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Integrating Multiscale Spatial-Spectral Shuffling
Convolution With 3-D Lightweight Transformer
for Hyperspectral Image Classification

Qinggang Wu

Abstract—The combination of convolutional neural networks
and vision transformers has garnered considerable attention in
hyperspectral image (HSI) classification due to their abilities to
enhance the classification accuracy by concurrently extracting lo-
cal and global features. However, these accuracy improvements
come at the cost of significant demands on storage resources, com-
putational overhead, and extensive training samples. To address
these challenges, this article proposes a multiscale spatial-spectral
shuffling convolution integrated with a 3-D lightweight transformer
(MSC-3DLT) for HSI classification. This network directly captures
3-D structural features throughout the entire feature extraction
process, thereby enhancing HSI classification performance even at
small sampling rates within a lightweight framework. Specifically,
we first design a multiscale spatial-spectral shuffling convolution to
comprehensively refine spatial-spectral feature granularities and
enhance feature interactions by shuffling multiscale features across
different groups. Second, to maximize the exploitation of limited
training samples, we rethink transformers from the 3-D structural
perspective of HSI data and propose a novel 3-D lightweight trans-
former (3DLT). Different from the slicing operation employed in
classical transformers, the 3DLT directly extracts the inherent 3-D
structural features from the HSI and mitigates quadratic complex-
ity through a lightweight spatial-spectral pooling cross-attention
mechanism. Finally, a novel training strategy is designed to adap-
tively adjust the learning rate based on multimetric feedback dur-
ing the model training process, significantly accelerating the model
fitting speed. Extensive experiments demonstrate that the proposed
MSC-3DLT method remains highly competitive compared with
state-of-the-art methods in terms of classification accuracy, model
parameters, and floating point and operations under small sam-
pling rates.
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I. INTRODUCTION

HYPERSPECTRAL image (HSI) captures abundant
A spectral information of ground materials across multiple
narrowbands [1]. It effectively recognizes internal object fea-
tures to classify HSIs in various fields, such as land cover iden-
tification [2], [3], precision agriculture [4], [5], environmental
monitoring [6], [7], and military reconnaissance [8], [9].

In the past, traditional HSI classification methods, such as
support vector machine [10], [11], K-nearest neighbors [12],
[13], principal component analysis (PCA) [14], [15], linear
discriminant analysis [16], [17], etc., depended on manually
designed feature extraction and classification methods. These
methods are not robust to complex environments and data dis-
tributions for the requirement of tuning hyperparameters, which
hinders the improvement of HSI classification performance.

As the rapid development of the deep learning technique, the
convolutional neural network (CNN) becomes prevalent in HSI
classification by utilizing abundant spatial and spectral features
and achieves superior performance [18]. 1-D CNN methods
extract spectral features from multiple regions in parallel [19],
[20], [21]. 2-D CNN methods extract intuitive spatial features
of edges and textures, which provides comprehensive feature
recognition ability [22], [23], [24]. To address the problem that
the same materials exhibit different spectral signatures and vice
versa, 3-D CNN methods maximize the ability to extract 3-D
structure features by directly processing the cubic HSI data [25],
[26], [27]. In addition, multiscale feature extraction captures
diverse information from various receptive fields, which in-
cludes small-scale detailed texture features as well as large-scale
semantic object contour features. Moreover, it reduces noise
impact on classification results by introducing spatial contex-
tual information from different scales, which increases model
generalization ability [28], [29], [30]. However, the huge feature
dimension may increase the complexity of feature fusion.

The attention mechanism (AM) has been widely applied
to concentrate on important HSI features, which substantially
improve classification performance. Traditional AMs increase
the utilization of HSI data by enhancing the spatial and spectral
features [31], [32], [33]. Recently, the transformer has attracted
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widespread attention from researchers in image processing field
due to its ability to extract long-range dependencies through the
self-attention mechanism. Hong et al. [34] proposed a Spectral-
Former that first applied the vision transformer (ViT) in HSI
classification by grouping and stacking spectral tokens to obtain
global spectral information with self-attention. Although the ViT
excels at extracting long-range spectral sequential features, it
neglects the local spatial contextual features.

It has been widely acknowledged that the combination of
CNN and ViT substantially improves HSI classification perfor-
mance [35]. Zhang et al. [36] proposed a convolution trans-
former mixer with a dual-branch parallel network architecture
to extract local and global features through the CNN and the
Transformer, respectively. Mei et al. [37] introduced a group-
aware hierarchical transformer (GAHT) to improve classifica-
tion accuracy by enforcing local—global spectral relationships
through group convolution and transformer encoder blocks.
Yu et al. [38] developed a HyperSINet by fusing Conv2Trans
and Trans2Conv in a soft-selective weighted manner to fa-
cilitate mutual complementation between local and nonlocal
HSI features. Sun et al. [39] presented a spectral-spatial fea-
ture tokenization transformer (SSFTT) by incorporating the
CNN to extract low-level spatial-spectral information, which is
weighted by a Gaussian function and effectively represented by
a transformer encoder. Roy et al. [40] proposed a morphological
transformer (morphFormer), which improves the AMs of the
ViT by employing spectral-spatial morphological convolution
to reduce the number of parameters. Although the combination
of CNN and Transformer achieves promising HSI classification
results, there are still several challenges. First, the quadratic
complexity of Transformer increases computational overhead
and storage resource requirements [41]. Second, it is essential
to improve the utilization of HSI features at smaller sampling
rates for limited HSI samples [42]. Third, itis crucial to minimize
time consumption and resource requirements during the model
training process.

To address these problems, we propose a multiscale spatial—
spectral shuffling convolution integrated with a 3-D lightweight
transformer (MSC-3DLT) for HSI classification. To improve the
utilization of HSI features with limited samples, the multiscale
spatial-spectral feature shuffling convolution (MSC) module is
designed to extract spatial-spectral features at different granu-
larities, shuffle the multiscale features across different groups,
and enhance spectral features. In addition, the 3-D lightweight
transformer (3DLT) module, based on the lightweight spatial—
spectral pooling cross-attention (LSPCA) mechanism, is pro-
posed to extract and aggregate both smooth and salient features
while reducing computational overhead. Finally, to accelerate
the model training speed, a multimetric adaptive learning rate
(MALR) scheduler is presented to dynamically adjust the learn-
ing rate according to the model state during the training process.
Overall, the proposed MSC-3DLT method effectively balances
model performance, storage resources, and computation over-
head in HSI classification. The contributions of this article are
summarized as follows.

1) We propose a 3DLT module to preserve the spatial struc-

ture in the HSI by designing an LSPCA mechanism to
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replace the self-attention mechanism, thereby reducing
quadratic complexity.

2) We design a novel MSC module to enhance feature uti-
lization by shuffling the multigranularity features, which
improves information flow and interaction.

3) A new training strategy is proposed based on the MALR
scheduler, which adaptively adjusts the learning rate by
continuously monitoring multiple feedback during the
training process.

4) Extensive experiments validate the effectiveness of the
proposed method, demonstrating state-of-the-art (SOTA)
classification performance on the HSI under small sam-
pling rates, with fewer parameters and floating point and
operations (FLOPs).

The rest of this article is organized as follows. Section II
introduces related techniques and works. Section III presents the
details of the proposed MSC-3DLT method. Extensive experi-
ments and comparisons are conducted in Section IV. Section V
discusses the limitations and future research directions. Finally,
Section VI concludes this article.

II. RELATED WORK

A. Lightweight ViT for HSI Classification

Transformer has achieved a great success in natural language
processing (NLP) tasks [43] due to its ability of capturing long-
range dependencies via self-attention mechanisms. Dosovitskiy
et al. [44] adapted it to the ViT for the first time to classify
natural images by splitting them into a sequence of tokens
and utilize self-attention to capture global spatial dependencies.
Afterward, the ViT attracts much attention from researchers in
image processing field.

Generally, Transformer includes three steps: patch embed-
ding, self-attention, and multilayer perceptron (MLP). For
HSI classification, it is first split into different tokens of
[T, T2,...,T" and concatenated with the ClassToken T for
final classification. The position information of each token is
denoted by position encoding PE, and represented as follows:

T = [Tas,T",T%,...,T"] + PE. (1)

In the second step, the input 7;, is subsequently fed to
Transformer to extract global features. As the most important
component, the self-attention mechanism effectively captures
the dependencies between spectral sequences. Supposing three
continuous matrices of W, W W@ € R (usually dj, =
d), the calculation for the three feature sequences of Key (K),
Query (Q), and Value (V) are as follows:

Q=0W1 K=CWk Vv=c,Ww". 2)

The attention weights A can be calculated as follows:

T
A = softmax (Q\/IC% > . 3)

Finally, aforementioned attention is utilized to weight the
output features as follows:

Z = AV. “
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In the third step, the weight matrix learned from the previous
step is fed into an MLP layer, which consists of two fully
connected layers and a nonlinear activation function between
them.

Generally, ViTs require intensive computation resources and
a large number of input data to mitigate the risk of overfitting,
due to their lack of inductive bias [45]. Zhu et al. [46] designed
anovel two-layer routing AM of BiFormer to save computation
and memory resources, where each query attends to a small set of
semantically relevant key—value pairs. Liu et al. [47] developed
an EfficientViT by employing cascaded group attention modules
to process different splits of the full feature set, minimizing
computational redundancy. Fang et al. [48] proposed a multiat-
tention joint convolution feature representation with lightweight
transformer for HSI classification under small sampling rates.
Zhao et al. [49] proposed a groupwise separable convolutional
ViT (GSC-ViT) to effectively capture local and global features,
offering a more lightweight solution. Zhang et al. [50] proposed
the channel lightweight multihead self-attention and position
lightweight multihead self-attention modules to reduce mem-
ory usage and computational overhead, which retains global
information for each pixel or channel. While the existing ap-
proaches reduce model size by limiting ViT blocks or avoiding
the quadratic complexity of self-attention, it remains a great
challenge to balance the classification accuracy with parameter
amounts. This article proposes a novel LSPCA module, com-
posed of spatial pooling attention (SpaPA) and spectral pool-
ing attention (SpePA), to replace the traditional self-attention
mechanism and reduce quadratic complexity. SpaPA utilizes
adaptive average and maximum pooling to aggregate smooth and
salient spatial features in different directions, while SpePA uses
adaptive average pooling for global spectral sequential features.

B. Multiscale Feature Extraction by the CNN for
HSI Classification

CNNs are highly effective in local feature discrimination.
Multiscale convolution plays a crucial role in capturing informa-
tion at different granularities by extracting features at multiple
levels, which enhances classification performance by improving
feature utilization [51]. Xiong et al. [52] proposed an approach
that adaptively focused on different spatial contexts through
various convolutions with distinct kernel sizes. Han et al. [53]
designed a dual-stream convolution network to learn spatial—
spectral features from blocks of different scales surrounding
the central pixel. Feng et al. [54] developed a multiscale CNN
architecture to improve region homogeneity. Safari et al. [55]
combined various CNNSs to learn spatial-spectral features from
multiple scales. Gong et al. [56] introduced a hybrid 2-D-3-D
CNN to fuse multiscale information, enhancing the utilization
of HSI data and addressing the problem of limited samples.
Gao et al. [29] combined different kernel sizes in a single
convolution operation to extract spatial features across multiple
scales. The capsule attention network (CAN) [64] combines
the activity vector with an attention-based feature extraction
module and a self-weighting mechanism to improve HSI clas-
sification. HybridKAN [63] incorporates 1-D, 2-D, and 3-D
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KANs to enhance HSI classification performance. Although
multiscale features enhance classification performance, the in-
teraction between them often remains insufficient. Integrating
these multiscale features effectively to improve feature repre-
sentation and efficiency has become a crucial area of research.
In this article, we introduce a shuffling technique to increase the
flow and interaction of multiscale features rather than limited
to single-scale features, which significantly outperforms the
simpler and more direct concatenation approach.

III. PROPOSED METHOD

In this article, we propose the MSC-3DLT to enhance the
accuracy and efficiency of HSI classification. The overall ar-
chitecture of our method is depicted in Fig. 1. First, PCA is
employed to reduce the dimensionality of HSI data by elimi-
nating spectral redundancy. Then, the MSC module is designed
to extract fine-grained features, improve information flow, and
enhance spectral features. Subsequently, the 3DLT is proposed
to extract smooth and salient features through the LSPCA mech-
anism, thereby strengthening the interaction between spatial and
spectral features. Finally, a softmax classifier is used to perform
HSI classification. This section focuses on the newly introduced
components of MSC, 3DLT, and MALR in our method.

A. Multiscale Spatial-Spectral Shuffling Module

In HSI classification, diverse environments often cause ob-
jects to reflect complex appearances, posing great challenges in
capturing comprehensive features. To address this issue, a novel
MSC module is proposed, with the detailed structure shown
in Fig. 2. MSC primarily comprises the multiscale 3-D feature
extraction (M3DFE) module, feature grouping and shuffling
(FGS) module, and spectral enhancement (SE) module.

The M3DFE performs multiple 3-D convolutions with various
kernel sizes, including a special 3-D point convolution with a
kernel size of 3x 1x1 to extract pixel-level spectral and spatial
features along the spectral dimension. In addition, small- and
large-scale 3-D convolutions with kernel sizes of 5x3x3 and
9x5x5 capture spatial and spectral neighborhood features, re-
spectively. These convolutions effectively capture fine-grained
spatial features, such as edges, contours, textures, and neighbor-
ing features across different spectral bands. Furthermore, the
FGS enhances the flow of multiscale spatial-spectral features.
Finally, given the importance of spectral sequence information in
HSIs, the SE module emphasizes spectral information by apply-
ing spectral weights to the fused multigranular features. Unlike
conventional multiscale feature extraction and fusion modules,
the proposed MSC not only extracts multiscale features from
each dimension but also fully integrates these multigranularity
features through shuffling and spectral weighting. This leads to
an HSI feature cube with rich multigranularity spatial features
and strong spectral continuity for subsequent feature extraction.

Specifically, suppose that I € R*"**™ is an input HSI, where
¢, m, and n denote the channel numbers, length, and width,
respectively. To eliminate channel redundancy in HSIs, we
perform channel dimension reduction using PCA. Let the HSI
after PCA dimensionality reduction be Ipcy € R”™*", where
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Fig. 1.

Overall architecture of the proposed MSC-3DLT method for HSI classification. PCA is first applied to the input HSI for dimensionality reduction, after

which the patches are fed into the MSC for multiscale feature extraction, shuffling, and enhancement by M3DFE, MFS, and SE modules, respectively. Subsequently,
the enhanced features are processed through the 3DLT, where SpaPA and SpePA focus on spatial and spectral features, respectively. Finally, Softmax is performed

for HSI classification.
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Fig. 2. Structure of the proposed MSC module, which primarily comprises
three components of M3DFE, MFS, and SE. The M3DFE extracts multiscale
spatial-spectral features with three different granularities, which are then fed
to the MFS for feature shuffling and fusion and finally enhanced in the SE via
residual connection.

[ is the reduced channel dimension. In the M3DFE module,
Ipca is divided into multiple 3-D subblocks Vpca € RP**5 and
convolved with multiscale 3-D kernels. The multiscale operation
for the jth feature cube at position (x, y, z)obtained from the
subblock Vpca on the ith layer is obtained as follows:

RP; 4
Tyz () (y)(z+7)
vp”y - Z Z wwdv(z 1Z§d + bij

HS; 1 WSi 1 RS; 1
_ hwr (erh)( +w)(z+r)
D b o b DT e
HL'L 1WL1 lRL’L 1
hwr, (z+h)(y+w)(z+7)
ZZ PIED IR i +bij
(%)

where vp, vs, and vl are the convolution features extracted under
different scales, d represents the feature cube generated in in-
termediate convolutions, H, W, and R are the three dimensions

la:yz —

of 3-D convolution kernels with suffixes P, S, and L indicating
different scales. w and b are the parameters in weight matrix
and bias, respectively. After convolution, batch normalization,
and ReLU activation function, we obtain three feature cubes of
VP c Rlxsxs, VS c Rlxsxs, and VL c Rlxsxs_

In the MFS module, the aforementioned three feature cubes
are divided into three groups of V3" € R9*5%% V" € R9*$75,
and V/ " € R9*$*s and then shuffled into feature groups to get
multiple fine-grained feature matrices Vpg € RBxDxsxs The
specific formula for FGS in MFS module is as follows:

{Vﬁl, VELVE,.., Vﬁi} = group (V)
Ve Ve Ve, Ve = 1%

S sy VS s Vg group( S)
[Vgl,vgﬂvf’, . Vgl} = group (V) (6)
Vi, = Concat (iji, v, Vfi)

Vpsr, = Concat (VPSL7 VL Vi, VPSL) (N

where g7 represents the group number. Subsequently, the 2-D
CNN is applied to refine spatial features, which enhances local
feature representation and restores the original 3-D HSI structure
for weighting spectral sequences. Specifically, the jth feature
map at position (x,y) in the ith layer of subblock Vpsy is
obtained as follows:

i1 Wi
) erh —+w
ZZ D wiiee T by ®
d h=0 w=0

where d represents the feature cube generated in intermediate
convolutions, and H and W are the two dimensions of 2-D
convolution kernel. Similarly, after convolution, normalization,
and ReL.U activation function, it will yield the output of the
MES module by the feature block V. To maintain the spectral
sequence features and enhance the feature representation ability,
the light dimension spectrum features are weighted by SE. The
weights are extracted by 3-D point convolution, and the weights
Vz; are obtained after dimension alignment, which are then
weighted by residual connection. Finally, the output Vyisc of
the MSC module is obtained as follows:

Vasc = Ve + Vp. 9)
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Structure of the proposed LSPCA module, which mainly consists of SpaPA and SpePA. (a) SpaPA submodule. It aggregates smooth and prominent spatial

features in different directions through average and maximum pooling operations, followed by interaction through matrix multiplication. (b) SpePA submodule. It
aggregates global spectral sequential features via average pooling operation and then restores the feature dimension using an auxiliary matrix. (a) SpaPA Branch.

(b) SpePA Branch.

B. 3-D Lightweight Transformer

Transformer excels at capturing long-range dependencies be-
tween tokens of text in the NLP field. However, when applied
to HSI classification, it will inevitably damage the essential
3-D structure features since HSIs are required to be split into
tokens to adapt to transformer models [57], [58]. In addition,
the high dimensionality of the HSI will result in a significant
increase in data volume. Furthermore, the HSI classification
efficiency is also reduced for the quadratic complexity generated
by multiple computations during data processing in transformer
models. It is worth noting that the detailed formula is derived in
Section II-A; when calculating self-attention, the complexity of
linear transformation for K, @, and Vis O(nd?), the complexity
of matrix multiplication in attention score QK7 is O(n?d), and
that of attention weight sum AV is O(n?d).

Arecent study demonstrates that the effectiveness of the trans-
former heavily depends on its framework structure [59], [60]. To
enable transformers to effectively capture the structural features
of HSIs and increase computational efficiency, we rethink the
intrinsic relationship between HSI data and classification meth-
ods and propose a novel 3DLT model. The advantage of 3DLT
lies in that it directly processes 3-D HSI data instead of splitting
HSIs into tokens as classical transformer methods. In addition,
the self-attention mechanism is substituted with a novel LSPCA
mixer, which makes the spatial-spectral feature extraction effi-
cient while significantly reducing the computational complexity,
and the calculation process can be formulated as follows:

V4 = LSPCA (Norm (Vysc)) + Vmsm (10)

Vir = MLP (Norm (Vi 4)) + Via (11)

where Norm(e) represents layer normalization operation,
LSPCA(e) denotes the lightweight spatial-spectral pooling
cross-attention, which will lead to a feature cube Vi, 4. MLP(e)
is the multilayer perceptron, and V1 represents the feature cube
obtained by the 3DLT module.

The proposed LSPCA mixer is the key component of the
3DLT module and comprises two branches of SpaPA and SpePA,
as shown in Fig. 3(a) and (b), respectively. For the SpaPA branch,
the smooth spatial features are aggregated by average pooling
along spatial dimensions of H and W in the HSI, which achieves
two feature cubes of V;}V‘g € R>™#**P and Ve € RI*PXs where p
denotes the scale of adaptive pooling operation. Then, the spatial
features in H and W dimensions are integrated with each other
through matrix multiplication, which yields the feature cube of
Vavg € R€*¥%%_ The formulas are as follows:

V;}‘fg = AvgPoolH (Vpmsen)
‘/a?\fg = AVgPOOlW (VMSCN)

Ve = Conv

(MatMul (V0 Vi)

avg

12)

where AvgPoolH (e) and AvgPoolW (e) are the adaptive av-
erage pooling operation in H and W dimensions, respectively.
MatMul(e) represents the matrix multiplication, and Conv(e)
denotes the convolution operation. To enhance salient spa-
tial features, maximum pooling is employed to extract high-
frequency features. Similarly, the formulas are as follows:

Vi = MaxPoolH (Visen)

max
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Vi .= MaxPoolW (Vuscn)

max

VA — Conv (MatMUI (Vn}:am VI‘:Z;X))

max

(13)

where MaxPoolH (e) and MaxPoolV (e) are adaptive maxi-
mum pooling operations in H and W dimensions. Then, the
features obtained by maximum pooling and average pooling are
fused as follows:

1/sPa — y/spa 4 V/spa

avg max*

(14)

For the SpePA branch, the smooth spectral features are aggre-
gated by average pooling along spectral dimension. Specifically,
the input feature cube is reshaped as V., € R(s**)x!x1 and
then, the feature aggregation in spectral dimension is performed
to obtain Vi, € R(5x)xxPTo maintain the feature shape, an

auxiliary feature cube Vg, € R (s%#)xPx1 jg constructed. After
matrix multiplication, we reshape the sequential spectral fea-
tures and perform convolution to obtain V*P® € R!5*5  The
formulas are as follows:

Viee = AvgPoolC' (V;.5)

avg

Ve = AvgPool_ (Vieshape)

avg

V*P¢ = Conv (reshape (MatMul (V5. Vizg))) -

avg

15)

Subsequently, the spatial and spectral features are fused in a
feature shuffling manner, and the formula is as follows:

Vier = FGS (V92 1/59¢) | (16)

Finally, softmax is adopted to perform HSI classification.
In the aforementioned calculation process, the complexity of
our method is O(nd?) that mainly comes from the MatMul(e)
operation.

C. MALR Scheduler

Generally, the performance of HSI classification based on
deep learning methods is influenced by the chosen training
strategy. As we know, it plays a vital role in reasonably schedul-
ing the learning rate throughout the training process. However,
many researchers employ the straightforward approach of a fixed
learning rate (FLR) to train models, which, while requiring
no additional parameters, has inherent limitations. The FLR
may slow the initial training phase and cause instability as the
model approaches its optimal solution in later epochs. To address
these drawbacks, researchers have adopted a linearly decreasing
learning rate (LDLR) strategy. This approach begins with a
higher learning rate to expedite early training and gradually
reduce it after a fixed number of epochs, stabilizing the model
as it approaches convergence. While this method improves upon
the FLR by adjusting the learning rate periodically, it is not
without its shortcomings. The decision to reduce the learning
rate is predetermined, independent of the model’s real-time
performance. Consequently, the static nature of the LDLR often
necessitates extensive trial-and-error experiments to identify an
appropriate interval for learning rate reduction. This inflexibility
limits its effectiveness in dynamic parameter scheduling.
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Algorithm 1: MALR Scheduler Algorithm.

Input:

Initial learning rate [r(; attenuation factor f,; patience
periodp,,; cooling down period p.; schedulers for loss and
accuracy scheduler)qss and scheduler,e.; minimum
learning rate [ry,;,; maximum change threshold7,, .

Output:

New schedulers of scheduler)ysor scheduler,e..

I: Initialization: epoch for loss changes of
Epochyoss = 0; epoch for verification accuracy
changes of Epocha.. = 0.

2: fori=1to A do

3: Obtain the validation accuracy Acc; and validation
loss Loss; for each epoch during training process.
4. if Loss; — Loss; 1 # 0&amp; Epochyess > P :

Epochy o+ =1
else Epochy o5 = 0.
5: if Acc; — Acc;_1 # 0&amp; Epochyee > P.:
Epochgyee+ =1
else Epoch,.. = 0.
6: if |lr; — lro| < Tax&amp;lr; > lrpin:
Iry = fa xIr;i
Update scheduler)yssor scheduler .
7:  Reset Epochjoss = 0 and Epochac. = 0.
8: end for

To overcome these challenges, we design a novel training
strategy, i.e., MALR scheduler. Designed to enhance the flex-
ibility and efficiency of our proposed MSC-3DLT method, the
MALR adapts the learning rate in real time, informed by feed-
back from multiple metrics during the training process. Unlike
the FLR and the LDLR, the MALR scheduler dynamically
adjusts the learning rate based on the model’s fitness at each
epoch, responding to changes in gradients and obviating the
need for manual hyperparameter tuning. The adaptive nature of
the MALR offers several advantages. By tailoring the learning
rate to the model’s performance, the MALR minimizes the
risk of overfitting and enhances generalization. This adaptive
adjustment accelerates convergence, enabling the model to reach
optimal performance in fewer epochs. In the MALR, we stipulate
that if multimetrics (loss value or validation accuracy) do not
improve in a certain epoch and exceed the cooling period, the
weight will be used to decay the learning rate. In addition, we
specify the minimum learning rate and the maximum change
threshold to control the bounds of the learning rate. The specific
algorithm of the MALR is shown in Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

A. Data Description

1) Salinas Valley (SV) was captured by the airborne AVIRIS
sensor over SV agricultural area. The image has a spatial
dimension of 512 x 217 pixels, with 204 bands available
for experiments. This dataset contains 54 129 labeled sam-
ples, encompassing 16 classes of land cover. The details
of these classes and sampling rates are shown in Table I,
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TABLE I

TRAINING, VALIDATION, AND TESTING SAMPLES IN THE SV DATASET

TABLE II

TRAINING, VALIDATION, AND TESTING SAMPLES IN THE LK DATASET

No. Land Cover Class Train  Val  Test No. Land Cover Class Train  Val  Test
1 R Brocoli green weeds 1 11 11 1987 1 N Corn 70 70 34371
| Brocoli green weeds 2 19 19 36838 2 N Cotton 17 17 8340
I | Fallow 10 10 1956 3 IR Sesame 7 7 3017
4 Fallow rough plow 7 7 1380 4 Broad-leaf soybean 127 127 62958
5 - Fallow smooth 14 14 260 5 - Narrow-leaf soybean 9 9 4133
6 Stubble 20 20 3919 6 Rice 24 24 11806
7 IR Celery 18 18 3543 7 Water 135 135 66786
s N Grapes untrained 57 57 11157 s Roads and houses 15 15 7094
o IR Soil vinyard develop 32 32 6139 9 - Mixed weed 11 11 5207
10 [ Com senesced green weeds 17 17 3244 Total 415 415 203712
11 - Lettuce romaine 4wk 6 6 1056
12 - Lettuce romaine 5wk 10 10 1907
13 - Lettuce romaine 6wk 906
14 - Lettuce romaine 7wk 6 6 1058
15 1l Vinyard untrained 37 37 719
16 0 Vinyard vertical trellis 10 10 1787

Total 279 279 51181

Fig. 4.

2)

3)

(a)

SV dataset. (a) False-color map. (b) Ground truth map.

(®)

while the ground truth map and sample distribution are
shown in Fig. 4.

WHU-Hi-LongKou (LK) was collected by the Headwall
Nano-Hyperspec sensor in 2018 over Longkou Town in
Hubei Province, China. The image is with a spatial di-
mension of 550 x 400 pixels, containing 270 bands for
experiments. It contains 204 542 labeled samples, includ-
ing nine types of land cover. The details of these types and
sampling rates are shown in Table II, while the ground
truth map and sample distribution are shown in Fig. 5.
XuZhou (XZ) was captured by the airborne HySpex hyper-
spectral camera over the suburban area of Xuzhou. The
image has 500 x 260 pixels with 436 bands available for
experiments. It contains 68 882 labeled samples and nine
types of land cover. The details of these types and sampling

Fig. 5.

(b)

LK dataset. (a) False-color map. (b) Ground truth map.

(2)

TABLE III

TRAINING, VALIDATION, AND TESTING SAMPLES IN THE XZ DATASET

No. Land Cover Class Train Val Test
1 N Bareland 1 132 132 26135
2 Lakes 21 21 3985
3 IR Coals 14 14 2755
4 Cement 27 27 5161
5 N Crops 1 66 66 13052
6 Trees 13 13 2410
7 B Bareland 2 35 35 6921
s N Crops 2 24 24 4729
o IR Red Tiles 16 16 3038

Total 348 348 68186

4)

rates are shown in Table III, while the ground truth map
and sample distribution are shown in Fig. 6.

DFC2018 Houston (HS2018) was issued by the University
of Houston and utilized in the 2018 IEEE GRSS Data
Fusion competition. The image has 601 x 2384 pixels and
contains 50 bands available for experiments. It includes
502 856 labeled samples and 20 land cover types. The
details of these types and sampling rates are shown in
Table IV, while the ground truth map and sample distri-
bution are shown in Fig. 7.
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(b)

XZ dataset. (a) False-color map. (b) Ground truth map.

Fig. 6.

TABLE IV
TRAINING, VALIDATION, AND TESTING SAMPLES IN THE HS2018 DATASET

No. Land Cover Class Train Val  Test
I | Healthy grass 98 98 9603
2 - Stressed grass 326 326 31850
3 IR Artificial turf 7 7 670
4 Evergreen trees 136 136 13323
5 - Deciduous trees 51 51 4919
6 Bare earth 46 46 4424
7 B Water 3 3 260
s Residential building 398 398 38976
9 [ Non-residential building 2238 2238 219276
10 1N Road 459 459 44948
1 Sidewalks 341 341 33347
12 - Crosswalks 16 16 1486
13 N Major thoroughfares 464 464 45420
14 Highways 99 99 9667
15 1N Railways 70 70 4797
16 BN Paved parking lots 115 115 11270
17 Unpaved parking lots 2 2 142
15 N Cars 66 66 6415
19 Trains 54 54 5261

20 Stadium seats 69 69 6686
Total 5058 5058 492740

* ol

(b)

Fig. 7. HS2018 dataset. (a) False-color map. (b) Ground truth map.

B. Evaluation Criteria and Experimental Settings

1) Evaluation Criteria: To quantitatively evaluate the perfor-
mance of our method, we employ the evaluation metrics of over-
all accuracy (OA), average accuracy (AA), Kappa coefficient
(K), and the classification accuracy of each individual land cover
type. These metrics are utilized to measure the classification
accuracy and consistency of each method, with higher values
being better performance. In addition, the metrics of parameter
numbers (Params) and FLOPs are adopted to measure model
complexity and computational overhead, with smaller values
being preferable.

2) Environment Configuration and Parameter Settings: The
proposed method is implemented using PyTorch 1.11.0 on an
Ubuntu 20.04.4 operating system, with experiments conducted
on a workstation equipped with a Platinum 8352V CPU, an
RTX 4090 (24 GB) GPU, and 90-GB RAM. In our experiments,
the Adam optimizer is utilized, batch size is set to 128, patch
size is set to 11, and training epochs are set to only 50 in
total. The initial learning rate is set to le-2 to accelerate the
training speed in early epochs. We adopt the proposed training
strategy of the MALR scheduler to accurately train our method
in later epochs. Among them, the parameters of attenuation
factor, patience level, cooling down period, maximum change
threshold, and minimum learning rate are set to 0.5, 7 (epochs), 2
(epochs), 1e-3, and le-5, respectively. To guarantee the fairness
of comparisons, we repeat each experiment ten times and then
take their mean and standard deviations as the final results.

C. Ablation Experiments

To evaluate the influence of each component in the proposed
MSC-3DLT method on classification performance, ablation ex-
periments are conducted on the SV dataset. We randomly select
0.5% samples as the training and validation sets, while the re-
maining as the test set. The classical transformer is adopted as the
baseline method to verify the two newly proposed components
of MSC and 3DLT:

1) NET-1: classical transformer method;

2) NET-2: proposed 3DLT model;

3) NET-3: MSC + 3DLT (without FGS);

4) NET-4: MSC + 3DLT (without SpaPA);

5) NET-5: MSC + 3DLT (without SpePA);

6) NET-6: MSC + 3DLT.

The details of aforementioned six network combinations and
ablation experimental results are reported in Table V. From the
HSI classification results of NET-1, it is evident that a single
transformer block leads to very poor classification performance
for few training samples.

1) Effectiveness of the 3DLT by Comparing NET-1 With
NET-2: NET-1 observes that the 3DLT greatly improves HSI
classification performance in terms of all metrics obtained by
NET-2. The reason mainly lies in that the 3DLT extracts the
essential spatial-spectral structure features from the HSI since it
directly processes 3-D HSI data without flattening operations as
classical transformers. In addition, NET-2 significantly reduces
the Params and FLOPs of the model, which uses LSPCA to
extract spatial and spectral features without destroying the 3-D
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TABLE V
DETAILS OF EACH NETWORK AND ABLATION EXPERIMENTAL RESULTS

Transformer MSC (FGS) 3DLT (SpaPA) (SpePA) OA(%) AA(%) KX100 Params(k) FLOPs(M)
NET-1 v 82244597  82.24+5.97  82.24+5.97 42264 25.24
NET-2 v v v 97.57+0.50  97.24+0.72  97.30+0.55 10.456 1.22
NET-3 v v v v 97.82+0.36  97.65£0.64  97.57+0.40 26.362 3.94
NET-4 v v v v 97.64+0.46  97.31+£0.67  97.37+0.51 26.074 3.90
NET-5 v v v v 97.77+0.47  97.35£0.59  97.52+0.52 26.074 3.88
NET-6 v v v v v 98.09+0.40  97.98+£0.57  97.88+0.45 26.362 3.94

* FGS is a component of MSC while SpaPA and SpePA are components of 3DLT
The bold value indicates the optimal value in each evaluation metric.

HSI structure. The advantage of the 3DLT is that it effectively ag-
gregates smooth features and emphasizes salient features while
reducing quadratic complexity.

2) Effectiveness of MSC by Comparing NET-2 With NET-6:
Asobserved, NET-6 increases OA, AA, and Kappa coefficient by
0.52%,0.74%, and 0.58, respectively, which is mainly attributed
to the inclusion of MSC that extracts features from original
HSI using multiscale 3-D convolution. This module effectively
captures local edges and textures and maintains spectral con-
tinuity. These multiple fine-grained features are fused, and the
spectral features are weighted to provide a richer 3-D data cube
for subsequent 3DLT feature aggregation.

3) Effectiveness of FGS by Comparing NET-3 With NET-6:
NET-3 utilizes the traditional feature concatenation method,
while NET-6 employs the proposed FGS method to enrich the
granularities of spatial and spectral features. The advantage of
FGS lies in that it can shuffle different groups of fine-grained
features by reconstructing regions with higher correlation close
to each other. This method enhances the representation of spa-
tial and spectral features by fusing the detailed differences of
local features and weights the spectral features through residual
connection to maintain the continuity of spectral features.

4) Effectiveness of SpaPA and SpePA by Comparing NET-4
and NET-5 With NET-6: 1t is noted that the former two methods
retain either SpaPA or SpePA module. By comparison, the
classification results clearly demonstrate that simultaneously
utilizing both SpaPA and SpePA further improves classification
accuracy by effectively complementing features between each
other.

On the whole, NET-6, i.e., the proposed MSC-3DLT method,
outperforms all other counterpart methods in terms of OA, AA,
and Kappa coefficient with few fluctuations of 0.40%, 0.57%,
and 0.45, respectively

D. Experimental Results and Comparative Analysis

To quantitatively and qualitatively validate the effectiveness
of the proposed MSC-3DLT method in HSI classification with
small sampling rates, we compare our method with 11 SOTA
methods of HybridSN [27], RSSAN [32], LSSCM [61], SPRN
[62], GAHT [37], SSFTT [39], MorphFormer [40], HybridKAN
[63], CAN [64], GSC-ViT[48], and DBCTNet [65] on SV, LK,
XZ, and HS2018 datasets. The optimal values are highlighted
in bold, while the suboptimal values underlined to make the
quantitative comparisons clearer.

The classification results of various methods on the SV, LK,
XZ, and HS2018 datasets, with small sampling rates of 0.5%,
0.2%, 0.5%, and 1%, respectively, are presented in Tables VI-
IX, respectively. For the SV dataset, our method outperforms
all other methods, achieving the highest classification accuracy
in terms of OA, AA, and Kappa coefficient, while also demon-
strating excellent performance in Params and FLOPs.

Specifically, HybridSN ranks second in OA, but its perfor-
mance falls short of our MSC-3DLT by only 0.14%. HybridSN
extracts spatial-spectral features and enhances spatial features
through multiple layers of 2-D and 3-D convolutions, which,
while improving classification accuracy, leads to significant
increases in Params and FLOPs. LSSCM, on the other hand,
reduces Params and FLOPs by employing deep separable con-
volution, but it focuses too much on spatial information at the
expense of spectral sequential features, resulting in a decline in
classification accuracy. RSSAN and SPRN rely on AMs to iden-
tify effective features and reduce Params, but their overemphasis
on local features leads to poor global feature extraction and, thus,
diminished classification accuracy. HybridKAN achieves the
smallest FLOPs but at the cost of classification performance. The
CAN, while offering relatively good classification accuracy, has
Params that reach 429.217Kk, far exceeding those of our method.
The proposed MSC-3DLT method, by contrast, combines 2-D
and 3-D convolutions and enhances local spatial features through
the MSC module, all while preserving spectral feature continuity
and avoiding the stacking design commonly employed in other
methods.

When compared to transformer-based methods, the proposed
MSC-3DLT shows significant improvements. It avoids the struc-
tural degradation commonly seen in other transformer methods
when HSIs are split into tokens. In addition, the self-attention
mechanism in typical transformer models not only fails to cap-
ture long-range dependencies but also contributes to an increase
in Params and FLOPs, particularly at low sampling rates due
to its quadratic complexity. For example, the GAHT method
uses group convolutions and transformer blocks to interact local
and global features, resulting in hefty 972.624k parameters. In
contrast, SSFTT and MorphFormer use fewer parameters of
148.488k and 202.8k by adopting a single transformer block
and morphology-based self-attention, respectively, but they still
struggle with performance under small sampling rates. The
GSC-ViT, with just 104.976k Params, suffers from poor classifi-
cation accuracy in these conditions. DBCTNet, which combines
3-D CNN and ConvTE branches for extracting spatial and
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TABLE VI
CLASSIFICATION ACCURACY AND MODEL COMPLEXITY OF THE CNN-BASED METHOD AND THE TRANSFORMER-BASED METHOD ON THE SV DATASET

HybridSN RSSAN LSSCM SPRN GAHT SSFTT  MorphFormer HybridKAN CAN GSC-ViT DBCTNet  MSC-3DLT
1 99.98+0.06  96.68+2.97  96.84+7.26  99.81+0.49  99.80+0.59  99.44+1.42  99.83£0.29  76.74£0.25  99.54£0.82  97.03£7.10  97.02+2.51  99.81+0.40
2 99.07+0.89  98.45+1.72  99.44+1.03  100.00£0.00 99.84+0.20  99.38+1.37  99.69+0.69  92.93+0.11  99.89+0.22  99.64+0.66  99.50+0.66  98.40+1.54
3 99.53£0.46  88.90+7.24  79.38+7.44 92.10£10.88 95.62+4.28  99.73+0.65  87.67£7.51  79.92£596  98.71x1.66 81.92+19.10 95.84+2.63  99.40+0.93
4 98.62+1.72  97.14+£3.85  98.36+1.50  98.54+1.48  99.32+0.88  98.75£0.99  97.70+£3.08  91.09+2.42  98.15+1.87  97.78+£3.38  98.71x1.25  98.91+0.65
5 95.04+2.21  94.24+5.52  95.08+3.85  95.91+2.62  95.71£3.13  97.69+1.78  93.44+£3.24  95.48+3.11  97.26£3.52  94.18+4.77  96.11+1.28  95.04+1.53
6 99.81+0.23  97.48+1.94  99.33+0.73  99.87+0.24  99.91+0.17  99.32+1.32  99.23+1.29  99.9+0.18 95.67+3.80  99.58+0.84  99.15+1.32  99.06+1.91
7 99.96+0.05  97.74+2.88  99.39+0.71  99.9440.10  99.90+0.11  99.46+0.80  99.46+0.56 ~ 90.51+£3.31  99.84x0.21  99.55£1.35  97.61+2.26  99.99+0.03
8 97.64+0.88  84.33+6.50  83.22+4.82  88.83+3.15  89.41+5.33  93.74£1.96  90.14+3.64  76.11+8.83 = 94.34+4.17  89.34+4.28  90.69+2.51  97.41+0.93
9 99.85£0.20  98.90+0.85  99.72+0.61  99.93x0.11  99.86+0.31  99.9740.06  99.33£0.64  99.62+0.24  99.98+0.05  98.90+3.14  98.88+0.75  99.65+0.46

10 95.21x1.86  90.69+5.49  89.09+5.27  93.29+3.16  95.59+1.73  95.9342.33  93.93+4.08  78.18+£5.54  96.45+2.35  93.97+£3.57  93.82+0.91  95.54+1.64
11 98.21+1.49  85.14+10.84 41.38+32.82 92.93+7.36  93.26+5.43  96.05+4.66  94.89+3.20  57.66+0.66 ~ 97.92+2.05 90.33+12.40 90.15+11.14  98.75+2.13
12 98.90+2.03  97.83%3.07  95.23+9.04  99.98+0.02  98.80+2.81  98.49+2.99  97.69+4.47  75.04+£6.31 91.54£3.88  97.23£5.08  99.59+0.54  99.30+0.60
13 89.8349.24  97.4843.95 93224575  98.57£1.01  97.36+4.53  95.14+£6.67  97.36+£5.00  77.35+2.24  78.48+14.92 98.18+3.69  92.19+7.41  92.64+6.38
14 96.94+1.92  96.20+3.42  96.57+3.22  98.42+1.06  99.37+0.85 96.47+2.64  97.83+1.63  93.58+3.65  93.11+4.89  96.90+£2.81  98.09+1.02  97.36+2.52
15 96.13£2.22  78.02+11.67 77.80+11.78 92.25+1.89  88.35+4.77  91.17#2.78  90.26+£5.02  65.47+522  96.05+2.97  86.76+6.54  79.95+£5.66  97.74+0.67
16 98.62+0.25  93.92+2.60  89.42+6.84  97.34x1.75  97.01£2.29  98.07+0.92  96.00£3.14  97.89£2.91  99.04+£0.82  96.12£2.98  94.88+3.86  98.65+0.33
OA%  97.95+0.46  91.08+1.52  89.69+2.31  95.39+0.82  95.19£0.72  96.61+0.43  94.84+0.53  82.78+5.05  96.62+1.01 = 93.80+0.72  93.57=0.60  98.09+0.40
AA%  97.71x0.64  93.32+1.08  89.59+£2.78  96.73+1.05  96.82+0.71 =~ 97.43+0.66  95.90+0.59  83.61x7.11  96.00+1.03  94.84+1.47  95.14+0.83  97.98+0.57
Kx100  97.72+0.51  90.07¢1.69  88.50+2.59  94.87+0.91  94.65+0.80  96.224+0.48  94.25+0.59  80.84+5.67  96.24x1.12  93.10£0.80  92.84+0.67  97.88+0.45
Params/K  5122.176 108.432 12.64 183.348 972.624 148.488 202.8 134.512 429.217 104.976 30.888 26.362
FLOPs/M 247.68 23.53 1.49 9.04 47.61 11.40 36.39 0.316 1.488 6.62 11.9 3.94

The bold value indicates the optimal value while the underlined value for the suboptimal value in each evaluation metric.

TABLE VII
CLASSIFICATION ACCURACY AND MODEL COMPLEXITY OF THE CNN-BASED METHOD AND THE TRANSFORMER-BASED METHOD ON THE LK DATASET

NO. HybridSN RSSAN LSSCM SPRN GAHT SSFTT MorphFormer HybridKAN CAN GSC-ViT DBCTNet  MSC-3DLT
1 99.73+0.17  99.43+0.43  99.28+0.72  99.73+0.37  99.43£0.44  99.77+0.22  99.51+0.26 ~ 93.25+1.28  99.24+0.10  99.48+0.67  99.67+0.18  99.63+0.13
2 97.09+1.90  88.92+4.71  91.79+6.21  90.69+7.71  94.94+£3.92  97.34+3.10  97.22+1.67 52.65+21.62 88.40+3.58  93.65+5.76  93.26+6.6  97.65+1.51
3 99.08+0.37  89.35+5.68  83.02+12.35 90.31+3.98  92.86+4.87  93.96+2.29  90.64+6.36  57.1+29.21  79.19+£3.14  93.74+3.50  99.44+0.78  98.71+0.52
4 98.12+0.45  98.28+0.74  98.95+0.76  98.87+0.54  98.44+£0.37  98.02+0.72  99.06£0.47  90.05+£5.21  98.60+0.53  99.05+0.52  99.20+0.34  98.48+0.44
5 91.43+4.06  81.62+7.00  62.69+26.29  90.05+4.21  92.56+3.96  94.35+£3.05  87.10£5.44  85.62+4.05 65.60+11.43  87.11+6.30  86.56+9.97  95.00+3.01
6 99.21+0.67  97.92+1.94  97.59+2.00  99.16+1.16  97.16+4.20  99.45£0.52  97.26£1.93  96.05£2.81  99.29+0.68  98.56+1.35  99.75+0.20  99.46+0.39
7 99.49+0.30  99.76+0.37  99.95+0.05  99.88+0.06  99.33+0.67  99.83£0.15  99.92+0.08  99.42£0.39  99.96+0.03  99.80+0.26  99.94+0.07  99.66%0.10
8 92.56+2.37  91.94£3.02  91.34+4.13  92.39+6.05  89.09+£7.92  94.10£2.16  90.14+4.26  85.35+6.33  94.10£2.43  90.51+£5.75  91.77+3.63  94.34+2.26

-3

81.53+3.35  81.22+8.82 46.66+17.86 88.10+5.34  81.54+4.80  89.62+4.63  87.21%6.29  73.41+8.56  90.32+2.60  82.08+5.53  80.65+9.23  80.95+3.62
OA% 98.13+0.38  97.43+0.38  96.39+0.91  98.22+0.31  97.72+0.44  96.61+0.43  94.84+0.53  90.95+1.36  97.45£0.16  98.07+0.40  98.11+0.59  98.42+0.18
AA% 95.36+0.90  92.05+1.42  85.70+4.78  94.35+1.22  93.93£1.02  97.43£0.66  95.90+0.59  74.6+5.15 90.52+1.38  93.78+1.06  94.47+1.85  95.99+0.61
Kx100  97.54£0.50  96.62£0.49  95.23+1.20 97.66+0.41  97.01=0.57  96.22+0.48  94.25+0.59  88.08+6.24  96.64+0.21  97.46+0.52  97.53+0.77  97.93+0.24

Params/K  5122.176 108.432 13.24 183.348 972.624 148.488 202.8 132.489 487.001 104.976 40.265 26.187

FLOPs/M 247.68 28.21 1.62 9.16 74.15 11.40 48.21 0.316 2.016 10.25 15.84 3.94

The bold value indicates the optimal value while the underlined value for the suboptimal value in each evaluation metric.

TABLE VIII
CLASSIFICATION ACCURACY AND MODEL COMPLEXITY OF THE CNN-BASED METHOD AND THE TRANSFORMER-BASED METHOD ON THE XZ DATASET

NO. HybridSN RSSAN LSSCM SPRN GAHT SSFTT ~ MorphFormer HybridKAN CAN GSC-ViT ~ DBCTNet MSC-3DLT
1 96.50+1.54  96.84+0.82  96.27+0.81  97.57+0.39  97.38£0.61  96.95£0.90  97.62+0.89  92.44+1.89  98.16£0.76  97.71+0.84  97.90+0.44  97.92:0.67
76.05£38.16  95.70+2.51  98.72+0.56  98.95:0.31  99.11+0.35 97.74+1.81  97.66x2.22  90.52+3.70  98.62£0.31  97.70£1.55  98.86x0.25  99.05:0.43
48.72+41.71 81.77£9.95  83.88£9.26  80.52+5.75  78.69+6.28  86.36£9.53  90.64%6.91  60.8+8.65 86.73:10.20 89.30+6.74  81.59+6.20  83.06:5.89
71.87431.44  92.67+4.39  86.94+4.67  95.95:1.68  9530+1.63  95.94+1.95  93.79+4.24 76.46+12.14 93.71£2.81  9431+3.59  96.23+1.10  95.43+1.38
04.14+5.62  97.04+1.62  96.94+1.48  98.17+1.01  98.23+0.58  98.04=0.90  97.46+134  89.26+2.21  96.72+1.64 98.01+0.88  98.01+0.54  98.06+0.58
54.54439.47  86.0745.52 77.2510.72 98.87+1.59  98.45:2.44  96.09+2.14  91.86:6.23  86.61+5.65  95.83+2.88  93.40+£3.42  97.53+2.34  98.91x0.70
96.53£3.12  96.3542.13  97.78+1.38  98.02+0.92  98.03+1.15  97.92+0.82  97.46+0.86  84.8+3.36  97.39£1.31  97.57+1.56  96.92+1.33  97.71+1.22
68.81434.96  96.95£1.94  98.12£1.40  99.25:0.84  99.51+0.43  98.21+0.98 98.74+1.22  74.56x5.21  99.01£0.60  98.29+0.93  99.03+1.35  99.04:1.44
9 53.67+4121 96.3242.07  93.60+5.00  98.54:0.93  98.95:0.82  98.45+2.08  93.98+3.57 88.94+11.62 97.98+1.06 98.05+0.88  98.38+1.44  98.331.13
OA%  85.75+12.44 95.44+0.86  94.83+0.53  97.20£0.43  97.05:0.36  96.92+0.58  96.72+0.98  86.54+4.87  97.00£0.12  97.06£0.37  97.18+0.25  97.33+0.33
AA%  73.43423.82  93.30+1.67  92.17+1.14  96.20£0.72  95.96:0.77  96.19+1.09  95.47+1.58  81.45:5.78  96.02£0.53  96.04£0.47  96.05:0.77  96.39+0.60
Kx100 81.66:16.20 94.22+£1.09  93.43:0.67 96.45:0.54  96.26:0.45 96.10£0.73  95.83:1.24 82.89+6.14 96.19£0.16 96.27+0.46  96.42+0.32  96.62:0.42
Params/K  5121.273 211.823 15.90 190.992 966.281 148.033 387.945 132.489 564.185 163.913 64.169 20.241
FLOPS/M  247.68 40.04 1.94 9.46 47.33 11.40 77.93 0.316 2.726 10.42 25.72 3.12

0 9 o U B W N

The bold value indicates the optimal value while the underlined value for the suboptimal value in each evaluation metric.
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TABLE IX
CLASSIFICATION ACCURACY AND MODEL COMPLEXITY OF THE CNN-BASED METHOD AND THE TRANSFORMER-BASED METHOD ON THE HS2018 DATASET

HybridSN RSSAN LSSCM SPRN GAHT SSFTT MorphFormer ~ HybridKAN CAN GSC-ViT ~ DBCTNet MSC-3DLT

1 67.15£7.05  72.68+13.00 80.49+7.50  77.82+6.48  82.29+£2.23  73.49+5.41 82.04+6.31 58.66+6.16 71.91£6.98  77.45£7.50 95.05+0.25 78.16+4.98

2 89.55+1.31  87.01£6.18  90.58+3.04  92.01£5.02  94.11x0.93  94.46+0.95 92.46+2.89 85.31+4.51 92.02+£1.69  94.90£1.56 99.85+1.02 89.75+2.56

3 50.03+37.05 69.21+17.13 80.80£16.53 99.31+0.78  95.67+3.85 98.1243.47  88.16+6.93 24242412 95.64+4.00  97.28+2.95  89.05+£0.56  96.85+6.80

4 82.57+2.71  89.99+£3.40 94.48+0.81 93.21£2.58 94.94£1.62 94.79+2.32 95.14+1.27 74.05£12.88  92.85+1.53  93.67+1.74 66.17+6.31 93.354+2.04

5 55.27£10.98 42.99+8.19  63.73+5.34  69.46+11.69 80.82+£5.19  84.13+2.00  71.73+1.05 44241776 85.04+2.71 77.71£2.74  95.28+2.11 86.70+3.01

6 94.16+£3.53  61.58+12.31 89.23£3.79  90.43+7.12  94.78+2.89  96.71£1.65 93.25+5.05 81.41£19.44  95.86+2.62  92.73+7.40 99.59+1.57 98.474+2.29

7 15.7743.03  61.76+19.32 78.70+17.29 74.94+17.52 59.92+13.08 72.85+20.93 22.44+15.51 7.48+9.43 82.67+15.17 89.85+11.14 80.53+4.97 88.73+11.71

8 94.3142.52  72.08+5.17  83.28+£2.68  85.90+4.11  89.70+1.84  91.75+0.45 90.03+0.68 89.40+3.51 90.37£1.60  89.48+2.63 97.84+0.31 94.88+1.94

9 98.04+0.64  91.23x2.01 9536+1.03 97.11=0.80  97.32+0.57 97.49+0.62  97.25+0.52 97.66+0.78 97.09+0.64  97.13+0.48 76.05+3.96 97.43+0.46

10 73.42+5.63  50.82+7.14  61.93+4.80  66.36+5.13  75.93£2.41  76.47+1.61 69.57+3.99 69.68+3.36 72.52+2.71 73.91+2.23  59.35£9.11 78.22+2.92

11 60.65+2.93  37.95£2.97 51.77+2.48  62.00£2.79  63.91£2.95 69.10+1.74  61.93+3.19 48.86+7.41 66.78+3.71 66.94+2.86 18.17+6.33  66.38+4.21

12 5.65+4.67 1.97+0.45 4.06+£1.38  15.36+5.16  13.45+£3.70  15.07+5.40 4.87+3.63 3.98+3.23 13.5542.30  11.52+1.75  82.68+2.09 20.16+3.98

13 88.26+3.03  60.17+3.73  73.44+£3.78  83.00+7.50  85.04+0.77  85.40+2.97  87.16+3.26 84.06+3.56 84.36+2.20  86.13+3.38 75.08+3.68 88.11+1.88

14 92.40+3.51  63.62+4.80  83.22+£3.69  85.23+2.81 91.76+2.08  86.98+3.03 88.73+5.09 85.99+7.43 86.89+5.42  93.73x1.34 93.67£5.99 92.17+2.43

15 95.43+4.54  82.04+4.41 94.74+2.82  98.34+0.87 98.19+1.91  99.22+0.19  96.76+1.48 89.91+8.57 98.99+0.83  98.41+1.06 88.49+4.33  97.99+0.77

16 87.5143.36  46.90+9.66  86.31+4.65 86.16+0.41  92.88+1.62 92.35+2.32  91.4043.18 87.58+3.33 92.65+1.54  91.59+1.94 69.76+5.22 93.45+1.68

17 32.39+32.57 43.94+£17.40 57.18+£23.94 96.71+4.65 68.73+15.75 80.14+8.68  16.62+14.12  16.47=15.97  65.50£21.92 64.93+32.43 65.23+5.16 77.54+18.59

18 87.38+5.90  21.20£6.55 60.77+11.51 82.66+1.80 86.01+4.27  86.19+2.35 86.38+4.14 79.03£19.53  81.70+4.95  88.16+7.84 94.02+3.55 87.63+2.50

19 87.76+5.03 51.28+12.47 87.64+4.40  76.19+48.93  94.75£2.15 91.77+2.76  94.14+2.38 79.85£12.99  90.03£2.70  96.60+3.60 90.66+2.84 91.67+3.50

20 98.63+£0.78  71.45+8.04  93.58+2.49  97.30+0.58  96.67+1.83  97.79+0.88 94.9143.89 93.22+6.94 98.29+1.45  96.53£2.48 95.01+2.13  98.96+0.91

OA% 89.04+1.56  74.60+0.99  84.11+0.42  87.50+0.57  89.99+0.26  90.47+0.24  89.04+0.13 85.56+3.11 89.25+0.33  89.95+0.19 87.04+2.14 90.86+0.30

AA% 72.82+4.86  58.99£3.13  75.57+3.73  81.48+1.80 82.84+1.53  84.21x1.01 76.25+1.05 65.05+7.85 82.74+1.95  83.93+2.12 80.87+3.56 85.83+1.36

Kx100  85.70£2.03  66.70+1.08  79.26+0.55 83.65:£0.73  86.95+0.32  87.58+0.30  85.71%0.16 81.14+4.02 86.01+0.41 86.91+0.26 83.25+3.99 88.13+0.37
Params/K  5122.69 54.63 10.44 178.17 745.81 148.75 79.21 134.512 345.877 79.12 8.775 54.8
FLOPs/M 247.68 12.65 1.2 8.76 36.49 11.4 8.81 0.316 0.733 5.00 2.5871 7.74

The bold value indicates the optimal value while the underlined value for the suboptimal value in each evaluation metric.

spectral features, optimizes Params and FLOPs using convo-
lutional spectral projection and multihead self-attention. The
proposed MSC-3DLT, however, processes the 3-D structure
of HSI data to maintain feature integrity, effectively reducing
Params and FLOPs through the LSPCA mechanism, and excels
in classification at small sampling rates. Overall, the proposed
MSC-3DLT method achieves highly competitive performance
on the SV dataset, considering both low spatial and spectral
resolutions.

On the LK dataset, with a sampling rate of 0.2%, the high
spatial resolution of 0.436 m allows CNN-based methods, such
as HybridSN, RSSAN, LSSCM, and SPRN, to achieve OA
values around 98%, thanks to their focus on spatial features.
As the number of samples and spatial resolutions increase,
transformer-based methods improve the classification perfor-
mance. For example, GSC-ViT and DBCTNet achieve about
98% OA while maintaining relatively low Params of 104.976k
and 40.265k, respectively. The proposed MSC-3DLT method,
however, takes the lead in OA and Kappa, while also performing
well in terms of Params and FLOPs.

For the XZ dataset, which contains 436 spectral channels,
the challenge of feature extraction is exacerbated by spectral
redundancies, increasing both Params and FLOPs. While Hy-
bridSN performs well on datasets with fewer spectral channels,
it suffers from overfitting on the XZ dataset due to the large
number of parameters. Transformer-based methods, however,
excel in capturing sequential spectral information and, thus,
achieve higher classification accuracy.

The HS2018 dataset presents great complexity due to
its large number of material categories and the extremely
uneven distribution of sample numbers. As a result, many

methods struggle to achieve high classification accuracy for
individual material categories. HybridKAN and LSSCM, while
maintaining low FLOPs, demonstrate poor performance in
terms of classification accuracy. DBCTNet benefits from its
smaller number of channels, allowing it to achieve relatively
favorable parameter amounts. The proposed MSC-3DLT
method, however, achieves the highest classification accuracy
in OA, AA, and Kappa and strikes a better balance between
Params and FLOPs on this challenging dataset.

To qualitatively evaluate the classification performance of
the proposed MSC-3DLT method, we conducted experimen-
tal comparisons with 11 SOTA methods. The complete visual
classification results are shown in Figs. 8-11 on the SV, LK,
XZ, and HS2018 datasets, respectively. By comparing similar
land cover categories, our method produces classification maps
that are closest to the ground truth land cover in terms of
edges, boundaries, and noise distribution. In relatively simple
regions with numerous samples, such as “Grapes untrained” and
“Vineyard untrained” in the SV dataset, the CNN-based methods
of RSSAN, LSSCM, and SPRN exhibit varying degrees of salt-
and-pepper noises, with LSSCM showing the most severe noise.
HybridSN performs well on the SV, LK, and HS2018 datasets
by integrating multilayer convolutions for feature extraction.
However, it exhibits overfitting on datasets with more spectral
channels, such as XZ, leading to classification errors in large
regions. HybridKAN produces significant classification errors
across multiple datasets with small sampling rates. The CAN
achieves relatively accurate classification results by combining
CNNs and capsule networks, but the visual results are overly
smooth in some land cover categories, resulting in the loss of
details and misclassified boundaries. The methods of GATH,
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Fig. 8. Classification maps of different methods on the SV dataset. (a) HybridSN. (b) RSSAN. (c) LSSCM. (d) SPRN. (e¢) GAHT. (f) SSFTT. (g) MorphFormer.
(h) HybridKAN. (i) CAN. (j) GSC-ViT. (k) DBCTNeT. (1) MSC-3DLT.

0 i ®

Fig. 9. Classification maps of different methods on the LK dataset. (a) HybridSN. (b) RSSAN. (c) LSSCM. (d) SPRN. (e) GAHT. (f) SSFTT. (g) MorphFormer.
(h) HybridKAN. (i) CAN. (j) GSC-ViT. (k) DBCTNeT. (1) MSC-3DLT.
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(2)

Fig. 10.
(h) HybridKAN. (i) CAN. (j) GSC-ViT. (k) DBCTNeT. (1) MSC-3DLT.

SSFTT, MorphFormer, GSC-ViT, and DBCTNet achieve bet-
ter visual classification results with minimum block noise by
combining CNN and Transformer to simultaneously extract
local spatial features and global spectral features.

Overall, the proposed MSC-3DLT method demonstrates com-
petitive HSI classification performance across all four datasets.
It achieves high classification accuracy at small sampling rates
while requiring little computational resources, effectively han-
dling complex scenarios and further verifying the robustness of
our method.

E. Influence of Training Sample Size

To assess the generalization ability of the proposed MSC-
3DLT method, we conduct a series of experiments across var-
ious sampling rates, with comparisons made to CNN- and
transformer-based methods. For the SV and XZ datasets, the
sampling rates of 0.1%, 0.3%, 0.5%, 0.7%, and 1% are adopted,
while 0.05%, 0.1%, 0.2%, 0.5%, and 0.7% for LK dataset. The
HSI classification results, as displayed in Fig. 12, reveal that
our method performs well regardless of whether the sampling
rate increases. Specifically, the OA of the MSC-3DLT con-
sistently improves with higher sampling rates, indicating that
the model demonstrates strong generalization ability. Notably,
even at extreme sampling rates (e.g., there are as few as two
training samples for categories such as “Lettuce romaine 4wk”
and “Lettuce romaine 6wk™ at a 1%o sampling rate in the SV

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

Classification maps of different methods on the XZ dataset. (a) HybridSN. (b) RSSAN. (c) LSSCM. (d) SPRN. (¢) GAHT. (f) SSFTT. (g) MorphFormer.

dataset), our MSC-3DLT method maintains high classification
accuracy. This underscores the model’s capacity to effectively
leverage HSI data by jointly extracting spatial-spectral features,
even with limited training samples. However, for the LK and
XZ datasets, at sampling rates of 0.05% and 0.1%, the OA of
the proposed MSC-3DLT is slightly lower than that of SPRN.
This is largely due to SPRN’s ability to capture detailed spatial
features, utilizing its powerful local contextual modeling via
convolution and attention, particularly in datasets with high
spatial resolution.

Overall, the proposed MSC-3DLT method consistently deliv-
ers high classification performance in terms of OA across a wide
range of sampling rates in all datasets.

F. Analysis on Learning Rate and Epochs

To verify the efficacy of the proposed MALR scheduler, we
conduct experiments by comparing it with FLR and LDLR
schedulers over multiple epochs. The initial learning rate for
all three schedulers is set to 1e-2. The attenuation period for the
LDLR scheduler is set to one-tenth of the maximum epochs with
an attenuation factor of 0.5 [34], [37]. The overall classification
accuracies, as depicted in Fig. 13, show that the proposed MALR
consistently achieves the highest accuracy across all training
epochs. This success is primarily attributed to the adaptive
adjustment of the learning rate, which is based on the model
fitness degree. In comparison, the FLR performs betters than the
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Fig. 11. Classification maps of different methods on the HS2018 dataset. (a) HybridSN. (b) RSSAN. (c) LSSCM. (d) SPRN. (e) GAHT. (f) SSFTT.
(g) MorphFormer. (h) HybridKAN. (i) CAN. (j) GSC-ViT. (k) DBCTNeT. (1) MSC-3DLT.

+ MSC-3DLT .. GSC-VIiT HybridKAN SSFTT SPRN . RSSAN + MSC-3DLT .. GSC-ViT HybridKAN SSFTT SPRN ¢ RSSAN + MSC-3DLT . GSC-ViT HybridKAN SSFTT SPRN . RSSAN
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Fig. 12. Influence of different training sample rates in HybridSN, RSSAN, LSSCM, SPRN, GAHT, SSFTT, MorphFormer, HybridKAN, CAN, GSC-ViT,
DBCTNet, and MSC-3DLT methods on classification accuracy. (a) SV dataset. (b) LK dataset. (c) XZ dataset.
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SV dataset. (b) LK dataset. (c) XZ dataset.

LDLR in the early epochs, as a larger learning rate is required for
rapid model fitting during the initial training stages. The LDLR,
on the other hand, decays the learning rate too quickly during
the early phases. However, as the training progresses, the OA of
the LDLR increases rapidly and eventually surpasses that of the
FLR. This is because the increased number of epochs allows the
LDLR and the FLR to sufficiently refine the model. Ultimately,
during later stages of training, a more finely tuned learning rate
is needed to optimize model fitting. The FLR, with its constant
learning rate, tends to cause the model to oscillate around the
optimal solution, whereas the MALR maintains an appropriate
value throughout, accelerating model fitting in the early stages
and adjusting the rate in later stages to guide the model toward
its optimal solution.

In addition, we explored the impact of different initial learning
rates and training epochs on the performance of the MALR. As
shown in Fig. 14, the OA of our MSC-3DLT achieves high clas-
sification accuracy as early as 30 epochs and reaches the optimal
solution by the 50th epoch. In contrast, most methods require
100 or more epochs to achieve similar results. This advantage
is primarily due to the adaptive nature of the MALR strategy,
which adjusts the learning rate based on real-time assessments of
model fitting across multiple metrics. The ability of the MALR to
make subtle adjustments to a few parameters allows the method
to converge to the optimal solution quickly, thereby reducing
the required training time and enhancing overall classification
performance.

(b)

(©)

Influence of different initial learning rates and training epochs on classification accuracy. (a) SV dataset. (b) LK dataset. (c) XZ dataset.

@ FLr [ LDLR [ MALR @ rLr [ LOLR [ MALR
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©

Effects of different learning rate schedulers of FLR, LDLR, and MALR under different epochs to OA classification accuracy on three HSI datasets. (a)

V. DISCUSSION

The aforementioned experiments verify the effectiveness of
the proposed MSC-3DLT in maintaining a lightweight char-
acteristic and achieving higher classification accuracy at low
sampling rates. It is primarily attributed to the MSC and 3DLT
modules. The MSC module utilizes the multiscale convolution
and channel shuffling to fully extract multigranular features and
enhance feature interaction and fusion. The 3DLT module em-
ploys an improved LSPCA to replace traditional self-attention,
extracting more detailed spatial-spectral features and reducing
model complexity. Experiments demonstrate that the proposed
MSC-3DLT achieves mean improvements in OA, AA, and
Kappa of 2.20, 2.42, and 2.63, respectively, when compared
to SOTA methods on the four HSI datasets of SV, LK, XZ, and
HS2018.

However, although the proposed MSC-3DLT effectively pre-
serves the inherent characteristics of HSI and improves data
utilization, it still has several limitations. Some ground object
features are difficult to effectively extract at low sampling rates
due to sample imbalance or noise interference. For example,
“Lettuce romaine 6wk” in the SV dataset, “Coals” in the XZ
dataset, “Water” and “Unpaved parking lots” in the HS2018
dataset, etc., all have very few samples, making it challenging
for the model to accurately learn and generalize these features.
Moreover, “Mixed weed” in the LK dataset and “Cross walks”
in the HS2018 dataset are highly susceptible to noise interfer-
ence, resulting in feature confusion and difficulty in effective
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distinction. The classification accuracy of these ground objects
in the aforementioned two cases is significantly lower than other
ground object categories. In the future, the model-based priors
may be incorporated into models to better capture the intrinsic
characteristics of HSI data and improve the classification per-
formance of our methods.

VI. CONCLUSION

In this article, a novel MSC-3DLT method has been proposed
for accurate and efficient HSI classification. Throughout the
feature extraction process, the 3-D structure of HSI data is
consistently maintained. In the early stages, the MSC module
constructs feature pyramids and residual connections, enhanc-
ing the interaction between spatial and spectral features while
maintaining spectral continuity by shuffling features belonging
to different groups. In the later stages, the 3DLT module fuses
spatial and spectral features from different dimensions, ensuring
that the proposed MSC-3DLT method effectively deals with
the inherent 3-D information, thereby greatly improving the
utilization of the intrinsic characteristics of HSI cubic data.
In addition, an adaptive learning rate has been proposed by
monitoring multiple metrics during the model training pro-
cess, substantially accelerating the training speed. The proposed
method achieves better classification performance under limited
training samples by comprehensively considering data, models,
and training strategies.
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