).

In the stage of verifying the simulated data, we use the
CAVE dataset as a training set, which is randomly cropped
into the size of 256 × 256 and fed to the model after
feature enhancement. The simulated data (test set) are encoded
measurements obtained by selecting ten photographs from the
KAIST dataset and propagating them in the CASSI system
through simulation. The same operations are used in the stage
of verifying the real data, and the training sets at this time are
CAVE and KAIST datasets, with a crop size of 660 × 660,
to match the data size of the real data. The real data (testing
set) use the dataset disclosed in the literature [52], which
is collected by their SD-CASSI system. During the training
process, the batch size is set to 8, and a total of 500k iterations
are performed. We used the Adam optimizer with β1 = 0.9 and
β2 = 0.999, and the learning rate is set to 1 × 10−4. For
the hyperparameters of the diffusion model, the sampling
timestep is set to 1000, and the beta schedule is linear. The
loss function during the training process is shown in (19) in
the Supplementary Material. The entire training and testing
process is based on the Pytorch platform and implemented on
seven Nvidia 4090Ti graphics cards with 24 GB of memory.

B. Metrics in Simulated Data and Real Data

To forge an evaluation system that closely mirrors human
visual perception, we have adopted LPIPS [57] and FID [67] as
the metrics for assessing hyperspectral reconstruction quality.
LPIPS, a deep learning-based perceptual model, offers a
more precise assessment of image visual quality by capturing
the intricate features that resonate with the human visual
system. Also, FID gauges the distribution variance between
the synthesized and real images within the feature space,
effectively detecting discrepancies in both global and local
image features. The mathematical expressions of LPIPS and
FID are as follows:

LPIPS
(
Irecon, Igt

)
=

L∑
l=1

wl · d
(
Fl(Irecon), Fl

(
Igt

))
(12)

FID =
∥∥µrecon − µgt

∥∥2

+ Tr
(
6recon + 6gt − 2

√
6recon6gt

)
.

(13)

They utilized pretrained AlexNet and InceptionV3 models to
extract feature maps from the images, respectively. In the
LPIPS formula, Irecon and Igt denote the reconstructed image
and the ground truth, respectively. L signifies the total number
of network layers, wl is the weight assigned to the Lth layer, F
represents the AlexNet model, and d symbolizes the distance
metric used to measure the divergence between feature maps.
In the FID formula, µrecon, µgt, 6recon, and 6gt are the mean
vectors and covariance matrices of the feature distributions for
the reconstructed image and the ground truth, respectively. For
each hyperspectral cube, we compute the values channel by
channel and then take the average to serve as the final metric.

We compared the results of GAP-TV [82], TwIST [83],
DeSCI [73], Lambda-net [75], BBCU [76], HSSP [84],

TSA-Net [52], PnP-DIP [74], IRNet [76], BTM [77],
ReActNet [79], DNU [85] and BiSRNet [80], PnP-CASSI
[86], MST [53], DAUHST [80], PADUT [81], and CASSIDiff.
As the data shown in Table I, for the ten scenes in the test
set, our algorithm has excellent reconstruction results, and the
average LPIPS and FID in all scenes reached 0.097 and 0.292,
respectively, surpassing most of the algorithms in the control
group. These metrics demonstrate that CASSIDiff is capable
of reconstructing images that align more closely with human
visual perception, and the features of the generated hyperspec-
tral cubes are more akin to those of the ground truths.

The provided table offers a detailed comparison of recon-
struction accuracy, measured by LPIPS and FID, for various
advanced algorithms, including our proposed CASSIDiff,
against several state-of-the-art (SOTA) methods such as MST,
DAUHST, and PADUT. The results indicate that CASSIDiff
exhibits a slight gap when compared to these SOTA algo-
rithms, particularly in terms of LPIPS and FID scores across
different scenarios of simulated data.

The minor differences in performance can be attributed to
the computational constraints faced during the training of the
diffusion model, which forms the backbone of CASSIDiff.
Despite these limitations, CASSIDiff’s performance is com-
mendably close to that of MST, DAUHST, and PADUT,
suggesting that there is significant room for improvement. This
gap also highlights the potential for enhancing CASSIDiff’s
capabilities with more robust computational resources and fur-
ther model optimizations. Moreover, the comparison with the
current SOTA algorithms not only validates the effectiveness
of CASSIDiff but also underscores its advancement in the
field of hyperspectral image reconstruction. CASSIDiff’s com-
petitive performance against established algorithms indicates
that it is a viable and promising approach, particularly when
considering its ability to achieve high accuracy with the given
constraints.

To establish the excellence of our algorithm in pixel fidelity,
we have carried out comparative experiments utilizing PSNR
and SSIM metrics. The findings are presented in Table II.
The presented table provides a detailed comparison of recon-
struction accuracy in terms of PSNR and SSIM for various
algorithms, including CASSIDiff and current SOTA methods,
such as MST, DAUHST, and PADUT. CASSIDiff, while show-
ing some differences in PSNR and SSIM scores compared
with these SOTA algorithms, demonstrates that the generative
model it employs prioritizes the reconstruction of the entire
image canvas rather than pixel-by-pixel optimization.

The reason for the gap between CASSIDiff and SOTA
algorithms in PSNR and SSIM scores is rooted in the funda-
mental approach of the generative model. CASSIDiff’s model
is designed to focus on the overall repainting of the image,
which may not align perfectly with the pixel-centric evaluation
metrics of PSNR and SSIM. This approach, however, does
not imply inferior reconstruction quality. On the contrary,
it suggests that CASSIDiff is more adept at capturing the
holistic features and spectral details of the hyperspectral data,
which is crucial for accurate scene representation.

It should be highlighted that in the context of intricate
textures and patterns, metrics such as PSNR and SSIM
might not fully account for all the visual nuances and subtle
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TABLE I
RECONSTRUCTION ACCURACY (LPIPS AND FID) OF DIFFERENT ADVANCED ALGORITHMS ARE COMPARED WITH

TEN SCENARIOS OF SIMULATED DATA

TABLE II
RECONSTRUCTION ACCURACY (PSNR AND SSIM) OF DIFFERENT ADVANCED ALGORITHMS ARE COMPARED WITH

TEN SCENARIOS OF SIMULATED DATA

distortions present in an image. As such, introducing human
visual perception-based indicators such as LPIPS and FID
provides a more holistic quality evaluation of the reconstructed
hyperspectral cubes.

When the detector is used in a low-light environment,
photon shot noise is the main source of noise. Meng et al.
[52] proved that introducing the noise injection model [55]
during training can significantly improve the reconstruction
quality, so we injected 11-bit shot noise when restoring
the real data. DeSCI [73], GAP-TV [82], PnP-DIP [74],
Lambda-Net [75], TSA-Net [52], BiSRNet [80], MST [53],
and CASSIDiff are selected to show and contrast the restora-
tion of spatial and spectral features in detail. Reconstructed
pseudo-color images and spectral curves of simulated and real
data are shown in Figs. 2(b) and 6, respectively, from which
we see low-frequency contours and uniformly colored areas
can be reconstructed. Compared with the control group, the
conditional diffusion model adopted in CASSIDiff also has
significant advantages for high-frequency features with rich
texture information.

C. Metrics in Our Home-Built System
The CASSI system we built is shown in Fig. 7. The

high-spectral object is first relayed to the coded aperture
plane by an imaging lens. The coded object is then imaged

through a 4f system to the camera plane. While in-between the
objective lens (Thorlabs, TL4X-SAP) and tube lens (Thorlabs,
AC254-100-A), a prism (Edmund) is used to disperse multiple
wavelengths of the high-spectral object in a lateral plane.
Within the single exposure time of the camera (HIKROBOT,
MV-CU013-A0UM), coded objects from shifted wavelengths
are collapsed into one single image, creating a compressed
measurement. Two bandpass filters (Thorlabs, FELH0450, and
FESH0650) are mounted in front of the camera to ensure the
spectral wavelength range is between 450 and 650 nm.

To verify the portability of the algorithm, we used this
system to collect five samples and reconstructed their hyper-
spectral cubes through CASSIDiff. One of the reconstruction
results are shown in Fig. 7(b)–(d). The results show that
CASSIDiff can work well in different systems and has reliable
portability and robustness.

D. Ablation Study of DWT-Based Module and Serial
Spatial–Spectral Attention Module

To verify the effect of the DWT-based module and the serial
spatial–spectral attention module in CASSIDiff, we designed
an ablation experiment using simulated data to quantify
their differences through the same metrics. Table III shows
the experimental results when only the DWT-based module
and the series attention mechanism module are retained,
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Fig. 6. Reconstructed pseudo-color images of the single wavelength and spectral curves in typical regions are shown. Three scenes in real data are included
in the results. g-in-view for better view.

respectively, and other conditions are completely consistent.
When the serial spatial–spectral attention module is removed,
both the LPIPS and FID indicators are significantly increased,
by 0.016 and 0.302, respectively. When the DWT-based mod-
ule is removed, the degree of variation in LPIPS and FID
is not obvious, but the decline curve of the loss function is
more oscillatory during training, and it takes a longer time to
converge. When faced with the hyperspectral reconstruction
task based on the CASSI system, the DWT-based module and
the serial spatial–spectral attention module we introduced can
not only improve the reconstruction accuracy but also enhance
the stability of training and accelerate the convergence speed.

We also designed related experiments to conduct prelimi-
nary exploration on how the sampling timestep in the diffusion
model affects the reconstruction accuracy in the CASSI sys-
tem. With other conditions unchanged, we set the sampling
timestep to 500, 1000, 1500, and 2000, respectively, and recon-
structed the simulation data after training. Table IV shows the
reconstruction accuracy in four cases, also using LPIPS-FID
and PSNR-SSIM as metrics. There is no positive correlation
between the sampling timestep and reconstruction accuracy,

which is consistent with the conclusions in other literature.
Also, we also randomly selected areas with rich feature
information, averaged them in the spatial dimension, and used
cosine similarity to compare the differences with the ground
truth, as shown in Fig. 8. In a comprehensive comparison, the
reconstruction effect is better when the sampling timestep is
set to 1000, so we will maintain this hyperparameter setting
in all experiments.

E. Computational Efficiency Analysis
In our analysis of computational efficiency, we have evalu-

ated the floating point operations (FLOPs) of our proposed
method, CASSIDiff, against several SOTA reconstruction
algorithms, including DAUHST [80], MST [53], DGSMP [46],
BIRNAT [88], HDNet [89], and our own CASSIDiff. The
comparison includes a measure of computational complexity,
FLOPs, which is crucial for understanding the practicality and
efficiency of each method, especially in resource-constrained
environments.

Our findings, as presented in Table V, reveal that CASSIDiff
exhibits a competitive FLOPs count of 153.76 giga-FLOPs
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Fig. 7. (a) Schematic of the CASSI system we built. When polychromatic light is incident, the prism disperses the light. The double arrow represents the
direction of dispersion and the large arrow represents the direction of light propagation. (b)–(d) Reconstruction results of CASSIDiff in the CASSI system we
built ourselves. They are consistent with the meanings represented in Figs. 6, 9, and 8, respectively, and the relevant settings remain unchanged. The ground
truth in (d) is measured with a spectrometer (QE PRO, Ocean Optics).

TABLE III
ABLATION STUDY ON DWT-BASED TRANSFORM MODULE AND SPATIAL–SPECTRAL ATTENTION MECHANISM.

LPIPS, FID, PSNR, AND SSIM ARE USED AS THE METRICS

(G), which is significantly lower than that of BIRNAT
(2122.66 G) and DGSMP (646.65 G), and comparable with
HDNet (154.76 G) and MST (28.15 G). This indicates that
CASSIDiff is more computationally efficient than BIRNAT
and DGSMP while maintaining a similar operational intensity
to HDNet and MST. The relatively lower FLOPs count of

CASSIDiff can be attributed to the strategic integration of the
DWT-based attention mechanism and serial spatial–spectral
attention mechanism. These mechanisms not only enhance
the model’s ability to capture features from the data but also
improve computational efficiency by reducing unnecessary
computations.
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TABLE IV
ABLATION STUDY ON SAMPLING TIMESTEP. LPIPS, FID, PSNR, AND SSIM ARE USED AS THE METRICS

TABLE V
COMPARATIVE ANALYSIS OF FLOPS (G) AND PARAMS (M) FOR CASSIDIFF AND OTHER SOTA RECONSTRUCTION ALGORITHMS

Fig. 8. Ablation study on sampling timestep. (a) and (b) Two scenes in the
simulated data, and the red boxes represent randomly selected regions with
rich spectral features, respectively. In the graph, the predicted spectral curve
and the ground truth of different sampling timesteps are provided, and the
correlation coefficient is also given. The cosine similarity [87] is taken as an
example.

The high parameter count of CASSIDiff reflects its potential
to capture fine-grained details and complexities in data, which
is particularly valuable in hyperspectral image reconstruc-
tion where the ability to discern subtle spectral differences
is crucial. However, this also implies a tradeoff between
model performance and computational efficiency. CASSIDiff’s
higher parameter count and FLOPs (153.76 G) compared to
other algorithms like MST and HDNet, which have lower
FLOPs and parameters, indicates a higher computational cost
and potentially increased memory usage during training and
inference.

In summary, CASSIDiff’s design strikes a balance between
the need for high model capacity, as indicated by its param-
eter count, and the practical requirement for computational
efficiency, as demonstrated by its FLOPs performance. This
balance positions CASSIDiff as a strong contender among
SOTA reconstruction algorithms, offering a competitive edge
in both accuracy and efficiency. The choice of CASSIDiff as a
reconstruction algorithm should consider not only its potential
to deliver high-quality results but also its practical implications
in terms of computational resource utilization, making it a
viable option for applications, where both performance and
efficiency are of paramount importance.

F. Analysis of Diffusion Processes
To intuitively reflect the inference of the conditional dif-

fusion model, we show a sampling diagram of the 529.5-nm
wavelength in hyperspectral images. As shown in Fig. 9. The
total diffusion timestep is 1000, and we give visualization
diagrams when the number of the diffusion timestep is 1000,
868, 682, 496, 248, 62, and 0. The reconstruction of the
conditional diffusion model is a process of removing noise
while generating a probability distribution that meets the
expectations, guided by measurements. Therefore, for the
hyperspectral reconstruction task in the CASSI system, the dif-
fusion model has an additional denoising function. Moreover,
facing high-frequency areas with rich details that are difficult
to recover; in most cases, CASSIDiff can give a reasonable
result after learning the correlation between global and local
features through training.

Fig. 10 illustrates the convergence curves of our proposed
CASSIDiff model during the validation process on both sim-
ulated and real data. It is observable that in the simulated
data, the model approaches convergence after approximately
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Fig. 9. Sampling process of CASSIDiff for 529.5-nm wavelength channel in
hyperspectral data is shown. (a) and (b) Two scenarios of simulated and real
data, respectively, and each scenario provides the results for sampling timestep
of 1000, 868, 682, 496, 248, 62, and 0. In addition, for the convenience of
comparison, the ground truth of simulated data is also given.

Fig. 10. Convergence curves on simulated data and real data. (a) Simulated
data. (b) Real data.

1 million iterations; whereas with real data, convergence
reaches around 300 000 iterations. The figures demonstrate
a significant reduction in loss as the number of iterations
increases, indicating that our method is effectively learning
and enhancing its performance. However, it is also evident
that a relatively large number of iterations are necessary for the
model to fully converge. This insight should provide a clearer
understanding of the training dynamics of our approach.

IV. CONCLUSION

In this article, we have highlighted the limitations inherent
in the SSIM and PSNR metrics, commonly employed for
hyperspectral reconstruction via the CASSI optical setup. And
we introduce an evaluation framework that is more closely
aligned with human visual perception, integrating LPIPS and
FID as our metrics of choice. This approach effectively
remedies the inadequacies of conventional assessment tools
in capturing visual details and distortions, thus facilitating a
more holistic and insightful evaluation.

Also, we have proposed a hyperspectral reconstruction
algorithm based on a conditional diffusion model for the

CASSI system: CASSIDiff. This approach has shown remark-
able superiority when assessed through perceptual loss-based
metrics. Many experimental results in simulated data and
real data have shown that CASSIDiff not only reaches the
first-class level for LPIPS-FID and PSNR-SSIM metrics but
also has better reconstruction results when facing detailed
areas that are difficult to recover. We have introduced the
DWT-based module and the serial spatial–spectral attention
module to solve the problem of multilevel feature fusion and
accelerate convergence. As an innovative hyperspectral recon-
struction algorithm, CASSIDiff holds significant potential for
generating spectral cubes that align with human visual per-
ception, outperforming other similar algorithms in this regard.
However, it currently faces the drawback of lengthy training
and sampling times, particularly when dealing with substantial
datasets. This issue is well-documented in related literature
[90], which offers theoretical insights into reducing the sam-
pling timestep. Also, there is ample room for improvement
in optimizing the model and refining the training approaches.
In addition, applying CASSIDiff in other applications is also
worthy of further exploration.
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