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ABSTRACT In the constantly growing need for sustainable mobility and transportation, on-site inspections
of existing reinforced concrete (RC) bridges are critical in ensuring the safety of such infrastructures.
However, surveying RC bridges presents several challenges, such as the high costs and effort required by
the surveyors, the subjectivity in assessing identified defects, and the possible lapses of attention when
inspections are systematically repeated on different bridges. Hence, traditional methods of on-site inspection
can be enhanced by leveraging digital innovations and by developing new instruments that support road
management companies in ensuring the safety of the existing infrastructure. Among the new technologies,
deep learning-based object detection systems provide promising and effective solutions. As such, this
research proposes a new, simple, intuitive and efficient tool to support engineers and surveyors in assessing
the health state of existing RC bridges. To this end, domain experts gathered and labelled a dataset of
real images containing typical defects found in existing RC bridges. Consequently, an improved version
of YOLO11, embedding attention mechanisms to allow the network to focus on the most relevant details in
each image, was trained, tested, and validated on the provided dataset, showing an overall improvement
of quantitative metrics such as precision and recall, while retaining enough computational efficiency to
allow real-time implementation on constrained devices. Visual explanations achieved via the Eigen-CAM
algorithm were also exploited to evaluate the reliability of the predictions. The model was finally embedded
in an end-to-end tool offering a graphical user interface (GUI) to allow an effective interaction between the
domain expert and the machine. Overall, the proposal revealed its potential to improve the effectiveness of
the survey, lowering the burden on surveyors and engineers and providing a reliable method to improve the
overall security in large RC bridges portfolios.

INDEX TERMS Existing bridges, surface defects, deep-learning, object detection, practice-oriented tool.

I. INTRODUCTION

The study of the risks to which existing infrastructures
are daily subjected has not always attracted the attention
of public institutions, which for years ignored the real
capacity of the built stock to face different sources of hazard.
Nevertheless, this uncompromising approach was disproved
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by the occurrence of several disasters, bringing losses that
are sometimes even priceless. The matter becomes more
complex for bridges and viaducts, where the losses related
to hazardous events can exponentially grow, especially when
looking at the crucial role that each bridge covers within
a given road network. Taking as reference Italy, several
bridge collapsed for different sources of hazard, such as the
Polcevera Bridge for absence of manutention [1]; the Albiano
Magra Bridge for slow kinematic motions [2]; the bridge
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on the Tronto River as a consequence of the Central Italy
Earthquake, 2016 [3]. When talking about risks for existing
bridges, it is not possible to only refer to a specific hazard.
A combination of risk sources shall be considered (e.g.,
seismic actions, floods, geological and geotechnical motions,
and natural decay of structural materials). Therefore, it is
clear that the safety of existing bridges should be investigated
as a multi-risk problem, and specific protocols are essential
for driving road management companies to elaborate reliable
risk mitigation plans. With this goal in mind, the Italian
Ministry of Transportation, supported by the scientific
community, drafted new guidelines for the management and
evaluation of the safety of existing bridges [4]. The recently
introduced prescriptions deal with the definition of a specific
framework to apply to the entire national stock of existing
bridges, emphasizing the often-neglected monitoring and
maintenance phases. The proposed approach is articulated
by six consecutive assessment levels, each characterized by
different degrees of accuracy and analytical complexity. The
first three levels (Levels 0, 1, and 2) were developed to
carry out a preliminary screening of all the bridges assigned
to each management company and to elaborate a first risk
prioritization plan. The remaining levels (Levels 3, 4, and
5) drive the actions to take on critical bridges subjected to
significant risk, as identified in the prior phases. Within the
initial trio of levels, the most consistent phase regards Level 1,
which consists of performing on-site surveys of bridges to (a)
derive an overall score reflecting the health state of the bridge
through a detailed visual inspection of all structural elements
(e.g., decks, girders, piers, bearing devices, abutments); (b)
assess potential interference from different risk sources, such
as traffic, floods, landslides, and earthquakes. According to
the outcomes of this phase, Level 2 can be employed for
assigning a bridge-specific “risk class” encompassing all
aforementioned risk sources. For the sake of completeness,
the guidelines [4] prescribe five levels of risk classes, ranging
from low to high, and assigned according to a predefined
logical operators scheme. For bridges identified with high-
risk classes, further investigations (according to Levels 3,
4, and 5) should be performed to evaluate, for specific
limit-states, the actions to undertake to ensure the safety of
the bridge and the overall road network (e.g., sensor-based
structural monitoring, retrofitting).

For the scope of this paper, the main interest is to char-
acterize the activities related to Level 1, where, in general,
a team of trained surveyors is deployed to perform on-site
inspections to record defects according to a specific form
(i.e., by assigning to each defect scores about intensity and
extent), and to take photographs to support defect detection
and for tracking their temporal evolution. Although the most
direct and expedient method for detecting defects on existing
bridges is the on-site visual inspection, several issues arise
and can influence the reliability of the final evaluation.
One primary issue regards the subjective interpretation of
defects by surveyors that, despite the initial training, can be
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influenced by human factors, such as lapses in attention and
mental weariness (especially when the number of bridges to
inspect increases). Such human factors can lead to biased
scores attributed to detected defects, ultimately varying the
overall vulnerability estimate. In addition, external factors
can also introduce uncertainties to the score to be assigned
to each defect, such as weather conditions, lighting, and
distance between the surveyor and the inspected element.
Furthermore, it is worth considering the real inaccessibility of
some parts of the inspected bridges, such as bearing supports,
which may not have been inspected several times and, in this
case, without an assigned score. Ultimately, the elevated time
required to perform an accurate visual inspection (and to
record all defects) and the related high costs should not be
neglected.

The problems mentioned above, first-hand experienced
by the authors of this article during on-site inspections of
existing bridges, demonstrate the imperative need to develop
new tools to assist and support surveyors in this crucial
phase [5]. To this end, the recent advances in computer vision
technologies can be exploited by leveraging the possible
benefits of automated defect recognition and detection
in this field. This paper aims to provide a tool, named
BRIDE-YOLO (acronym of BRIdge DEfects detection via
YOLO), to deal with the above necessities. The tool aims to
automatically recognize and detect typical defects in existing
reinforced concrete (RC) bridges by only exploiting the
information content of images taken from real structures.
The choice of a deep-learning-based model is motivated by
two fundamental advantages provided by these architectures
in the specific application of object detection. First, deep-
learning-based models can exploit the representation learning
paradigm [6], using the capabilities of deep neural networks
to automatically extract embedding to represent relevant
and complex characteristics in heterogeneous images, over-
coming the traditional limitations of identifying features
invariant to phenomena such as occlusions, lighting vari-
ations, or changes in pose and angle of view. Second,
deep learning models for object detection are not subjected
to the constraints posed by classic cascade detectors [7],
specifically, the requirement to provide predefined templates
to match the structure of the objects to be identified within the
image. These advantages pose an obvious trade-off, as deep
neural networks are composed of many parameters that
should be properly trained and, therefore, require adequate
datasets and computational capacity to provide meaningful
performance. This trade-off must be, therefore, addressed
when selecting those tools, as described in Section III.

With this regard, it is worth mentioning some attempts
that authors experienced in past research using existing
Convolutional Neural Networks (CNNs) (e.g., [8]) and
different typologies of object detectors (e.g., [9], [10], [11]).
Nevertheless, based on the latest version of the data set,
BRIDE-YOLO offers a real practice-oriented tool ready to
be used during or after the on-site inspection of existing
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RC bridges. In detail, the tool was developed by exploiting
the labelling of defects carried out by authors on more
than 6500 images. Afterwards, the base architecture of
YOLO11 was improved with attention mechanisms and
used for training, testing, and validation, and the evaluation
metrics of each object detector were critically analyzed.
The Eigen-CAM visual explainability methodology was
employed to assess the predictions’ reliability. The pipeline
and the graphical user interface (GUI) of BRIDE-YOLO were
also presented. The functionalities and the strength points of
the tool were shown, highlighting how to implement the tool
in real-life applications along with some practical insights for
future applications. Finally, it is worth clarifying the choice of
the acronym BRIDE-YOLO, as the name states, can become
the inseparable life partner of surveyors involved in bridge
inspections.

Il. RELATED WORKS: OBJECT DETECTION FOR CIVIL
INFRASTRUCTURES

Over recent years, new approaches based on computer vision
(CV) and artificial intelligence (AI) emerged and strongly
contaminated the scientific research, promoting the growth
of digital innovation also in traditional research fields as civil
and structural engineering. One of the recent trends regards
the possibility of collecting information about structures and
infrastructures from images, as they are the most readily
available data sources on structures and infrastructures.
In this view, different goals were pursued by the scientific
community for retrieving data from images, such as the
extraction of structural typological information (e.g., [12],
[13]), the damages identification and quantification after
a hazardous event (e.g., [14], [15]), or the survey of
common defects due to natural decay (e.g., [16], [17]).
The latter are of great interest when moving to the field
of periodic visual inspection of existing bridges, for which
CV techniques can support traditional resource-demanding
practices. In particular, to extract information from images
(or also from objects and pixels), it is possible to adopt
different approaches, such as classification, segmentation,
feature detection, and object detection [17].

Classification categorizes objects or patterns in data, such
as images, according to defined classes. The main aim is
to assign a label or a class to an input image or a part of
it. Different works employed classification techniques in the
field of bridge inspections, such as Liang et al. [18], which
proposed a three-level image-based approach for performing
fault classification, component-level detection, and damage
localization in post-disaster inspections of RC bridges.
Fotouhi et al. [19] used CNNs to quantitatively classify
different types of in-service damages in laminated composite
structures. Segmentation consists of subdividing an image
into multiple segments, simplifying the identification of
regions of interest within the image. Through different
operations, segmentation allows for locating objects and
defining boundaries for the investigated images. As an exam-
ple, following this approach, Saleem et al. [20] performed
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instance segmentation using deep learning to localize and
classify cracks in bridge inspection images. For the sake
of synthesis, other recent works using segmentation are
following listed, i.e., Ding et al. [21], Sajedi and Liang [22],
Laet al. [23], Hoskere et al. [24], Kim et al. [25], Wang et al.
[26], Wang et al. [27], Zhang and Lin [28]. Concerning
feature detection, this approach consists of identifying and
locating patterns (i.e., features) within images, going from
simple lines to complex figures, to investigate the variations
of the considered feature over time. In the field of bridge
inspection, Jana et al. [29], [30] used feature detection
to monitor the variation of cable tension measurement by
retrieving information on a camera motion. Analogously,
Kromanis and Kripakaran [31] employed feature detection
tracking to determine structural displacements from images
captured by multiple cameras.

Still, the main focus of this work is on object detection,
which consists of identifying and localizing, within the
image, specific objects of interest. Two main types of object
detectors based on deep neural networks are widely used
nowadays. The first is represented by two-stage object
detectors, which base their operation on the presence of
a couple of neural networks, that is, a Region Proposal
Network, whose purpose is to identify candidate regions
within the image which are likely to hold an object of interest,
and a classification network, whose goal is to classify the
content of the proposed regions. The other type of object
detector is single-stage detectors, which use a single network
to perform both localization and classification.

Examples of two-stage object detectors are R-CNN [32]
and its successors, such as Fast R-CNN [33] and Faster
R-CNN [34] (where R stands for Region). In the realm of
two-stage detectors for defect detection in civil structures,
Cha et al. [35] employed Faster R-CNN to recognize five
typologies of surface damage on concrete and steel structures
on a dataset composed of 2355 images, demonstrating
good accuracy with a mean average precision of 87.8%.
Li et al. [36] introduced a modified version of Faster R-CNN
for identifying three types of concrete defects, showing a
detection accuracy of 80.7% and a localization accuracy of
86% per image. Deng et al. [37] predisposed a Faster R-CNN
on a dataset of around 5000 images to detect cracks in RC
bridges despite interferences as handwriting automatically.
Results were compared with those obtained using YOLOV2,
showing the proposed approach’s advantages. Deng et al.
[38] employed Faster R-CNN to detect three typologies
of defects (i.e., cracks, concrete delamination, and steel
reinforcement exposure) trained on a dataset created by using
four lasers (structured lights) and a depth camera, achieving
low percentage of errors and high value of the FI score
(i-e., 83%).

Even though two-stage detectors often provide outstanding
performance in object detection, the use of two neural
networks implies a high computational burden, undermining
their usability on constrained devices, such as unmanned
aerial vehicles. Furthermore, the larger number of parameters
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FIGURE 1. The proposed framework for BRIDE-YOLO.

generally used by these networks requires more data for
proper training, posing a greater burden on domain experts
during data gathering and labelling. One-stage detectors use
smaller networks and provide limited accuracy if compared
to two-stage detectors; however, the gap was filled with
the adoption of more sophisticated approaches over time.
Therefore, one-stage detectors are currently often preferred
over two-stage detectors [39].

The main exponent of one-stage detectors is YOLO [40],
an acronym which stands for You Only Look Once (even
if other popular examples exist, such as Shot MultiBox
Detector [41], [42]). YOLO detectors are composed of three
different sections:

e Backbone: the backbone is a CNN-based architecture
used by the model to extract relevant feature maps
from images. These maps are then fed directly to the
neck.

o Neck: the neck is the section that fuses the feature maps
extracted by the backbone to reduce the loss of details
that may occur during the feature extraction and add
context information.

o Head: the head consists of several convolutional layers
that output a vector containing the bounding box
and category information of the targets in the input
image.
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Different examples of YOLO application for defect
detection in existing bridges could be mentioned, such as the
work by Maeda et al. [44], which developed a YOLO-based
method to identify damages on a dataset of about 9000 images
depicting road damages captured through a smartphone from
a car, from which about 15500 instances were identified.
The proposed approach achieved a maximum accuracy of
95%. Zhang et al. [45] combined YOLOvV3 and a transfer
learning algorithm with pre-trained weights for detecting
four typologies of defects on RC bridge surfaces (i.e., crack,
pop-out, spalling, and exposed rebar). Although good results
were achieved, with an accuracy of about 80%, the main
hurdle was represented by localization errors. Park et al. [46]
employed YOLOV3 for real-time defect detection of cracks
in concrete structures, aiming at defining the position and
the size of the focused defect. Simulations and experimental
tests showed good results with an accuracy and a precision
of 94% and 98%, respectively. For the sake of conciseness,
other important works employing YOLO can be mentioned,
as the works by Aryaetal. [47], Jiang et al. [48], Yu et al. [49],
and Qiu and Lau [50]. Although different methodologies of
object detection exist in the literature and the reliability of
YOLO and its variants was several times assessed, BRIDE-
YOLO presents some novelties with respect to other methods
proposed in the field of structural health management.
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FIGURE 2. Some samples of the original images acquired during the survey. Each image shows a different structural element of the bridge, with
defects of various sizes and severity.

o First, a practice-oriented tool was proposed and
made operative for supporting inspection operations
to respond to the need for a real-time, easy-to-use,
and portable decision support system. The tool can be
easily deployed via a web service, and its code will be
published on GitHub.

o The authors collected an extensive database during
several on-site inspections, and seven classes of defects
were manually labelled, exploiting a consensus-based
procedure. This was designed to fill the need for a
comprehensive dataset of heterogeneous bridge defects
in real-world scenarios.

o The dataset was used to assess the capability of
YOLO, along with specifically tailored architectural
modifications, specifically the use of attention-based
mechanisms, to support the decisions of the domain
experts in the classification and localization of defects
during a survey.

« Finally, the results achieved by the identified models
were physically assessed by exploiting an eXplainable
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Artificial Intelligence (XAI) approach, specifically,
Eigen-CAM, evaluating the coherence of the predictions
performed by the trained neural network.

All the above aspects make BRIDE-YOLO a practical and,
at the same time, scientific-based tool oriented to simplify the
life of bridge inspectors.

Ill. MATERIALS AND METHODS

The overall framework for the proposed tool is reported in
Figure 1, in which all the steps to realize BRIDE-YOLO
were reported in a logic flow. Briefly, through real on-site
inspections, a dataset of photos was collected and labelled
according to some specific defect typologies. According to
available data, different versions of YOLO11 were trained
and compared through specific metrics to select the version
providing the best results. Moreover, a visual explanation
approach (i.e., Eigen-CAM) was used to explain the obtained
prediction. The results were then used by means of the
BRIDE-YOLO GUI, which allowed the upload of images
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FIGURE 3. Example of manual labelling through CVAT [43].

and the detection of the considered defects. Although
BRIDE-YOLO can be used ‘“‘as it is” for supporting
surveyors in the phase of bridge inspection, it was designed
and developed to be subsequently upgraded, allowing the
increment of the number of images and labels at the base
of object detection training, which can then be iteratively
re-proposed to improve the reliability of the tool itself and its
prediction. A detailed description of each phase is reported in
the next Sections.

A. DATASET

The dataset of collected images used in this work was initially
proposed by [9] and further refined in [10]. The dataset
comprises 6580 images, some shown in Figure 2, each one
relative to one or more structural elements of existing RC
bridges (e.g., derived from girders, decks, piers, pier caps,
and abutment), presenting several types of defects of different
extent and intensity. Data were gathered during on-site
surveys and after labelled by domain experts following a
subset of defects prescribed by the abovementioned Italian
guidelines [4]. The images constituting the dataset were
collected by authors over a large time period and under
different environmental conditions. For the scope of the
paper, this is an advantage, because the training of the
network can be characterized by adequate generalization
capabilities, accounting for different phenomena, such as
occlusions and lighting variations.

The annotation was manually performed by domain
experts exploiting the Computer Vision Annotation Tool
(CVAT) [43]. To ensure accuracy and consistency in the
annotated data, the ground truth was labelled by three
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different independent domain experts. A reliability check was
then performed using a consensus procedure. In more detail,
the dataset was first split into batches of 100 images each,
with the latest composed of 80 images. For each image, one
domain expert was tasked to detect each defect, highlighting
its extent and typology through a box. Multiple boxes could
be provided per image if more than one defect could be
found. Once the labelling was complete, the second domain
expert was asked to validate the provided labelling. If the
two experts agreed, no more actions were necessary, and the
labelling was validated. Otherwise, the second expert was
tasked with proposing an alternative labelling, which was
proposed, along with the first one, to the third domain expert.
This would be validated if the third domain expert agreed with
one of the proposals. Otherwise, the process was performed
another time, with each domain expert having to consider
the contributions provided by the others. This process was
performed for each batch of images, randomly selecting the
role each domain expert had to cover for each batch. A sample
result of this labelling procedure is provided in Figure 3,
where the annotation logic is shown.

Regarding the considered defects, according to [8], the
following typologies were considered:

o Corroded steel reinforcements: refers to exposed steel
reinforcement rebars that may be corroded after the
spalling of the cover layer.

e Cracks: denotes thin or thick cracks resulting from
degradation phenomena or static deficiencies.

o Deteriorated concrete: involves the superficial degrada-
tion of the concrete surface, such as swelling or scaling,
induced by aggressive environmental conditions.
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FIGURE 4. The base architecture of YOLO11.

e Honeycombs: describes casting errors leading to
non-homogeneous areas with visible aggregates.

o Moisture spots: encompasses traces of drainage water
and infiltrations on the concrete surface.

o Shrinkage (Crazing) cracks: pertains to the spread of
thin cracks on concrete due to the drying out of moisture
during the construction phase.

o Pavement degradation: involves defects (e.g., cracks,
holes) affecting the asphalt layer of the road surface.

It is worth underlining that the Italian guidelines [4]
propose a more refined taxonomy of defect typologies
but, for the case at hand, the (relatively) small amount
of available data for specific defect classes led to an
under-representation of some of those classes. For this reason,
visually related defect classes were grouped. For example,
cracks were considered independently on their orientation.
Vertical, horizontal, and diagonal cracks were all represented
under the (generic) crack class. After these evaluations, the
final dataset was characterized by seven typologies of defects,
for a total of 10831 labels, as summarized in Table 1, which
reports a specific acronym for each defect along with the total
number of labels.

19000

B. YOLO11 FOR OBJECT DETECTION

For BRIDE-YOLO development, the latest available model
in the YOLO family was employed, that is, YOLOI11
[51]. It is important to underline the rationale behind the
selection of single-stage detectors and, specifically, of the
latest iteration of the YOLO family. First, as already
stated in Section II, single-stage detectors provide reliable
performance with inference speeds which can be used
for real-time implementation, as demonstrated by several
benchmarks provided on foundational datasets [52]. As real-
time processing of data streams is a matter of fundamental
importance, both for during on-situ surveys and offline
evaluations, using fast and non-resource-intensive models
is mandatory in this specific application. Furthermore, the
YOLO family achieved several important goals throughout
its evolution, making it more appealing for selection as the
base architecture for this work. First, starting from YOLOVS,
the models could provide anchor-free detection, meaning that
no predefined anchors were used for matching bounding
boxes in the achieved results. Consequently, this choice
allowed us to provide faster performance while retaining
reliability. Furthermore, the constant evolution of YOLO
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TABLE 1. Labels distribution for the collected dataset of 6,580 images.

Defect Acronym  Number of labels
Cracks CR 1138
Corroded and oxidized steel reinforcements CORS 2928
Deteriorated concrete DC 2448
Honeycombs HC 1165
Moisture spots MS 2962
Pavement degradation PD 119
Shrinkage cracks SC 71

models allowed state-of-the-art advancements in aspects
such as the backbone or specific improved layers, which
demonstrated superior performance over classic approaches
such as SSD in construction assessment [53].

In detail, the release of YOLO11 made available five dif-
ferent versions, namely YOLO1 1n (nano), YOLO11s (small),
YOLOlIm (medium), YOLOI11l (large), and YOLOI11x
(extra-large), each one with an increasing number of param-
eters, starting from the less (YOLO11n) to the most dense
(YOLOL11x). Each of the densities was tested in this study.
When compared to its predecessors, YOLO11 provides three
main improvements.

1) Improved convolution mechanisms: The C3k2 block
is a direct evolution of the Cross Partial Stage (CSP)
block used in the CSP bottleneck with two convolutions
(C2f) block in YOLOVS [54]. Specifically, the C3k2
block shares with the C2f block the same underlying
architecture with the noticeable difference of using two
smaller convolutions, therefore lowering the overall
computational burden.

2) Improved neck feature fusion: The Cross Stage Partial
with Spatial Attention (C2PSA) block embedded
attention mechanisms to allow the neck to focus on
relevant parts of the image

3) Refined detection: The use of Convolution - Batch-
Norm - SiLU (CBS) layers in the detection head
allowed YOLOI1 to refine the features used for
normalization and used a sigmoid linear unit function
for the activation of the final layer.

The base architecture of YOLOI11 is shown in Figure 4.

1) CONVOLUTIONAL BLOCK ATTENTION MODULE
To further enhance the results of the bare YOLOI11 object
detector, this work modified the base architecture using
the Convolutional Block Attention Module (CBAM). This
attention mechanism was first proposed in [55] to model
both channel (i.e., which feature in the image is the most
informative?) and spatial (i.e., what part of the image is
the most informative?) attention. Combining these attention
mechanisms can be useful to identify the most discriminative
parts and channels of an image.

Specifically, given an intermediate feature map denoted as
F; € REH>W with C number of filters, and H and W height

VOLUME 13, 2025

and width of the attention map, respectively, the CBAM block
provides a channel refined feature Fcg starting from the
inferred single channel attention map M¢c € RE*1x1,

Fcr =Mc(Fy) ® F; (1)

In Equation 1 and in the following, the symbol &
represents the element-wise multiplication. Let us underline
how Mc(F) is computed as the element-wise summation
of the descriptors extracted by a Global Average Pooling
(GAP) and a Global Max Pooling (GMP) to aggregate the
information via a multilayer perception MLP, provided as an
input to a sigmoid function.

Mc(F) = o [MLP(GAP(F)) @ MLP(GMP(F))] (2)

In Equation 2 the & symbol represents the element-wise
summation. Once F g is known, the final refined feature Frg
can be computed as follows:

Frr = Ms(Fcr) ® Fcr 3)

As for Mg, it is computed using a 7 x 7 convolutional layer,
as described in Equation 4.

Ms(F) = o [f7X7(GAP(F) ° GMP(F))] )

The overall output feature map of the CBAM block is then
given by the element-wise summation of the input feature
maps and its final refined version.

Fo=F,® Frr (5)

The structure of the CBAM module is shown in Figure 5.

The base YOLOI11l model was improved by adding
attention specifically to the neck. This was motivated by
the need to provide more contextual attention during feature
fusion, therefore increasing the capability of the network to
fuse features at different levels and focus on traits relevant to
the localization and classification of defects. Figure 6 shows
the proposed architectural modifications.

C. VISUAL EXPLAINATIONS

Explainability is a matter of extreme importance in assess-
ing the performance of complex deep learning models.
In other words, as these architectures involve several complex
non-linear transformations of the input to extract the output,
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Input feature

FIGURE 5. The CBAM block scheme.

it is difficult to provide a clear, simple, and straightforward
interpretation of why the model yielded a certain decision
without specific tools. In the specific framework of convo-
lutional neural networks, visual explanations in the form of
class activation maps (CAMs) are the most common way to
provide a comprehensive and satisfactory interpretation of the
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results achieved by a model. Several methods exploits CAMs,
including GradCAM [56], GradCAM++ [57], and Smooth-
CAM [58]. An example of GradCAM and GradCAM++
application in the field of defects identification in RC
bridges is provided by [8], in which visual explanations were
used to evaluate qualitatively the accuracy of the employed
CNNEs.

Methods for extracting CAMs are usually divided into
two groups, that is, methods which heavily rely on gradi-
ent computations, such as GradCAM and GradCAM++,
and gradient-free methods, such as EigenCAM [59] or
AblationCAM [60]. Specifically, gradient-free methods were
developed in response to a common criticism of gradient-
based methods, which were demonstrated to be afflicted by
the problem of gradient saturation and, consequently, by the
poor quality of visualization [60]; furthermore, gradient-
based methods are often heavily reliant on the specific
architecture and should be adapted accordingly. On the other
hand, common criticisms of gradient-free methods lie in
their computational burden, which is significantly higher than
gradient-based techniques [61].

This work proposed a comparison between EigenCAM and
its gradient-based variant, EigenGradCAM, which integrates
the gradient computation used in GradCAM by considering
a multiplicative term associated with gradients. This allowed
the assessment of the qualitative performance of the models
while still retaining the possibility to compare the effective-
ness of two different approaches to CAM computation. The
main idea behind EigenCAM was to assess the relevance
of the features through the convolutional layers. To this
end, EigenCAM considers the principal component of the
learned representation, which explains most of the variance
in the original data. The idea is that relevant features lie in
this component, while non-relevant features can be filtered
out.

Let I represents the image under investigation, whose
dimensions are (i,j) pixels, and let W be the combined
weight matrix of the first k layers of the neural network. The
output of the projection of image / on the k-th layer is given
as follows.

Or=W!I (6)

Let us suppose that the size of Oy is (m, n) due to the
change in dimensionality caused by convolutional layers.
To identify principal components, Single Value Decomposi-
tion (SVD) can be used:

Oy =UxVT (7

In Equation 7, U is an m x m orthogonal matrix, whose
columns are the left singular vectors, ¥ is a diagonal matrix
of size m x n, with singular values along the diagonal, and
V is an n x n orthogonal matrix. Hence, the activation map
using the Eigen-CAM method can be defined as

CAMEigen = Ox V1 ()
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FIGURE 6. The architecture of YOLO11 with the integration of the attention mechanisms.

where Vj is the first eigenvector in the V matrix. This
activation map can then be projected onto the original image,
highlighting the salient parts of the image as the ones with the
higher activation values.

According to the evidences shown in [59] and [62], Eigen-
CAM demonstrates robustness and reliability in providing
consistent visual explanations. Furthermore, it only requires
the learned representations at the final convolution layer,
independently of other classification layers.

D. EVALUATION METRICS

The results were evaluated using four metrics tailored for
object detectors [63], that is, precision (P), recall (R), F1
score (F1) and mean average precision (mAP). Specifically,
these metrics measure the similarity between the bounding
boxes predicted by the detector and those provided in the
ground truth, providing independent scores for the location
and the class of the object, which are synthesized in a single
value. To this end, it is important to define the Intersection
over Union (IoU) metric, a coefficient based on the Jaccard
index [64]. Given a ground truth bounding box, By, and its
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correspondent prediction, By, the IoU is defined as:

&)

In other words, Equation 9 expresses the IoU as the ratio
between the intersection and the union of the predicted
bounding box and the ground truth bounding box. Therefore,
a perfect match is given when loU = 1, while if loU =
0 the model completely misses the prediction. A visual
interpretation of the IoU metric is provided in Figure 7.

Usually, the evaluation of object detectors implies using a
threshold on IoU, which is commonly set above 0.5, meaning
that the predicted bounding box overlaps the ground truth
by more than 50%. However, this threshold can also be
set according to the experimental setup: for example, if the
ground truth bounding boxes are of small size, the threshold
can be relaxed to consider lower IoU values, which do not
significantly affect the validity of the predictions, as shown
in [65]. In the proposed scenario, only thresholds above
0.5 were considered, mainly due to the relevant size of the
ground truth bounding boxes.
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FIGURE 7. Intersection over Union.

Precision is generally defined as the ability of the model
to localize and classify objects. To be quantified, one shall
compute the ratio between correctly identified objects and the
overall number of predictions. As for the recall, this metric
represents the ability of the model to provide coherent and
complete predictions and is computed as the ratio between
the correct predictions and the total number of ground truth
bounding boxes available. As such, to compute precision and
recall, each detection must be categorized as follows:

o True Positive, when the ground-truth bounding box is

correctly predicted.

« False Positive, when the predicted bounding box does
not exist within the ground truth, or it is completely
misplaced (and, therefore, IoU = 0).

« False Negative, when the ground-truth bounding box
has no predictions associated.

Starting from these value, precision can be computed as

follows:

TP
P=—— (10)
TP + FP
TP
R=—— (11)
TP+ FN

where TP is the total number of true positives, FP the total
number of false positives, and FN the overall number of false
negatives.

From the definition of P and R, the F'] score can be derived,
quantifying the accuracy of the statistical test, and evaluated
according to the following expression:

P-R
Fl=2— (12)
P+R

These metrics provide a quantitative evaluation of the
model’s effectiveness in localization and classification. How-
ever, object detectors also provide a confidence score for each
detection. Consequently, it is possible to adjust precision and
recall by this value, hence considering positive predictions
whose confidence scores are above a certain threshold 7, and
negative otherwise. Consequently, Equations 10 and 11 can
be rewritten in the following form:

P(r) = L(t) (13)
TP(t) + FP(7)

= & (14)
TP(t) + FN(t)
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In Equations 13 and 14, the values for TP(t), FP(t) and
FN (t) are the values of TP, FP and FN adjusted according to
the threshold t. Clearly, both T7P(t) and FP(t) are inversely
proportional to t, while FN(7) has a direct proportionality
with the threshold. From the above considerations, the
average precision (AP) can be computed as the area under the
P(t) — R(7) curve at k different values of 7. The expression
for AP is the following:

N
M=%Z%wm» (15)
n=1

In Equation 15, Pj;;(R,(n)) is a mathematical function
modelling the interpolation between n points of precision and
recall pairs at different values of 7. In contrast, R,(n) is the set
of reference recall values for the n selected points. As a single
AP can be computed for each one of the classes within the
dataset, a synthetic index which considers the mean between
all these classes is computed as the mean Average Precision

metric:

C
1
mAP = ol ZI:APi (16)
=

where C is the total number of classes contained within the
dataset. The mAP can be further extended by using different
thresholds for the JoU metric: for example, mAP0O.5 considers
a threshold of 0.5 for the IoU , while mAP0.5—0.95 considers
an average over all the JoU values in the range [0.5, 0.95]
sampled at a step of 0.05.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

The experiments were performed on a machine equipped with
an NVIDIA RTX 4090 GPU with 24 GB of video RAM,
64 GB of RAM, and an Intel Core i9-14900HK CPU. The
language used for performing experiments was Python with
the support of the Pytorch [66] and Ultralytics [54] libraries.

Experiments were designed to identify the most suitable
version of YOLOI11 and evaluate whether the insertion
of architectural modification and processing improvements
had a significant impact. To this end, a baseline was
established using the base version of YOLOI1I1 at all the
different available densities. Furthermore, two fixed image
resolutions were considered, that is, low resolution (i.c.,
640 x 640 pixels), and high resolution (i.e., 960 x 960). This
variability was introduced to test the robustness of trained
models when different image densities are considered.

The hyperparameters were tuned using a mutation and
crossover approach, mainly inspired by genetic algo-
rithms [67]. Specifically, the default set of hyperparameters
was randomly mutated by applying small random iterations
to maximize the evaluation metrics considered. The resulting
hyperparameters were reported in Table 2.

Finally, to provide statistical significance and avoid
overfitting, all the reported results were averaged over a
k-fold cross-validation procedure, with £ = 10.
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TABLE 2. Hyperparameters value selected after optimization.

Parameter Optimized value

Initial learning rate 0.00998
Final learning rate 0.00986
Momentum 0.9134
Weight decay 0.00066
Warmup epochs 3.13215
Warmup momentum 0.70808
Box loss 6.62038
Class loss 0.49984
DFL loss 1.66513

B. OBJECT DETECTION RESULTS

1) METRICS EVALUATION

A total of ten experiments were performed to set the
baseline, each with 5 iterations involving 100 training epochs.
To ensure a fair comparison between the baseline and the
architecture improved using CBAM, the weights of the
networks were trained from scratch, i.e., the models were not
individually pre-trained on the COCO dataset.

Table 3 describes the results achieved using the base
architecture of YOLOI11. Specifically, the best result is
reported in blue, the second-best in green, and the third
in red. The analysis of the baseline highlighted how the
best-performing network was YOLOI11x using the high
resolution. This was mainly related to two different aspects.

The first was the number of provided labels, which was
adequate to allow the denser model to train its larger number
of parameters properly. This was confirmed by the fact
that, generally, the models improved their behaviour when
the density increased, except for the Nano model, which
exhibited a sort of “sweet-spot” behaviour, possibly caused
by a local optimum in the selection of data used for the
specific training.

The second aspect was related to the resolution of the
provided images, which allowed the network to capture
fine-grained details on the defects of interest. In this case,
it was clear that each model, independently from the density,
benefited from the higher resolution, with an improvement in
terms of F'1-score ranging from 17.85% for the Nano model
to 5.35% for the Medium one.

Table 4 describes the results achieved using the improved
version of YOLOI11 using the CBAM attention module.
With this insertion, detection results were generally more
predictable, with the best-performing models being the
largest, confirming that higher resolutions yielded improved
metrics values. Specifically, the Extra model with high
resolution was confirmed to provide the best performance,
with an overall improvement of 2.38% in terms of F1 score,
2.41% in terms of mAP 0.5, and 2.05 in terms of mAP 0.95.

Still, the most interesting results are probably related to
the models fed with low-resolution images. Let us focus
on the Extra model: the attention module allowed to yield
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an improvement of 9.61% in terms of F 1-score, of 6.69%
in terms of mAP 0.5, and 7.89% for the mAP 0.95,
effectively bridging the gap highlighted by the baseline
models in terms of quantitative metrics. An interesting
point could be raised if the inference processing speeds
were also considered. Specifically, from Table 3, the Extra
model fed with high-resolution images required a processing
time of 11.73 milliseconds, resulting in an average of
85.25 FPS on the reference implementation. If the CBAM
block was inserted, and the resulting Extra model was fed
with low-resolution images, an average processing time
of 9.14 milliseconds was required per image, resulting in
a 109.40 average FPS on the reference implementation.
Therefore, the insertion of the CBAM attention mechanism
allowed the improvement of the overall quantitative metrics
provided by the model while also reducing the computation
time and, therefore, increasing the feasibility of deploying the
model directly in the field on constrained hardware.

2) CONFIDENCE BOUNDARIES

A proper quantitative evaluation of the results achieved
by the models cannot disregard the evaluation of the
confidence boundaries to which the provided predictions
refer. Conceptually, object detectors from the YOLO family
provide two types of confidence scores. The first type is
box confidence, that is, a measure of the confidence of
the model in establishing that a predicted bounding box
contains an object of interest. In other words, the box
confidence combines the certainty of the model in stating
that a bounding box contains an object with the IoU between
the prediction and the provided ground truth. The other
type of confidence is class confidence, which expresses how
certain the model is that the detected object belongs to a
specific class according to a conditional probability. These
two scores are combined, providing a single conference
score, which is heavily related to the selected value of
IoU. Therefore, by evaluating how precision, recall, and F1
score metrics behave at different confidence scores, it is
possible to have a further in-depth quantitative assessment
of the performance of the model. Figure 8 shows the
behaviour of precision, recall, and F1 score for YOLO11x
(Figures 8a, 8b, 8c) and YOLOI1l1x after the addition of
CBAM layers (Figures 8d, 8e, 8f) at different levels of
confidence score. Overall, the analysis highlighted how the
insertion of the CBAM mechanism impacted all the proposed
metrics, providing a higher value of precision, recall, and F1
score at higher confidence scores. From Figure 8, it appears
this is mainly related to a better characterization of the
pavement degradation and shrinkage cracks objects, which
also are the less represented types of object within the
dataset, mainly in terms of recall. This could be confirmed
for shrinkage cracks by considering the confusion matrices
in Figure 9, computed using a standard confidence score
of 0.5. In other words, using CBAM attention improves the
detection performance for this class. Interestingly, the same
effect cannot be inferred for pavement degradation, as in this
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FIGURE 8. Variation of recall, precision, and F1 score at different confidence scores for YOLO11x (Figures 8a, 8b, 8c) and
YOLO11x after the use of CBAM layers (Figures 8d, 8e, 8f). The light blue line is relative to CR, the orange to CORS, the green
to DC, the red to HC, the purple to MS, the brown to PD, the pink to SC, and the heavy blue is the average for all classes.
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TABLE 3. Results achieved using the baseline version of YOLO11.

Density  Resolution P (%) R (%) FI1 (%) mAPO0.5(%) mAPO0.5—0.95(%) Speed (ms)
Nano Low 46.66  37.86 41.80 38.97 20.28 2.06
Nano High 242
Small Low 46.44  35.82 40.45 35.96 18.36 2.24
Small High 62.35 40.73 49.27 45.99 27.43 3.24

Medium Low 61.70  43.70 51.16 47.23 27.29 3.11

Medium High 71.86 47.35 57.08 52.58 33.38 5.75
Large Low 69.57 41.38 51.89 46.22 27.15 3.26
Large High 65.49  49.62 56.46 51.95 32.90 6.49
Extra Low 67.46 45.35 54.24 50.80 31.83 5.49
Extra High 79.93  50.62 61.98 56.97 39.81 11.73

case, the use of the attention layer decreases the performance
at lower confidence scores. However, attention mechanisms
appear to provide a better response to higher confidence
scores: in other words, attention allows the network to
provide a more reliable and confident answer, that is, predict
bounding boxes which are more aligned to the ground truth,
thanks to the combined effect of evaluating the effect of
space and channel on the overall predicted boxes. Another
interesting effect that can be inferred from attention is that all
the observed curves are smoother, avoiding sudden drops in
precision and recall at high confidence scores. This implies
a stabilization effect provided by the CBAM attention layers,
which improves the overall confidence and reliability of the
model.

3) IN-DEPTH CLASS RESULT EVALUATION

Let us focus on the per-class results achieved by the Extra
model with and without the use of CBAM attention. The
results were reported in Figure 9 in the form of confusion
matrices.

The confusion matrices clearly show how the network,
without the use of attention (Figure 9a), provided a higher
number of mismatches (represented by non-zero values out-
side the diagonal). Furthermore, the overall number of missed
detections, represented by the percentages on the bottom row,
was slightly lower in each class for the network embedding
the CBAM mechanism, except for pavement degradations.
This was also valid for the rate of false positives, represented
by the rightmost column in the representation. Overall,
the analysis highlighted how the network modified using
the attention mechanism outperformed the baseline version
in identifying each type of defect, except for pavement
degradations.

It is worth noting that, from the perspective of a safety-
critical scenario, the false negatives are usually considered
the most undesirable errors, as the model misses the
detection of potentially safety-critical situations. About this
latter aspect, most of the false negatives were observed
on SC defects, which were the most under-represented
classes. This is an additional quality check for the proposed
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methodology that, as expected, highlighted the necessity of
more data for training the network (especially for the under-
represented classes) to work properly under all required
circumstances.

Still, the comparison shown in Figure 10 between the
ground truth and the predictions demonstrated the capability
of the network to detect most of the labelled defects, failing
in very few situations, especially when small objects were
considered.

Finally, it is important to properly discuss the causes
behind false positives and false negatives, as shown in the
confusion matrices. Specifically, object detectors provide two
types of false positives and negatives.

The first type is related to the misclassification of objects
in the provided samples, obviously extended to a multiclass
scenario. The confusion matrices describe this effect as
misclassification of the bounding boxes and represent a
scenario where the model is correctly localizing an object
but incorrectly assigning it a class label. The reasons behind
this misclassification are to be found in the visual appearance
of the object, which implies that the model was not able to
characterize meaningful features in the backbone properly
and, therefore, provides high confidence scores to wrong
class labels, compromising the overall classification of the
localized bounding boxes. From the analysis provided in
Figure 9, it was clear how both YOLOv11x and its modified
version with the CBAM attention layer yielded good results
in terms of the correctness of the classification, with a
few misclassified samples, especially when visually related
defects, such as DC, CORS, HC and MS, were considered.
This effect was further reduced when the CBAM attention
mechanisms were considered.

As for the other types of false positives and negatives, these
are commonly referred to as background false positives and
background false negatives. The background false positives
describe situations where the model finds objects during
validation with no ground truth associated. Background
false positives are not necessarily an indication of poor
performance. Instead, given the proper representational
capability of the model, it is most likely that background
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TABLE 4. Results achieved using improving the YOLO11 base architecture by inserting the CBAM block.

Density  Resolution P (%) R (%) Fl1 (%) mAPO0.5(%) mAPO0.5—0.95(%) Speed (ms)
Nano Low 51.95 26.64 35.22 25.27 11.35 2.40
Nano High 37.79  31.88 34.58 27.45 12.51 2.48
Small Low 62.49  37.77 47.08 40.74 21.84 2.56
Small High 52.87 45.05 48.65 45.44 25.57 442

Medium Low 67.88 53.19 59.64 55.04 33.47 4.65

Medium High 75.50 47.88 58.60 54.75 34.48 9.83
Large Low 76.83  48.56 59.51 54.51 34.92 5.26
Large High 77.02 50.82 61.24 56.37 35.46 10.88
Extra Low 52.36 9.14
Extra High 82.87 64.36 59.38 41.86 19.22
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FIGURE 9. Confusion matrices for YOLO11x without (on the left) and with (on the right) the integration of CBAM attention blocks in the detection head.

false positives are related to missing labels in the dataset,
which are likely to occur due to the effort required by domain
experts to process large-size datasets. As for background false
negatives, these are associated with the need for the model to
gather more data to represent specific classes of objects. For
example, by inspecting Figure 9, it could be found that the
model is biased in identifying defects such as PDs or SCs.
This was mainly related to the fact that these defects were
less represented and should be addressed in future versions
of the tool by including more instances of these defects in the
gathered dataset.

C. INTERPRETABILITY OF THE DETECTION MODEL

As described in Section III-C, EigenCAM and EigenGrad-
CAM were exploited to provide an interpretation of the
results achieved. Specifically, Figure 11 shows the activation
maps from the latest C3k2 layer of YOLOIl1x with and
without using the CBAM block when both a gradient-free and
a gradient-based method were considered. Let us underline
how “warmer” areas in the heatmap (i.e., regions whose
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colour is shifted towards the red tone) indicate higher
activation for the network. Overall, two concurring effects
could be observed from these results.

o First, the CAMs provided by gradient-free methods,
shown in Figures 11a, 11e, 11c, 11g were usually much
more diffused with respect to the ones provided by
gradient-based methods. This implied that gradient-free
methods considered activations characterizing the capa-
bility of the network to fuse features at different
scales, therefore integrating information about different
contexts at different scales.

o Second, the CAMs related to models using atten-
tion mechanisms provided activation boundaries more
defined and focused than those provided by the
base model. This is especially true when comparing
Figure 11d to Figure 11b and Figure 11h to Figure 11f,
which showed the activation maps gathered using
EigenGradCAM with attention (Figures 11d and 11h)
and without attention (Figures 11b and 11b). As shown,
the activations of YOLO11x with CBAM are much more
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(b) Predictions

FIGURE 10. A comparison between the ground truth provided to the network during validation (shown in Figure 10a) and
the predictions provided by the network (shown in Figure 10b).

focused than the ones provided by YOLO11x without This provided an effective indication of how the insertion
CBAM. of attention mechanisms could help the network in focusing
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FIGURE 11. Interpretability of a small subset of predictions using EigenCAM and EigenGradCAM on YOLOvV11x and its modified version with CBAM
attention layers. Specifically, the results of CAM computation using both algorithms for two images were shown, with Figures 11a, 11e, 11b and 11f
depicting the results achieved by the bare version of YOLO11x, and Figures 11¢, 11g, 11d and 11h the results achieved using the modified version of
YOLO11x. Overall, it was evident how the CAMs computed using EigenCAM (i.e., Figures 11a, 11e, 11b, 11f) looked at the overall context of the image
to provide the prediction, while CAMs computed using gradient-based methods were directly focused on the prediction, providing useful hints on the
distribution of the gradients throughout backpropagation.

* The image is uploaded to the BRIDE YOLO server.

* The uploaded file is then converted into a suitable format using Scikit Image and
Numpy.

* The image is processed using a pre-trained model.

* The model outputs bounding boxes in the YOLO format, that is, a tuple in the form
(x,y,width, heigth).

* BRIDE YOLO provides the final output to the researcher.

* The output is a visually-relevant image with the localization of defects and an
overall textual summary.

* Furthermore, the class activation maps computed via the Eigen-CAM method are
provided, to highlight the zones used by the network to perform the final decision.

FIGURE 12. The processing pipeline followed by the BRIDE-YOLO tool.

the overall detection capabilities towards the most informa- It is worth noting that the use of a CAM method,
tive parts of the image. besides confirming the performance in object detection,
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FIGURE 13. The GUI of BRIDE-YOLO. The interface shows the original image, as uploaded by the user, the detections provided by the model, and the
activation map computed using EigenGradCAM. It is important to underline how the detections were not only shown in terms of counting results, but also
directly on the original image, allowing for a rapid visual assessment by the surveyor.

can directly support through a graphic result the tasks of
surveyors, especially when dealing with several defects (of
different typologies) characterizing the focused image and
catching the surveyor’s attention on specific parts of the
image.

V. BRIDE-YOLO: TOOL DESCRIPTION AND USAGE

Using the results highlighted in the precedent Sections, the
main aim of the paper is to propose the practice-oriented
tool named BRIDE-YOLO, which stands for BRIdge DEfects
detection via YOLO. BRIDE-YOLO provides an easy-to-
use visual tool for automatically detecting (i.e., localizing
and classifying) defects, starting from raw data associated
with an existing bridge (i.e., images). It is worth specifying
that the proposed tool was idealized, designed, and proposed
specifically for bridges. If from one hand, defects like
corrosion can be found in other structures such as buildings,
on the other hand, some defects (e.g., honeycombs) are
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typical of bridges. Hence, as a rule of thumb, if varying the
defect types and the type of structures, it should be necessary
perform another labelling and collect different data. Figure 12
provides a synthetic sequential block diagram describing
the working principle of the proposed tool as well as the
interaction between the user and the GUI of BRIDE-YOLO.

The workflow on which BRIDE-YOLO is based is
composed of three main phases: (a) image upload and
pre-processing, (b) defect localization and classification,
and (c) results visualization and interpretation. As for step
(a), the user can upload a raw image through a specific
interface provided by the underlying web service. Still,
the raw image is converted into a numerical array using
the computing engine provided by the Scikit Image [68]
and Numpy libraries. After this initial pre-processing, the
input is ready to be processed (step (b)). In detail, using
a model previously trained on the proposed dataset, the
image is processed according to the components described
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in Section III-B, and the expected output is returned to
the user. This latter is returned in a compatible form with
YOLO, i.e., a four-term tuple composed by the centre of
the bounding boxes, expressed as the normalized width and
height of the original image (in percentage), along with their
effective width and height (in pixels). Ultimately, the output
of step (c) is provided to the user with a comprehensive
visual representation. This latter comprises the originally
uploaded image, the localization of the defects, the related
typologies, and the activation maps (obtained through Eigen-
CAM) of the zones used by the network to perform the final
decision.

The GUI available to users is shown in Figure 13, which
shows the specific interface commands to upload the raw
image and the visual feedback provided regarding bounding
boxes and activation maps. The GUI was designed and
developed using an agile methodology, where the first step
was to identify the minimum set of functional requirements
via interaction with domain experts, that is, surveyors who
would use the system directly in the field. The functional
requirements were mainly focused on the simplicity of
usage, the responsiveness of the system, and the possibility
of using it without reliable network connections, which
could be unavailable in certain situations when working
on-site. Afterwards, a simple interface was designed and
implemented using specific Python libraries such as Dash
and Plotly [69]. The first implementation was then tested
by gathering the feedback of the surveyors via a simple
Questionnaire for User Interface Satisfaction (QUIS), whose
main aim was to assess whether the readability, organization
of information and learning curve were adequate for the
usage of the tool on devices with constrained screens, such
as tablets, directly on the field, i.e., under challenging
environmental conditions. The GUI was refined until a
sufficient score was achieved in these tests. Some limitations
remain, such as responsive design, smartphone adaptability,
and capabilities for the system to operate in a federated
environment, which will be addressed in future releases of
the tool.

Finally, another feature of BRIDE-YOLO is the count
of the detected defects, which is reported in the table in
the bottom part of the GUI (see Figure 13). In particular,
the table indicates the number of detected boxes and the
class associated with each box, providing an easy-to-use
and comprehensive interpretation of the status of the bridge.
Obviously, as for the tool operation, BRIDE-YOLO requires
the use of a model already trained on a dataset related to
the field of the problem under investigation (for the case at
hand, the YOLOI11x version with CBAM attention shown in
section IV-B was selected).

VI. CONCLUSION

The paper presents BRIDE-YOLO, a deep-learning-based
tool that can be employed during or after on-site inspections
to automatically detect typical defects in existing reinforced
concrete (RC) bridges. The tool was developed based on an
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initial dataset of 6580 real images, which were labelled by
domain experts. More than ten thousand instances of defect
were obtained by looking at seven typologies of recurrent
defects in existing RC bridges, which were used for training
different scaled models of the last version of YOLO (i.e.,
YOLOI11), as one of the most famous single-stage object
detectors. After training, testing, and validation, the best
performance was achieved through YOLO11x by integrating
the CBAM attention module in the neck. The outcomes of
this latter were also assessed through a visual explanation
method based on class activation maps (CAMs), namely
Eigen-CAM, which showed the reliability of the proposed
network in the tasks of defect localization and classification.
Finally, the pipeline and the first version of the graphical user
interface (GUI) of BRIDE-YOLO were presented, and all
functionalities provided by the tool were described, showing
a simple, straightforward, and effective interaction between
the user and the tool itself. The main aim of BRIDE-YOLO
is to support engineers and practitioners involved in on-site
inspections of RC bridges by reducing the high costs and time
required for detailed assessment and overcoming the main
limitations characterizing this phase, such as subjectivity and
lapses in attention.

Several advantages are offered by a tool like BRIDE-
YOLO. Firstly, it represents a practice-oriented tool directly
usable in inspection phases. In addition, it is trained on
a proper database, accounting for seven classes of typical
defects in existing RC bridges. Finally, the obtained results
are physically explained through an explainability method
such as Eigen-CAM.

Future developments of the tool will aim to improve the
model, first by expanding the proposed dataset, and subse-
quently to increase the current classes of identified defects,
according to the current guidelines [4]. Still, additional efforts
will be required to characterize the features of the defects,
i.e., intensity and extent, and for differentiating the nature
of the defects (e.g., differences between chloride-induced
and carbonation corrosion). Afterwards, more architectural
improvements will be assessed, including the impact of using
different attention modules in various parts of the architecture
or evaluating the use of advanced techniques proposed by
cutting-edge advancements, such as improved versions of
the CSPNet architecture in the backbone or the adoption
of methods to minimize the impact of NMS on predicted
bounding boxes.

These aspects could lead BRIDE-YOLO to act as a
decision support system for driving users in further deci-
sions (e.g., retrofit interventions). Still, the tool could be
implemented in framed platforms at the disposal of road
management companies, which could compare the results
obtained at different inspections over time to assess the
decay evolution of the inspected structural elements. To this
scope, other information could be considered for ensuring
an overall evaluation, such as sensor data, bridge structural
information, and any other data aimed at providing a vision
on the current and future structural performance. In the end,
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BRIDE-YOLO could be implemented in other means to
perform bridge inspections, such as unnamed aerial vehicles
(UAVs), to consistently reduce the time and costs of on-site
inspections.
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