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Abstract—Challenging behaviors in children with autism
is a serious clinical condition, oftentimes leading to ag-
gression or self-injurious actions. The Revised Family Ob-
servation Schedule 3 rd Edition (FOS-R-III) is an inten-
sive and fine-grained scale used to observe and analyze
the behaviors of individuals with autism, which facilitates
the diagnosis and monitoring of autism severity. Previous
AI-based approaches for automated behavior analysis in
autism often focused on predicting facial expressions and
body movements without generating a clinically meaningful
scale, mostly utilizing visual information. In this study, we
propose a deep-learning based algorithm with audio-visual
multimodal-data clinically coded with the FOS-R-III, named
AV-FOS model. Our proposed AV-FOS model leverages
transformer-based structure and self-supervised learning
to intelligently recognize Interaction Styles (IS) in the FOS-
R-III scale from subjects’ video recordings. This enables the
automatic generation of the FOS-R-III measures with clini-
cally acceptable accuracy. We explore the IS recognition us-
ing a multimodal large language model, GPT4V, with prompt
engineering provided with FOS-R-III measure definitions as
the baseline for this study and compare with other vision-
based deep learning algorithms. We believe this research
represents a significant advancement in autism research
and clinical accessibility. The proposed AV-FOS and our
FOS-R-III dataset will serve as a gateway toward the digital
health era for future AI models related to autism.
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I. INTRODUCTION

AUTISM Spectrum Disorder (ASD), or autism, is a life-long
neuro-developmental condition [1]. The increasing preva-

lence of ASD among children in the United States has become a
significant developmental issue. Over the past decades, the rate
has been steadily rising, with 1 in 36 children now diagnosed
with autism [2], [3], [4], [5]. Individuals with ASD, or autistic
individuals, experience difficulties in communication and social
interaction, exhibit restricted interests, and engage in repetitive
behaviors. These characteristics impact their daily activities and
social functioning across various settings such as school, work,
and other areas of life [6], [7]. One of the more clinically impor-
tant characteristics with autistic individuals is the challenging
behaviors (CBs), such as self-injurious behaviors, aggression
and disruptive behaviors [8]. These CBs not only hinder social
interaction but also frequently result in critical health impli-
cations for the individuals themselves or others. Despite their
clinical importance, tracking these behaviors in daily settings
remains a significant challenge. Currently, monitoring CBs pri-
marily relies on regular clinical evaluations conducted in office
settings, which imposes considerable burdens and restrictions
on families of autistic individuals. Moreover, this approach is
cost-prohibitive and unsuitable for long-term continuous obser-
vation. The sporadic nature of certain episodes may further lead
to discrepancies between diagnostic outcomes and actual behav-
ioral patterns. Therefore, developing automated tools capable
of analyzing the interactive behaviors between autistic children
and their caregivers is not only beneficial for the diagnosis
and treatment of children but also essential for reducing the
burden on caregivers. Additionally, such tools would facilitate
long-term monitoring, enabling more accurate diagnoses and a
better understanding of behavioral trends over time.

One of the clinical measures that has been established for
rigorous and fine-grained coding of children behaviors is the Re-
vised Family Observation Schedule 3 rd edition (FOS-R-III) [9],
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which is a direct observation tool designed to assess parent-
child interactions across various contexts. In autism research,
FOS-R-III is frequently utilized in both clinical and research
settings to identify and evaluate parent-child interactions, par-
ticularly in relation to CBs. This tool provides valuable insights
for developing interventions and support strategies for autistic
children by examining their social contexts and dynamics [10].
Currently, FOS-R-III data is manually encoded by trained ob-
servers through video interactions between autistic children and
their caregivers, a process that is both time-consuming and
labor-intensive. Developing an automated FOS-R-III encoding
algorithm suitable for clinical settings could significantly reduce
the workload for clinicians and researchers, ultimately benefit-
ing many autistic children and their families.

To design the automated tools to achieve this goal, we apply
a multimodal sensor-based approach with artificial intelligence
(AI). In recent years, multimodal perception algorithms have
found numerous applications in the field of human behav-
ior detection [11], [12]. Transformer-based multimodal mod-
els, in particular, have demonstrated strong capabilities across
various video understanding tasks [13], [14]. However, these
transformer-based models heavily rely on extensive enterprise-
level computational resources and large datasets for training,
while the clinical observational data of autistic children is typi-
cally not easily accessible due to privacy issues and the size of
the data is small.

To address these challenges, we first introduce a high-quality
FOS-R-III dataset, meticulously annotated by experts. This
dataset comprises nearly 25 hours of videos featuring autistic
children, with Interaction Styles (IS) from FOS-R-III annotated
every 10 seconds. This dataset is highly suitable for both su-
pervised and unsupervised learning in deep learning models,
facilitating future research on deep learning algorithms for autis-
tic children. Secondly, we propose a audio-visual transformer-
based model (AV-FOS) for recognizing interaction styles in
autistic children, which features relatively manageable compu-
tational requirements and real-time inference speed. The AV-
FOS model was trained and tested on our proposed FOS-R-III
dataset. As a baseline, we compared it with the enterprise-level
model (GPT-4V [15]) combined with prompt engineering. As
comparison models, we applied our dataset to two vision-based
behavior understanding AI models SlowFast Networks [16] and
vision transformer [17] and conducted an ablation study. Our
AV-FOS model exhibited superior performance and inference
speed compared to the baseline as well as comparison models.

II. RELATED WORK

A. FOS-R-III Clinical Application and Case Study

The FOS-R-III is a validated coding system designed to
capture negative behaviors and interaction styles in children
with ASD and their parents at 10-second intervals. It is widely
used for assessing challenging behaviors. Sander et al. [18]
employed FOS-R-III in a study evaluating behavioral changes
before and after a parenting program, finding a significant re-
duction in negative child behaviors in the intervention group.
Similarly, Pasalich et al. [19] used it to examine the impact of

callous–unemotional (CU) traits and ASD symptoms on child
conduct problems and parent-child interactions, demonstrating
its versatility in analyzing behavioral dynamics.

Despite its effectiveness, FOS-R-III coding has primarily
relied on manual processes, which are time-consuming and
labor-intensive. ASD behavior assessment services also face
challenges such as specialist shortages and limited access, im-
posing financial and time burdens on families [20]. Developing a
deep learning model for automated video analysis and real-time
assessment could mitigate these issues, enabling early detec-
tion of behavioral changes and timely interventions to support
affected families.

B. Multimodal Learning for Behavior Recognition

Multimodal behavior recognition is a highly active research
field. Previous studies have focused on various aspects, such
as emotion/behavior recognition using video and text informa-
tion [21], [22], [23], [24], [25], or action recognition using vari-
ous visual modalities like optical flow and skeleton tracking [26],
[27], [28], [29], [30]. However, the previous studies have limi-
tations on the modality of inputs, limiting the bandwidth of con-
textual understanding. Thus, our study focuses on recognizing
behaviors of autistic children and their caregivers using audio
and video modalities capable of providing fine-grained clinical
explainability. While similar studies using audio-visual modal-
ities exist [31], [32], they do not employ self-supervised learn-
ing strategies or provide fine-grained clinical information [31],
[32], [33].

Noteworthy are the two AI-based multimodal models capable
of audio+video understanding: Audio-Visual Masked Autoen-
coder (AV-MAE) [34] and Contrastive Audio-Visual Masked
Autoencoder (CAV-MAE) [35]. We adapt these state-of-the-art
transformer-based approaches and provide a customized archi-
tecture advancing from AV-MAE and CAV-MAE to self-learn
the clinical measures in FOS-R-III scale and provide explainable
AI module on audio-visual inputs. Our proposed AV-FOS model
adapts similar pre-training algorithms as the CAV-MAE but adds
new strategies to achieve supervised learning with fine-grained
self-built clinical dataset. Furthermore, given the limited capac-
ity of the CAV-MAE model to perceive visual temporal informa-
tion, we address this limitation through targeted optimizations.

C. Deep Learning-Based Autism Research

There has been extensive research utilizing deep learning
techniques in studies of autistic children. Some studies focus
on emotion recognition in autistic patients based on their facial
expressions [36], [37], while others utilize visual information
to recognize simple actions such as clapping and jumping [38],
[39], [40]. Additionally, some studies integrate multimodal data,
such as video, audio, electroencephalograms, and eye-tracking
information, to extract basic facial and emotional features us-
ing deep learning models. These extracted features are then
analyzed to facilitate the detection of ASD. [41], [42]. How-
ever, these studies have not employed large-scale multimodal
self-supervised pretraining strategies. At the same time, the
clinical application of recognizing only facial expressions and
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simple actions is limited. Implementing deep learning methods
to automatically recognize behaviors within a comprehensive
clinical schedule can play a highly beneficial role not only in
diagnosing autistic patients but also in preventing and treating
ASD.

D. Multimodal Prompt Engineering

The advent of large AI models, especially following the
release of ChatGPT, has introduced a powerful alternative to
traditional model training, demonstrating strong performance
across fields like medicine and law [43], [44]. GPT-4 V, Ope-
nAI’s most advanced publicly available multimodal model,
has shown substantial capabilities in visual understanding and
language-vision tasks through prompt engineering [44], [45],
[46]. Additionally, research highlights its potential in psychol-
ogy and autism-related behavior recognition [47], [48].

However, we did not fine-tune GPT-4 V as a benchmark
for three reasons: 1) its large parameter count incurs high
computational costs without added clinical value, 2) inference
GPT4V model is impractical for local hospital deployment due
to hardware constraints, and 3) OpenAI has not open-sourced
GPT-4 V’s weights, and available fine-tuning options on their
website do not include GPT4V.

Thus, we selected the GPT-4 V + Prompt Engineering ap-
proach as our baseline for the FOS-R-III IS Encoding task.

III. METHODOLOGY

A. Dataset

1) Dataset Description: This dataset was designed to mea-
sure fine-grained FOS-R-III scales for detecting challenging
behaviors in autistic children. Researchers recorded videos in
participants’ homes at the invitation of parents, providing real-
istic data to enhance clinical services such as ASD treatment,
severity diagnosis, and symptom management. This real-life
setting underscores the dataset’s high clinical value.

The dataset comprises 216 videos, each 5 to 15 minutes long,
from 83 participants. The videos were recorded at a frame rate
of 30 frames per second, and the corresponding audio was
captured at a sample rate of 16,000 Hz. Children with ASD
were diagnosed by licensed clinicians, while those without a
confirmed diagnosis met the ASD screening cutoff (≥ 15) on the
Social Communication Questionnaire (SCQ) [49]. Participants
had a mean age of 9.72 years (SD= 4.77), with a male-to-female
ratio of approximately 7:3.

Children performed daily tasks designed to assess cognitive,
motor, and social skills. Current data focus on children aged 1
to 12, though tasks can be adapted for adolescents and adults
in future studies. Problem behaviors ranged from mild to se-
vere, evaluated using the Problem Behavior Checklist [50]. This
checklist measures 14 common behaviors (e.g., self-injury, ag-
gression, repetitive movements, noncompliance, feeding issues,
hyperactivity) on a 5-point Likert scale [51], with total scores
ranging from 14 to 70. Higher scores indicate more frequent or
severe behaviors, and participants in this study had a mean score
of 33.00, reflecting moderate severity.

TABLE I
THE DESIGN OF INSTRUCTION LISTS

Handheld cameras were deliberately chosen to simulate un-
controlled environments, as this introduces a level of noise
that enhances the model’s robustness to real-world scenarios.
While advanced IP-based cameras could provide higher resolu-
tion and stability, relying on handheld cameras ensures broader
applicability by enabling future diagnostic systems to operate
effectively without requiring complex and costly recording se-
tups. Each video features one of three tasks: 1) playing with
specific toys, 2) following a series of instructions (four versions
available, as shown in Table I), or 3) free play.

2) Dataset Annotation: The videos in this dataset are anno-
tated every 10 seconds using the FOS-R-III structured interval-
based coding system to capture interaction styles (IS) between
children and their caregivers, which serve as labels for training
deep learning models. A total of 23 IS types are coded, en-
compassing both parental IS (e.g., Praise (P), Affection (AF))
and child IS (e.g., Non-compliance (NC), Opposition (O)).
Some IS types are marked with positive or negative symbols
to indicate emotional tone; for example, SA+ denotes positive
social attention, while SA- represents negative social attention.
A detailed overview of IS codes is provided in Table II, and Fig. 1
illustrates several examples of IS annotations corresponding to
video frames. If a behavior occurred during the interval, it was
recorded as “1”. Fig. 2 shows the coding sheet used during the
annotation process.

The coding process was conducted manually by trained re-
search assistants, who observed video recordings and docu-
mented whether a behavior occurred during each 10-second
interval. Five trained graduate students from the Department
of Psychology of Yonsei University served as human coders
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TABLE II
THE EXPLANATION OF EACH IS AND THE CORRESPONDING FREQUENCY IN

THE FOS-R-III DATASET

Fig. 1. A subset of the IS examples, accompanied by a single frame
from the corresponding videos, is displayed. All images have been
anonymized to safeguard the privacy and confidentiality of the partici-
pants.

under the supervision of a licensed clinical psychologist with
Board Certified Behavior Analyst (BCBA) credentials. Coders
underwent extensive training, including 20 hours of practice and
evaluation, to ensure annotation accuracy. They worked in pairs
to establish inter-observer reliability, and inter-rater reliability
was calculated on 30% of the dataset, yielding a 90% agreement
rate, exceeding the acceptable threshold of 80% [52].

This rigorous annotation process ensures reliable labels
for studying behavior patterns and training machine learning
models.

B. Data Preprocessing

For videos originally ranging in length from 5 minutes to 15
minutes, we initially performed a trimming process to establish
a dataset comprising clips of 10-second duration each, annotated
with corresponding Interaction Styles (10 s FOS-R-III Dataset).

Fig. 2. The coding sheet of the annotation.

Subsequently, we utilized the open-source Sound eXchange [53]
software and the OpenCV [54] library to extract audio and
video information from each 10-second video clip for further
processing.

For visual information processing, we adopt three approaches
to sample and preprocess 10 s video data, aiming to maximize
the preservation of both spatial and temporal information. In all
three approaches, the final output consists of 196 visual patches,
which are input into the model for attention computation, feature
extraction, and IS prediction:

v = [v1, v2, . . ., v196] (1)

Approach 1 - Middle Frame Spacial Attention: We select the
central frame of the video as the keyframe, resize it to 224×
224 pixels, and divide it into 196 square patches.

Approach 2 - Cross-Frame Attention: The video is divided into
four temporal segments, and one keyframe is selected from each.
These keyframes are resized to 112× 112 pixels and divided into
49 square patches each, collectively forming 196 patches.

Approach 3 - Averaged Key Frame Attention: We extract one
keyframe each from the first, middle, and final thirds of the
video, compute their pixel-level average image, resize it to 224×
224 pixels, and divide it into 196 square patches.

Fig. 3 provides a visual comparison of these three approaches.
The first approach prioritizes high-quality spatial information

but includes minimal temporal information. The latter two ap-
proaches preserve more temporal information by slightly com-
promising spatial resolution. After evaluation, our Averaged Key
Frame Attention demonstrated the best performance; thus, we
selected this model for further analysis. Detailed results and
discussion can be found in Section IV-F3: Ablation Study -
Visual Temporal Information Perception.

For audio processing, the raw waveforms were first normal-
ized by subtracting their mean value, centering the signals and
ensuring consistent amplitude across all samples. The audio
maintains its native sample rate (16000 HZ), preserving the
original quality of the recordings. And then, Mel-filter bank
(fbank) features were then extracted using a Hanning window
with a window size of 25 ms and a frame shift of 10 ms.
The extraction process generated 128-dimensional log Mel-filter
bank features for each frame, resulting in a time-frequency repre-
sentation of the audio data. To ensure uniform input dimensions
for the model, the extracted spectrograms were adjusted to a
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Fig. 3. Comparison of three spatial-temporal attention approaches.

fixed temporal length of 1024 frames through zero-padding for
shorter spectrograms or trimming for longer ones.

Finally, the spectrograms were divided into 512 square
patches of size 16× 16, following a consistent representation
format for input into the model. This pre-processing pipeline was
designed to preserve critical temporal and spectral information,
ensuring that the audio features were robust and aligned with
the model architecture:

a = [a1, a2, . . ., a512] (2)

C. Transformer-Based Encoder and Decoder

In both the pre-training and formal model structures, the
Transformer-based Encoder and Decoder are integral compo-
nents of our model. Therefore, this section introduces their
internal structural details to facilitate the subsequent discussions
on the pre-training and formal structures of the model in the
following sections.

1) Tokenization: Initially, in the Tokenization phase, we em-
bed not only positional information but also modality infor-
mation. Specifically, for patch embedding, we use learnable
linear projection (LP) layers to process the original square patch
pim ∈ a ∪ v, where each modality m ∈ {audio, video} and and
i denotes the patch number. In the positional embedding (PEi

m),
a fixed modality-specific 2-D sin-cos embedding strategy is
employed. Modality embedding is accomplished using trainable
parametersω. Ultimately, by performing element-wise addition,
we obtain the sequence of tokens input into the transformer
block. Each token t in this sequence has a length, or embedding
dimension, of 768. Consequently, the token tim can be mathe-
matically expressed as:

tim = LP(pim) + PEi
m + ωm (3)

Fig. 4. The data preprocessing and tokenization.

The whole process of data pre-processing and tokenization is
shown in Fig. 4

2) Transformer Blocks: In each transformer block of the
model, the architecture fundamentally adheres to the standard
Transformer structure [55]. A transformer block consists of a
stack that follows a specific pattern of a Multi-Head Attention
layer (MHA), residual connection layers, a Feed-Forward Neu-
ral Network / Multilayer Perceptron layer (MLP), and Layer
Normalization layers (LN). For each input token sequence x =
[t1, t2, . . . , tn] and the corresponding output token sequence y,
the mathematical expressions are as follows:

x′ = MHA(LN1(x)) + x

y = MLP(LN2(x
′)) + x′ (4)

Here, LN1 and LN2 represent the layer normalization steps
applied before the multi-head attention and feed-forward neural
network.

3) Encoder and Decoder: The encoder Em(•) and decoder
Dm(•) structures are similar to those in the MAE [56] but accept
different modality tokens. The encoder consists of a sequence
of transformer blocks applied only to visible, unmasked tokens.
Conversely, the decoder is also composed of a sequence of
transformer blocks; however, the input to the decoder comprises
the full set of tokens, including both masked and unmasked
tokens. Each masked token is a shared, learned vector that
indicates the presence of a missing patch to be predicted, and
both positional embeddings and modality embeddings are added
to the tokens. For the different modality encoder and decoder,
the structure is the same. We assume that this consistent structure
will enhance the performance of modality fusion perception for
the multimodal task.

D. Self-Supervised Model Pretraining

Our model used pretraining strategy, leveraging relatively
low-cost unlabeled data for prior knowledge acquisition, thereby
enabling the use of more data for training in future research,
which holds greater potential. We adhere to the original CAV-
MAE algorithm for our model initialization and pretraining, as
depicted in Fig. 5.

1) Loss Function: Generally, our approach aims to leverage
the inherent connections within 1) video information and its
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Fig. 5. The pretrained structure of the CAV-MAE. We followed the
orginal CAV-MAE paper [35], used reconstruction loss and contrastive
loss for the pretrained.

corresponding audio information, and 2) patches within the same
contextual data. Consequently, we employ both Contrastive
Loss and Reconstruction Loss as our loss functions. The
reduction in contrastive Loss indicates that visual and audio
information from the same context are brought closer in the
feature space, while data from different contexts are distanced.
On the other hand, reconstruction Loss is calculated by initially
masking most patches and then generating the masked data
using a limited set of features in the feature space along with
a Transformer decoder. The loss is then assessed based on the
difference between the generated data and the original data. A
decrease in Reconstruction Loss indicates that the model has
learned the latent connections between contextual data. The
computation and application of these two types of losses do not
rely on manual annotations, which substantially reduces labeling
costs and enhances the model ability to extract features from
input data. This is advantageous for our model performance on
the self-collected FOS-R-III dataset.

2) Model Structure: The input tokens from the two modali-
ties are initially subjected to a masking process, which obscures
75% of the tokens. Subsequently, these masked tokens are fed
into their respective modality-specific encoders, resulting in the
preliminary embedding outcomes, denoted as eiunmask_a and
eiunmask_vi.

eiunmask_a = Mask0.75(Ea(t
i
a))

eiunmask_v = Mask0.75(Ev(t
i
v)) (5)

After passing through the initial unimodality encoders, the
two modality embeddings, eiunmask_a and eiunmask_v are di-
rectly input into the Joint Encoder Ej(•) where a Mean Pool
operation is conducted to obtain cBi

a and cBi
v for computing the

contrastive loss. Here, Bi denotes the i-th video clip from the
current training batch B. Simultaneously, in order to calculate
the reconstruction loss, these two vectors are concatenated and
then fed into the Joint Encoder, resulting in the aggregated em-
beddings sequence eunmask_m which is prepared for subsequent
reconstruction operations.

cBi
a = MeanPool(Ej(e

Bi
unmask_a))

cBi
v = MeanPool(Ej(e

Bi
unmask_v)) (6)

eunmask_m = Ej([eunmask_a, eunmask_v]) (7)

The computation of the contrastive loss Lc is as follows:

Lc = − 1

N

N∑
i=1

log

(
exp

(
sBi,Bi/τ

)∑
k �=Bi

exp (sBi,Bk/τ) + exp (sBi,Bi/τ)

)

(8)

where sBi,Bj = ‖cBi
v ‖T ‖cBj

a ‖ and τ is the temperature.
For the reconstruction loss calculation, we pad eunmask_m at

the original masked position as em and elementwised add the
fixed sinusoidal positional and learnable modality embedding
(PEi

m and ωm). And then pass the decoder structure to get the
reconstruction of the original audio and video patch âi and v̂i.

âi = Dj(e
i
a + PEi

a + ωa)

v̂i = Dj(e
i
v + PEi

v + ωv) (9)

We then apply a mean square error reconstruction loss Lr:

Lr = − 1

N

N∑
i=1

[∑
((âimask)− norm(aimask))

2

|amask|

+

∑
((v̂imask)− norm(vimask))

2

|vmask|
]

(10)

Here, N denotes the mini-batch size, and |aimask| and |vimask|
denote the number of masked audio and visual patches, respec-
tively.

Finally, we sum the constractive loss Lc and reconstruction
loss Lr as the final loss L:

L = λcLc + Lr (11)

Here, λc ∈ [0, 1] represents the ratio of the contrastive loss.
3) Model Initialization and Pretrained Dataset: In this study,

we utilized the pretrained model weights from the CAV-MAE
paper, which were used to initialize our model, specifically
CAV-MAEscale+. These weights were obtained through pre-
training on the AudioSet dataset [57].

E. FOS-R-III Encoding Model Supervised Learning

To facilitate the model ability to learn more prior knowledge
conveniently, during the pretraining phase, we incorporated
numerous redundant structures such as decoders and patch
masking. However, before proceeding with supervised training
on the self-collected FOS-R-III dataset, it is necessary to modify
the model structure. This involves removing redundant compo-
nents while retaining the neural network layers that store the
most prior knowledge. Additionally, we introduce appropriate
classification layers and employ different loss functions to train
the model, optimizing it for the multi-label classification task of
FOS-R-III Interaction Styles (IS). This newly constructed and
trained network is named the Audio-Visual FOS-R-III Encoding
Neural Network (AV-FOS), as illustrated in Fig. 6, which is
specifically designed for recognizing FOS-R-III IS in the med-
ical domain.
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Fig. 6. The proposed FOS-R-III decision neural network: AV-FOS.

The preprocessing and tokenization of input data for AV-
FOS remain consistent with previous discussions, except for
the elimination of the masking step. The input audio patches
a = [a1, a2, . . ., a512] and video patches v = [v1, v2, . . ., v196]
undergo tokenization and element-wise addition of positional
and modality embeddings, resulting in ta = [t1a, t

2
a, . . ., t

512
a ]

and tv = [t1v, t
2
v, . . ., t

196
v ], respectively. These tokens are then

input into their respective modality-specific encoders, which
have been pretrained, followed by concatenation and input into a
previously pretrained Joint Encoder to obtain the feature vector
em = [e1a, e

2
a, . . ., e

512
a , e1v, e

2
v, . . ., e

196
v ]:

em = E∗
j [E

∗
a(ta), E

∗
v(tv)] (12)

Here, the asterisk (∗) indicates that the module has undergone
pretraining.

Instead of using the traditional class embedding approach
for classification [17], we employed a token-level mean pool-
ing strategy: for each embedding dimension (out of 768), we
compute the average across all tokens to generate an average
token. This average token—a vector of length 768—serves as
a mapping of all real-world information in the feature space,
which is highly suitable for FOS-R-III classification. This vector
is then input into MLP of the decision layer, denoted ISMLP(•),
to produce a feature vector vIS of length equal to the number of
labels (FOS-R-III IS), which is 13:

vIS = ISMLP(Mean(em)) (13)

Subsequently, if performing inference, this vector is processed
through a Sigmoid function, compared with a manually defined
threshold θ, and if it exceeds this threshold, the IS is determined
to be present in the input 10-second video:

ISdetected = {i | Sigmoid(viIS) > θ} (14)

During the training process, the output of the model, vIS is
first processed through a Sigmoid function, and then the Binary
Cross-Entropy (BCE) Loss LBCE is computed with respect to
the ground truth one-hot encoded vector vGT. This loss is then
used to guide the training of the model:

pIS = Sigmoid(vIS)

LBCE = −
N∑
i=1

(viGT · log piIS + (1− viGT) · log (1− piIS))

(15)

The currently trained AV-FOS model exhibit 164.512 million
parameters.

F. GPT4V Prompt Engineering With FOS-R-III
Definitions

We have employed OpenAI state-of-the-art multimodal foun-
dation model, GPT-4 V, [15] combined with prompt engineering
as the baseline for our FOS-R-III IS Encoding task.

1) Prompt Engineering: We designed two versions of
prompts (Prompts V1 & V2), each consisting of two com-
ponents: a textual prompt and a visual information prompt.
The first version of the visual information prompt (Prompt
V1) includes the starting, middle, and ending frames from the
original 10-second video. The textual prompt guides the model
to utilize this three-frame information to facilitate the GPT-4 V in
recognizing FOS-R-III IS. The design of the textual component
of the first version of the prompt is as follows:

A video is given by providing three frames in chronologi-
cal order. Please choose one or more appropriate interaction
styles or behaviors in the video. Please only reply with the
numbers of the interaction styles or behaviors, separated by
commas. The candidates of the interaction styles or behaviors
are as follows: 1. Appropriate verbal interactions 2. Parent
affection 3. Positive contact 4. Complaint 5. Engaged activ-
ity of play 6. Multiple instruction 7. Non-compliance 8. Op-
positional 9. Praise 10. Positive question 11. Positive social
attention 12. Positive specific instruction 13. Positive vague
instruction

The second version of the prompt (Prompt V2) incorporates
a brief explanation of each interaction style within the textual
part, while the video component utilizes a method of randomly
selecting three key frames. These key frames are extracted
randomly from the first third, middle third, and final third of
the original 10-second video. The design of the textual prompt
for the second version is as follows:

A video is given by providing three frames in chronological
order. Please choose one or more appropriate interaction styles
or behaviors in the video. Please only reply with the numbers
of the interaction styles or behaviors, separated by commas.
The candidates of the interaction styles or behaviors are as
follows: 1. Appropriate verbal interactions: Appropriate verbal
interactions are scored when a child engages in non-aversive,
intelligible speech directed at others or self. 2. Parent affection:
Parent affection is verbal or non-verbal affection, including
words, physical contact, and leveling actions towards the child.
3. Positive contact: Positive contact is friendly, affectionate,
or neutral physical interaction initiated or maintained by the
parent. 4. Complaint: A complaint is any instance of whining,
crying, or other vocal protests displaying temper or discontent.
5. Engaged activity of play: Engaged activity of play is scored
when a child quietly plays, observes, or eats without deviance
for a full interval. 6. Multiple instruction: Multiple instruction is
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scored when a parent gives more than one command or request in
a single utterance. 7. Non-compliance: Non-compliance occurs
when a child fails to follow a given instruction within five
seconds or immediately contradicts it verbally. 8. Oppositional:
Oppositional behavior is socially inappropriate or unacceptable
child behavior not following specific family rules. 9. Praise: This
category scores praise for specific behaviors or characteristics
of the child, positively and non-aversively. 10. Positive question:
A positive question is a non-aversive, information-seeking utter-
ance from the parent to the child. 11. Positive social attention:
Positive social attention is non-aversive verbal or non-verbal
engagement by the parent that doesn’t fit other categories. 12.
Positive specific instruction: A Positive specific instruction is a
direct, clear command with a defined behavioral expectation,
delivered non-aversively. 13. Positive vague instruction: A Pos-
itive vague instruction is an indirect, non-aversive command
without a clear behavioral referent.

G. Ethical Considerations and Data Privacy

This study was conducted with strict adherence to ethical and
privacy protection guidelines. Data collection and labeling were
approved by the Institutional Review Board (IRB) of Yonsei
University, Korea, and research conducted in the United States
followed the GW IRB #111540. Informed consent was obtained
from all participants through an explanatory document approved
by the IRB, ensuring they were fully aware of the study’s objec-
tives, data usage, and privacy safeguards. Participants provided
written consent for video recordings, which were anonymized
with unique numeric identifiers to prevent identification. No
personally identifiable information (e.g., names, ages, or na-
tionalities) was included in the dataset, and access to the data
was strictly limited to IRB-approved researchers. All video
data were securely stored in an encrypted, password-protected
database and will be permanently deleted upon study completion
in compliance with IRB regulations.Additionally, for privacy
considerations when using GPT-4 V via the OpenAI API, we
consulted OpenAI’s official privacy policies [58]. The API en-
sures that accessed data is deleted within 30 days and is not used
for training future AI models. Furthermore, the uploaded data
contained no personally identifiable details and did not indicate
that the images originated from autistic children. These measures
ensured compliance with human subject protection guidelines
outlined in the IRB protocol.Researchers interested in using our
dataset for academic purposes may contact us directly via email.

IV. RESULTS AND EVALUATIONS

A. Experimental Setup

1) Experiment Device: All experiments in this paper, in-
cluding the training and inference of all deep learning models,
were conducted on a server with four NVIDIA A5000 GPUs
(Lambda-quad 2). Compared to enterprise-grade servers, this
server is not only cost-effective but also moderately sized, akin
to a typical household computer, making it highly suitable for
deployment in hospital settings.

2) Training Details: During the pre-training and formal train-
ing stages, the Encoder part of this model consists of a total of 12

TABLE III
THE KEY HYPERPARAMETERS FOR AV-FOS MODEL TRAINING STAGE

transformer blocks. The single-modality Encoder layer contains
11 transformer blocks, while the joint Encoder comprises only
one transformer block. The model Decoder part includes eight
transformer blocks. The Transformer blocks in the Encoder
have 12 attention heads and an embedding dimension of 768.
In contrast, the Transformer blocks in the Decoder have 16
attention heads and an embedding dimension of 512.

For calculating the contrastive Loss, the temperature τ is
set to 0.05, while for computing the CAV-MAE Loss, λc is
set to 0.01 and the IS decision threshold θ is set to 0.4. The
remaining key hyperparameters for both the pre-training and
formal training stages on the FOS-R-III dataset are shown in the
Table III.

B. Dataset Segmentation

We processed the original dataset into 8,108 ten-second video
clips with IS annotations. Table II shows the frequency of each
annotation. IS categories with fewer than 100 instances were
discarded due to insufficient data for deep learning training.
While this reduces the completeness of the Functional Observa-
tion Scale (FOS) and impacts immediate clinical applicability,
many excluded categories, such as Int_parent, have limited clin-
ical significance. Data collection remains ongoing, and future
expansions will allow model retraining to address this limitation.
After removing unannotated data, we obtained 8,040 ten-second
clips with 13 IS annotation types for training and validation. To
enhance clinical relevance and assess generalization to unseen
subjects, we employed a subject-based partitioning strategy.
Data from 11 subjects formed the validation set (1,867 clips),
while the remaining data constituted the training set (6,173
clips). Due to subject-specific behavioral differences, IS distri-
butions vary significantly between training and validation sets,
presenting a challenge for the model. Table IV summarizes the
IS label distribution in both sets.

C. Metrics for Evaluating Model Performance

In this study, since it is a multi-label task, we evaluated the
model using several metrics, including Accuracy, F1 Score,
Strict Accuracy, AUC (Area Under the ROC Curve), and mAP.
The formulas for these metrics are as follows:

Accuracy =
1

N

N∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

(16)
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TABLE IV
LABEL DISTRIBUTION IN TRAINING AND VALIDATION SETS

F1 Score =
2 · Precision · Recall
Precision + Recall

(17)

where:

Precision =

∑N
i=1 |Yi ∩ Ŷi|∑N

i=1 |Ŷi|

Recall =

∑N
i=1 |Yi ∩ Ŷi|∑N

i=1 |Yi|
(18)

Strict Accuracy =
1

N

N∑
i=1

I(Yi = Ŷi) (19)

where I is the indicator function that returns 1 if the argument
is true and 0 otherwise.

AUC =
1

|Y|
∑
k∈Y

AUCk (20)

where AUCk is the AUC for the k-th label.

mAP =
1

|Y|
∑
k∈Y

APk (21)

where APk is the Average Precision for the k-th label.
These evaluation metrics reflect not only the absolute perfor-
mance of the model but also its ability to handle imbalanced
datasets.

D. GPT-4 V Result Post-Processing

GPT-4 V generates three types of outputs: ideal outputs, prob-
lematic outputs, and unsolvable outputs. Ideal outputs follow the
structure specified in the prompt, returning several numerical
indices separated by commas. These outputs can be processed
with a simple string-splitting algorithm. Problematic outputs
return predicted IS but not in the format specified in the prompt,
including both numerical indices and IS names. For these cases,
we use code to extract the numerical indices. Unsolvable outputs
occur when GPT-4 V returns a descriptive statement indicating
its inability to process the data. In such cases, the data is manually
classified as having no IS present. Table V presents examples of
the three different types of outputs.

TABLE V
THE THREE TYPES OF OUTPUTS FOR THE GPT-4 V MODEL

Fig. 7. The performance and time cost comparison.

E. Model Performance

In our experiments, we used GPT-4 V with prompt engi-
neering as the baseline, and also tested two classic models for
comparison: the advanced video understanding model SlowFast
Networks [16] based on the CNN structure, and the classical
visual understanding model vision Transformer (ViT) [17] based
on the Transformer structure. Both models were pretrained using
supervised learning on large-scale public datasets as mentioned
in their original papers. For SlowFast Networks, we selected the
R50 architecture, pretrained on the Kinetics-400 dataset [59] and
fine-tuned on our FOS-R-III dataset. For ViT, we selected the
ViT-base architecture with a patch size of 16x16 for input tokens,
pretrained on the ImageNet-21k [60] and ImageNet 2012 [61]
datasets, and fine-tuned on our FOS-R-III dataset.

1) General Performance: Table VI and Fig. 7 present a com-
parison of various performance metrics across different models.
The results show that our model significantly outperformed the
baseline GPT-4 V model not only in terms of accuracy and
the ability to handle imbalanced datasets but also in inference
speed. Additionally, our model performance exceeded that of
the comparison models, SlowFast Networks and ViT. When
tested on subjects that the model had never encountered before,
our model still achieved an accuracy of over 85%, demon-
strating robust performance. This surpasses the 80% inter-rater
reliability standard, though it falls slightly short of the 90%
agreement level achieved by human annotators in this study.
However, our model has the potential to be further optimized
through the continuous collection of new data. Additionally,
when faced with an extremely imbalanced dataset, our AUC,
mAP, and F1 scores reached 0.88, 0.67, and 0.59, respectively,
indicating that the model demonstrates a significant advantage
in handling imbalanced datasets. In terms of inference time, the
baseline GPT-4 V model lags significantly behind our model.
For a 10-second video, our model requires only an average
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TABLE VI
THE GLOBAL PERFORMANCE COMPARISON OF DIFFERENT MODELS

TABLE VII
DETAILED COMPARISON OF MODEL PERFORMANCE ACROSS CLASSES

TABLE VIII
WILCOXON SIGNED-RANK TEST RESULTS BETWEEN AV-FOS AND

COMPETING MODELS

of 0.0018 seconds to complete inference, achieving real-time
inference speed. These metrics indicate that our model has high
clinical value and can assist doctors and healthcare providers in
the diagnosis and risk behavior assessment for autistic children.

2) Class-Wise Evaluation and Error Analysis: The class-
wise metrics (Table VII) and confusion matrix (Fig. 8) highlight
our model’s superior recognition of interaction styles (IS) com-
pared to the GPT-4V+Prompt baseline. Unlike traditional video
models like ViT and SlowFast, our model processes both visual
and audio inputs, providing a distinct advantage in recognizing
IS requiring audio comprehension, such as VI+ and SI+.

Interestingly, visual-only models exhibit some recognition
ability for audio-reliant IS due to visual cues like lip movements
and head turns. However, our model consistently outperforms
them, even in visually dominant IS like Engaged Activity of Play
(EA). Wilcoxon signed-rank test results (Table VIII) confirm
the statistical significance of our model’s superiority across all
metrics (Accuracy, AUC, AP), with p-values below 0.05.

Despite its strong performance, our model faces challenges
in recognizing minority-class IS, such as Complaint (CP), Par-
ent Affection (Aff_parent), and Non-compliance (NC), due to
severe class imbalance. Majority classes like EA (26.86%) and
S+ (15.92%) vastly outnumber CP (0.51%) and NC (0.55%),
leading to conservative predictions. While this issue affects all

models, ours still surpasses SlowFast and ViT in minority-class
performance.

To mitigate this, we plan to expand the dataset to improve
minority-class recognition. Overall, our model demonstrates
robust performance and resilience to data imbalance, outper-
forming mainstream models and the baseline, with ongoing
efforts to enhance its capabilities.

F. Ablation Study

1) Uni-Modal Recognition Performance: To evaluate the ef-
fectiveness of the multimodal structure of the AV-FOS model,
we decided to conduct ablation experiments by retraining and
inferring the model with a single modality. For the single-
visual-modality model (V-FOS), we removed the audio input
and related processing modules, retaining only the visual tokens
for the Joint Encoder. Similarly, for the single-audio-modality
model (A-FOS), we removed the visual input while keeping
the audio tokens. Both models retained the Joint IS Decision
Making Layers and other components, and all pretrained mod-
ules underwent the same pretraining as in the AV-FOS model.
Training parameters and datasets remained consistent for a fair
comparison.

As shown in Table IX, A-FOS outperformed V-FOS, reflect-
ing our task’s reliance on audio cues, particularly in categories
like VI+ (Positive Vague Instruction) and SI+ (Positive Specific
Instruction). Even for visually relevant instances like EA (En-
gaged Activity of Play), audio signals played a role. However,
incorporating visual information further improved performance,
with the AV-FOS model achieving the highest accuracy. Both
single-modality models performed worse than AV-FOS, with
a notable F1 score drop, indicating weaker handling of data
imbalance. This highlights the superiority of multimodal per-
ception, which enhances robustness and accuracy. In studying
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TABLE IX
THE ABLATION STUDY RESULT

Fig. 8. The confusion matrix for different algorithms.

autistic children’s behavior, integrating speech, environmental
interactions, and facial expressions is crucial, making multi-
modal models more effective in clinical settings.

2) Without CAV-MAE Pretraining Performance: To assess the
impact of CAV-MAE pretraining on the AV-FOS model, we con-
ducted an ablation experiment where all model parameters were
randomly initialized, while training methods, hyperparameters,
and dataset partitioning remained identical to the original pre-
trained AV-FOS model. The results, shown in Table IX, indicate
that even without pretraining, the AV-FOS model outperformed
the GPT-4V+Prompt baseline, achieving over 83% accuracy,
demonstrating the strong performance of its multimodal struc-
ture. However, the pretrained AV-FOS model still performed
better. While accuracy decreased by only 2%, the F1 score and
mAP dropped by 6% and 12%, respectively, highlighting the

Fig. 9. The attention map for the joint perception layer.

importance of pretraining in handling data imbalance. These
findings suggest that pretraining significantly enhances robust-
ness and accuracy, making the model more effective for clinical
applications.

3) Visual Temporal Information Perception Module: To en-
hance the model’s ability to perceive visual temporal informa-
tion, we proposed Cross-Frame Attention and Averaged Key
Frame Attention strategies. Experimental results show that Av-
eraged Key Frame Attention outperforms both Middle Frame
Spatial Attention and Cross-Frame Attention. This aligns with
expectations, as the CAV-MAE pretraining framework extracts
single frames rather than multiple frames, limiting Cross-Frame
Attention’s ability to leverage pretraining knowledge. As a
result, its performance is even lower than Middle Frame Spa-
tial Attention. In contrast, Averaged Key Frame Attention re-
tains frame dimensions while averaging pixel values across
frames, effectively preserving pretraining knowledge and some
spatiotemporal information, leading to superior performance.
Compared to Frame Aggregation, a method from CAV-MAE
that infers three times using different frames and averages the
results, Averaged Key Frame Attention achieves better perfor-
mance in most metrics while requiring only one inference step,
reducing inference time to one-third of Frame Aggregation. This
efficiency is crucial for real-world deployment, particularly in
clinical settings where computational resources may be limited.
Thus, Averaged Key Frame Attention balances computational
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feasibility and performance, making it the optimal choice for
our model.

G. Inference Visualization

Fig. 9 illustrates the attention distribution within the fusion
perception layer. The visualization reveals four distinct attention
regions corresponding to: 1) visual-to-visual, 2) visual-to-audio,
3) audio-to-visual, and 4) audio-to-audio. These patterns indi-
cate the model’s ability to distinguish attention focus based on
semantic relationships across modalities. Notably, strong cross-
modal attention reflects effective integration and inter-modal
modeling, while significant intra-modal attention underscores
the model’s robustness in capturing modality-specific features.
Overall, these characteristics demonstrate the model’s strong
capacity for multimodal perception and fusion tasks.

V. CONCLUSION

To address the challenges in recognizing the complex behav-
iors and interactions of autistic children, thereby aiding in their
diagnosis, symptom assessment/mitigation, and treatment, this
study has: 1. Proposed a dataset based on the FOS behavior
scale specifically for children with autism. This dataset was con-
structed from clinically collected data annotated by profession-
als with medical expertise. 2. Introduced a transformer-based
deep learning model, AV-FOS, capable of automatically gen-
erating FOS-R-III scales from videos, which holds significant
clinical value. This model can utilize self-supervised learning
methods to pretrain on large-scale unlabelled video datasets un-
related to autism and make final FOS IS judgments based on both
audio and video modalities, demonstrating high accuracy and
robustness against imbalanced data. 3. Explored the application
of large AI models and prompt engineering in the field of autism
behavior recognition.
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