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Dual-Scale Complementary Spatial-Spectral Joint
Model for Hyperspectral Image Classification

Huayue Chen ", Yue Sun, Xiang Li

Abstract—1In the field of hyperspectral image classification, using
spatial information as a supplement to spectral information has
been widely applied. This article proposes a novel dual-scale com-
plementary spatial-spectral joint classification model (DSCSM)
to mitigate the issues of detail loss and insufficient utilization of
spatial information, which traditionally lead to lower classifica-
tion accuracy. In essence, the final classification result is obtained
through decision fusion of two complementary feature extraction
stages. In the preprocessing stage, a new dual-scale truncated
filtering feature extraction method (DTFE) is proposed, which uses
truncated filters with two different parameter settings to obtain
two scales of smoothed patches, and then fuses them to obtain
dual-scale structural features using Kernel principal component
analysis. DTFE preserves edge information while smoothing de-
tails, effectively removing noise and retaining the dual-scale feature
information. In the postprocessing stage, a sub-Markov random
walk-based spatial probability optimization method is proposed,
which models the spatial association of neighboring pixels, retain-
ing complex textures as well as weak edge information to optimize
the classification probability. Finally, the decision fusion strategy is
employed to integrate the classification probabilities acquired from
the aforementioned two stages. Comparative experiments on six
different scene datasets with state-of-the-art classification methods
validate that even with a small number of samples, DSCSM can
achieve excellent object recognition performance. In addition, com-
prehensive parameter analysis proves the robustness and stability
of the proposed method.

Index Terms—Dual-scale truncated filter, feature extraction,
hyperspectral image (HSI) classification, sub-Markov random
walk (subRW).
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I. INTRODUCTION

YPERSPECTRAL images (HSIs) offer an exceptionally
H ultrahigh spectral resolution, providing hundreds of con-
tinuous spectral bands, which not only capture the spatial char-
acteristics of surface objects but also extract wealthy spectral
information from each pixel, facilitating more precise classifi-
cation of target objects. Consequently, HSI classification holds
significant application value across a range of fields such as
mineral exploration [1], [2], [3], environmental monitoring [4],
[5], [6], land cover mapping [7], [8], [9], and agricultural pro-
duction [10], [11], [12], [13], thus garnering extensive attention
[14], [15], [16].

Over the last several decades, substantial efforts have been
devoted to developing precise pixel-level classifiers for HSI
classification [17], [18], [19]. However, the scarcity of labeled
HSI samples poses a challenge, commonly known as the “small
sample” problem, which can lead to the Hughes phenomenon
[20]. Furthermore, redundancy in spectral and spatial regions
as well as noise from outside influences is introduced by the
HSI data’s increased spectral and spatial resolution, making
HSI classification tasks more difficult. Hence, increasing the
accuracy of HSI classification requires dimensionality reduction
and efficient feature extraction.

To reduce the spectral dimension of HSI, methods such as
principal component analysis (PCA) [21] and independent com-
ponent analysis (ICA) [22] are commonly employed, which map
high-dimensional data into lower dimensional space. Consid-
ering the nonlinearity of HSI, kernel-based methods such as
kernel principal component analysis (KPCA) [23] and kernel
ICA [24] have been proposed. They utilize kernel functions
to map data into high-dimensional feature spaces, enhancing
data separability. However, HSI faces challenges such as “same
thing different spectrum” and “foreign matter same spectrum”
problems [10]. The techniques described above do not account
for spatial connection among nearby pixels, which frequently
results in incorrect labeling and “salt and pepper” appear-
ances in classification results. Therefore, introducing spatial
information is a crucial tactic to raise the HSI classification’s
accuracy.

To exploit the spatial features of HSI, scholars have proposed
numerous methods [25], [26], [27], [28], [29]. Among these,
spatial filtering methods are commonly used to extract HSI
spatial features because they can use pixels’ spatial proxim-
ity information efficiently, reduce spectral heterogeneity, and
smooth the image, such as extended morphological profiles [30],
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Gabor filters [31], and extended 3-D Gabor filter [32], which
are good at extracting the morphological and textural features
of HSI. However, the above-mentioned methods may blur and
lose ground object edge information due to the lack of special
edge processing. Kang et al. [33] applied the edge-preserving
filter (EPF) to extract HSI spatial information; it smoothed the
image while maintaining consistency with actual ground object
boundaries, effectively preserving edge information and sig-
nificantly improving ground object classification performance.
However, EPFs fail to preserve the inherent structure of HSI and
cannot remove useless textures [28]. In addition, due to the fixed
smoothing characteristic in spatial filtering methods, balancing
detail-smoothing and edge-preserving is challenging, leading to
reduced robustness. Overall, the above-mentioned approaches
generally acquire spatial-spectral information in advance for
classification, but some texture information is lost during the
feature extraction process, particularly for small objects that are
easily overlooked.

To overcome the above-mentioned issues, spectral preclas-
sification results are often optimized for postprocessing based
on the spatial correlation between pixels [34]. Random Walker
(RW) [35] treats pixels as graph nodes, with edges between
nodes representing the adjacency of pixels. By simulating the
random movement of walkers through nodes, it preserves spatial
information in the image. Due to its robustness to noise and
effective segmentation of weak boundaries, it is commonly
used as a postprocessing method for optimizing classification
probabilities. Traditional RW requires users to select seed nodes
in each discrete target region, which is inefficient. Extended
Random Walker (ERW) [36] improves efficiency by using node
priors to obtain intensity models, thus avoiding user interaction.
Kang et al. [37] utilized ERW to describe the spatial relationship
and optimize the initial probability map. Although the postpro-
cessing method based on ERW effectively avoids information
loss during the preprocessing stage, ERW tends to access cate-
gories with lots of samples during propagation, failing to capture
differences between similar categories and performing weakly
in classifying HSI with complex textures. On the other hand,
although RW can alleviate the issue of postprocessing methods
being susceptible to noise in the original image, it still loses
some detailed information, leading to misclassification.

Techniques for spectral-spatial classification based on deep
learning have shown excellent performance lately [38], [39],
[40], [41], [42], [43], [44]. Compared with typical machine
learning methods, deep learning methods may suffer from over-
fitting when the number of training samples is limited. However,
labeled samples in HSI are limited, representing a typical “small
sample” data situation.

To address the bottlenecks mentioned above, considering
the different information losses in the pre- and postprocessing
stages, Duan et al. [45] presented a dual spatial information
fusion classification approach (FDSI), which combined pre-
and postprocessing techniques. In the preprocessing stage, a
structural contour method (SP) with adaptive texture smoothing
was used for feature extraction, and in the postprocessing stage,
ERW was utilized to obtain spatial information from the original
HSI to optimize classification probabilities. Although FDSI
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effectively improves the HSI classification performance, it over-
looks differential processing of spectral information, and ERW
fails to adequately distinguish similar categories. Li et al. [46]
proposed an efficient two-staged method (Two-Staged) based on
various solutions of anisotropic and isotropic models to extract
multiscale structural information and enhance detail smoothing
in HSI, improving land cover discrimination while reducing
computational costs. However, Two-Staged is sensitive to image
noise and lacks robustness. Shi et al. [47] proposed an adap-
tive complementary spectral-spatial approach (CSSM), using an
adaptive cubic total variation smoothing approach (ACTVSP)
to extract coarse structural contours of HSI, followed by EPF to
enhance details and edge contours. However, CSSM’s structural
features obtained in the preprocessing stage are singular and
have numerous parameters. Although the aforementioned meth-
ods effectively combine the results of the pre- and postprocessing
stages, they still have the following three major issues.

1) In the preprocessing stage, smoothing methods cannot
balance detail smoothing and edge preservation, leading
to excessive smoothing and information loss. In addition,
they only consider single-scale features, resulting in poor
robustness.

2) In the postprocessing stage, RW performs poorly in seg-
menting complex textured images and has a weak distin-
guishing ability for similar categories, resulting in inferior
optimization of classification probabilities.

3) The overall classification framework is complex, depends
on an adequate quantity of training samples, and has
limited application scenarios.

For the sake of handling the above problems, a dual-
scale complementary spatial-spectral joint classification model
(DSCSM) is proposed in this article, which integrates dual-scale
feature extraction and spatially optimized classification proba-
bilities, fully utilizing the spectral and spatial information of HSI
to compensate for information loss in single-stage classification.
In the preprocessing stage, a novel dual-scale truncated filtering
feature extraction (DTFE) method that preserves edge infor-
mation and smooths details is proposed. DTFE obtains smooth
blocks of different scales through truncated filtering with differ-
ent parameter settings; after overlaying them, KPCA is used to
fuse them into structural features. In the postprocessing stage,
the spatial probability optimization (SPO) method based on
subRW [48] is proposed to refine the preclassification probabil-
ities classified by SVM. Finally, the classification probabilities
obtained from both stages are fused through decision fusion to
obtain the final classification probabilities. The following are
this article’s primary contributions.

1) In the preprocessing stage, a DTFE is proposed to
achieve contradictory smoothing behavior. It prevents
oversmoothing, minimizes the effect of noise on clas-
sification outcomes, preserves edge information while
smoothing picture details, and keeps features at different
HSI scales.

2) In the postprocessing stage, an SPO method based on
subRW is proposed to improve RW’s ability to distinguish
complex textured images and similar categories. It suc-
cessfully compensates for information loss during feature
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extraction and further improves the optimization of classi-
fication probabilities by modeling the spatial connections
among neighboring pixels using SPO.

3) By combining preprocessing and postprocessing steps, a
lightweight DSCSM is proposed. This method reduces
the information loss of the two process methods and
improves classification accuracy. Experiments show that
the proposed method can also alleviate the “small sample”
problem of HSI and demonstrates effectiveness, robust-
ness, and stability in various application scenarios.

The rest of this article is organized as follows. Section Il intro-
duces the proposed DSCSM classification method. Section III
discusses the detailed parameter settings. Section IV presents
the experimental results and comparative analysis. Section V
provides the conclusions and future work.

II. PROPOSED METHOD

To address the loss of information and insufficient utilization
of spatial information, this article proposes a DSCSM. The
flowchart is shown in Fig. 1.

First, HST is dimensionally reduced using average dimension-
ality reduction [49], and the reduced data then enter the pre-and
postprocessing stages separately. In the preprocessing stage, the
proposed DTFE method mitigates the problem of losing image
details. After feature extraction, classification probabilities are
obtained through SVM. In the postprocessing stage, the pro-
posed SPO method fully utilizes spatial information by opti-
mizing the preliminary classification probabilities from SVM
with SPO, yielding optimal probabilities. The classification
probabilities from both stages are combined through decision
fusion, compensating for the information loss in both stages and
alleviating the “small sample” problem in HSI, resulting in the
final classification outcome.

A. Dual-Scale Truncated Filtering Feature Extraction

Detail smoothing and edge preservation in HSI are key issues
for improving classification accuracy. While detail smoothing

can reduce image noise, excessive smoothing leads to the loss of
important edge information. Edge preservation can retain edge
information but areas around edges are prone to retained noise
due to improper handling. This article suggests a DTFE approach
based on the truncated Huber penalty function, which preserves
edge information while smoothing image details.

1) Truncated Huber Penalty Function: The smoothing op-
erator’s property is fixed, making it difficult to satisfy the con-
tradictory tasks of edge preservation and detail smoothing. To
achieve different smoothing effects, penalty functions can be
used to control whether to sharpen edges. Compared to widely
used edge penalty functions such as Welsch [50] and Huber
[51], the truncated Huber penalty function introduces a new
parameter b to saturate the area, preventing the Huber’s value
from continuously increasing and thus failing to sharpen edges.
Therefore, b can serve as a threshold to adjust edge sharpening.
For inputs greater than b, the function only penalizes weak
edges and not strong edges. For inputs less than b, the truncated
Huber penalty function behaves the same as Huber, acting as an
edge-preserving penalty function without edge sharpening

=22, |z] < a
hr(x) =< || = §,a <|z| <bsta<b (1)
b— 2, |z >b

where a and b are constants.

The function images of hr(z) and commonly used penalty
functions are depicted in Fig. 2, where ¢ is a tiny constant, set
to 1073. I,,, represents the maximum intensity value of the input
image. It can be observed that by adjusting the value of b, one
can achieve different smoothing effects.

2) DTFE Model: Due to the different smoothing behaviors
of the Huber penalty function with varying parameters, incor-
porating it into feature extraction endows DTFE with strong
flexibility and robustness, allowing for the realization of differ-
ent smoothing effects. The pseudocode of the DTFE is shown
in Algorithm 1.

Specifically, the algorithm assumes that the dimensionally
reduced HST is f, and sets the guidance image g = f. The output
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(a) (b)

Fig. 2. Plots of (a) various penalty functions and (b) truncated Huber penalty
functions with different parameter settings.

Algorithm 1: DTFE Model.
Input: Reduced dimension image f, max iteration iter,
parameters rx, bx, wherex&{d,s}, W =R
I: for/=1:2do
2 for k = 0: iter do
3 Compute (V} ; )and update (1* j) according to (6)
4: Update v; ; according to (7)
5:  Solve u**! according to (8)
6
7
8

end for

Get smooth blocks Fj < uN*1
end for
Overlay two scales of smooth blocks (F7y, F»)
10:  Using KPCA to obtain structural features
QOutput: structural features F

u after the truncated filtering smoothing process is the solution
to the minimization of the subsequent objective function

Z Z w”hTuL fJ Z Z w”wahT

i jeNaq(i) i JEN

i— ;)

©))

where hr(-) is the truncated Huber penalty function defined
in (1), Ng(7) denotes the square block of size (2ry+ 1) X
(2rq + 1) focused on a pixel i, and N (i) denotes the square
block of size (2rs + 1) x (275 + 1) centered at 7 but excluding
the pixel i. w7 ; is the Gaussian spatial kernel computed from
(3), and wig, ; represents the guidance weights, defined by (4).
The first term of (2) is the data term, representing the penalty
for assigning labels to pixels, which helps the model be robust
to outliers in the input image. The second term is the smoothing
term, representing the penalty for discontinuous neighboring
pixels, which is beneficial for protecting edges. The constants
a, b of the data item and the smooth item in (1) are represented
by {a4,baq} and {as, bs }, respectively.

By applying the Gaussian spatial kernel to blur image details
and reduce noise, the expression of w; ; is as follows:

s |7’ B .]|2
W, = exp ( - 3)
- is described as follows:

The guidance weight w/ ;

W= 4
i,] |gi_gj‘a+5 ()
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where a determines the sensitivity of the edge of the guidance
image g. | - | denotes the value in absolute terms.

Due to the use of hp(-), (2) is not only nonconvex but also
nonsmooth. By applying semidefinite optimization methods to

solve the problem [52], [53], [54], by setting Vﬁj =u; — fjand
va j = Ui — Uy, the optimal conditions are as follows:
<b
. { . 5)
N ZJ’ V J| > b

—l’fj| < Qs

1 *
. 300 [ Vig — i
Vig =9y ——L |
. ,
2|Vi—h

V;‘ *]|>a*,*€{d,s}. (6)

The approximate solution for obtaining the final solution v*+1

can be derived as

uFH = (A% — 22w F) 7! (DF 4 228%) 7

k. . .
where W} *w”wg (vi;)" is an affinity matrix, Aj; =

Z wlj(?]) + 22 Z wzjwzg(1])k

is a diagonal

JjeNa(i) JENs(4)
. k
matrix, E wj ]( 1]) (f] ( ) )’ and
JENd(Z)
k__ s
Si= > wiwli(vp ) (12 ) are vectors.
JENS ()

The above optimization process iteratively executes iter times,
with each step monotonically decreasing the value of E,(u),
theoretically ensuring its convergence, and ultimately obtaining
the smoothed output 2.

DTFE uses the truncated filter with two parameter settings
to construct dual-scale smoothing blocks. These two smooth-
ing blocks are stacked together, and the structural features are
obtained using KPCA to fuse two blocks. Let F; denotes the
smoothed output 1" with the /th parameter setting

Fl:Fl(b%T?)JE{LZ} 3)
F=KPCA(Fy, Fs) &)

where b} and ] represent the parameter used in the /th structure
extraction, and F denotes the extracted structural features. Then,
F isinputinto SVM for classification, obtaining the probability
distribution I?; in the preprocessing stage.

B. Spatial Probability Optimization

To address the issues where traditional RW relies on user inter-
action and ERW cannot distinguish similar categories, resulting
in poor segmentation of complex textures, this article proposes
a postprocessing SPO method. The improved version of RW,
subRW, is applied to optimize HSI classification results in the
postprocessing stage for the first time. subRW adds auxiliary
nodes to RW and initially estimates the probability of pixels
belonging to each category, guiding image segmentation with
reduced interaction, thereby reducing RW’s misclassification of
similar categories. It also uses sub-Markov transition proba-
bilities to enhance the segmentation performance of complex
textural images.

SubRW is used to model the nearby pixels’ spatial correlation
in SPO, enhancing the ability to distinguish complex textures
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Algorithm 2: SPO Model.
Input: Reduced dimension image f, training samples 75,
pre-classification probabilities obtained by SVM r

1:  Generate seeds and labels based on 7'S

2: Define the adjacency matrix of the eight-neighbor
graph structure according to (11)

3:  Generate the GMM with five components from the
seeds to obtain the probability density pk

4: Setc; c , Where c = p + nl;gxpz
Calculate the transition probability matrix F' according

to (13)

6:  Solve (14) to obtain optimization classification results
Ry = arg max;, Tle

Output: Optimization classification results Ro

and similar categories, thereby retaining more complete spatial
information. The pseudocode of SPO is shown in Algorithm 2.

Specifically, the first principal component of HSI is displayed
as a weighted undirected graph G = (V, E), v € V, and N is
the total number of nodes. v; represents the pixel x; in the
first principal component. The multilabel seeds are defined as
a set of labeled nodes Vyy = {v;,,v1,, ..., v, }, and labels are
represented as L = {l1,l2,...,lx }, where K is the total label
number. The nodes V' = {vl* vl ,vll\’ik} represent the set
of seed nodes with label [x, and My is the number of seed
nodes with label ;. An edge is defined as e ECV xV
in the eight-connected neighborhood system, and e;; connects
two nodes v; and vj. The edge weight w;; € W represents the
probability of an RW crossing this edge, i.e., the likelihood that
adjacent pixels have the same label, and is described as follows:

2
T (_nci—og-n)
ij = eXp - +n

where C; and C'; represent the pixel color at v; and v; inthe Lab
color space, respectively, providing a numerical measure of the
similarity between adjacent pixels. ¢ = 1/60 is a regularization
parameter, and 7 is a small parameter set to 106,

Assume each node has an intensity distribution Sy from the
label I, where p¥ represents the probability density of belonging
to S at node v;. Using GMM as the prior model, each prior
distribution Sy can be regarded as a GMM learned from seed
nodes labeled as [j,. With these previous distributions, a collec-
tion of prior auxiliary nodes Sy; = {s1, $2,. .., si} is added to
form an extended graph Ge; these prior nodes are connected
to all nodes, representing global label information, which helps
establish connections between nodes that are not directly linked,
thereby reducing the influence of seed nodes on the segmentation
results. Ge is shown in Fig. 3.

When RW reaches the node A, the walk ends, meaning that an
effective RW cannot reach it, and the corresponding probability
is ignored. Stopping nodes Z, connected to labeled seed nodes,
enable RW to make more effective use of prior information for
segmentation, and when RW reaches a stopping node, it indicates
that RW has arrived at a definite labeled region. Prior nodes S
provide global label information, which helps RW to propagate

(10)
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N

A z

Fig. 3. Node graph Ge of SPO. Circular nodes are newly added auxiliary
nodes, blue circles represent prior nodes, yellow ellipses represent nonseed
nodes, and the remaining nodes are seed nodes. All prior nodes should be linked
to the initial elliptical nodes. For simplicity, only the edges of one node are
shown.

labels on a global scale, improving the accuracy of segmentation.
Upon reaching the stopping node Z or the prior node S, the walk
ends, and the corresponding label probability is obtained. The
edge weight w;,, between s; and v; € V is proportional to the
probability density p¥ . Set the weight w;, as follows:

(1)

where g; represents the leaving probability of a node in V, with
its value empirically set according to [55]. v is a regularization
parameter used to measure the significance of the prior distribu-
tion.

The probability density p¥ of the intensity distribution at v;
belonging to I is

Wisy, = (1 - gi) I/pf

_ Apy
v a2
The transition probability f;; in V can be expressed as
Wi
;= ———— 13
f J dl + )»Ci ( )
where d; = > j~i Wij 1s the degree of node v;, j ~ i represents

v; in the neighborhood of v;, and ¢; = Z b1 pi .
So the objective function for postprocessing optimization can
be defined as

E’?«otal ( ) + MEPT"LO’I’ ( lk)

where p controls the weight of the prior part in the energy
function (¢ = le — 5), and Eé’]gatial is the energy function that
predicts class probabilities based on the spatial information
of adjacent pixels in HSI. The spatial dependencies between
neighboring pixels are represented through RW walks around

©) = E (14)

Spatial (

nodes. ES;aUal is expressed as follows:
Edyatiar (2) =0 Dg)FfElk+ (HDg)P’WiD bl

(15)
where I is the identity matrix of size N x N, Dy =
diag(g1, g2, - .., gn) is a diagonal matrix, the transition prob-
ability matrix is F = [f;;]y, - and the probability matrix is
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P’ = [P¥] 5. B = [b'*] ., is an indicator vector. If v; =
Uf,’;, ble = 1; otherwise, b'* = 0. Zj is a normalization constant.

From the above-mentioned formula, the probability 2'* that
any unmarked node to be segmented reaches a stopping node
or a priori node labeled as [; can be calculated. Finally, each
unmarked node is given to the category with the greatest prob-
ability, achieving image segmentation and spatial information
preservation.

ELk.. is the energy function used to predict class probabilities
with the initial probabilities obtained from SVM as the prior
information. After obtaining the initial probability rﬁ’“ for each
pixel in the image, the probability that each pixel belongs to
label [, is calculated on the basis of simple Bayesian probability

theory
K

k=1

(16)

where Al* is a diagonal matrix composed of r'*, i.e., diag(r'*).
The above-mentioned equation can be represented as the min-
imum energy distribution of the following objective function:

K
(@)= S e TAmemp(ab 1) A (2t 1)

m=1,m#l

EY

'Prior

7)

The solution method for Ep (z'*) is the same as the tra-
ditional RW, with detailed solving steps provided in [36]. Af-
ter obtaining Ef, (') and E§:,. ('), (15) can be solved,
with specific solving methods detailed in [48]. By selecting
the maximum probability, the refined postprocessing optimized

classification probabilities Ry can be obtained.

C. Decision Fusion

After obtaining classification probabilities from two stages,
decision fusion is employed to combine the probabilities ob-
tained from each stage, ensuring that the class probability of the
same target exceeds that of other classes, thus achieving more
accurate recognition results. For each pixel, its final classifica-
tion result is determined by selecting the class with the highest
probability

R = arg max {aR| + (1 - a) Ry} (18)
where « is a free parameter, R! is the classification probability
after feature extraction by DTFE, R is the classification proba-
bility optimized by SPO, and R is the final classification result.

III. EXPERIMENTAL DETAILS

Four hyperspectral datasets are used to demonstrate the ef-
fect of the proposed DSCSM in HSI classification, and eight
commonly used and state-of-the-art classification approaches
are compared. In addition, ablation experiments are conducted
to confirm the effectiveness of combining the two proposed mod-
ules. All experiments are carried out using a simulation platform
with an Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz, 24

6777

W Alfalfa
M Corn-notill

[ oats
[ Soybean-nottill

[E Corn-mintill [ Soybean-mintill
B com [l Soybean-clean
[ Grass-pasture & Wheat

[ Grass-trees E woods

[ Grass-pasture-mowed [0 Buildings-Grass-Trees
M Hay-windrowed [ Stone-Steel-Towers

(®) (c)

Indian pines dataset. (a) False color image. (b) Ground truth. (c)

Fig. 4.
Legends.

[J Asphalt

I Meadows
[ Gravel

[ Trees

[ Metal-sheets
[ Bare-soil

[l Bitumen

[ Bricks
[JShadow

(©)

Fig. 5. Pavia University dataset. (a) False color image. (b) Ground truth. (c)

Legends.

GB RAM, and MATLAB R2021a running on the Windows 11
operating system. In this section, the used datasets are first intro-
duced. Then, the experimental parameter settings are presented,
including evaluation metrics and comparison methods. Next,
we discuss the parameters of the proposed method. Finally, we
analyze the experimental results.

A. Datasets

Experiments are conducted using six datasets. Four classical
hyperspectral datasets from different imaging scenes, Indian
Pines, Pavia University, Houston 2013, and KSC, are used to
verify the generality of the proposed DSCSM. In addition,
the WHU-Hi-LongKou and WHU-Hi-HongHu datasets [56],
[57], which are used for fine crop classification, are utilized
to validate the practicality and generalizability capability of the
proposed method. Ten samples from each class of each dataset
are randomly selected as the training set, and the remaining
samples are used as test sets. A brief description of the four
datasets is given in Table I, and the false-color image, ground
truth, and legends are shown in Figs. 4 -9.

B. Experimental Parameter Setting

To evaluate the classification performance, DSCSM is com-
pared with eight advanced HSI classification methods, and four
quantitative evaluation metrics are used in experiments. Specif-
ically, the details are as follows.

1) Quantitative Evaluation Metrics: OA, AA, Kappa, and
ICA are used to comprehensively measure classification ability.
OA is the correct classification rate of all samples, AA is the aver-
age accuracy for each class, and Kappa measures the consistency
between predicted results and actual results. All experiments are
repeated ten times to obtain the mean and standard deviation of
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TABLE I
DATASET RELATED DESCRIPTION
Dataset
Information Indian . . . WHU-Hi- WHU-Hi-
Pines Pavia University Houston 2013 KSC LongKou HongHu
Size (pixels) 145 x 145 610340 349x1905 512x614 550%400 940%475
Bands 220 103 144 176 270 270
Spatial resolution (m) 20 1.3 2.5 18 0.463 0.043
Spemal(:ﬁ)v elength | 40.2.50 0.43-0.86 0.38-1.05 0.40-2.50 0.40-1.00  0.40-1.00
Sensor AVIRIS ROSIS CASI-1500 AVIRIS Nano- Nano-
Hyperspec Hyperspec
Class 16 9 15 13 9 22
[ Red roof Ml Brassica chinensis
[JRoad [l Small brassica chinensis
[l Bare soil [ Lactuca sativa
[cotton M Celtuce
[ cotton firewood [ Film covered lettuce
ERape [0 Romaine lettuce
[ Chinese cabbage O carrot
[ Pakchoi W White radish
[ Cabbage M Garlic sprout
[ Tuber mustard [ Broad bean

“(b)

[ Health grass [ Stressed grass [l Synthetic grass [l Tree M Soil
O water [J Residential  [J Commercial [l Road [ | Highway
| | Railway O Parking lot1 (] Parking lot2 M Tennis court [ Running track
(c)
Fig. 6. Houston 2013 dataset. (a) False color image. (b) Ground truth. (c)

Legends.

@ Scrub
W Willow swamp

[ Graminoid marsh
[J Spartina marsh

[l CP hammock [ Catiail marsh
[l CP/Oak [ salt marsh
[l Slash pine Il Mud flats

W Oak/Broadleaf W Water

[JHardwood swamp

(@

(b)

KSC dataset. (a) False color image. (b) Ground truth. (c) Legends.

(©)

Fig. 7.

. Corn

D Cotton

[ Sesame

. Broad-leaf soybean
D Narrow-leaf soybean
W Rice

W Water

[JRoads and houses
B Mixed weed

(a) (©)

Fig. 8. WHU-Hi-LongKou dataset. (a) False color image. (b) Ground truth.
(c) Legends.

b)

ICA, OA, AA, and Kappa. The average values of these four
evaluation metrics are used as the final results.

2) Comparison Methods: Eight advanced HSI classification
techniques are compared with DSCSM, which are briefly de-
tailed as follows.

SVM [58] uses the LIBSVM library and a radial basis function
(RBF) kernel for classification. Fivefold cross validation is used

[ Brassica parachinensis [ Tree

(©)

WHU-Hi-HongHu dataset. (a) False color image. (b) Ground truth. (c)

Fig. 9.
Legends.

to determine the optimal parameters through, with the RBF ker-
nel width v and the penalty factor ¢ varying between 274 ~ 24
and 1072 ~ 10%.

RPNet [59] directly extracts random patches from images as
convolution kernels and combines shallow and deep convolution
features without any training.

GTR [60] extends multivariate label ridge regression
to the tensor version and further enhances the model’s
classification ability using prior knowledge from different
modalities.

FDSI [45] constructs the structural contour of HSI using an
adaptive texture smoothing approach during the preprocessing
step. In the postprocessing stage, it employs spatial optimization
technology based on the ERW, effectively constructing dual
spatial information.

Two-Staged [46] is based on the concept of total variation
(TV). It combines the anisotropic TV model with different
regularization parameter settings and the isotropic TV model
based on the split Bregman algorithm to perform two-stage
feature extraction and reclassification.

CSSM [47] is a complementary spectral-spatial method. The
first-stage probability map is obtained by extracting and smooth-
ing the geometric features of HSI using an ACTVSP. After that,
the EPF is used to optimize the map in order to obtain the
second-stage probability map.

PSAE-DMLSR [61] uses marginal principal component
analysis (MP) and principal spatial local marginal principal
component analysis to identify the best spectral subspace and
optimal representation space (ORS) to obtain global spectral-
spatial joint feature information. It then uses the discriminative
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marginal least squares regression (DMLSR) method for HSI
classification.

M3 FuNet [62] is an unsupervised multivariate feature fusion
network. It uses multiscale super-vector matrix correction and
multiscale random convolution dispersion as spectral and spatial
feature extraction methods. After multivariate feature fusion, it
uses M3FuNet to achieve HSI classification.

SPFormer [63] is a lightweight self-pooling transformer. It
uses the multihead self-pooling channel shuffling module based
on sparse mapping to extract distinctive features, and then
the central token mixer is used to promote the information
interaction between pixels. Finally, it uses the fully connected
layer to realize the HSI classification in the case of small
samples.

The parameter values for all comparison techniques are con-
sistent with the default parameter settings specified in the related
references. See the references for further information on the
specific settings and explanations.

C. Parameter Analysis

In the proposed method, four fixed parameters are required:
the dual-scale parameters M (r1,b1,r2,b2), the average dimen-
sionality reduction number D, the kernel principal component
number K, and the fusion weight a.. We categorize these param-
eters into two groups: dual-scale truncated filtering parameters
and framework parameters. We conduct experiments on the
Indian Pines dataset, initializing the aforementioned parameters
and discussing them in groups as follows.

1) Parameter Setting of Dual-Scale Truncated Filter: In the
dual-scale parameters M (rl, b1, r2, b2), r represents the neigh-
borhood radius of the data term and smoothing term, and b is
the parameter controlling the truncated function. The subscripts
1 and 2 represent the values at two different scales. When
discussing r/, the other parameters are fixed at b/ = 0.6, r2
=5, b2 = 0.1. Similarly, when discussing the influence of b7 ,
the other parameters are fixed at v/ = 1, 2 = 5, b2 = 0.1.
Fig. 10 shows the impact of these parameters on classification
performance. All optimal parameters are selected based on the
highest OA.

It is evident that the suggested strategy provides the best
classification accuracy whenrl = 1,r2=15,b1 = 0.6, b2 =0.1,
so these settings are set as the default values for the dual-scale
parameters M.

2) Parameter Setting of Framework: The framework param-
eters include the average dimensionality reduction number D,
the number of kernel principal components K, and the fusion
weight a. Based on the obtained optimal M (r1, bl, r2, b2), the
framework parameters are initialized. While analyzing D and K,
other parameters are fixed, with M and « set to (1, 0.6, 5, 0.1)
and 0.7, respectively. Fig. 11 shows the impact of different K
and D values on OA, AA, and Kappa.

As seen in the figure, when K and D with tiny values, the
tendency for classification performance declines. This is because
retaining fewer principal components during dimensionality
reduction can cause the loss of important discriminating infor-
mation. When K and D are set to 35 and 50, respectively, OA,
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Fig. 10. Effect of dual-scale parameters M (a) rl. (b) bl. (c) r2. (d) b2 on
classification performance.

Fig. 11.  Effect of parameters K and D on classification performance. (a) OA.
(b) AA. (c) Kappa.

AA, and Kappa reach their best values. As K and D increase,
classification accuracy gradually stabilizes. Therefore, these two
parameters are initialized to K = 35 and D = 50.

In addition, based on the optimal values of K and D obtained
previously, the value of « is initialized. Fig. 12 shows the effect
of the parameter « on classification performance.

As seen in the figure, when the fusion weight « is set to 1 or
0, indicating that only the DTFE or SPO module is used for the
classification task, the classification performance is not as good
as when both modules are combined. The best results for the
three evaluation metrics are achieved when o= 0.7. Therefore,
0.7 is set as the default parameter for a.

In subsequent experiments, it was verified that the default
parameters obtained above achieve good classification perfor-
mance on different datasets. Therefore, in practice, there is no
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TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON INDIAN PINES DATASET (% )

Class  Train  Test Baseline E State-of-the-art i Proposed
SVM RPNet GTR | FDSI % cssM BNC MPFuNet SPFomer | DTFE  SPO  DSCSM
1 10 36 18.18  97.22  100.00 E 100.00 96.94 77.78 82.61 97.22 97.22 i 100.00  100.00  100.00
2 10 1418 | 3633  54.72 64.74 E 75.47 80.28 68.40 75.24 73.84 70.80 E 82.19 85.54 99.58
3 10 820 | 28.16  70.61 84.39 E 97.37 83.35 69.12 73.02 87.20 59.27 E 83.72 98.58 68.39
4 10 227 | 2330 82.82 99.12 E 86.82 97.53 88.84 89.19 100.00 98.68 E 94.15  100.00 89.02
5 10 473 | 69.35  72.94 89.22 E 91.60 88.27 95.62 95.76 91.75 83.30 i 81.00 85.20 99.78
6 10 720 | 8143  94.86 96.67 E 99.43 97.04 98.44 96.23 92.36 99.86 i 100.00  98.07 100.00
7 10 18 | 1635 88.89  100.00 : 54.55 100.00 75.00 100.00 100.00 100.00 © 100.00  94.74  100.00
8 10 468 | 97.82 9573 99.36 E 100.00  100.00  100.00 100.00 99.79 100.00 i 100.00  100.00  100.00
9 10 10 2.63  100.00 100.00 E 71.43 100.00 83.33 80.00 100.00 100.00 i 83.33  100.00  100.00
10 10 962 | 36.15 7141  76.61 E 76.38 84.78 71.26 82.51 85.14 85.34 E 80.27  89.43 80.38
11 10 2445 | 5921 7137  63.60 | 9851 4.68 78.66 67.94 92.80 8037 | 9695 9325 91.35
12 10 583 | 18.60 77.36  89.88 i 79.01 92.25 96.18 90.59 92.62 9125 | 5485  83.14 99.80
13 10 195 | 71.01  97.95  100.00 : 97.50 99.69 99.48 100.00 100.00 100.00 : 100.00  41.14 100.00
14 10 1255 | 87.44  78.65 95.54 : 97.34 99.90 98.64 88.92 91.39 99.04 : 99.92 95.94 95.95
15 10 376 | 3522 8378  94.15 E 90.56 96.76 94.21 88.71 99.20 99.47 i 100.00  100.00  100.00
16 10 83 76.19  95.18 90.36 E 67.23 97.71 98.81 87.23 89.16 100.00 E 97.59 97.62 96.51
OA 4515 74.69 80.49 : 89.37 89.28 83.63 79.94 89.55 84.96 : 88.06 89.78 91.22
AA 4734  83.34 90.23 E 86.45 93.70 87.11 87.37 93.28 91.54 i 90.87 91.42 95.03
Kappa 39.50 7137 78.09 E 87.89 87.81 81.26 76.67 88.08 82.98 i 86.47  88.33 89.97
The best results are highlighted in bold.
1
oss R

Kappa

0 01 02 03 04 05 06 07 08 09 1
a

Fig. 12.  Effect of parameter « on classification performance.

need to spend a significant amount of effort selecting parameters,
using a fixed set of parameters that are applicable globally can
yield satisfactory results. Since the scale of DTFE should vary
according to different datasets and different resolutions, in order
to achieve the best results, how to design an automatic method
for selecting the optimal parameters will be a topic for further
research in the future.

D. Quantitative Experimental Results

1) Experimental Results of Indian Pines: The best results are
highlighted in bold.

The experiments are first conducted on the Indian Pines. The
ICA, OA, AA, and Kappa obtained by different classification
methods are given in Table II. It can be seen from Table II that
the proposed method achieved the highest values of OA, AA,
and Kappa and the highest ICA in ten categories, indicating
the best classification performance on the Indian Pines. The
classification maps of all methods are displayed in Fig. 13.

Fig. 13.  Classification maps of different methods on Indian Pines. (a) SVM.
(b) RPNet. (c) GTR. (d) FDSLI. (e) Two-Staged. (f) CSSM. (g) PSAE-DMLSR.
(h) M3FuNet. (i) SPFormer. (j) DTEE. (k) SPO. (1) DSCSM.

As shown in Fig. 13, the map produced by SVM has many
misclassifications, mainly because it only utilizes the spectral
information of HSI, lacking consideration of spatial information.
RPNet, which takes spatial information into account, slightly
improves misclassification compared to the SVM. However, the
convolutional features of RPNet are random, leading to signifi-
cant variations in accuracy, resulting in a lower average accuracy
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TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON PAVIA UNIVERSITY DATASET (% )

Baseline State-of-the-art Proposed
Class  Train Test j Two- PSAE- j

SVM  RPNet GTR . FDSI Staged CSSM DMLSR M’FuNet  SPFormer . DTFE SPO DSCSM

1 10 6621 | 9241  74.63  52.86 i 97.66 80.44 98.42 64.63 63.75 9246 1 98.13  72.58 98.31
2 10 18639 | 87.13 6593  83.80 E 98.32 93.73 99.83 61.62 95.18 82.14 E 95.99  99.08 96.48
3 10 2089 | 3793 8l.62 7721 E 99.24 95.43 42.25 85.56 98.66 94.26 E 99.95 8429  100.00
4 10 3054 | 7203  96.81 90.18 i 82.16 87.91 63.75 66.19 74.72 91.16 | 93.41 53.79 97.61
5 10 1335 | 97.63  100.00 99.10 : 98.82 99.40 93.68 96.47 93.93 100.00 : 9632 87.22 96.36
6 10 5019 | 30.04 6832  74.08 i 99.25 99.97 79.83 83.75 99.80 100.00 : 98.77  98.86 98.84
7 10 1320 | 4638 9538  98.64 i 100.00 98.82 78.56 97.34 97.42 100.00 ; 99.62  89.43 96.35
8 10 3672 | 7749  80.69  51.20 i 88.02 93.14 89.90 88.10 93.68 87.01 i 88.09  69.28 88.25
9 10 937 | 99.89 8410 97.01 | 99.78 91.14 99.77 64.70 59.23 99.89 | 97.16 68.57 98.92
OA 6431 7424 7641 1 96.34 9230 84.37 70.87 88.67 89.00 1 96.14  86.47 96.44

AA 7121  83.14 8045 ; 95.92 9333 82.89 78.89 86.27 94.10 i 96.52  80.34 96.57
Kappa 56.25  67.99  69.70 i 95.15 89.90 80.20 64.21 85.18 85.95 i 94.85 8231 95.25

The best results are highlighted in bold.

and many misclassified regions in the classification map. GTR
treats pixels and their neighboring pixels as three-dimensional
tensors, effectively preserving the inherent structural informa-
tion of the HSI spatial domain and making its classification map
relatively smooth. However, the spectral curves of related crops
are not well fitted by the tensor regression model, resulting in
low discrimination, such as in the Corn-notill and Corn-mintill
regions.

FDSI, Two-Staged, and CSSM combine preprocessing and
postprocessing by integrating spatial-spectral information, re-
sulting in significantly improved classification performance.
However, there are still many misclassified pixels due to
the inadequate preservation of important spatial structures.
PSAE-DMLSR, M3*FuNet, and SPFormer are recently proposed
spatial-spectral joint classification methods. PSAE-DMLSR can
find the ORS and mitigate the impact of interfering pixels
but it relies on a sufficient number of samples, resulting in
negative classification performance on Indian Pines and the
classification map with a lot of noise. M>FuNet addresses
the issue of single-class feature antagonism, extracting fea-
tures with strong retention and strong spectral-spatial depen-
dencies. Although the classification map is smoother, the net-
work structure is complex with too many parameters, mak-
ing it prone to overfitting and neglecting small samples, re-
sulting in misclassification. Although SPFormer is proposed
for small sample problems, it does not make full use of the
spatial information of HSI, resulting in a poor classification
effect.

In addition, analyzing the classification results of the two
suggested modules, DTFE and SPO, on Indian Pines, it is
noted that because of the small number of samples per class,
DTFE may remove these small sample classes. At this point,
SPO is needed to clarify boundary information and optimize
classification probabilities. Therefore, DSCSM achieves the best
classification accuracy and visualization effects, validating the
effectiveness of DSCSM.

Fig. 14. Classification maps of different methods on Pavia University. (a)
SVM. (b) RPNet. (c) GTR. (d) FDSI. (e) Two-Staged. (f) CSSM. (g) PSAE-
DMLSR. (h) M3FuNet. (i) SPFormer. (j) DTFE. (k) SPO. (1) DSCSM.

2) Experimental Results of Pavia University: The ICA, OA,
AA, and Kappa obtained by different classification methods on
the Pavia University dataset are given in Table III.

As given in Table III, DSCSM is superior to other comparative
methods in terms of OA, AA, and Kappa. Specifically, for similar
classes of Asphalt, Metal-sheets, and Bricks, DSCSM shows a
superior recognition performance, indicating its effectiveness in
leveraging spectral-spatial information to distinguish between
similar categories. Although DSCSM has a lower number com-
pared to SPFormer of the highest CAs, its CAs are at the
forefront, and it exhibits high accuracy and stability in the overall
classification task. Fig. 14 shows the classification maps of all
methods.

It can be seen that most methods produce a lot of salt-and-
pepper noise. While the classification map generated by the
proposed SPO is overly smooth, the integration of the DTFE
enhances the accuracy of the DSCSM classification results,
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TABLE IV
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON HOUSTON 2013 DATASET (% )

Baseline i State-of-the-art 3 Proposed

Class  Train  Test ' Two- PSAE- !
SVM  RPNet GTR : FDSI Staged CSSM DMLSR M3FuNet SPFormer; DTFE SPO DSCSM
1 10 1063 | 91.55 7293 82.51 ! 75.08 59.87 90.85 85.99 84.29 9446 | 86.35 63.65 77.89
2 10 800 | 87.87  68.57 97.91 : 71.74 71.62 82.57 99.09 78.78 85.59 : 86.92 57.45 75.56
3 10 6777 | 99.71  100.00  99.71 : 100.00 97.96 100.00 99.45 90.98 99.42 1 100.00 100.00  100.00
4 10 1043 | 97.12  73.58 99.92 i 77.34 60.62 93.88 99.54 70.66 90.07 i 97.44 60.92 98.13
5 10 1232 | 88.57 9424  100.00 i 100.00 86.36 94.48 97.53 89.45 98.71 : 99.84  100.00  100.00
6 10 315 | 73.24  96.83 98.10 ' 91.50 75.56 95.70 99.43 96.19 8844 | 93.64 84.15 90.09
7 10 968 | 78.68  80.37 73.77 1 90.40 64.94 82.59 26.40 70.51 8543 | 89.58 98.20 91.55
8 10 614 | 70.31  54.70 52.11 i 68.50 85.41 48.35 90.04 69.37 38.50 i 68.86  49.21 71.10
9 10 1021 | 54.62  68.12 50.64 E 75.63 57.81 69.37 29.39 60.06 83.16 i 83.38 66.77 84.85
10 10 372 | 36.71  78.88 79.13 E 83.04 97.53 61.52 88.67 74.12 64.98 3 96.53 84.46 97.97
11 10 104 | 4440 7224 72.57 i 92.80 86.37 68.60 86.91 72.65 86.67 i 99.82 99.71 100.00
12 10 1223 | 56.64  59.12 60.67 i 82.98 68.11 66.60 87.17 62.55 55.54 i 90.41 89.78 90.66
13 10 439 | 3272 76.25 91.50 i 58.94 93.90 52.52 72.41 77.56 90.73 i 58.40 70.63 62.28
14 10 418 | 88.52 9545  100.00 i 92.27 99.76 96.76 99.28 99.52 100.00 i 100.00 9543 100.00
15 10 650 | 99.06 9246  100.00 i 100.00  100.00 99.84 99.61 94.31 100.00 i 100.00 100.00  100.00
OA 73.33  75.74 80.54 i 82.73 77.44 77.35 80.11 76.34 81.50 i 88.72 76.60 88.04
AA 73.32 7892 83.90 i 84.01 80.39 80.24 84.06 79.40 84.11 i 90.08 81.36 89.34
Kappa 71.15  73.80 78.97 i 81.35 75.64 75.53 78.48 74.43 80.05 i 87.82 74.72 87.09

The best results are highlighted in bold.

particularly reducing misclassifications in the Bare-soil and
Meadows areas. It indicates that DTFE and SPO provide com-
plementary information, resulting in the best classification out-
comes.

3) Experimental Results of Houston 2013: To validate the
performance of DSCSM in classifying complex urban areas,
experiments are conducted on the challenging Houston 2013
dataset. Since Houston 2013 is small, the region is cropped and
scaled to better analyze the results. Table IV lists the ICA, OA,
AA, and Kappa of all methods.

Compared with the other nine competing methods, DSCSM
obtains the highest OA, AA, and Kappa. Among its two modules,
DTFE exhibits better classification performance. The reason is
that the Houston 2013 dataset has a cloud-covered area, and the
class distribution is relatively scattered, posing a challenge for
SPO to obtain edge contours through random walks. RW fails
to sample distant pixels of the same class, resulting in lower
accuracy for SPO. Consequently, the combined DSCSM accu-
racy decreases. However, considering the excellent performance
of DSCSM in other types of scenarios, the 0.68% reduction
in OA on Houston 2013 is acceptable. This also implies that
the DTFE method performs well on details such as small-sized
targets. In addition, the table illustrates that DSCSM has good
recognition performance for elongated class distributions, such
as Road, Highway, and Railway.

Fig. 15 displays the classification results achieved using all
approaches. Because the Houston 2013 image is small, the
region is cropped and scaled to better analyze the results.

As can be seen from the figure, SVM still suffers from
severe salt-and-pepper noise. The performance of RPNet and
PSAE-DMLSR is unsatisfactory on large-scale images with
limited training samples, resulting in classification maps with
substantial noise. GTR, CSSM, FDSI, and SPFormer also ex-
hibit varying degrees of mislabeling. Two-Staged performs two
stages of smoothing, leading to oversmoothing in the resulting
classification map. M3*FuNet also has many misclassifications,
especially in the Commercial and Railway categories, indicating
that unsupervised methods may not be well-suited for such
challenging datasets. Therefore, DSCSM is the most robust
compared to the methods for comparison and performs well in
the classification of complex urban areas.

4) Experimental Results of KSC: KSC features a scattered
distribution of classes, providing image details that are neither
too coarse nor too fine, which can verify the effect of the
proposed method on moderately challenging tasks. The ICA,
OA, AA, and Kappa are given in Table V.

It can be seen from the table that the OA, AA, and Kappa
of DSCSM are all above 99% , indicating that DSCSM is a
very feasible classification method on KSC and shows superior
performance. Moreover, the proposed DTFE and SPO can also
achieve 98% accuracy in the case of a single stage, significantly
the highest in all comparison methods, indicating that they can
extract features well and retain important details. In terms of CA,
most CAs of DSCSM achieve 100% classification accuracy. Par-
ticularly for the Graminoid marsh, which has a scattered distri-
bution and limited spectral separability, only DSCSM achieves
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Fig. 15.
M>FuNet. (i) SPFormer. (j) DTFE. (k) SPO. (I) DSCSM.

Classification maps of different methods on Houston 2013. (a) SVM. (b) RPNet. (c) GTR. (d) FDSLI. (e) Two-staged. (f) CSSM. (g) PSAE-DMLSR. (h)

TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON KSC DATASET (% )

Baseline i State-of-the-art i Proposed

Class  Train  Test T Two- PSAE- v
SVM  RPNet GTR | FDSI Staged CSSM DMLSR M°FuNet  SPFormer : DTFE SPO  DSCSM
1 10 751 | 9571 79.89  100.00 ; 100.00  96.11 100.00 82.56 72.70 99.87 1 100.00  100.00  100.00
2 10 233 | 93.03 8369  54.08 | 100.00 95.71 99.13 77.68 96.57 60.52 1 100.00 100.00  100.00
3 10 246 | 8828  87.80 4.07 1 100.00 100.00 98.77 89.84 88.21 74.80 1 100.00  91.79 100.00
4 10 242 | 67.80  83.06  17.36 . 100.00  95.04 91.60 72.73 70.66 28.51 . 86.72  100.00 9132
5 10 151 | 46.19  80.79  51.66 E 100.00  98.81 93.21 100.00 100.00 79.47 I 85.29  100.00  100.00
6 10 219 | 56.14 6530  76.26 i 64.79  100.00 84.88 100.00 99.54 89.04 3 100.00  90.12 99.10
7 10 95 72.00  88.42 100.005 100.00  100.00 100.00 100.00 100.00 90.54 E 100.00  100.00  100.00
8 10 421 | 6515  82.66 7625 ! 99.53 96.96 96.56 98.34 82.42 79.81 1 99.76  100.00  100.00
9 10 510 | 89.46  66.08  44.90 i 100.00 93.96 97.51 100.00 98.43 8451 1 99.80  100.00  99.80
10 10 394 | 77.10  97.72  84.77 E 100.00  93.45 96.74 100.00 85.28 86.80 E 100.00 100.00  100.00
11 10 409 | 9843  96.58  96.58 : 100.00 100.00 97.61 99.02 78.97 94.13 i 100.00  95.78 100.00
12 10 493 | 96.59 9148  17.24 i 100.00  94.44 99.37 81.54 87.02 95.74 ; 99.80  100.00  99.80
13 10 917 | 100.00 99.13  99.24 ! 100.00  100.00 100.00 100.00 100.00 100.00 : 100.00  100.00  100.00
OA 84.77  86.32  69.73 i 97.62  97.05 97.46 92.60 88.11 87.15 1 98.88 98.74 99.45
AA 80.45  84.82  63.26 : 9726  97.27 96.57 92.44 89.22 81.82 : 97.80 9829 99.21
Kappa 83.06  84.78  66.17 : 97.35  96.72 97.17 91.77 86.82 85.67 : 98.75 98.60 99.39

The best results are highlighted in bold.

100% classification accuracy, demonstrating its extremely high
recognition capability.

Fig. 16 displays the classification maps of all methods, from
which it can be observed that FDSI, Two-Staged, DTFE, and
DSCSM exhibit superior classification outcomes. In contrast,
the remaining methods generate a significant amount of noise.
Although the classification map produced by SPO is overly
smooth, the edge information of the class it provides can be
utilized to correct the results of DTFE, thereby enhancing the
classification accuracy of DSCSM.

5) Experimental Results of WHU-Hi-LongKou: To vali-
date the generalization performance of DSCSM in practi-
cal classification problems, experiments are conducted us-
ing the WHU-Hi-LongKou dataset for fine crop classi-
fication. The ICA, OA, AA, and Kappa are given in
Table VI.

As can be seen from the table, although the categories in
the WHU-Hi-LongKou are simple, there are still a few mis-
classifications. Particularly, with a smaller number of sam-
ples, the classification performance of RPNet and M3FuNet is
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TABLE VI
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON WHU-HI-LONGKOU DATASET (% )

Baseline E State-of-the-art 3 Proposed
Class  Train Test 1 Two- PSAE- 1

SVM  RPNet GTR . FDSI Staged CSSM DMLSR M3FuNet  SPFormer DTFE SPO DSCSM

1 10 34501 | 9345  98.74 98.78 : 99.06  100.00  95.39 97.72 89.17 99.87 : 99.63  97.89 99.64
2 10 8364 | 2935 7897  87.42 53.05 99.78 44.04 91.26 98.10 98.35 99.74  98.67 99.73
3 10 3021 29.44 8239 99.44 . 99.70  98.25 59.56 97.64 90.37 99.97 99.96 5747  100.00
4 10 63202 | 9523 77.12 9543 : 99.96  90.96 99.64 91.40 74.72 87.84 ‘ 98.81 98.79 99.06
5 10 4141 1586 80.80  98.09 91.81  100.00 51.11 94.23 99.44 99.86 99.22  41.84 99.23
6 10 11844 | 87.93 90.97 98.84 . 98.02 90.65 91.50 99.52 86.74 99.23 ‘ 98.72  98.58 99.83
7 10 67046 | 100.00  96.60  99.69 ' 99.63 99.99 99.99 99.87 92.98 99.88 ‘ 99.97  98.96 99.98
8 10 7114 69.58 88.18  81.64 ' 88.95 95.83 94.72 94.44 80.32 92.56 91.82 83.61 92.76
9 10 5219 | 4347  88.10 84.92 . 78.65 61.43 79.06 94.07 78.65 96.43 ‘ 68.41  70.60 74.62
OA 84.90  88.85  96.63 94.81 95.50 90.40 96.03 85.83 95.71 98.13  93.69 98.56

AA 62.70  86.88  93.81 89.87 92.99 79.45 95.57 87.83 97.11 95.14 8294 96.09
Kappa 80.58 85.78 9559 ; 93.28 94.12 87.72 94.83 82.06 94.44 ‘ 97.54  91.77 98.11

The best results are highlighted in bold.

(k)

Fig. 16. Classification maps of different methods on KSC. (a) SVM. (b)
RPNet. (¢c) GTR. (d) FDSI. (e) Two-Staged. (f) CSSM. (g) PSAE-DMLSR.
(h) M?FuNet. (i) SPFormer. (j) DTFE. (k) SPO. (I) DSCSM.

relatively poor, with OA below 90% . Due to the relatively
simple scene, low spectral variability, and spatial heterogene-
ity, the remaining spectral-spatial joint methods achieve good
performance, with OAs greater than 90% . Among all the com-
parison methods, DSCSM obtains the highest OA and Kappa.
In terms of single-category classification accuracy, DSCSM
has the highest CA for two categories, and for the remaining
categories, except for Mixed weed, it ranks second highest in
CA. The poor classification performance for Mixed weed is
attributed to its narrow and scattered distribution, where SPO
is less effective at predicting pixels of the same category that
are far apart, which is also the reason why AA is lower than
SPFormer.

The classification maps obtained by all methods are shown
in Fig. 17. It can be seen from the figure that DSCSM has a
strong ability to distinguish spectrally similar classes, such as

Fig. 17. Classification maps of different methods on WHU-Hi-LongKou. (a)
SVM. (b) RPNet. (c) GTR. (d) FDSI. (e) Two-Staged. (f) CSSM. (g) PSAE-
DMLSR. (h) M*FuNet. (i) SPFormer. (j) DTFE. (k) SPO. (1) DSCSM.

Broad-leaf soybean and Narrow-leaf soybean, with smooth clas-
sification maps and clear boundaries. Two-Staged and M?FuNet
exhibit over-smoothing, while the classification maps of other
comparison methods contain more salt-and-pepper noise. There-
fore, it can be inferred from the analysis above that DSCSM ob-
tains excellent classification results on the WHU-Hi-LongKou
dataset which with regular block distribution.

6) Experimental Results of WHU-Hi-HongHu: In addition,
the WHU-Hi-HongHu dataset is fragmented and variably sized
land parcels, with high spectral and spatial heterogeneity, repre-
senting a more complex agricultural scenario. In order to confirm
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TABLE VII
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON WHU-HI-HONGHU DATASET (% )

Baseline ! State-of-the-art ! Proposed

Class  Train Test 1 Two- PSAE- T
SVM  RPNet GTR : FDSI Staged CSSM DMLSR M°FuNet  SPFormer ¢ DTFE  SPO  DSCSM
1 10 14031 | 76.85 8339  73.20 ! 98.97 96.89 97.25 86.20 87.32 93.51 1 99.74 9024 99.49
2 10 3502 | 5644 7647  73.10 i 65.67 73.84 68.79 76.74 98.57 81.32 1 40.07 2500 4533
3 10 21811 | 87.14 81.34 5594 99.47 93.57 95.19 66.67 82.22 79.19 99.87 86.45 99.87
4 10 163275 | 95.88  87.37  67.11 | 98.97 96.18 99.11 70.08 96.05 9642 | 99.64  99.99 99.66
5 10 6208 | 2220 9654 7165 | 44.77 99.53 38.11 66.07 96.88 8420 | 8472 1531 84.83
6 10 44547 | 8434  81.05  73.18 ! 96.60 91.34 86.04 72.42 90.39 96.92 1 98.19 9480  98.25
7 10 2493 | 7052 3892  26.01 | 89.58 72.20 65.07 52.69 70.97 7733 1 9249  98.43 90.27
8 10 4044 457 6417 56.48 I 49.70 92.36 29.13 35.48 86.35 81.63 ‘ 61.54  92.93 61.52
9 10 10809 | 99.40 7239  79.13 99.36 93.28 99.76 89.83 94.25 94.55 99.61  86.43 99.45
10 10 12384 | 2091 4467 4255 | 85.03 73.56 63.17 39.06 76.73 8932 | 9573 9432 91.59
11 10 11005 | 1572 39.44  26.66 ' 80.58 85.02 52.93 39.44 71.79 80.50 ! 96.67 91.55 99.43
12 10 8944 | 4341  63.84  22.66 | 88.32 68.22 65.03 49.18 79.32 71.66 | 84.58  89.72 92.01
13 10 22497 | 5489 56.83 2855 72.84 80.67 44.76 42.57 68.67 68.40 ‘ 67.79  89.15 72.05
14 10 7346 1895 5893  55.88 92.72 90.43 64.49 65.32 88.91 92.69 89.28  72.53 89.38
15 10 992 7.11 88.61 9244 | 89.28 94.15 97.87 82.28 92.64 9204 | 9571 4537 95.40
16 10 7252 | 69.80 62.45 7248 ! 98.50 9221 97.86 74.76 96.35 9268 | 99.18 87.14 98.89
17 10 3000 | 32.63 7427 7573 1 71.39 95.47 81.65 79.58 94.30 9643 1 98.15 97.09  99.14
18 10 3207 12.63  68.88  89.02 90.84 99.91 83.09 66.25 83.19 99.28 84.11 5126 83.92
19 10 8702 | 4440 3696 67.82 64.08 79.00 62.04 70.38 81.46 84.06 50.54  29.25 61.29
20 10 3476 14.00 80.47  44.65 87.78 99.40 60.10 74.70 88.81 97.99 ‘ 98.93 5557 97.30
21 10 1318 884 9590 8672 ! 3672  100.00 80.98 62.48 98.18 9757 | 8384 31.52 79.06
22 10 4030 1245 66.67 7166 : 43.88  100.00 54.24 65.40 99.23 92.63 | 86.05 7475 81.20
OA 58.55 7482 60.11 | 88.74 90.67 79.77 65.95 88.72 9035 1 9138  77.53 92.54
AA 4332 69.07 6148 79.32 89.42 72.12 64.89 87.39 88.20 86.67  72.67 87.24
Kappa 5111 69.13 5281 | 85.96 88.32 75.29 59.60 85.87 87.92 | 89.17 7327  90.62

The best results are highlighted in bold.

the efficacy of the suggested approach in intricate real-world
scenarios, the WHU-Hi-HongHu dataset is used for the exper-
iment. Table VII displays the ICA, OA, AA, and Kappa of the
experiment.

Among the comparison methods, all except Two-Staged and
SPFormer achieve classification accuracies below 90% . This
indicates that many classification methods do not perform well
on the challenging WHU-Hi-HongHu dataset. However, the
proposed DSCSM outperforms the best-performing Two-Staged
by 1.87% in OA, achieving the best accuracy of 92.54% . This
demonstrates that DSCSM is a feasible classification method for
the WHU-Hi-HongHu dataset. Fig. 18 displays the classification
maps for each approach.

From the figure, it can be seen that most methods exhibit
many isolated classification error regions, resulting in noisy
classification maps, and the classification map of SPO appears
overly smooth. The classification maps of Two-Staged, SP-
Former, DTFE, and DSCSM show better performance.

However, there are still some erroneous classification regions,
such as similar crop types, Cotton and Cotton firewood, Brassica
parachinensis, and Brassica chinensis, where misclassification
occurs. The classification map of DSCSM achieves better clas-
sification in both the rapeseed and cotton areas, particularly for
Brassica parachinensis and Brassica chinensis, indicating that

DSCSM can address high spatial-spectral heterogeneity issues.
Overall, it is evident that DSCSM achieves the best performance
with regard to visual effects and classification accuracy.

E. Validation of Sample Sensitivity

To compare the dependence of DSCSM and the comparison
methods on the number of samples, the influence on classifi-
cation performance is analyzed by randomly selecting different
numbers of training samples for each class. Since the GMM in
SPO has five components, the number of samples per class is
at least 5. When 1% , 5% , and 10% of samples per class are
selected as training samples, the number of training samples for
each class is uniformly set to 5 if the sample size is less than 5.
The total number of training samples for each dataset is shown
in Fig. 19. All methods use the same sample number settings.

Fig. 20 shows the impact of the number of training samples
on classification accuracy (OA). As illustrated in the figure, all
approaches get greater precision as the size of the training sample
rises, with DSCSM achieving the best results compared to other
methods. When given 10% training samples per class, DSCSM
can achieve over 99% accuracy across four datasets. Even when
the sample size becomes small, such as randomly selecting 5 or
10 samples per class or selecting 1% and 5% of the samples per
class as training samples, DSCSM still demonstrates excellent
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Fig. 18. Classification maps of different methods on WHU-Hi-HongHu. (a)
SVM. (b) RPNet. (c) GTR. (d) FDSI. (e) Two-staged. (f) CSSM. (g) PSAE-
DMLSR. (h) M3FuNet. (i) SPFormer. (j) DTFE. (k) SPO. (I) DSCSM.

classification performance. It shows that DSCSM can extract
high-quality features through DTFE and make full use of spatial
information by SPO, reducing the loss of feature information
and making full use of the spectral and spatial information of
the original image, which can achieve high-quality ground object
recognition in small sample scenarios.

F. Validation of the Effectiveness of DTFE

To intuitively demonstrate the effectiveness of the proposed
DTFE method, Fig. 21 shows the separability of pixels from
different categories on the Indian Pines dataset. For clarity, only
the first eight classes are displayed, with 20 pixels selected from
each category. Fig. 21(a), (c), and (e) shows the false-color
images of the original HSI, the first three bands of the stacked
truncated filtering features (DTF), and the first three principal
components of the KPCA-fused features (DTFE), respectively.
As seen in the figures, the DTF features enhance the contrast
between categories and make the boundaries clearer but the
spectral differences between classes are not very distinct. After
KPCA feature fusion, the spectral differences between different
categories in DTFE become more pronounced.

Fig. 21(b), (d), and (f) displays the scatter plots of the first
three bands of the original HSI and DTF features, as well as the
scatter plots of the first three principal components of DTFE,
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Fig. 19. Total number of training samples for each dataset. (a) Indian Pines.
(b) Pavia University. (c) Houston 2013. (d) KSC. (e) WHU-Hi-LongKou. (f)
WHU-Hi-HongHu.

TABLE VIII
CLASSIFICATION PERFORMANCE OF DIFFERENT DIMENSIONALITY REDUCTION
METHODS ON INDIAN PINES DATASET (% )

DTF
Metric DTF PIF  DTE - DTE  DTF — ppey
PCA +ICA 4FA  4PPCA  prid
OA  88.15 8987 9050 8495 9036  91.22
AA  88.69 9241 8974 7342 9128  95.03
Kappa 8647 8830 89.14 8288 88838  89.97

The best results are highlighted in bold.

respectively. It can be observed that the pixel distribution in the
original HSI is dispersed, with pixels from different categories
overlapping. After DTF feature extraction, the distribution of
pixels within the same category becomes more clustered but
the distances between categories remain close. KPCA feature
fusion further increases the interclass distances of the fused
features, while the intraclass pixel distribution becomes more
concentrated.

To intuitively demonstrate the role and significance of KPCA
in the DTFE feature extraction process, four different dimen-
sionality reduction methods are selected to combine with other
modules of DSCSM for comparative classification performance
analysis, which include PCA, ICA, factor analysis (FA) [64],
and probabilistic PCA (PPCA) [65].
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TABLE IX
CLASSIFICATION PERFORMANCE OF DIFFERENT POSTPROCESSING METHODS
ON INDIAN PINES DATASET (% )
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Influence of training sample number of each dataset on OA. (a) Indian
Pines. (b) Pavia University. (c) Houston 2013. (d) KSC. (e) WHU-Hi-LongKou.
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Influence of DTF and DTFE on pixel separability on Indian pines.

Metric MRF ERW EPF STV SPO
OA 87.55 88.37 89.98 89.08 91.22
AA 93.19 87.45 88.47 94.21 95.03

Kappa 85.90 86.84 88.64 87.61 89.97

The best results are highlighted in bold.

As can be observed from Table VIII, the combination of
KPCA with other modules yields the highest classification
accuracy. This is attributed to the fact that KPCA leverages
kernel function to directly extract features in a high-dimensional
space, which is more adept at handling nonlinear issues and
conducive to the separation of data from different categories,
thereby enhancing the discriminative power of the features and
leading to superior classification performance.

G. Validation of the Effectiveness of SPO

To illustrate the suggested SPO’s efficacy and ability of dis-
crimination, several widely used postprocessing methods in HSI
classification are used for comparison, including Markov ran-
dom field (MRF) [34], ERW [45], EPF [47], and smoothed total
variation (STV) [66], [67]. For a fair comparison, all settings
other than the postprocessing methods are kept the same as those
in the proposed classification framework, and the comparison
techniques’ parameter settings comply with the default values
stated in the relevant literature. All experiments are conducted
on the Indian Pines dataset. Table IX lists the average accuracy
values obtained by different postprocessing methods over ten
experiments.

As given in the table, SPO achieves the highest values in terms
of OA, AA, and Kappa compared to other methods. In terms
of OA, it improved by 1.24% compared to the best-performing
EPF method and by 2.85% compared to ERW. This indicates that
SPO is indeed effective in optimizing classification probabilities
in HSI postprocessing.

IV. DISCUSSION

In the task of HSI classification, the quality of spatial and spec-
tral information retention directly affects the accuracy of sub-
sequent classification. In this article, the proposed method was
validated for its superior performance across general, moderate,
and complex challenge tasks through experiments conducted in
six different scenarios. Ablation experiments were performed
to systematically assess the impact of each module on overall
performance using the method of controlled variables. The
results demonstrate that the DTFE significantly enhanced the
quality of feature extraction, while the SPO excels in preserving
the spatial correlation between pixels. The combination of these
two modules notably improved the accuracy and robustness of
DSCSM in classification tasks. Although our method achieves
good results for different classification tasks, the parameters
of DTFE need manual adjustment for different classification
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scenarios. Even with fixed parameters, good results can be ob-
tained, but adaptive parameter adjustment remains an important
direction for improvement. Moreover, since SPO is essentially a
random walk-based image segmentation method, it may fail to
sample pixels of the same category that are far apart, especially
for small and complex-edged objects. Therefore, in our next step
of work, we will consider optimizing this issue.

V. CONCLUSION

A DSCSM is proposed in this article, which mainly consists
of DTFE and subRW-based SPO. DTFE smooths the HSI, pre-
serving edge information and smoothing image details. KPCA
is used to fuse dual-scale smooth blocks to obtain structural
features, reducing spectral redundancy and improving interclass
separability. SPO optimizes the initial probabilities obtained
by SVM using the spatial relationships between pixels, over-
coming DTFE’s tendency to lose information and its need for
numerous parameter adjustments while enhancing the ability
to distinguish similar categories. Experiments on four real hy-
perspectral datasets from different imaging scenarios show that
the proposed method increases classification accuracy by 2%
—5% compared to advanced HSI classification methods, even
with a small number of training samples. As the number of
training samples rises, when 10% of each class’s samples are
chosen to train, the accuracy exceeds 99% on all four datasets.
This indicates that the method has strong generalization and
robustness.
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