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Abstract—Real-time image dehazing is crucial for applications
such as autonomous driving, surveillance, and remote sensing,
where haze can significantly reduce visibility. However, many
deep learning algorithms are hindered by large model sizes,
making real-time processing difficult to achieve. Several fast
and lightweight dehazing networks rely on estimating K(z),
but they often fail to deliver satisfying performance. In this
paper, we present a novel fast dehazing framework built upon
the saturation-based algorithm. We design a new convolution
module called Feature Extraction Partial Convolution (FEPC),
which is faster and achieves better performance than the vanilla
3x3 convolution. Additionally, we fully leverage the informa-
tion redundancy between feature map channels by dividing it
into two parts along the channel dimension and designing a
Self-Cross Attention Block (SCAB). The reduction in channel
count significantly reduces computational load and improves
the framework’s speed. Through extensive experiments, our
method demonstrates not only a fast inference speed but also
superior dehazing performance, providing a promising solution
for real-time practical deployment. Our code will be available at
https://github.com/superwsc/FSB-Dehazing-Framework.

Index Terms—Image Dehazing, Deep Learning, Saturation-
Based, Speed

I. INTRODUCTION

In autonomous driving, clear visibility is essential for safety
and accurate decision-making. However, haze may severely
degrade the quality of images [1], [2], increasing the risk
of navigation errors. While many dehazing algorithms can
improve image clarity, real-time performance is critical to
avoid delays that could lead to accidents. Therefore, it is
necessary to develop a dehazing framework that not only
delivers effective performance but also operates at a high speed
to ensure the functioning of autonomous systems.

In the field of image dehazing, a classic Atmospheric
Scattering Model (ASM [3]) was introduced to describe the
formation of hazy images:

H(z) = J(x)t(z) + A1 - t(z)), (1

where H (x) represents the hazy image, .J(z) corresponds to
the clean image, A denotes the atmospheric light, and #(x)
represents the transmission map. Based on this model, many
works estimate A and t(x) by leveraging specific priors and
assumptions to restore the clean image. He et al. [4] introduced
a straightforward dehazing method that uses the dark channel
prior (DCP). Kim et al. [5] proposed a fast haze removal
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Fig. 1. Comparisons with other models. The PSNR/Time on HSTS-synthetic
dataset of each model are labeled in the diagram.

algorithm that estimates medium transmission based solely on
the scene radiance’s saturation.

In recent years, many deep learning dehazing methods have
been proposed. Some works such as PhysicsGAN [6] and
RefineDNet [7] have large model sizes that hinder real-time
performance. As for fast and lightweight dehazing algorithms,
AODNet [8] combined A and ¢(z) into a single variable K ()
for direct estimation. Some subsequent K (x)-based works,
such as Light-DehazeNet [9] and LFD-Net [10], also adopted
this approach. However, directly estimating K (x) through
a lightweight network is challenging and unlikely to yield
satisfactory results because K (x) encompasses the two crucial
variables of hazy image.

In this paper, we propose a fast saturation-based dehazing
framework. Image saturation refers to the purity of colors
in an image, which is more explainable and has a clearer
physical meaning compared with K (z), thus it is easier for
the network to estimate accurately. We also design a small
and fast saturation estimation network which is integrated
into our framework to improve the image quality. Our main
contributions can be summarized as follows:

o We design a new dehazing framework built on saturation-
based algorithm. By leveraging the interpretable charac-
teristic of image saturation, we can estimate the clear im-
age’s saturation and calculate the transmission map more
precisely, leading to improved dehazing performance and
faster speed.

« We introduce a novel convolution module called Feature
Extraction Partial Convolution (FEPC) and a new atten-
tion module called Self-Cross Attention Block (SCAB).
Compared to traditional convolution and attention mod-
ules, FEPC and SCAB achieve both faster speed and
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Fig. 2. (a) Overview of our proposed framework, which primarily consists of two traditional algorithm parts and one network part. The network part mainly
comprises two FEPCs and one SCAB. (b) Structure of Feature Extraction Partial Convolution (FEPC). (c) Structure of Self-Cross Attention Block (SCAB).

superior performance.

o Comprehensive experiments on synthetic and real-world
datasets show that our method delivers state-of-the-art
(SOTA) image quality objectively and perceptually, while
also achieving less processing time.

II. PROPOSED METHOD
A. The Saturation-based Dehazing Framework

Currently, many high-performance dehazing networks strug-
gle to achieve real-time due to their large model sizes and
computational complexity. Although there are some fast K (x)-
based dehazing methods [8]-[10], they suffer from inaccurate
K (x) estimation and poor image quality. As a result, we pro-
pose a saturation-based framework to achieve faster and more
effective image dehazing. Its physical model, as described in
[5], is shown below.

In(z) = (HR(z) + H(z) + H(2))/3, @)
Sy (x) =1 —min(H®(z), HC (z), H? (2))/Iu(z), (3)
tx) =1—(u(z)/A) A= Su(x)/Ss(x), &

where H¢(z) (¢ € {R,G,B}) denotes the pixel value of
RGB channels in the hazy image H(x), Iz (x) represents the
H(z)’s intensity, Sp (z) is the saturation component of H (z)
at location x, and S;(z) is the clean image J(z)’s saturation.
For simplicity, we assume that the atmospheric light A is same
in the entire image.

In Eq. (4), S;(z) needs to be estimated and [5] obtained an
approximate condition of S;(x) > Sy(z), employing rough
stretch functions such as Sy(z) = Sp(x)(2 — Su(z)) to
estimate S;(x). However, these functions fail to accurately
capture the relationship between S;(z) and Sy (x). Moreover,
different regions in an image require different degrees of
saturation stretching, making the use of a global stretch func-
tion inaccurate. Therefore, we propose a network to enhance

the accuracy and get a point-wise Sy (z) estimation. Besides,
multiplication and division in Eq. (4) can introduce extra com-
putational overhead if we directly estimate S;(x). Integrating
some of these calculations into the network estimation can
help to reduce the latency without compromising accuracy.
Eventually, our network directly estimates the following term:

E(a) = In(x) (1 - Su(2)/Ss (). s)

By combining Eq. (1), Eq. (4) and Eq. (5), our final restored
equation is obtained as,
E(l‘))

) = (a1(0) ~ B/ (1= 25

Fig. 2(a) provides an overview of our framework. Firstly, the
saturation of hazy image Sy (z) is computed based on Eq. (2)
and Eq. (3). Sy(x) is then concatenated with the hazy image
H (x) and they are used as the combined input to the network.
The network estimates E(x) and our framework ultimately
reconstructs the clean image J(x) through Eq. (6). The details
of our network will be demonstrated in Section II-B.

B. Fast Saturation-Based Network

(6)

The neural network part in Fig. 2(a) is the primary bottle-
neck that impacts the computational speed of the entire frame-
work. To address this issue, we propose a Feature Extraction
Partial Convolution (FEPC) and a Self-Cross Attention Block
(SCAB) to accelerate the network’s speed.

1) Feature Extraction Partial Convolution: A large number
of feature map channels can slow down convolution com-
putation. Chen et al. [15] pointed out that the information
across different channels often tends to be similar. Based on
this observation, we only need to process a part of channels
to decrease computational complexity and memory access.
More specifically, we propose the Feature Extraction Partial
Convolution (FEPC). FPEC can utilize fewer channels to more
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TABLE I

COMPARISONS BETWEEN K(CE)-BASED AND SATURATION-BASED

USING THE SAME STRUCTURE BUT DIFFERENT CHANNEL NUMBERS.

Channels;, /Channels,yu¢ SOTS-outdoor Inference on a 640480 image
Models Convl Con2 Conv3 Convd Convs PSNRT SSIMT Para(K) MACs(G) Time(ms)],
K (z)-based [8] 3/3 3/3 6/3 6/3 12/1 22.7210 0.8965 1.761 0.5364 3.3030
Saturation-based 4/1 1/1 2/1 2/1 4/1 22.999 0.8801 0.202 0.0605 1.1081
TABLE IT
QUANTITATIVE COMPARISONS WITH SOTA METHODS ON SOTS-OUTDOOR AND HSTS-SYNTHETIC DATASETS.
SOTS-outdoor HSTS-synthetic
Models PSNRT | SSIMT | LPIPS] FID] Ave Time(ms)], PSNRT SSIMT | LPIPS] FID] Ave Time(ms)],
DCP [4] 17.1004 0.8496 0.1557 21.0140 36.751(CPU) 17.1943 0.8885 0.1335 35.7139 57.536(CPU)
Kim et al. [5] 21.9836 0.8641 0.1001 14.0828 9.667 21.0597 0.8703 0.0906 25.8773 8.974
DehazeNet [11] 22.8334 0.8886 0.0623 14.4877 1989.14(CPU) 23.9213 0.9061 0.0650 279113 1108.18(CPU)
AODNet [8] 22.7210 0.8965 0.0764 17.6676 1.5111 21.8300 0.9072 0.0711 35.6562 1.5183
Light-DehazeNet [9] 20.1538 0.8860 0.0867 29.2452 12.006 19.9842 0.8686 0.1058 72.7926 13.142
RefineDNet [7] 20.8112 0.8741 0.1106 18.6460 143.400 19.2457 0.7198 0.1266 39.3251 522.253
LFD-Net [10] 25.1263 0.9087 0.0524 14.7730 9.839 24.7813 0.8902 0.0677 33.0445 9.687
PSD [12] 15.0615 0.6974 0.1869 35.5434 334.622 14.6827 0.7346 0.1489 72.3399 273.371
PhysicsGAN [6] 20.3128 0.6458 0.1213 24.2499 7696.3 21.8449 0.8789 0.0924 54.2522 7594.9
Liang et al. [13] 24.1482 0.9139 0.0703 16.0549 17.037 24.4890 0.9003 0.0560 37.2933 16.812
CASM [14] 19.9379 0.8787 0.1299 24.4786 24.799 19.0735 0.8610 0.1177 52.9976 24.473
Ours 25.5383 0.9099 0.0613 11.8265 4.329 27.2990 0.9539 0.0286 11.647 4.272

The best and the second best results are highlighted in red and blue respectively.

swiftly extract the spatial information and high-frequency
components from the feature map. It not only operates faster
than conventional convolution but also delivers superior per-
formance.

As illustrated in Fig. 2(b), we first split the feature map
Fy, along the channel dimension into three parts: Fpi, Fie
and Fy3. Then we pick [y with ¢, channels to perform 3x3
convolution, resulting in £, 121' Next, we select Fpo with another
¢p channels for Laplacian Feature Extraction Convolution
(LFEC) to extract high-frequency components. These compo-
nents are then added to Fjo through a learnable coefficient o.
This calculation results in Fl;2,

Fyy = Fyp + a x LEEC(Fy). (7)
Due to Laplacian kernel’s ability to efficiently capture high-
frequency components, this operation effectively enhances the
detailed information within the feature map. The Fj,3 with
remaining ¢ — 2c¢, channels are copied directly to the cor-
responding positions in the output without any modification,
which can effectively reduce the number of memory access
and accelerate the computation. Finally, we concatenate Fz;p
F;Q, and Fj3 to obtain the final output Fl:. It is important to
note that Fj3 is not redundant. This portion of information is
valuable for the subsequent 1x1 convolution.

2) Self-Cross Attention Block: Many works have achieved
impressive results using attention blocks [16], [17], but the
large number of channels often significantly slows down
the inference speed. Based on the similar idea described in
Section II-B1, we find out that obtaining the attention map
in an attention block does not require the involvement of
all channels. By leveraging the similarity and diversity of
information across different channels, we design the Self-
Cross Attention Block (SCAB), where distinct attention mech-
anisms are applied within the feature map. Compared with
the sequential stacking of multiple attention blocks, SCAB
maintains superior performance while significantly reducing
computational complexity and increasing processing speed.

As depicted in Fig. 2(c), the input feature map is evenly
divided into two parts (F.; and F.;) along the channel
dimension. For F.;, we apply channel attention using Fio.
F.o is processed through global average pooling in the spatial
domain, then passed through a series of convolutions and
activation functions to generate a channel-wise attention map.
This attention map is then multiplied with F; after it has been
processed by a 1x1 convolution, resulting in Fcll. The whole
process can be described as follows,

Fy = Cixa(Fa) @ U(Clxl(Relu(Clxl(Angool(ch))))%,

(®)
where & represents element-wise product, o represents sig-
moid activation function and Cjx; is a 1x1 convolution.
For F.,, we employ F.; to generate a spatial attention map.
The operation is similar as before and can be written in the
following form,

F;Q :C1><1(F02)®U(C1X1(REZU(C1><1(Fd)))). (9)

The final output of SCAB is obtained by concatenating F| ;1
and I, together, resulting in F.

III. EXPERIMENTS
A. Implementation Details

We train our model on the OTS dataset [18] using the Adam
optimizer for 30 epochs, with a batch size of 12 and an initial
learning rate of 0.01 on RTX 2080Ti GPU. The Charbonnier
loss [19] is employed during training. The model’s perfor-
mance is evaluated on SOTS-outdoor and HSTS-synthetic
datasets, as well as on real-world hazy images. In this paper,
we set ¢, /¢ = 1/4 in FEPC and the atmospheric light A = 0.9.
B. Comparisons of Estimation Method

Table I compares our saturation-based framework with
the K (z)-based framework. Both of them employ the same
network architecture used in [8], while the saturation-based
uses significantly fewer channels. Despite their comparable
dehazing performance, the saturation-based framework uses
only 11.47% of parameters, and the processing time for a
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Fig. 3. Visual qualitative comparison on the synthetic datasets(zoom in for better visibility). The first two rows correspond to the SOTS-outdoor dataset,
while the third row and fourth row correspond to the HSTS-synthetic dataset.
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Fig. 4. Visual qualitative comparison on the real-world hazy images(zoom in for better visibility).

TABLE III
QUANTITATIVE COMPARISONS WITH SOTA METHODS ON REAL-WORLD
HAZY IMAGES.

Models Para(K)/MACs(G) | Ave Time(ms) BRISQUE |
DCP [4] -/- 64.349(CPU) 27.3862
Kim et al. [5] -/- 16.978 224119
DehazeNet [11] 83/- 1775.45(CPU) 22.4603
AODNEet [8] 1.761/0.6433 2.5021 22.9287
Light-DehazeNet [9] | 30.187/11.083 21.195 22.8732
RefineDNet [7] 65795/ - 903.369 20.6436
LFD-Net [10] 90.239 /32.8226 17.314 24.9008
PSD [12] 5316.3/1621.6 462.584 24.4038
PhysicsGAN [6] 11378.2/319.71 11822.4 20.0582
Liang et al. [13] 256.37/35.9052 26.1702 22.3164
CASM [14] 2.459/0.9272 38.095 23.5750
Ours 8.408 /3.0493 6.6441 19.9654

The best and the second best results are highlighted in red and blue respectively.

640x480 image is 33.55% compared to K (x)-based. This
demonstrates the superior advantage of our saturation-based
framework.

C. Comparisons of Dehazing Framework

We compare our method with 11 other SOTA methods.
Table II showcases the superior performance of our approach
on synthetic datasets, excelling in PSNR, SSIM [20], LPIPS
[21] and FID [22] metrics, while also achieving impressive
speed. Although AODNet [8] is faster than our method, our
approach significantly outperforms it in terms of dehazing
effectiveness. Fig. 3 indicates that DCP [4] and PSD [12]
exhibit artifacts along the edges, while the results from Kim
et al. [5], AODNet [8], DehazeNet [11] and Light-DehazeNet
[9] have haze residuals (note the fourth row). The sky in the
results of RefineDNet [7], LFD-Net [10], and CASM [14]
appear darker with color distortion (note the first row). Our
method can not only achieve fast processing speed but also
better remove the haze in the image.

Fig. 4 and Table III present a comparison on real-world
hazy images, demonstrating the superior BRISQUE [23] and
speed advantage of our method. The results from Liang et al.
[13], CASM [14], and PhysicsGAN [6] exhibit color distortion

and artifacts, alongside slower speed. Our results effectively
preserve the original details of the image without any artifacts,
making the images more realistic.

TABLE IV
RESULTS OF ABLATION STUDIES ON SOTS-OUTDOOR DATASET.
PSNR T SSIMT LPIPS] Time(ms)

FEPC —3x3 Conv 24.9250 0.9021 0.0521 5.523
w/o LFEC 24.8090 0.8976 0.0630 3.948
SCAB — CA + SA 25.3140 0.9004 0.0625 4.937
w/o SCAB 24.2519 0.8842 0.0728 3.401
Ours 25.5383 0.9099 0.0613 4.329

The best and the second best results are highlighted in red and blue respectively.
D. Ablation Studies

Table IV details the impact of each component of our
model. We replace FEPC with a common 3x3 convolution,
and replace SCAB with a combination of channel attention
and spatial attention. The results show that FEPC and SCAB
can not only improve processing speed but also maintain
high image quality. We also remove LFEC and observe the
results. Although this result in a slight speed improvement,
the network is unable to effectively capture the detailed
information, leading to a significant decline in image quality.
The framework is faster without SCAB but the performance is
very poor because it can not effectively utilize the information

in the feature map.
IV. CONCLUSION

In this paper, we present a fast saturation-based dehazing
framework, offering real-time processing and outstanding de-
hazing performance. By incorporating Feature Extraction Par-
tial Convolution and Self-Cross Attention Block, our frame-
work not only optimizes inference speed but also improves
image quality. Experimental results demonstrate that our
saturation-based approach can maintain comparable dehazing
quality as K (x)-based methods with fewer parameters and
faster speed under same network structure. Our framework
can deliver SOTA performance with notably faster speed than
many existing deep learning models, underscoring its potential
for practical dehazing applications.
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