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ABSTRACT Cognitive diagnosis is a key component of intelligent education to assess students’
comprehension of specific knowledge concepts. Current methodologies predominantly rely on students’
historical performance records and manually annotated knowledge concepts for analysis. However, the
extensive semantic information embedded in exercises, including latent knowledge concepts, has not been
fully utilized. This paper presents a novel cognitive diagnosis model based on the LLAMA3-70B framework
(referred to as LLM-CDM), which integrates prompt engineering with the rich semantic information inherent
in exercise texts to uncover latent knowledge concepts and improve diagnostic accuracy. Specifically, this
study first inputs exercise texts into a large language model and develops an innovative prompting method
to facilitate deep mining of implicit knowledge concepts within these texts by the model. Following the
integration of these newly extracted knowledge concepts into the existing Q matrix, this paper employs a
neural network to diagnose students’ understanding of knowledge concepts while applying the monotonicity
assumption to ensure the interpretability of model factors. Experimental results from an examination data
set for course completion assessments demonstrate that LLM-CDM exhibits superior performance in both
accuracy and explainability.

INDEX TERMS Cognitive diagnosis, large language models, exercise texts, higher education and intelligent
education.

I. INTRODUCTION
With the rapid advancement of educational informatization
in China, smart education has increasingly emerged as
a dominant trend in higher education. In this context,
personalized teaching, one of the fundamental objectives
of smart education, seeks to tailor instructional plans
according to the needs of individual students, thus enhancing
learning outcomes [1]. However, traditional assessment
methods (such as examination scores) rely predominantly
on macro-level evaluations and do not capture the internal
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cognitive states and learning processes of students. This
limitation underscores the need for scientifically rigorous and
accurate assessments of student learning statuses as a critical
prerequisite for realizing personalized teaching [2].

The primary objective of higher education is to culti-
vate students’ abilities to adapt to societal demands [3],
encompassing both undergraduate and postgraduate pro-
grams. In comparison with secondary education, interactions
between teachers and students in higher education are
relatively constrained, manifesting primarily in two ways:
first, direct communication is diminished due to large-class
teaching formats that hinder teachers from gaining an
in-depth understanding of each student’s learning capabilities
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FIGURE 1. A case study of cognitive diagnosis for student performance prediction.

through classroom engagement; second, conventional assess-
ment methods (such as examinations) often inadequately
reflect students’ comprehension of knowledge. The sole
reliance on exam scores complicates the identification of
specific areas where students may struggle, thus limiting the
effectiveness of personalized instruction.

To address these challenges, Cognitive Diagnosis (CD)
has emerged as a significant educational assessment tool
that is gradually gaining attention. Fig. 1 illustrates a
typical example of cognitive diagnosis. In this process,
students first complete a set of exercises (e.g., e1, e2, e3 )
and submit their answers (correct or incorrect). Based on
the students’ responses, the model can infer their level of
mastery of the relevant knowledge points. For example, if the
student answers exercise e1 correctly, it indicates a good
understanding of knowledge point C1; whereas if the student
answers exercise e2 incorrectly, it suggests a weaker grasp of
knowledge points C2 and C5. This diagnostic mechanism not
only helps teachers or educational systems accurately assess
students’ knowledge levels but also provides a scientific basis
for personalized learning resource recommendations and
the optimization of teaching strategies, thereby improving
teaching effectiveness and learning efficiency.

In cognitive diagnosis, the Q matrix serves as a fun-
damental tool for delineating the mapping relationship
between practice questions and knowledge points. The rows
of the Q matrix represent practice questions, while the
columns correspond to knowledge points. If a specific
practice question assesses a particular knowledge point, the
corresponding element in the matrix is assigned a value of
1; otherwise, it is designated as 0. As illustrated in Figure 2,
when the exercise ei refers to a certain knowledge point cj,
the associated element Qij = 1 in the Q matrix is marked as
1; if not, it is set to 0 [4].

Despite its rich semantic content, experts typically con-
struct the Qmatrix based onmanual annotations. This process
can introduce subjective bias and often results in incomplete
annotations. For instance, a question may be annotated
solely as assessing one specific knowledge point; however,
its content might implicitly encompass additional relevant
knowledge points [5], [6]. Such incomplete annotation
can lead to inaccuracies within the Q matrix regarding
its representation of true relationships between practice
questions and knowledge points, ultimately impacting the
precision of cognitive diagnosis models.

Furthermore, existing cognitive diagnostic models—such
as the DINA model [7], Item Response Theory (IRT)
[8], Multidimensional IRT (MIRT) [9]and NeuralCDM [10]
primarily concentrate on the interaction between students and
practice questions, while overlooking the intricate relation-
ship between practice questions and knowledge points. This
oversight not only limits the diagnostic capabilities of these
models but also impedes the further advancement of cognitive
diagnostic technology.

Another pressing concern is the scarcity of cognitive
diagnostic data within higher education. Currently, most
cognitive diagnostic research relies on datasets from sec-
ondary education (such as ASSIST [11]and MATH [12]),
whereas datasets specifically tailored for higher education are
relatively limited. This deficiency in data hampers cognitive
diagnostic research in higher education by lacking adequate
support and constrains educators’ ability to accurately
evaluate students’ knowledge acquisition.

FIGURE 2. An example of Q-matrix.

In recent years, Large Language Models (LLMs) have
exhibited remarkable capabilities in the domain of natural
language processing. LLMs are capable of generating
human-like text responses without being specifically trained
for particular tasks [13], which enables them to excel
in activities such as sentiment analysis [14]named entity
recognition [15]. For instance, they have demonstrated
exceptional performance in content generation [16], text
mining [17], [18], and knowledge extraction [19]. These
attributes render LLMs promising candidates for applications
in education, particularly in areas such as automated question
generation, assessment of students’ knowledge mastery, and
the design of personalized learning pathways.

However, large language models also encounter several
challenges when applied practically; one notable issue
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is the ‘‘hallucination’’ problem [20], [21], [22], [23],
[24]. This phenomenon occurs when models generate
content that appears plausible but is actually inaccurate.
Such inaccuracies may undermine their reliability within
educational contexts. Nevertheless, the potential benefits
offered by large language models cannot be overlooked.
For example, LLAMA3-70B serves as an illustrative case:
as an open-source large language model, it demonstrates
performance comparable to ChatGPT [25] while requiring
fewer computational resources. This characteristic makes it
more suitable for researchers seeking to deploy and utilize
these models within local environments.

In response to the aforementioned challenges, this paper
proposes a series of innovative solutions. Firstly, to address
the inadequacy of cognitive diagnostic data in higher educa-
tion, we have constructed a comprehensive dataset derived
from the final exam results of the university’s data structure
course. This dataset provides reliable support for cognitive
diagnostic research at the higher education level. Secondly,
to tackle the issue of incomplete Q-matrix annotation,
we have integrated LLAMA3-70B (a large language model)
into our cognitive diagnostic framework. By leveraging its
advanced text comprehension capabilities, we can auto-
matically extract implicit knowledge points from practice
questions, thereby reducing reliance on manual annotation
and enhancing both the comprehensiveness and accuracy of
the Q-matrix. Finally, to mitigate potential ‘‘hallucination’’
issues—where large language models generate seemingly
plausible yet inaccurate content—we have employed prompt
engineering techniques. This approach guides the model
in accurately extracting knowledge points through metic-
ulously designed prompts, ensuring the reliability of our
results.

In summary, this paper makes several key contributions:
1) To address subjective bias and incomplete annotations

in Q-matrix labeling, this study introduces large lan-
guage models (LLMs) to automatically extract implicit
knowledge points from exercise texts, enhancing the
Q-matrix. Using prompt engineering, we guide the
model to mitigate ‘‘hallucination’’ issues, reducing
subjectivity and inaccuracies in manual annotations.
This approach improves the precision of cognitive
diagnosis models by addressing incomplete labeling
challenges.

2) To address the scarcity of cognitive diagnosis data
in higher education, this study collects final exam
data from university data structure courses to build a
cognitive diagnosis dataset, including exercise texts.
This dataset provides new resources for research and
practice, enabling more accurate assessment of stu-
dents’ abilities and optimization of teaching strategies,
thereby improving teaching effectiveness.

3) Experimental results derived from extensive real-world
datasets demonstrate that our model exhibits sig-
nificant advantages in terms of both accuracy and
interpretability.

The remainder of this paper is structured as follows.
Section II provides a review of pertinent research on
cognitive diagnosis and large language models, along with
a detailed explanation of the literature review methodology
employed. Section III outlines the concepts, hypotheses,
and data preparation involved in the study. Section IV
elaborates on the selection process for large language
models, offers a comprehensive introduction to the LLM-
CDM framework, and presents an in-depth analysis of the
design and functionalities of each module. Section V details
the experimental setup and analyzes the results obtained.
Section VI discusses the implications of these findings
within the context of existing research, addresses limitations
encountered during the study, and suggests directions for
future research endeavors. Finally, Section VII concludes by
summarizing key points and insights from this paper while
emphasizing its main contributions and conclusions.

II. RELATED WORK
A. COGNITIVE DIAGNOSIS
Currently, the majority of cognitive diagnosis models con-
centrate on modeling the interactions between learners and
exercises, often overlooking the integrity of knowledge con-
cepts within these exercises. However, as research progresses,
an increasing number of scholars have begun to acknowledge
the critical importance of knowledge concepts in cognitive
diagnosis. For example, the ICD [26] model diagnoses learn-
ers’ cognitive states by fitting the quantitative relationships
between exercises and concepts as well as examining interac-
tions among those concepts. DeepCDM [27] employs neural
networks and attention mechanisms to learn both the interac-
tions among concepts and the relationships between exercises
and concepts. RCD [28] represents learners, exercises, and
concepts as nodes within three local relationship graphs while
constructing a multi-layer attention network to aggregate
node-level and graph-level relationships. CDGK [29] cap-
tures interactions among exercise features, learner scores, and
learners’ mastery of concepts through neural networks. Most
of these models depend on manually labeled Q matrices that
emphasize existing knowledge concept relationships but fail
to thoroughly investigate implicit knowledge points; thus they
are unable to eliminate subjectivity and limitations associated
with Q matrices.

For this reason, Liu et al. [10] employed a pre-trained
convolutional neural network (CNN) to predict the knowl-
edge points associated with practice texts, integrating
these predictions into the cognitive diagnosis framework.
Cheng et al. [30] introduced an enhanced item response
theory (DIRT), which incorporates deep learning techniques
such as deep neural networks (DNN) and long short-term
memory networks (LSTM) to analyze the semantics of
exercise texts and elucidate relationships between exercises
and knowledge points, to diagnose students’ latent traits.
The QRCDM method proposed by Yang et al. [31] quanti-
tatively extracts implicit knowledge points through relational

VOLUME 13, 2025 47167



X. Chen et al.: LLM-CDM: A Large Language Model Enhanced CD for Intelligent Education

TABLE 1. Example exercises.

analysis, aiming to identify unmarked knowledge points from
the existing Q matrix. Although these text-based cognitive
diagnosis models have improved diagnostic effectiveness to
some extent, they often overlook variations in exercise types
and fail to fully exploit the knowledge points embedded
within different categories of exercises. Some approaches
merely enhance the existing Q matrix without expanding it or
uncovering new knowledge points beyond its current scope.

B. LARGE LANGUAGE MODELS
In the realm of higher education, the utilization of large
language models (LLMs) is progressively on the rise,
showcasing considerable potential in both teaching and
learning processes [32], [33], [34], [35]. LLMs possess
the capability to process and generate natural language,
rendering them invaluable in various applications such as
automatic scoring [36], personalized learning path recom-
mendations [37], and data mining [38]. For example, LLMs
can analyze students’ learning habits, offer tailored educa-
tional resources, or assist educators in course preparation and
content development [37]. Furthermore, LLMs are capable
of providing immediate feedback and tutoring to students
through natural language interactions [39], thereby enriching
the overall learning experience.

Although LLMs have broad application prospects in
education, they also face the ‘‘hallucination’’ problem [20],
[21], [22], [23], [24], in which the model may generate
information that sounds reasonable but is inaccurate or
fabricated. This issue is particularly critical in cognitive
diagnosis because inaccurate knowledge point extraction can
lead to an incomplete Q-matrix, affecting the evaluation
of students’ mastery. To address this problem, prompt
engineering [40], [41] has become a key research direction.
Using prompts, LLMs can be guided to extract knowledge
points from exercises more accurately, optimize the Q-
matrix, and reduce the occurrence of hallucinations. This
improves the accuracy and reliability of cognitive diagnosis.
This method provides strong technical support for cognitive
diagnosis, allowing LLMs to be more effectively applied
in education, helping with personalized learning [42] and
precise student ability assessment.

C. LITERATURE REVIEW METHOD
In this study, a systematic literature search and screening
method was employed to ensure the comprehensiveness and
scientific rigor of the literature review. Core literature in the
fields of generative AI, large language models (LLM), and
cognitive diagnosis was retrieved from databases such as
Google Scholar, Web of Science, and Science Direct using
keywords including ‘‘Generative AI,’’ ‘‘Large Language
Models,’’ and ‘‘Cognitive Diagnosis.’’ The aim was to
encompass the latest developments in these related fields as
thoroughly as possible.

To guarantee both quality and relevance, only peer-reviewed
articles published within the past five years were selected.
Priority was given to those with high citation counts from
leading journals and conferences. Non-peer-reviewed articles
and technical reports were excluded from consideration.
Furthermore, all included literature had to be directly
pertinent to generativeAI, LLMs, or cognitive diagnosis, with
a particular emphasis on practical aspects concerning model
training, application, or educational contexts.

The screening process comprised three steps: initial search,
detailed evaluation, and quality review. Initially, relevant
literature was identified through keyword searches; subse-
quently, studies that did not meet predefined criteria were
excluded. Finally, an analysis of the remaining literature’s
quality and academic value was conducted. This analysis
focused on evaluating research methods used in each study
along with their results, and innovation contributions—
thereby ensuring both reliability and scientific integrity in the
selected works.

Through this methodological approach, this study estab-
lished a comprehensive theoretical foundation while also
ensuring rigor and transparency throughout the literature
review process.

III. PROBLEM DEFINITION
Cognitive diagnosis in wisdom education consists of three
components: student S = {s1, s2, . . . , sN }, exercise
E = {e1, e2, . . . , eM }, and knowledge concept C =

{c1, c2, . . . , cK }, where N , M , and K denote the number
of students, the number of exercises, and the number of
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knowledge concepts, respectively. Each student selects a
certain number of exercises for practice; their response log R
is represented as a set of triples (s, e, r), where s ∈ S, e ∈ E ,
and r are the scores obtained by student s on exercise e.
Furthermore, this paper defines an optimized Q-matrix Q̃ ={
Q̃ij

}
M×K

such that if exercise ei is related to knowledge

concept kj it is denoted as Q̃ij = 1; otherwise, it is denoted
as Q̃ij = 0. The objective of the cognitive diagnosis task
presented in this paper is to assess students’ proficiency in
knowledge concepts by predicting student performance based
on R the Q̃ and matrices derived from response records and
exercise texts.

A. CLASSIFICATION OF EXERCISES
This paper begins by analyzing the expression and evaluation
methods of exercises, categorizing them into three types:
explicit exercises, semi-explicit exercises, and implicit exer-
cises. As illustrated in Table 1, explicit exercises directly
assess specific knowledge points; for instance, the exercise
presented in Example 1 pertains to ‘complete binary trees’
and ‘number of nodes.’ Semi-explicit exercises require some
analysis to identify the relevant knowledge points under
examination. For example, although Example 2 includes
the keyword ‘insert delete operation,’ it fundamentally
assesses the storage methods used by different linked lists
and their operational time efficiency. In contrast, implicit
exercises lack overt knowledge points or keywords; thus,
understanding these underlying concepts requires a thorough
text analysis of the exercise stem. For instance, in Example
3, the exercise stem primarily addresses the ‘first-in-first-
out problem associated with buffers,’ specifically focusing on
queue characteristics. All exercises in this study were sourced
from an online examination platform specifically designed
for university education. Students completed and submitted
their answers through the platform, which monitored the
entire process. This setup effectively minimized the influence
of external interference and mitigated risks of dishonest
behavior, thereby ensuring the reliability of the research
outcomes.

B. THE MONOTONICITY ASSUMPTION
The monotonicity assumption [10] is the foundation of
cognitive diagnostic models. Qualitatively describe the rela-
tionship between a student’s cognitive state on a knowledge
concept and the probability of answering a question correctly,
thus ensuring the interpretability of the model’s results.
Specifically, the monotonicity assumption is defined as
follows:

Monotonicity assumption: The probability of correct
response to the exercise is monotonically increasing at any
dimension of the student’s knowledge proficiency

In simple terms, if a student s1 has a better understanding
of a concept (e.g. queues) than another student s2, the student
s1 is more likely to correctly answer questions related to that
concept than the other student s2. This assumption should be

converted as a property of the interaction function. Intuitively,
we assume that the student s answers exercise e correctly.
During training, the optimization algorithm should increase
the student’s proficiency if the model produces a wrong
prediction (that is, a value below 0.5).

IV. A LARGE LANGUAGE MODEL ENHANCED COGNITIVE
DIAGNOSIS MODEL
A. CHOICE OF LLM
Language models based on the Transformer architecture,
especially pre-trained large language models (LLMs), have
made notable advancements in various natural language
processing (NLP) tasks [16], [17], [18], [19]. These models
demonstrate excellent understanding and reasoning abilities
through large-scale pre-training and cross-disciplinary text
corpora. For example, GPT-4 achieved a performance level
exceeding 20 points on the USMLE (United States Medical
Licensing Examination), even without domain-specific fine-
tuning or prompt engineering [43]. This efficiency across a
wide range of text domains indicates that LLMs can perform
effectively in various NLP tasks when applied to education.
However, choosing the right LLM is very important to ensure
accurate and reliable results. Studies have shown that using
the wrong model can cause errors and affect later evaluations
and decisions [44].

To implement large languagemodels (LLMs) in the field of
education, we have selected theMeta open-source LLAMA3-
70B model. This model represents the third iteration of
the LLAMA series and emphasizes privacy protection as
well as fine-tuning control over generated content, thereby
addressing the need for customized enterprise solutions and
data security [25]. The LLAMA3-70B has demonstrated
exceptional performance across various natural language
processing (NLP) tasks, particularly in knowledge extraction
and text analysis within the domains of medicine and
chemistry. For example, Cui et al. [15] investigated the
application of LLAMA3-70B for text mining, showcasing
its robust capabilities in knowledge extraction pertinent to
medical contexts. Similarly, Ofir Ben Shoham et al. [45]
employed LLAMA3-70B to elucidate medical codes and
differentiate between medical concepts; their findings indi-
cated that this model outperformed existing state-of-the-art
clinical language models specifically tailored for the medical
domain. Furthermore, Zhang et al. [46] utilized LLAMA3-
70B to extract knowledge from intricate chemical texts,
underscoring its strengths in managing complex text process-
ing tasks. These research outcomes suggest that LLAMA3-
70B possesses a profound understanding of complex texts
and exhibits cross-domain adaptability, making it an optimal
choice for extracting key information from exercises.

B. MODEL OVERVIEW
To better uncover the implicit knowledge concepts within
exercise texts, we propose a Cognitive Diagnosis Model
(CDM) enhanced by large language models (LLM), referred
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FIGURE 3. The Framework of Large Language Model-enhanced Cognitive Diagnosis Model (LLM-CDM) and Its Core Modules:(a) Knowledge Generation
Module; (b) Q-Matrix Optimization Module; (c) Diagnostic Module.

to as LLM-CDM. As shown in Fig. 3, LLM-CDM consists of
three core modules: the Knowledge Generation Module, the
Q-Matrix Optimization Module, and the Diagnostic Module.
In the Knowledge Generation Module (Fig. 3(a)), we utilize
large language models (LLMs) and prompt engineering
techniques to extract implicit knowledge concepts from the
exercise texts. These knowledge concepts are generated
through the deep semantic understanding capabilities of
the LLM, enabling it to comprehensively capture the
underlying knowledge points in the exercises.In the Q-Matrix
Optimization Module (Fig. 3(b)), we integrate the generated
knowledge concepts to refine the existing Q-matrix. This step
enhances the accuracy and completeness of the Q-matrix,
allowing it to more precisely reflect the relationships between
exercises and knowledge points.In the Diagnostic Module
(Fig. 3(c)), we map the students’ cognitive states and exercise
features into latent factors. The optimized Q-matrix is then
used as input features, which, together with the latent factors,
are fed into the diagnostic model. Based on these inputs, the
model can accurately predict the students’ mastery of relevant
knowledge points, providing a scientifically grounded and
reliable foundation for personalized learning.

C. KNOWLEDGE GENERATION MODULE
The primary objective of the knowledge generation module
is to leverage prompt words to guide large language models
(LLMs) in extracting implicit knowledge concepts from
exercises. This paper introduces a novel method for utilizing
prompt words to steer the generation process of LLMs,
as illustrated in Fig. 4. The prompt words encompass
both instructions and fixed task examples. These examples
are crafted by humans, with each example comprising
an exercise text alongside its corresponding knowledge
concept. Furthermore, to mitigate the potential uncertainty
associated with LLMs when generating knowledge concepts,
this study constructs a comprehensive knowledge base that
encompasses all key knowledge points relevant to the data
structure course. This resource aims to assist large language

models in achieving more precise knowledge matching
within this established framework. Specifically, for each
given exercise, this paper concatenates the prompt word
P with the exercise text E and subsequently inputs this
combined text into a large model to facilitate the search for
related concepts within an existing knowledge base, thereby
generating a corresponding set of knowledge concepts Ck

i ={
Cij5 ,Cij11 ,Cij13

}
. Here, k denotes the number of knowledge

concepts while Ck
i represents the set of knowledge concepts

contained in exercise ei; additionally, Cij5 indicates that
exercise ei assesses the knowledge concept labeled as 5.

Then, the predicted knowledge concepts are input into the
large model again as prompt words to verify the similarity
between these knowledge concepts and the exercises. If the
verification is successful, these knowledge concepts are
added to the knowledge concept set associated with the exer-
cise, and the final knowledge concept set ˆCk

i =
{
Cij5 ,Cij13

}
is obtained. In this paper, the correlation between exercise
E and knowledge concept C is expressed as f (pei , pcj ), and
cosine similarity is employed to compute it. The calculation
formula is as follows:

f (pei , pcj ) =
pei · pcj∥∥pei∥∥ ∥∥pcj∥∥ (1)

Here, vector pei denotes the exercise E, while vector pcj
represents the newly predicted knowledge concept C. pei · pcj
signifies the dot product of the two vectors, and

∥∥pei∥∥ and∥∥pcj∥∥ denote the magnitudes of these vectors, respectively.
Subsequently, this paper filters the generated knowledge
concepts based on the following formula:

f (pei , pcj ) ≥ θ (2)

where θ represents the predefined threshold. If f (pei , pcj ) is
greater than or equal to this threshold, the corresponding
knowledge concept is incorporated into the final knowledge
concept set ˆCk

i . In this module, LLAMA3-70B is utilized
as the generation model. In the experiment, no fine-tuning
of the model is performed; instead, it is utilized directly for
knowledge generation.
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FIGURE 4. Knowledge Generation Module: Utilizes large language models
(LLMs) and prompt engineering techniques to extract implicit knowledge
points from exercise texts, providing a foundation for Q-matrix optimization.

D. Q MATRIX OPTIMIZATION MODULE
The Q matrix optimization module aims to enhance the accu-
racy of the cognitive diagnosis model. It does this by integrat-
ing knowledge concepts extracted by large language models
(LLMs) and refining the existing Q matrix. As illustrated
in Fig. 3(b), this module employs two branches to extract
knowledge concepts embedded within the exercises. One
branch utilizes a large language model and prompt words to
uncover implicit knowledge concepts, while the other branch
derives the Q matrix through manual labeling conducted by
human experts. Despite certain limitations associated with
manually labeled data, its reliability remains high; thus, the
relevance of knowledge concepts derived from Q matrix
labeling is greater than those from

{
cj|cj ∈

ˆCk
i and Qij = 0

}
.

To achieve this integration, this paper retains existing
knowledge concepts in the Qmatrix and directly incorporates
newly predicted knowledge concepts into it. To achieve
this integration, the Q matrix is updated according to the
following rule:

Q̃ij =

{
1, if Qij = 1 or f (pei , pcj ) ≥ θ

0, otherwise
(3)

where: Qij denotes the Q-matrix prior to optimization. This
method enables the Q-matrix to be dynamically updated,
thereby enhancing the performance of cognitive diagnosis.

E. DIAGNOSIS MODULE
The diagnostic module integrates neural networks to model
and explain the complex interactions among factor vectors,
enabling precise diagnosis of students’ mastery of knowledge
concepts. In this module, the original Q-matrix is replaced
with an optimized version, and the feature extraction
module is incorporated to capture broader local interaction
information. Finally, the output vectors of the module
undergo non-linear transformation through a fully connected
layer to generate the final assessment results. As illus-
trated in Fig. 3(c), this module consists of the following
components:

1) STUDENT FACTOR
In LLM-CDM, ps is used in this paper to represent
each student’s mastery of knowledge, which is derived by
multiplying the student’s unique heat representation vector
xs with a trainable matrix A. Specifically:

ps = sigmoid
(
xs × A

)
(4)

2) EXERCISE FACTOR
Each exercise factor is denoted by Q̃e, Q̃ is the optimized Q-
matrix.

Q̃e = xe × Q̃ (5)

where: Q̃e ∈ {0, 1}1×K , xe ∈ {0, 1}1×Mdenotes the unique
heat vector representation of the exercise. Simultaneously,
pdiff ∈ (0, 1)1×K and pdisc ∈ (0, 1) are utilized to represent
the difficulty and differentiation of the exercises, respectively.

3) FEATURE EXTRACTION MODULE
To more accurately capture the characteristics of students
and exercises, we designed a feature extraction module
based on a one-dimensional convolutional neural network.
This module processes the one-hot encoded vectors of
students and exercises separately, interacts with the Q-matrix,
and ultimately outputs the latent feature representations of
students and exercises.

First, for a student ps, we obtain the interaction vector xp

through the following operation:

xp = Q̃e ◦ ps × pdisc (6)

where ◦ denotes element-wise multiplication.
To model the complex dependencies between students

and knowledge points, we employ a one-dimensional con-
volutional layer for feature extraction. The kernel size is
set to 7×7 to capture broader local interaction information.
Simultaneously, the LeakyReLU activation function is used
to avoid the dying neuron problem and ensure that sparse
feature information is preserved. Ultimately, we obtain the
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latent feature representation Ps of the student ps:

Ps = LeakyReLU
(
Conv1d

(
xp,Kernelsize = 7

))
(7)

Similarly, to extract the local features of an exercise,
we input the one-hot encoded vector of the exercise into a
one-dimensional convolutional layer with a kernel size of
5×5 and use the LeakyReLU activation function to obtain the
latent feature representation E i of the item ei:

ei = Q̃e ◦ pdiff × pdisc (8)

E i = LeakyReLU
(
Conv1d

(
ei,Kernelsize = 5

))
(9)

Finally, we input the latent feature representation of the
student Psand the latent feature representation of the exercise
E iinto a fully connected layer, and obtain the final predicted
score y through a nonlinear transformation:

y = Z3 × φ

(
Z2 × φ

(
Z1 ×

(
Ps − E i

)T
+ b1

)
+ b2

)
+ b3

(10)

where φ denotes the activation function and Sigmoid is
employed. To satisfy the monotonicity hypothesis, a straight-
forward strategy is used: each element of Z1,Z2,Z3 is
constrained to be a positive number. Consequently, for each
entry psi in p

s, ∂y
∂psi

remains positive. Thus, the monotonicity
assumption is consistently upheld during training.

In this way, the feature extraction module can effectively
capture the local features of students and test items, integrate
the global information from the Q-matrix, and significantly
improve the predictive performance of the model.

4) LOSS FUNCTION
In cognitive diagnosis tasks, the primary loss function
employed is the binary cross-entropy loss. This function
quantifies the discrepancy between the model’s prediction y
and the true label r . The overall loss function can be expressed
as follows:

Loss = −

∑
i

(rilogyi + (1 − ri) log (1 − yi)) (11)

Upon completion of training, the value of ps represents the
diagnostic outcome obtained in this study, reflecting students’
knowledge proficiency.

V. EXPERIMENT
In this section, we first outline our self-constructed exercise
text dataset and the evaluation metrics employed. Subse-
quently, the effectiveness of the model is validated through
comprehensive experiments. Specifically, the experiment
encompasses the following aspects: (1) Results of predicting
student performance; (2) Student performance prediction
under different proportional training sets; (3)Performance
Comparison and Analysis of Large Language Models;
(4)Ablation Study; (5) Comparative Analysis of Q Matrix
Optimization Before and After; (6) Quantitative analysis of
the Q matrix.

A. EXPERIMENTAL SETUP
1) DATASET DESCRIPTION
To address the limitations of existing open datasets regarding
the quantity and diversity of test questions, this study
developed a novel dataset encompassing all final exam
exercises from a university’s data structure course, with
each exercise annotated with relevant knowledge concepts.
This dataset comprises 14,878 interaction records, cov-
ering exercises of varying levels and difficulties across
knowledge domains such as data structures, algorithms,
and programming. The exercises were manually annotated
by educational experts to ensure the accuracy of the
Q-matrix and to provide a robust foundation for cognitive
diagnosis models. The dataset, including exercise texts,
score matrices, and the Q-matrix, is publicly available
at https://pan.baidu.com/s/1YoQh6a8BoUbECuqZ7JLWJg?
pwd=8qk6, providing valuable resources for research in
educational cognitive diagnosis.

In the process of constructing the dataset, we employed
a large language model (LLM), LLAMA3-70B, to extract
knowledge concepts that had not been explicitly annotated
by experts. This approach aimed to expand the Q-matrix
and identify more granular knowledge components. The
extraction process was designed not only to uncover implicit
knowledge points but also to offer a more detailed rep-
resentation of the underlying knowledge structure associ-
ated with the questions. To validate the accuracy of the
knowledge concepts extracted by the LLM, we conducted
expert validation by comparing these concepts with those
annotated by experts and making necessary adjustments
through discussions among specialists.

The dataset offers rich data for model training along with
a clear framework for evaluating cognitive diagnosis models.
Relevant statistics are presented in Table 2.

TABLE 2. Summary of the dataset for cognitive diagnosis research.

B. EVALUATION INDICATORS
To comprehensively evaluate the performance of large
language models (LLMs) in the task of knowledge point
extraction and their contributions to various cognitive
diagnostic models, this paper adopts different quantitative
evaluation metrics tailored to the knowledge point extraction
task and the performance of cognitive diagnostic models,
respectively. Below is a detailed introduction to these metrics
and their applications.
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1) EVALUATION OF KNOWLEDGE POINT EXTRACTION
In the knowledge point extraction task, traditional metrics
such as precision, recall, and F1 score are typically used to
measure the alignment between model predictions and expert
annotations (Ground Truth). However, the scenario addressed
in this paper requires LLMs not only to extract knowledge
points already identified by experts but also to identify
potential knowledge points that are plausible but unannotated.
To address this, we introduce a set of expert-corrected
knowledge points as a reference standard and conduct a
comprehensive assessment based on the following metrics:

Precision: This metric measures the proportion of correctly
extracted knowledge points among those identified by the
model. It is calculated as:

Precision =
TP

TP+ FP

Here, True Positives (TP) denote the number of knowledge
points accurately extracted by the model and subsequently
validated by experts, while False Positives (FP) refer to the
number of knowledge points identified by the model but not
acknowledged by experts.

Recall: This metric quantifies the proportion of true
knowledge points that the model successfully extracts from
the test questions. It is calculated as:

Recall =
TP

TP+ FN

Here, False Negatives (FN) denote the count of knowledge
points that the model fails to extract, despite being recognized
by experts.

F1 Score: This metric integrates precision and recall
to provide a balanced assessment of the model’s overall
performance. It is calculated as:

F1 = 2 ×
Precision× Recall
Precision+ Recall

(12)

These metrics collectively provide a comprehensive evalua-
tion of the LLMs’ ability to extract both explicit and implicit
knowledge points, ensuring a thorough understanding of their
contributions to the task.

2) EVALUATION OF COGNITIVE DIAGNOSTIC MODELS
Evaluating the performance of cognitive diagnostic models
presents unique challenges, as the true level of students’
knowledge mastery is often inaccessible. In most studies,
the effectiveness of diagnostic models is assessed indirectly
through their ability to predict student performance. This
paper adopts a similar methodology, evaluating the diagnostic
model’s effectiveness by predicting student exercise scores.
To ensure a comprehensive evaluation, we employ widely
used metrics, including accuracy (ACC), area under the curve
(AUC) [47], and root mean square error (RMSE) [48]. These
metrics collectively capture the model’s classification and
regression capabilities, providing a holistic assessment of its
performance.

By combining these metrics, we ensure a comprehensive
evaluation of the cognitive diagnostic models, capturing
both their classification and regression capabilities. This
evaluation approach not only validates the effectiveness
of LLMs in knowledge point extraction but also provides
a robust assessment of the cognitive diagnostic models’
performance in predicting student outcomes.

C. BASELINE
To validate the effectiveness of the proposed LLM-CDM
model, we compared it with several widely used cognitive
diagnostic models. Additionally, to select the most suitable
large language model (LLM) for extracting hidden knowl-
edge points, we evaluated multiple pre-trained language
models based on evaluation metrics. Below is a detailed
description of these baseline models.

1) COGNITIVE DIAGNOSTIC MODELS
The following cognitive diagnostic models were selected
as baselines to evaluate the performance of LLM-CDM in
cognitive diagnosis tasks:

1) DINA [7]: A cognitive diagnosis method that models
candidates’ mastery of knowledge concepts through
a Q matrix while accounting for clerical errors and
guessing parameters.

2) IRT [8]: As a widely adopted cognitive diagnosis
approach, IRT employs linear functions to model
one-dimensional student and exercise features.

3) MIRT [9]: MIRT is a multidimensional extension of
IRT, capable of modeling multiple levels of knowledge
proficiency among students and exercises.

4) NeuralCDM [10]: NeuralCDM is a deep learning-based
cognitive diagnostic model that captures higher-order
and complex interactions between students and
exercises through neural networks.

It is important to emphasize that methods such as ICD [26],
DeepCDM [27], RCD [28], and CDGK [29], which are based
on the Q-matrix, primarily focus on the interrelationships
among knowledge points. This focus differs from that of
our study, which seeks to extract new knowledge points
from educational texts without modeling the relationships
between them. Consequently, due to differences in datasets
and research objectives, theseQ-matrix-basedmethods do not
meet the criteria for direct comparison with our approach and
were therefore excluded as baseline methods.

2) LARGE LANGUAGE MODEL
To select the most suitable large language model (LLM)
for extracting hidden knowledge points, we evaluated the
following five representative pre-trained language models
based on evaluation metrics such as Precision, Recall, and F1
score:

1) LLAMA3-70B [25]: Developed by Meta, this
open-source large model comprises 70 billion param-
eters and is based on the Transformer architecture.
It demonstrates exceptional capabilities in natural
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TABLE 3. Results of predicting student performance.

FIGURE 5. Student performance prediction under different proportional training sets.

language understanding and generation tasks, partic-
ularly excelling at managing complex semantics and
long-range text dependencies.

2) ChatGPT [49]: Developed by OpenAI, this general-
purpose dialogue model is based on the GPT archi-
tecture and is known for its powerful context under-
standing and generation capabilities. Its performance is
particularly outstanding in multi-round dialogues and
complex contexts.

3) ChatGLM [50]: Developed by Tsinghua University,
this Chinese dialogue model is grounded in the GLM
architecture and has been specifically optimized to
cater to the unique characteristics of the Chinese
language. It demonstrates exceptional proficiency in
semantic understanding and generation tasks within the
context of the Chinese language.

4) Mistral [51]: This efficient and lightweight open-source
large model is distinguished by its low resource
consumption coupled with high performance. The
primary design objective is to achieve superior
task performance while simultaneously minimizing
computational and storage costs.

5) T5 [52]: Developed by Google, this text-to-text transfer
model employs a unified framework to convert various
natural language processing tasks into text generation
tasks. The flexibility and robust generative capabilities
of T5 render it an exemplary candidate for cognitive
diagnosis applications.

By comparing the LLM-CDM model with other cognitive
diagnostic models, we were able to comprehensively evaluate
its effectiveness in cognitive diagnosis tasks. At the same
time, through the evaluation of multiple pre-trained language
models, we selected the most suitable model for extracting
hidden knowledge points, thereby providing a solid foun-
dation for the knowledge point extraction module of LLM-
CDM.

D. EXPERIMENTAL RESULT
1) RESULTS OF PREDICTING STUDENT PERFORMANCE
This paper conducts an experiment on student achievement
prediction based on the baseline model and LLM-CDM.
A random segmentation method is employed to extract 80%
of each student’s response records from the dataset, which is
a standard practice in student achievement prediction tasks.
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The experimental results are presented in Table 3, where
LLM-CDM outperforms all baseline models, particularly
when compared to IRT and MIRT. Specifically, LLM-CDM
demonstrates significant improvements over NeuralCDM
across all metrics: a 6.6% increase in accuracy (ACC),
a 3.7% increase in area under the curve (AUC), and a
10.2% reduction in root-mean-square error (RMSE). The
values highlighted in bold within the table indicate the
best results. These findings suggest that extracting implicit
knowledge concepts from exercises by integrating large
language models with prompt words is effective for student
achievement prediction, significantly enhancing predictive
accuracy. Furthermore, this approach underscores the impor-
tance of rich semantic information present within exercise
texts for cognitive diagnosis.

2) STUDENT PERFORMANCE PREDICTION UNDER
DIFFERENT PROPORTIONAL TRAINING SETS
To comprehensively evaluate the model’s performance, this
paper divides the dataset into various proportions and
compares the effect of each proportion on predicting student
performance. For each student’s practice record, we used
60%, 70%, 80%, and 90% of the exercises as the training
set, with the remaining exercises constituting the test set.
The average results were reported using multiple evaluation
metrics. The experimental findings are illustrated in Fig. 5.
The results indicate that LLM-CDM exhibits superior
classification performance compared to other models when
trained with 60% of the data, underscoring its effectiveness
in handling small sample sizes. As the proportion of training
data increases to 70%, there is a further enhancement
in model performance, suggesting a positive correlation
between increased data availability and improved learning
outcomes. As the training data increases to 80%, model
performance continues to improve, but at a diminishing
rate. At 90%, performance stabilizes, showing no significant
difference from the 80% training data. These findings suggest
that LLM-CDM models possess distinct advantages when
dealing with small samples and can effectively learn from
limited datasets.

Among all baseline models, LLM-CDM consistently
outperforms others across all indices, providing further
evidence for its efficacy in extracting knowledge concepts
from exercise text by leveraging large-scale languagemodels.

3) PERFORMANCE COMPARISON AND ANALYSIS OF LARGE
LANGUAGE MODELS
To comprehensively evaluate the performance of various
large language models in the task of knowledge point extrac-
tion, we conducted a systematic comparative experiment
involving LLAMA3-70B, ChatGPT, ChatGLM, Mistral, and
T5. The evaluation metrics employed in this experiment
included the adjusted F1 score, recall rate (Recall), and
precision rate (Precision). As illustrated in Table 4,

The experimental results indicate that LLAMA3-70B
significantly outperforms the other comparison models

concerning both the adjusted F1 score (0.871) and precision
rate (0.853). Although model ChatGPT exhibits a slightly
higher recall rate (0.904) compared to LLAMA3-70B’s recall
rate of 0.890, the performance gap between these two models
is relatively minor.

TABLE 4. Performance comparison of different large language models in
knowledge point extraction tasks.

More importantly, LLAMA3-70B demonstrates distinct
advantages across multiple dimensions that make it partic-
ularly suitable for knowledge point extraction tasks within
educational contexts. Firstly, its open-source nature confers
substantial benefits regarding model transparency, customiz-
ability, and scalability, which allow for targeted optimization
tailored to specific pedagogical needs. Secondly, LLAMA3-
70B displays enhanced stability when processing long
texts and managing cross-paragraph semantic associations—
especially when extracting implicit knowledge points and
complex conceptual relationships—where its performance is
comparable to that of model ChatGPT and even superior in
certain intricate scenarios.

Furthermore, the open-source ecosystem surrounding
LLAMA3-70B, coupled with robust community support,
provides an abundance of tools and resources that sig-
nificantly lower deployment costs while expediting prac-
tical applications within educational settings. Based on a
thorough consideration of performance metrics alongside
model characteristics and actual application requirements,
we have selected LLAMA3-70B as our final choice for
hidden knowledge point extraction.

To further understand the limitations of the model,
we conducted a systematic analysis of false positives (FPs)
and false negatives (FNs) in the knowledge point extraction
process. For example, in the input text ‘‘The definition of
data structures includes arrays, linked lists, and stacks,’’ the
model incorrectly labeled ‘‘the definition of data structures’’
as a knowledge point, whereas it is merely a descriptive
statement. In another input text, ‘‘The applications of
recursive algorithms include tree traversal and dynamic
programming,’’ the model failed to recognize ‘‘dynamic
programming’’ as a knowledge point.

Through the analysis of FPs and FNs, we identified
the following main issues: semantic similarity interfer-
ence leading to the model misjudging certain terms or
phrases related to knowledge points; insufficient contextual
understanding causing the model to mistake non-critical
information for knowledge points when processing complex
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sentences; and the omission of implicit knowledge points
resulting in the model failing to extract knowledge points
that were not explicitly mentioned. Based on these findings,
we propose several potential directions for improvement,
including optimizing prompt engineering to guide the model
more precisely, introducing context-aware mechanisms to
enhance the understanding of complex contexts, and adding
post-processing rules to filter out obvious false positives.
These improvement directions provide valuable insights for
future research and are expected to further enhance the
model’s performance.

4) ABLATION STUDY
To thoroughly assess the necessity and contribution of
each core component within the LLM-CDM architecture,
we designed and conducted ablation experiments. We used
accuracy (ACC), root mean square error (RMSE), and area
under the curve (AUC) as performance evaluation metrics.
The experiments consisted of four model configurations:
1) Base: the baseline model without any additional modules;
2) Base + KGM: the baseline model with the addition of the
Knowledge Generation Module (KGM); 3) Base + FEM: the
baseline model with the integration of the Feature Extraction
Module (FEM); 4) Base+KGM+ FEM: the full LLM-CDM
architecture, incorporating both the Knowledge Generation
Module and Feature Extraction Module.

TABLE 5. Performance analysis of ablation experiments for the LLM-CDM
architecture.

The experimental results are presented in Table 5. It is
evident from the findings that incorporating either the
Knowledge Generation Module (Base + KGM) or the
Feature Extraction Module (Base + FEM) alone leads to a
significant enhancement in model performance. Specifically,
Base + KGM results in increases of 6.4% in accuracy (ACC)
and 4.6% in area under the curve (AUC), while reducing
root mean square error (RMSE) by 4%. In contrast, Base +

FEM leads to improvements of 6.2% in ACC and 4.8%
in AUC, along with an 6.9% reduction in RMSE. These
findings highlight the critical roles played by both modules
in cognitive diagnosis tasks.

When both the Knowledge Generation Module and the
Feature Extraction Module are integrated simultaneously
(Base + KGM + FEM), optimal model performance is
achieved. Compared to the baseline model, there is a
notable increase of 7.7% in ACC, a rise of 5.9% in AUC,
and a decrease of 9% in RMSE. This outcome not only
validates the effectiveness of both modules but also suggests

their synergistic effect within the LLM-CDM architecture,
collectively enhancing cognitive diagnosis accuracy.

The observed improvements in ACC and AUC clearly
indicate that the LLM-CDM architecture excels in clas-
sification tasks. Furthermore, the substantial reduction in
RMSE reinforces its superiority in predictive accuracy.
These results comprehensively demonstrate the necessity
and contribution of incorporating the Knowledge Genera-
tion and Feature Extraction Modules into the LLM-CDM
framework. In summary, the findings from the ablation
experiments robustly validate the effectiveness of these
modules across multiple performance metrics(ACC, RMSE,
and AUC),highlighting their significant role in enhancing
overall model performance and providing stronger technical
support for cognitive diagnosis.

5) COMPARATIVE ANALYSIS OF Q MATRIX OPTIMIZATION
BEFORE AND AFTER
To validate the capacity of the large model in the extraction of
knowledge concepts, the Q matrix was optimized, enabling a
visual comparison of its state before and after optimization.
As illustrated in Fig. 6, the optimized Q matrix shows
significant improvements in both the quantity and the
coverage of knowledge concepts. This enhancement enables
a more comprehensive evaluation of students’ understanding
across various knowledge concepts, thereby increasing the
accuracy and robustness of the cognitive diagnostic model.
It is important to note that this study encompasses a total of
177 exercises; however, only 80 have been selected for visual
presentation to clearly illustrate the effects of optimization.
The experimental results further indicate that the large-scale
model exhibits strong generalization capabilities during
knowledge concept extraction, effectively addressing diverse
types of exercises while uncovering deeper knowledge
structures. This ability is crucial for developing more precise
cognitive diagnostic models and lays a solid foundation for
future educational applications.

In general, the optimized Q matrix not only validates the
knowledge extraction capabilities of the large model but also
provides new insights and methods to improve cognitive
diagnosis models.

6) QUANTITATIVE ANALYSIS OF THE Q-MATRIX
The quality of the Q matrix directly impacts the accu-
rate prediction of students’ mastery of knowledge points.
To evaluate the optimized Q matrix, this study conducts
a quantitative analysis of knowledge points that were
manually annotated and those extracted by LLAMA3-
70B, focusing on two key aspects: coverage of knowledge
points and their distribution within exercises, as shown
in Table 6. Compared to the total number of manually
annotated knowledge points, which is 183, LLAMA3-70B
extracted 442 knowledge points. This demonstrates that
LLAMA3-70B can identify a broader range of implicit
or hard-to-annotate knowledge areas, thereby significantly
enhancing the Q matrix’s coverage and addressing potential
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FIGURE 6. Comparative analysis of Q matrix optimization before and after.

omissions in manual annotations. Additionally, while the
average number of manually annotated knowledge points
per exercise is 1.03, LLAMA3-70B extracted an average
of 2.49 knowledge points per exercise. The analysis further
highlights that manually annotated knowledge points are
unevenly distributed across exercises, whereas the knowledge
points extracted by LLAMA3-70B exhibit a more balanced
distribution, reflecting the underlying structure of exercises
more accurately. In conclusion, LLAMA3-70B substantially
contributes to optimizing the Q matrix by improving both
coverage and the balance of knowledge point distribution,
thereby enhancing the overall quality of the cognitive
diagnosis model.

TABLE 6. Quantitative analysis of the Q matrix.

VI. DISCUSSION
This study proposes a method for extracting knowledge
points and enhancing the Q matrix based on the LLAMA3-
70B generative AI model, aimed at improving the accuracy
of cognitive diagnostic models. Experimental results indicate
that the generated knowledge points can effectively optimize
the Q matrix, thereby increasing the model’s assessment
accuracy regarding students’ mastery of knowledge. How-
ever, several challenges persist. The application of generative
AI models in education inevitably encounters the ‘‘hallucina-
tion’’ problem; specifically, generated knowledge points may
be inaccurate or misaligned with educational objectives [20],
[21], [22], [23], [24]. Although this study mitigates the
hallucination issue to some extent by designing targeted
prompts to guide large language models in knowledge

generation, these measures are still insufficient to eliminate
potential risks. Future research should further investigate
the underlying causes of hallucinations, such as the model’s
reasoning pathways and information integration processes
within task contexts, while also optimizing prompt design
and generation mechanisms. By incorporating feedback from
domain experts alongside internal diagnostic tools within the
model, comprehensive strategies can be developed to enhance
both the accuracy and educational relevance of generated
knowledge points.

Knowledge point extraction and Q-matrix optimization
are critical components of cognitive diagnostic models.
While this study has enhanced the Q-matrix to improve the
accuracy of assessing students’ knowledge mastery, there
remain instances where relevant knowledge points for certain
exercises are either incompletely or inaccurately extracted.
This underscores the necessity for further optimization of
the algorithm, as well as the development of extraction
methods that cater to a diverse array of exercise types.
Future research should prioritize enhancing these processes
to ensure comprehensive and precise knowledge point
extraction across a broader spectrum of educational materials.

Although the methods employed in this study primarily
focus on exercises and knowledge points within a specific
domain, their potential extends well beyond these confines.
Future research may explore how to adapt model archi-
tectures and prompt designs to accommodate the unique
characteristics of various disciplines (such as operating
systems, software engineering, etc.), thereby broadening their
applicability across multiple fields. Concurrently, integrating
multimodal data (including student behavior records and
learning videos) with other educational technologies (such as
intelligent recommendation systems) is expected to further
enhance the model’s capacity for comprehensive analysis of
student learning behaviors and improve personalized learning
outcomes.
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As generative AI models gain traction in education,
concerns regarding student data privacy protection and algo-
rithmic fairness have increasingly emerged. Moving forward,
it is imperative to implement stringent data protection
measures that ensure the security and anonymity of student
information during its collection, processing, and storage
phases. Moreover, an interpretable algorithmic framework
should be developed to elucidate the rationale behind model
decisions while mitigating potential biases and inequities.
To ensure the responsible application of these technologies,
it is also essential to evaluate educational scenarios involving
generative AI from an ethical perspective and establish clear
technical guidelines that promote a harmonious integration of
technological advancements with educational practices.

From the perspective of practical management significance
(PMS), the findings of this study provide substantial value
to educational management practices. By enhancing the
Q-matrix to improve the accuracy of cognitive diagnostic
models, educators, and administrators can gain deeper
insights into students’ knowledge gaps, thereby optimizing
teaching resource allocation. For instance, based on precise
cognitive diagnostic results, teachers can design targeted
personalized learning plans and offer more effective tutoring
support to students while also increasing the relevance of
classroom instruction. Furthermore, university administrators
can modify course structures and assessment systems to
scientifically enhance students’ learning experiences and
overall teaching effectiveness. In higher education settings,
such improvements enable instructors to identify student
needs more efficiently, promote individualized instruction,
and achieve better educational outcomes with limited teach-
ing resources.

To validate the practical applicability of this method, this
study designed a scenario evaluation example. In a data
structure course at a university, instructors utilized knowledge
points generated by LLAMA3-70B to refine theQ-matrix and
applied cognitive diagnostic models to assess students’ mas-
tery of knowledge. The results indicated that instructors could
accurately identify students’ weaknesses and significantly
improve their final exam performance through personalized
review materials—further substantiating the effectiveness of
this approach in educational practice.

In conclusion, while this study has initially demonstrated
the potential of LLAMA3-70B in optimizing the Q-matrix
and enhancing the performance of cognitive diagnostic
models, numerous challenges and unanswered questions
remain. Future research should prioritize improving the
accuracy of knowledge point extraction, expanding the
application of this method across interdisciplinary and
multimodal data, and addressing critical issues such as data
privacy protection and algorithmic ethics. Through further
exploration and optimization in these areas, generative AI
models are anticipated to yield significant breakthroughs
and practical value for the advancement of educational
technology.

VII. CONCLUSION
This paper introduces an innovative cognitive diagnostic
model (LLM-CDM) designed to enhance the precise assess-
ment of students’ knowledge mastery. By integrating large
language models (LLMs) with prompt engineering, this
model can automatically extract knowledge concepts from
exercise texts and effectively incorporate them into the exist-
ing Q matrix, thereby significantly improving the accuracy
of cognitive diagnosis. Experimental results indicate that
comparative experiments conducted on real-world datasets
demonstrate substantial advantages in predictive performance
for this model, validating the effectiveness of employing
prompts to guide large language models in extracting and
optimizing the Q matrix to enhance diagnostic accuracy.
While this research acknowledges certain limitations, such
as challenges in accurately interpreting highly complex
or ambiguous exercise texts, it offers novel insights and
methodological advancements in cognitive diagnosis for
educational assessment. This study highlights the promising
application prospects of large language models in the realm
of educational intelligence.
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