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SARFA-Net: Shape-Aware Label Assignment and
Refined Feature Alignment for Arbitrary-Oriented
Object Detection in Remote Sensing Images

Yan Dong ¥, Minghong Wei

Abstract—Arbitrary-oriented object detection in remote sensing
images has witnessed significant progress in recent years. Numer-
ous excellent detection models perform promising results, however,
there are two main tough challenges hinder their performances. On
the one hand, current label assignment strategies suffer from an
imbalance between positive and negative samples, particularly for
large aspect ratio and small-scale objects, leading to the Insufficient
High-quality Samples. On the other hand, fixed convolution kernels
and coarse sampling positions are not well suited for adapting
to rotating objects in complex remote sensing scenes, resulting in
Feature Misalignment. To alleviate the above issues, in this article,
a novel SARFA-Net is proposed, incorporating a Shape-Aware
Label Assignment (SALA) strategy and Refined Feature Alignment
module (RFAM). Specifically, SALA is proposed to mitigate the
problem of insufficient sampling for extremely shaped objects, the
core of which is the Shape-Aware Sampling module, to meticu-
lously select more high-quality positive samples within elliptical
regions. To further enhance SALA at extremely limited scales and
large aspect ratios, a Threshold Compensation Module is designed,
which further utilizes the shape characteristics of the objects.
Furthermore, RFAM is developed to adaptively align features by
adjusting the sampling positions of the convolution kernels based
on the refined anchors. Extensive experiments conducted on five
large-scale datasets, DIOR-R, DOTA-v1.0, HRSC2016, FAIR1M-
v1.0, and UCAS-AOD achieved mAPs of 68.90 %, 80.09 %, 90.40 %,
46.34%, and 90.01 %, respectively, demonstrating the effectiveness
of the proposed approach and the superiority compared with
state-of-the-arts. Compared with the baseline S*A-Net, we have
improved by 1.30, 1.57, 0.23, 5.92, and 0.37 points, respectively,
without additional data augmentation.
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1. INTRODUCTION

RBITRARY-ORIENTED object detection (AOOD) in re-
mote sensing images (RSIs) uses oriented bounding boxes
(OBBs) to locate and identify objects of interest. In comparison
to horizontal bounding boxes (HBBs), OBBs offer more precise
object boundaries and retain directional information, which is
widely used in both civilian and military domains, such as urban
management, agricultural monitoring, topographic mapping,
and military investigation [1], [2], [3], [4], [5], [6], [7], [8], [9].
Numerous excellent related studies [10], [11], [12] have made
remarkable advancements and attracted wide attention from
researchers. However, AOOD in RSIs still remains two critical
challenges that hinder the performances.

A. Insufficient High-Quality Samples (IHS)

Label assignment, mapping candidate samples to their cor-
responding objects, is fundamental to construct a sample space
that accurately reflects the shapes and orientations of interested
objects. Generating high-quality positive samples during this
process is crucial for training robust object detection models.
However, remote sensing images (RSIs) often contain oriented
objects with complex distribution patterns, characterized by
large aspect ratios and significant scale changes. The preset an-
chors struggle to effectively match these irregularly distributed
objects, leading to the /HS issue.

Classic detectors [11], [12], [13], [14] often rely on fixed
label assignment strategy (e.g., MaxIoU) as the matching met-
ric, as illustrated in Fig. 1(a). This strategy mainly finds the
appropriate matching relationship between anchors and ground
truth (GTs) based on a fixed IoU threshold (e.g., 0.5), which
has become the most mainstream choice due to its simplic-
ity and intuitiveness. However, it treats all positive samples
indiscriminately without considering the shape information of
objects.

Instead, dynamic label assignment strategy uses an anchor
quality score threshold to dynamically divide positive and neg-
ative samples, which takes the shape information of each ob-
ject into account. Some strategies directly use IoU to evaluate
the quality of anchors, Ming et al. [15] proposed adaptively
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Fig. 1. Different strategies for the priority and selection region of positive
samples. Only center points of anchors for simplification. (a) MaxIoU uses a
fixed IoU threshold for sampling. (b) ATSS dynamically adjusts the threshold
based on the center distance. (c) SALA strategy uses a dynamic threshold and
prioritizes selecting high-quality samples from elliptical regions.

weight anchors based on the prior and predicted IoU. Zhang et
al. [16] proposed Adaptive Training Sample Selection (ATSS) to
measure dynamic thresholds through statistical characteristics,
as shown in Fig. 1(b). Inspired by ATSS, some follow-up ap-
proaches [17], [18], [19] aim to enhance the quality of positive
samples that focus on the central region of the object. These
methods set different priorities according to the center point
distance between the anchor and the GTs, effectively improving
the selection quality of positive samples. The above methods are
more effective than fixed ones, however, they are susceptible to
parameter sensitivity.

GWD-based methods [20], [21] introduced a 2-D Gaussian
distribution and select positive samples by adjusting the priority
of anchors (e.g., evaluating the similarity between distributions),
which can adapt to oriented objects with various scales and
angles. However, its complex network structure and complex
nature lead to increased resource space occupation. Therefore,
this strategy is not considered for use in our framework.

According to the above analysis, motivated by the adaptive,
elegant, and efficient dynamic label assignment strategy, a novel
Shape-Aware Label Assignment (SALA) strategy is proposed,
which integrates the merits of both IoU and center point metrics
to select high-quality positive samples, as shown in Fig. 1(c).

Specifically, regarding objects with large aspect ratios, relying
on the center point constraint in the label assignment strategy
may cause foreground samples to converge in the circular area
at the center of GT, leading to the anchors close to the ob-
ject’s boundary being treated as negative samples. As shown
in Fig. 2(a) (left side), the gray anchor boxes (center points to
simplify) at both ends are considered as negative samples. To
alleviate this problem, a Shape-Aware Sampling (SAS) strategy
is proposed to sample within an elliptical region, which is
beneficial for edge feature extraction of objects with large aspect
ratios. As shown in Fig. 2(a) (right side), the corresponding blue
anchors are considered positive samples.

In addition, for small-sized objects, even slight pixel devia-
tions can lead to a significant drop in IoU [22], [23], making it
challenging to match positive samples. As depicted in Fig. 2(b),
the center point of anchor box 1 falls outside the designated
central area and gets excluded, while anchor box 2 doesn’t meet
the threshold criteria and is discarded. However, both anchors
have the potential to detect the object. To address this issue,
a Threshold Compensation Module (TCM) is further proposed
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Fig.2. Tllustration of the sampling strategy for extreme scales and aspect ratio
objects. Only center points of anchors for simplification. (a) Different regions
for sampling. (b) Insufficient small-scale sampling.

to rescue potentially valuable samples previously discarded by
existing methods (e.g., [19], [24]) by expanding sampling ranges
and adaptively adjusting thresholds. As illustrated in Fig. 2(b),
TCM reclassifies two previously negative samples (green dashed
boxes) as positive samples (blue anchors) within the sampling
range (red dashed range).

B. Feature Misalignment (FM)

A significant spatial misalignment often exists between the
feature sampling points of standard convolution kernels and
remote sensing objects, leading to incomplete feature coverage
and the inclusion of noise information. This phenomenon is
referred as the FM issue in this article, which primarily stems
from two factors: First, the fixed receptive field of standard
2-D convolution kernels conflicts with the varying shapes of
objects in remote sensing images. Axis-aligned convolutional
features struggle to align with arbitrarily oriented bounding
boxes, especially given the wide range of object scales and aspect
ratios. Second, the effective receptive field during convolution is
often smaller than the theoretical one [25], further exacerbating
the misalignment problem.

Some two-stage detectors [26], [27], [28] use the Rol operator
to extract fixed-length features within horizontal Rols, which can
only approximately represent the oriented object and introduce
additional noise information. RSIs often contain densely packed
and oriented objects, leading to horizontal Rols that frequently
encompass multiple objects. A common approach is to set
numerous anchor boxes with varying angles, scales, and aspect
ratios, which however can be computationally expensive and
memory-intensive.

Several studies [29], [30], [31] employ Deformable Convolu-
tional Network (DCN) [26] to learn an offset for improving the
spatial accuracy of sampling locations. This offset, however, is
learned from the anchor box by convolution without any rotation
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processes, leading to instability and potential issues with sam-
pling from background, particularly for oriented objects with
complex distributions in RSIs. In contrast, recent works [32],
[33], [34] leverage AlignConv [10] to infer the offset from the
anchors, which directly offer a more stable initial offset and
introduce directional constraints on the sampling points, ad-
dressing the limitations of DCN in the context of RSIs. However,
AlignConv still has limitations in aligning densely packed and
large aspect ratio objects. Based on this insight, we propose
a Refined Feature Alignment Module (RFAM) that adaptively
adjusts sampling positions based on refined anchors, enabling
the extraction of aligned and intact features. Besides, a group
of additional sampling points is further appended to expand the
refined anchors to mitigate the effects of complex background
noise, which can avoid the inappropriate sampling caused by the
coarsely regressed refined anchors.

In summary, a novel Shape-Aware Label Assignment and
Refined Feature Alignment Network (SARFA-Net) is proposed
incorporating SALA strategy and RFAM. Specifically, the pro-
posed SALA strategy dynamically selects more high-quality
positive samples from multilevel feature maps, of which the
critical component is SAS to avoid insufficient and low-quality
sampling. In addition, TCM is proposed to further deal with
small objects. Moreover, to relieve the feature misalignment,
RFAM is proposed to extract more robust and effective features
to adapt the varied objects’ shapes.

The contributions of this work are summarized as follows.

1) A simple yet effective SALA strategy is proposed to
dynamically select high-quality positive samples on mul-
tilevel feature maps, of which the SAS module is proposed
to select more high-quality samples within the ellipse
region while TCM is designed for threshold compensation
of objects with extreme scales.

2) RFAM is proposed to extract aligned features through
adaptive sampling points and alleviate the impact of back-
ground noise.

3) Wereport 68.90%, 80.09%, 90.40%, and 46.34% mAPs on
five challenging AOOD remote sensing datasets, DIOR-
R [35], DOTA-v1.0 [36], HRSC2016 [37], and FAIRIM-
v1.0 [38], respectively, which demonstrate the effective-
ness of our method and the superiority compared with
state-of-the-arts.

The rest of this article is organized as follows. The related
work is reviewed in Section II. Section III provides a detailed
introduction to the proposed model. In Section IV, experiments
and discussions are provided. Finally, Section V concludes this
article.

II. RELATED WORK

A. Arbitrary-Oriented Object Detection in Remote
Sensing Images

AOOD has developed rapidly due to its wide range of ap-
plication scenarios. Early methods [39], [40], [41] relied on
densely preset anchors with varying scales, aspect ratios, and
angles to achieve better regression, coming at the cost of massive
parameters.
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To address the above challenges, Ding et al. [12] proposed the
Rol Transformer to transform horizontal Rol into oriented Rol.
Hanetal. [10] and Yang et al. [11] generated high-quality OBBs
by simply presetting single-scale HBBs through their respective
feature alignment modules.

For more accurate OBB predictions, some methods adopt
additional OBB expressions. Xu et al. [42] designed a sliding
vertex representation method for OBBs, which directly predicts
the four-tuple set of each OBB. Guo et al. [43] proposed a convex
hull representation method to optimize predicted box regression.
Yang et al. proposed GWD [44] and KL.D [45] based on the dis-
tance between the predicted OBB and the Gaussian distribution
generated by GT. In addition, Yang et al. [46] designed CSL to
predict oriented objects through angle classification.

Although significant advancements have been made, these
methods still suffer from insufficient positive samples and
feature misalignment, which hinder substantial detection
performance.

B. Label Assignment in Object Detection

Label assignment is a crucial part of a detector, which involves
identifying positive and negative samples for training. Never-
theless, traditional label assignment methods relying on fixed
metrics (e.g., MaxIloU) encounter difficulties when handling
objects with large aspect ratios and scale variations. To alleviate
the above problems, Flex-MCFNet [47] designed a flexible-
mixup (FlexMix) data augmentation strategy that increases the
label’s weight with the input image’s proportion. However, data
augmentation has limited effect on improving sample imbalance.
Ming et al. [15] proposed an adaptive weight method based on
prior IoU and predicted IoU, aiming to achieve a better match-
ing degree. FSDet [33] utilized a soft assignment mechanism
to assign weights to training samples for stable optimization.
ATSS [16] dynamically adjusted the IoU threshold based on
object statistics. In addition, some methods [17], [19] proposed
the center-based sampling strategy to improve the quality of
positive samples. Sun et al. [17] explored how sample distribu-
tion influences sample assignment. Guan et al. [19] proposed an
elliptical distribution-aided label assignment strategy to select
positive samples among all feature levels dynamically. While
more efficient of the dynamic strategy, they still suffered from
the problem of parameter sensitivity.

Hence, some methods [21], [44], [48], [49] defined transfor-
mation distances based on GWD-based methods. GGHL [49]
fitted each instance with a single 2-D Gaussian heatmap and
dynamically reweighted the samples. DCFL [21] proposed a
dynamic prior coarse-to-fine assigner for dynamic label as-
signment, utilizing coarse prior matching and fine posterior
constraints. While Gaussian heatmap-based methods [21], [49]
effectively captured shape and directional features of arbitrarily
oriented objects, their complex representations hindered accu-
rate distance measurement between square objects.

Although the above strategies alleviate the issue of insufficient
samples, they require setting parameters beforehand, using com-
plex functions, and introducing low-quality samples. Therefore,
SALA strategy is proposed to ensure sufficient positive samples
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Pipeline of the proposed method. The upper block represents the architecture of SARFA-Net proposed based on baseline S?A-Net-C [10], where the

initial detection stage ignores the classification (cls.) branch for simplification. The lower two blocks represent Shape-Aware Label Assignment (SALA) strategy
and Refined Feature Alignment module (RFAM), respectively. The SALA strategy is implemented in the initial detection stage to ensure sufficient high-quality
positive samples for objects with various shapes and arbitrary orientations. RFAM extracts aligned features by dynamically adjusting the sampling positions of

anchors.

for extreme aspect ratios and scale objects while mitigating the
impact of low-quality samples on the model.

C. Feature Misalignment

Feature misalignment usually refers to the misalignment be-
tween matched Rols/anchors and convolutional features, which
seriously affects the detection accuracy of detectors.

Two-stage detectors typically employed regions of interest
(Rol) operations to extract fixed-length feature representations
within Rols. RolPooling [27] rounded the floating-number
boundaries of each Rol to the nearest integer, leading to mis-
alignment issues between features and Rols. To address the
quantization issue of pooling operations, RolAlign [28] used
bilinear interpolation to calculate the precise sampling position
in each sub-region (cut from each Rol), which showed significant
positioning advantages. Deformable RolPooling [26] further
enhanced feature extraction by introducing learnable offsets.
However, these Rol-based operations are computationally com-
plex due to extensive region-wise calculations, e.g., feature
warping and interpolation. Rol Transformer [12] addressed this
issue by transforming horizontal Rols into rotated Rols, thereby
reducing the need for numerous anchors. However, it still relies
on precisely defined anchors and complex ROI operations.

To alleviate the above problems, Zhang et al. [30] introduced
deformable convolutions [26], learning offsets to correct feature
misalignment. Chen et al. [31] extended this approach by com-
puting offsets based on refined anchors. For handling oriented
objects, Han et al. [10] proposed alignment convolutions to
mitigate the misalignment between features and oriented ob-
jects. The methods mentioned above present simpler and more

lightweight network architecture, however, the alignment effect
remains limited in complex remote sensing scenes.

In this work, we propose RFAM that leverages the geometric
information of oriented bounding boxes to adaptively align
features and flexibly handle contextual information.

III. PROPOSED METHOD

This section provides a detailed introduction to the proposed
network SARFA-Net with SALA strategy and RFAM. We equip
our proposed modules with the baseline method, S>?A-Net-C
[10], as illustrated in the pipeline of Fig. 3. The network ar-
chitecture of SARFA-Net comprises a backbone network (i.e.,
ResNet50), a feature pyramid network (FPN), an initial detection
stage, and a refined detection stage. During the initial detection
stage, SAS and TCM constitute the main components of SALA,
which are designed to strategically select sufficient high-quality
samples. In Algorithm 1, we provide a detailed introduction to
the sampling process included in the SALA strategy. Afterward,
RFAM is designed to reduce the impact of feature misalignment
by obtaining adaptively refined sampling points during training.

A. Shape-Aware Label Assignment Strategy

As shown in Fig. 3, given a prior anchor set A = R *Wx¢

(H x W is the feature map size, C' is the number of shape
information) on each layer £ of the feature map of FPN. For
simplicity, each feature point has one prior anchor. SALA strat-
egy is proposed to find a proper match between the anchor set
A and the ground truth set G, and assign pos/neg to supervise
network learning. In Algorithm 1, we show the sampling process
of the SALA strategy in detail. SAS is the core component of
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Algorithm 1: Shape-Aware Label Assignment Strategy.
Input:
The set of ground truth bboxes for current batch, G;
The set of preset anchor boxes for current batch, A;
The set of each level in the pyramid layers, £;
The initial sampling number, &;
The sampling number, top-k;
QOutput:
The set of positive samples P and negative samples \;
1:  Compute the center points of the anchor box, Points;
2:  Compute the set of flags for the elliptical region with
G:

F' = CheckPointsInEllipse(G, Points) (1);
for each level [ € £ do
Build an empty set for candidate samples: C < @
5: S; < Select k anchors from A whose center are
closest to the center of G; when F; = True;
6: if k& < top-k then

Rl

7: E; < Select top-k anchors from A whose center
are closest to the center of G; when F; = False;
8: S; = E; US;
9: end if
10: CL = C,’ U Sz
11:  end for

12:  Compute threshold for each ground truth:
T = ComputThreshold(C;, g;) (4);

13:  for each candidate ¢ € C; do

14: if ToU(c,G) > 7T, then

15: P=PUc
16: end if

17: end for

18: N=A-P

19: return P, \;

SALA and is responsible for selecting the sampling range of
positive samples. We first obtain the indicator function F'lag and
select the center point of A; as far as possible within the ellipse
range represented by G; (Flag = true) as the candidate sample.
Specifically, for the prior anchors of each layer £, we select the
top-k anchors with the closest center distance for sampling. If
the initial actual sampling number %k does not meet top-k, it is
supplemented in the box of G;. The TCM module further selects
positive samples from candidate samples through a dynamic
threshold designed by statistical information, and finally divides
the candidate positive samples that meet the threshold 7; into
positive samples P and the rest into negative samples /V.

B. Shape-Aware Sampling (SAS) Module

Most center-based label assignment strategies select samples
within the bounding box or its central region. However, these
methods overlook the distinctive characteristics of remote sens-
ing objects, such as large aspect ratios and arbitrary directions,
leading to insufficient or low-quality sampling. To address this,
we propose the SAS module, which incorporates shape infor-
mation of oriented objects, including aspect ratios and angles.
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Fig.4. Illustration of ATSS strategy (toprow) and SALA strategy (bottom row)
for selecting positive samples from each level of the feature pyramid (p1-p5).
Only the center points of anchors are visualized for simplification.

Specifically, we select candidate samples within the constructed
dynamic ellipse region.

Following the baseline (S?A-Net), we adopt the long side
definition to represent an oriented object using five pa-
rameters (x,y,w,h, ). These parameters represent the cen-
ter point coordinates, width, height, and angle, respectively.
Hence, given a GT g;(z;, vy, w;, hi,0;) and one anchor box
a;(x;,y;,wj, h;,0;) it matched, the elliptical region can be
formulated as

F() _ {true,

a? b2
©swnZ T Oshnz <1 )

false, otherwise

where the ratio factor 7 acts as an adaptive threshold based
on the object’s shape. It controls the range of the elliptical
distribution, ensuring the selection of high-quality samples with
less background noise. Here, 7 is calculated as follows:

n=1-05/r 2)

where r € [1, 400) is the ratio of the long side maz(h;, w;) and
short side min(h;, w;) of the object. We will provide a detailed
explanation of 77 in Section IV. Parameters a and b are calculated
by the offset of the center point coordinates between g; and a;
and the angle of g;, which can be respectively formulated as

a = xjcosf; +y;sinb;
b = x;sinf; — y; cosb;. 3)

In this way, the sampling distribution can be adjusted dynam-
ically according to the shapes of objects. As shown in Fig. 4,
the sampling range tends to be a compact circular distribution
when the shape of GT is close to a square. When the GTs
are with extremely large aspect ratios, the sampling range will
approximate that of an inner tangent ellipse, which is better
suited for such objects’ shapes.

C. Threshold Compensation Module (TCM)

As shown in Fig. 2, sampling within the inner region leads to
insufficient samples for small objects due to the limited scales.
To this end, we further develop a novel TCM to dynamically
adjust the positive sample threshold and sampling region for
small-scale objects during the sample assignment stage.

Specifically, regarding the issue of anchor box 2 mentioned
in Fig. 2(b), we set a monotonical decreasing function as a
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weighting factor to obtain an adaptive IoU threshold function
T;. For the given ground truth g;, 7; can be defined as

T: = f(scale; @) - IOU™M 4)

where ¢ defaults to 5, indicating a pivotal point where sample
count variations become abrupt. In order to adapt to different
datasets, scale is obtained by applying a logarithmic function,
which is defined as follows:

&)
(6

where 1 and o represent the mean and standard deviation of
the ToU between the ground truth g; and candidate samples it
matches, which are defined as

scale = In(h - w)

IOUM = |4+ &

N
e 1
n=xd lio=\% ; (Lij—n) (D

where NV is the number of candidate samples, which is set to 9 by
default and has been proven to be robust in previous work [16].
I; ; is the IoU value between the ith ground-truth box and the
jth predict box it matches.

Studies conducted by [22] and [23] demonstrate that the ToU
metric is highly sensitive to variations in oriented object aspect
ratios and scales. Even minor changes in these attributes can lead
to rapid IoU decreases, especially for small and slender oriented
objects. Hence, a scale-based weighting function is designed as
follows:

—|scale—¢p|

f(scale;go):{i%'@ T,

scale < @
otherwise.

®)

S is acompensation factor that ensures sufficient samples for
small-scale objects by maintaining the stability of the weighted
threshold, which is defined as

_6
S():e ad

(€))

where 7y represents the balancing factor utilized for normalizing
the scale size, which is set to 15 based on the maximum scale
value. In the experimental Section IV, objects with a scale of 6,
typical in remote sensing optical images, will serve as the basis
for analysis.

Regarding the issue of example anchor box 1 mentioned in
Fig. 2(b), we compensate for objects with extreme scales (objects
with scale less than ). Specifically, we identify the above cases
in the candidate positive sample selection stage and then enlarge
the sampling ranges of these extreme-scale objects by 1.1 times.

D. Refined Feature Alignment Module (RFAM)

To achieve high-performance object detection, anchors must
be spatially and scale-aligned with the features. Previous
work [50] has pointed out that discriminative localization fea-
tures have arbitrary positions and complex deformations, mak-
ing it difficult to accurately capture them using standard convo-
Iutions, especially for slender and small remote sensing objects.
Han et al. [10] proposed a feature alignment module (FAM),
which uses spatial feature reconstruction strategy to solve the
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problem of spatial misalignment, so that the features collected
by each refined anchor box are aligned with the object in space.
Inspired by this design, we propose RFAM, which introduces the
DCN [26] to spatially align anchors and their extracted features.

Specifically, to extract features of the object, we regularly
sample n = k X k feature points in each refined anchor box.
For each sampling position p, the output of DCN can be defined
as follows:

n

> W) X(p+i+o)
i€Z;0€0

Y(p) = (10)

where 7 = {(i,, i)} is a set of regular grids used in standard
convolution, and O is the offset field of DCN. However, DCN
simply changes the sampling points by the offset field O without
considering the direction, which will lead to incorrect sampling.

In this section, RFAM is proposed to generate richer and more
distinctive refined alignment features by combining contextual
information, which consists of two processes, refined sampling
position generation and refined aligned feature generation. As
shown in Fig. 5, the core component of RFAM, Refined Aligned
Convolution (RAC), dynamically adjusts the receptive field,
allowing for extracting more comprehensive object features,
which is denoted as F;.. In addition, a separate DCN branch
generates features Fy;, which together with F,. ultimately gener-
ate robust aligned features denoted as F,.

1) Refined Sampling Position Generation: The sampling
process overview of RAC is depicted in Fig. 5. To refine a given
initial prediction, we start by adjusting the sampling position
based on the initial prediction box [Fig. | and the corresponding
learnable offset field S. Next, as depicted in Fig. 5(b), the refined
anchor box is enlarged by « times to obtain the refined sampling
position (the four corner points, the center points of the four
sides, and the center point of the refined anchor box). The final
offset field O,, for each position of DCN is calculated in the
refined feature sampling process [Fig. ]. Finally, O,, is fed to
the DCN to extract the refined alignment feature F;.. Hence, we
have

—_—
PP, + P,P' = PA, + AP (11)

where the hyperparameter 5 controls the sampling position
within each region. Specifically, we evenly partition the region
centered around A, into k£ x k grids and sample features from
the center of each grid cell. Consequently, S is setto 1/k. Anzy
and Ewh are offsets between center points and shapes of the
refined anchor after encoding, respectively, providing spatial
information to guide feature reconstruction and alignment. The
refined sampling positions P} are derived from the initial sam-
pling positions P,,.

Unlike the precalculated offset O}, obtained from FAM [10],
we generate a set of learnable offsets S, based on the predicted
anchor boxes. These learnable offsets are then combined to
generate offset .S, ultimately obtaining offset O,,. Hence, we
have

P,R, =P,P, + PR, (13)
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Fig. 5.
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Tlustration of the sampling points of the RAC. The yellow box and yellow dashed box are the initial prediction box and the refined anchor box magnified

by « times, respectively, while the blue box is the ground truth. Green and yellow points indicate FAM and initial sampling positions, respectively. Dark blue points
indicate refined sampling positions extracted by RAC. Better view in color. (a) Initial predict box. (b) Refined anchor box. (c) RAC.

O, =0;+5; (14)

where R, is the final refined sampling position.

2) Refined Aligned Feature Generation: For each initial pre-
diction bounding box, RFAM constructs a set of learnable re-
fined sampling positions to learn aligned features. This process
can be formulated as follows:

P={p}iy.n=9 (15)

where n is the number of feature sampling positions, which is set
to 9 by default in our work. Refined feature sampling positions
can be obtained based on the initial sampling positions and the
corresponding learnable offset field .S, which is calculated as
follows:

ph = (x4 Ay x Ay, y™ 4 Ay % Ay;)

2

(16)

init
i

where 2" and yi™* are the initial sampling positions. Fig. 5(a)
shows the detail of initial sampling position generation. A\w
and Aj, are the width and height of the refined anchor box,
respectively, which are multiplied by the offset to normalize the
scale difference. As shown in the network structure of Fig. 3,
an additional branch in the initial detection stage is added to
generate the learnable offset field (Ax;, Ay;), which can be
expressed as follows:

S = §(convy (convy(F))) (17)

where F' denotes the input feature of initial detection stage.
convi; and convy are two consecutive standard convolution
operations, which is used to obtain .S. § represents the activation
function. § € RH>W>18 represents the offset coordinates of the
nine sampling positions. Therefore, for each initial position p,
the offset field O,, can be calculated by the refined sampling
position

On = {RAJ ' p; -pP—- 7:}1)165’.7361 (18)
, _ [cosB® -sinf
RM = <sin9 cos@) (19)

where RM is a rotation matrix to transform the refined feature
sampling position p; into the offset field of DCN. The refined
features after RAC resampling can be expressed as

F,.=DCN(F,0) (20)
where F). represents the refined features generated by the RAC
module. Fy; represents the output feature of another DCN mod-

ule, which is used to enhance the robustness of the sampling
features. This feature can be formulated as follows:

Fy; = DCN(F, D)
F, = conv(F, + Fy)

21
(22)

where D = RH>W>18 ig the offset learned from the input fea-
ture F. The refined aligned feature F,, = R *W>*256 i5 fed into
the refined detection stage, which can be obtained by fusing F,
and F}.

Compared to the standard convolution, this flexible sampling
kernel better adapts to oriented objects with various shapes, such
as ship, bridge, and harbor, which often pose challenges for
traditional square convolutions due to difficulties in capturing
complete and aligned features.

E. Loss Functions

In this article, long side definition (dle) is adopted to represent
an oriented bounding box through five parameters (x, y, w, h, 0).
The loss of the proposed method is defined as follows:

+ L

cls

L=1L:

reg

+ L,

reg

+ LT

cls*

(23)

L! and L’ represent the losses in the initial stage and the
refined stage, respectively. The classification loss adopts Focal
Loss [51], the regression loss is formulated as

N
B 1
Lreg - N Z f“/n Z L"'ff.lj (Ufrzj? U"l/j) (24)

n=1 je{,y,w,h,0}
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TABLE I
INFORMATION ABOUT EACH EXPERIMENTAL DATASET

Datasets Instances Images  Categories  Annotation Image format  Fine-grained
DIOR-R [35] 192 472 23 463 20 OBB JPG N
DOTA-v1.0 [36] 188 282 2806 15 OBB PNG N
HRSC2016 [37] 2976 1070 1 OBB BMP N
FAIRIM-v1.0 [38]  1.02 million 15266 37 OBB TIFF Y
UCAS-AOD [52] 14.596 1510 2 OBB PNG N
TABLE II

where N indicates the number of positive sample, ¢, is a
indicator function (¢, = 1 for foreground and ¢, = 0 for back-
ground). vjl,j represents the offset vectors of the predicted box,
vy, Tepresents the offset vector of GT. The regression loss L,..4

adopts smooth L1 loss, which as defined in [27].

IV. EXPERIMENTS
A. Datasets

In order to comprehensively evaluate the performance of the
proposed SARFA-Net, multiple public datasets with different
scenes and image types are used. The detailed properties of the
datasets are given in Table I.

DIOR-R [35], based on DIOR [2] dataset, consists of
23 463 images and 192 518 instances annotated with oriented
bounding boxes. It covers 20 common categories: Airplane
(APL), Airport (APO), Baseball Field (BF), Basketball Court
(BC), Bridge (BR), Chimney (CH), Expressway Service Area
(ESA), Expressway Toll Station (ETS), Dam (DAM), Golf
Field (GF), Ground Track Field (GTF), Harbor (HA), Over-
pass (OP), Ship (SH), Stadium (STA), Storage Tank (STO),
Tennis Court (TC), Train Station (TS), Vehicle (VE), and
Windmill (WM).

DOTA-v1.0 [36] comprises 2806 aerial images with varying
resolutions (800800 to 4000x4000 pixels) collected from di-
verse sensors and platforms. It contains 188 282 instances across
15 categories: Plane (PL), Baseball diamond (BD), Bridge (BR),
Ground track field (GTF), Small vehicle (SV), Large vehicle
(LV), Ship (SH), Tennis court (TC), Basketball court (BC),
Storage tank (ST), Soccer ball field (SBF), Roundabout (RA),
Harbor (HA), Swimming pool (SP), and Helicopter (HC). In our
experiments, we divide images into 1024x1024 sub-images with
a 200-pixel overlap and apply random horizontal, vertical, and
diagonal flips during training.

HRSC2016 [37] comprises 1061 high-resolution images col-
lected from six major ports and annotated with oriented bound-
ing boxes. It is divided into training (436 images), validation
(181 images), and test (444 images) sets.

FAIRIM-v1.0 [38] is a large-scale remote sensing dataset.
It consists of 15 266 high-resolution images with resolutions
ranging from 300 to 800 from different platforms and more
than 1 million instances for fine-grained object recognition.
All instances in the FAIR1M-1.0 dataset are annotated with 5
categories and 37 subcategories by oriented bounding boxes. All
original images are divided into training set and test set in a ratio
of 4:1, and we divide the images into 1024 x 1024 with a stride
of 200.

ABLATIVE EXPERIMENTS AND EVALUATIONS OF THE PROPOSED METHOD ON
THE DIOR-R DATASET AND FAIR1M-V1.0 DATASET

Dataset SAS TCM RFAM AP50 AP75 mAP50.95
- - - 62.50 32.40 34.76
DIOR-R v - - 63.60 35.80 36.63
v v - 63.90 35.80 36.77
v v v 66.20 39.10 39.24
- - - 63.70 43.30 40.42
FAIR IM-v1.0 v - - 66.70 46.00 42.90
v v - 67.10 46.40 43.80
v v v 68.10 51.40 46.34

The best result is highlighted in bold.

UCAS-AOD [52]is an aerial aircraft and car detection dataset
with 1510 images. We randomly divide it into a training set and
a test set at a ratio of 7:3.

B. Experimental Details

In our experiments, we employ S?A-Net-C as the baseline,
a variant of S?A-Net that replaces aligned convolution with
standard convolution. For simplicity and efficiency, we employ a
ResNet-50 backbone pre-trained on ImageNet and an FPN neck,
unless otherwise specified. Each level of the feature pyramid is
preset with a single square anchor in its matched position. SGD
optimization with weight decay of 1.0 x 1072, momentum of
0.9, and weight decay of 0.1 is used. All experiments are trained
for 36 epochs using a single NVIDIA L40 GPU with a batch
size of 8. The initial learning rate is 6.25 x 1072, reduced by a
factor of 10 at epochs 24 and 32.

C. Ablation Study

In this section, a series of ablative experiments are con-
ducted on the DIOR-R dataset and FAIRIM-v1.0 dataset to
illustrate the advantages of each proposed component. Here,
the components proposed are indicated in abbreviated form,
i.e., “-S” indicates SAS module, “-T” means TCM, and “-R”
means RFAM. The overall results of the ablative experiments
are presented in Table II. Specifically, the first row represents the
results of our baseline detector. The ablation results in AP5¢ and
AP75 are 63.90% and 35.80%, respectively, obtained by replac-
ing the MaxIoU assignment strategy with our SALA strategy.
Specifically, compared to the baseline, AP5y and AP75 increase
by 1.10% and 3.40%, respectively, by using SAS module. By
adopting the TCM module, the AP35 further increases by 0.3%
based on SAS.
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TABLE III
ABLATIVE EXPERIMENTS AND EVALUATIONS OF THE PROPOSED METHOD ON THE DIOR-R DATASET
Method APL APO BF BC BR CH ESA ETS DAM GTF HA OoP SH STA STO TC TS VE WM mAP
Baseline 67.70 | 36.30 | 76.50 | 81.50 | 35.70 | 72.60 | 77.70 | 65.10 | 22.50 | 77.00 | 80.10 | 43.50 | 51.90 | 80.60 | 66.90 | 67.00 | 81.40 | 54.30 | 46.70 | 64.50 | 62.50
Ours (w/o -S) | 63.00 | 43.40 | 71.80 | 81.60 | 38.20 | 76.10 | 79.70 | 67.40 | 27.60 | 78.70 | 80.20 | 4530 | 52.80 | 80.90 | 68.00 | 68.60 | 81.50 | 55.70 | 47.50 | 64.70 | 63.60
Ours (w/o -R) | 63.10 | 46.50 | 72.00 | 81.50 | 38.40 | 72.60 | 79.50 | 67.40 | 27.80 | 78.20 | 79.80 | 45.80 | 55.00 | 80.90 | 70.10 | 69.50 | 81.50 | 54.50 | 47.80 | 65.80 | 63.90
Ours 69.60 | 51.30 | 74.90 | 81.50 | 42.60 | 77.60 | 80.20 | 70.90 | 31.90 | 77.70 | 80.80 | 47.50 | 57.30 | 80.90 | 72.10 | 70.30 | 81.50 | 59.20 | 50.00 | 66.00 | 66.20
All methods adopt “3x™ training schedule and use R-101 as backbone. The best result is highlighted in bold.

Fig. 6. Visualization comparison of sampling for extreme scale and as-
pect ratio objects with different label assignment strategies. (a) Ground-truth.
(b) ATSS. (c) SALA (w/o -T). (d) SALA.

When combining all components, we can achieve 66.20% and
39.10% APsqp and AP75, as shown in the last row of Table II. It
is worth noting that mAP5¢.95 achieves optimal performance,
with 4.48% improvements compared to the baseline. Simi-
larly, we conduct ablation experiments on the FAIRIM-v1.0
dataset to fully demonstrate the robustness of each module. In
addition, in order to introduce the improvements of different
categories, more detailed experimental results for each category
are provided in Table III. The improvement contributions of each
component are discussed in detail as follows.

1) Effect of SAS: The core of our proposed SALA is the SAS,
which resolves the problem of insufficient sampling of objects,
especially those with extreme aspect ratios. Fig. 6 provides
the assignment results of different label assignment strategies.
Specifically, Fig. 6(a) illustrates example objects used for model
training in the remote sensing images. As shown in Fig. 6(b),
samples of the ATSS strategy are only clustered in the central
area of the object. As a result, the model ignores edge features at
the ends of the large aspect ratio objects, leading to poor perfor-
mance in angle and width/height regression. Therefore, the two
end features of extreme aspect ratio objects are ignored by the
model, resulting in poor performance in the regression process of
orientation and aspect ratio. As shown in Fig. 6(c), the proposed
SAS method controls the sampling area by dynamically fitting
the shape of the elliptical region, making it more suitable for
oriented object detection tasks.

As shown in Table III, the proposed SAS strategy improves
mAP by 1.10% compared to the baseline method, especially for
objects with extreme aspect ratios such as APO, DAM, HA, and
OP, which increase by a large margin. Meanwhile, for multiscale
objects such as BR and CH, the improvements are 2.50% and
3.50%, respectively. However, although the SAS strategy can
achieve better distribution under extreme shape conditions, it
damages the sampling effect of small objects like APL and

Mean Number of positive samples
90°

W Baseline
W Ours(w/ -S)

e Baseline
m— Ours(w/-S)

Mean Number of positive samples

25 50 15
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Aspect Ratio

(a) (b)

175 200

Fig. 7. [Illustration of sampling results of MaxIoU and SALA strategy.
(a) Imbalanced angles sampling. (b) Imbalanced aspect ratios sampling.

slightly reduces accuracy. We speculate that the SAS strategy
restricts the sampling region when selecting candidate samples,
resulting in insufficient positive samples for small-scale objects,
which may hinder the model’s detection accuracy.

In terms of quantity, as shown in Fig. 7, the SALA strategy
effectively alleviates the problem of positive sample imbalance
in sampling tasks with arbitrary orientation and extreme aspect
ratio. Regarding angles, as the model adopts long edge defi-
nition, the angle 6 € [-F, ‘%’“] Hence, as shown in Fig. 7(a),
we count the number of positive samples for each angle of
the MaxIoU and SAS strategies (rounded up every 5 degrees
interval), and then expand the number of positive samples for
the corresponding angle. As shown in Fig. 7(b), when the aspect
ratio is greater than 10, there is a significant improvement in the
number of positive samples.

2) Effect of TCM: Based on SAS module, the proposed TCM
module alleviates the problem of insufficient sampling for ob-
ject with extreme scales. Although the SAS module alleviates
the sampling imbalance problem of arbitrary orientation and
extreme aspect ratios, the inherent flaw of this strategy leads to
unfriendly detect performance towards small objects.

As shown in Fig. 6(d), the proposed TCM method dynami-
cally weights the threshold of small objects to increase learning
positive samples. In terms of quantity, as shown in Fig. 8(a),
when the scale metric benchmark scale is less than 5, the number
of positive samples sharply decreases. It is worth noting that the
metric scale is processed by logarithmic function to be applied
to different datasets. The above issues have been discussed in
Section I, and our optimized results are shown in Fig. 8(b). In
Table II1, it can be seen that compared to the SAS module, the
TCM module has improved the detection accuracy of small-scale
objects in VE, STO, and WM by 0.30%, 0.90%, and 0.90%,
respectively.

3) Effect of Anchor Settings in the SALA: Anchor settings
significantly influence the effectiveness of label assignment
strategies. To assess this impact, we conduct experiments
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Fig. 8. [Illustration of SAS strategy being unfriendly to small objects.
(a) Imbalanced scale sampling. (b) Comparison of sampling results with or
without the TCM module.

TABLE IV
RESULTS OF DIFFERENT BASELINE AND ANCHOR SETTINGS ON THE
HRSC2016 DATASET
Baseline MaxIoU ATSS SALA  Anchor | mAP
v 9 61.90
Rotated RetinaNet [51] v o 85.30
v 9 85.60
v 1 88.90
v 1 80.00
S2A-Net-C [10] v 1 89.10
v 1 89.70

Airplane

Bridge

(b)

Fig. 9. Heatmaps visualization with different label assignment strategies. (a)
Ground Truth. (b) Baseline. (c) ATSS. (d) SALA. (e) SARFA-Net.

on the HRSC2016 dataset using Rotated RetinaNet [51] and
S?2A-Net-C [10] as baselines. To ensure a fair comparison,
all experiments are conducted under identical conditions. As
shown in Table IV, under the Rotated RetinaNet with MaxIloU
and 9 anchors per position, we achieve the mAP of 61.90%.
Notably, ATSS and SALA, with the same settings, demonstrate
accuracies of 85.30% and 85.60%, respectively. It is worth
mentioning that when reducing the number of anchors to one
per position, SALA’s accuracy improves by 3.30%. Experiments
show the importance of strategically utilizing predefined anchors
and selecting high-quality samples without relying on excessive
anchor points.

To further demonstrate the effectiveness of the SALA strategy,
we present the class-discriminative heatmap in Fig. 9, which
compares the effects of different label assignment strategies.
As shown in Fig. 9(a) and (b), ATSS tends to overemphasize
the central region of objects, hindering its ability to learn suffi-
cient features and accurately represent orientation information,
especially for objects with large aspect ratios, such as harbors
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TABLE V
COMPARISON OF DETECTION RESULTS WITH DIFFERENT CONVOLUTION
MODULES ON THE DIOR-R DATASET

Methods APL  APO HA STO TC 5-mAP  mAP
Conv 67.70 3630 43.50 67.00 81.40 59.18 62.50
DCN 63.10 3620 4480 6840 81.50 58.80  62.90
AlignConv 63.00 4350 4650 69.90 81.50 60.88 64.60
RFAM (Ours) | 71.10 4850 47.20 70.30 86.90 64.80  65.80

5-mAP indicates the performance of the categories listed. The best result is highlighted in bold.

High

2
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Fig. 10. Heatmaps visualization with different feature alignment strategies.

and bridges. In contrast, Fig. 9(b) and (d) illustrate how SALA
effectively focuses on and extracts edge features of objects with
extreme scales, making it more suitable for remote sensing
oriented objects. When the 7 value is dynamically adjusted,
the model can evidently acquire more comprehensive target
features compared to a fixed 7 of 0.5. By comparing Fig. 9(d)
and (e), we observe that the edge information of aircraft becomes
clearer, while the edge features of bridges are more prominent.
This enhancement reflects a better representation of orientation
information and demonstrates the effectiveness of RFAM in
extracting more discriminative contextual information.

4) Effect of RFAM: Table V compares the performance of
different convolution modules replacing the standard convo-
lution in S?A-Net-C [10]. Our proposed RFAM achieves the
highest accuracy for both 5-mAP and mAP, reaching 64.80% and
65.80%, respectively. Notably, RFAM surpasses all compared
methods in detection accuracy across five representative object
categories. Compared with baseline, for objects with large aspect
ratios like APO and HA, we observe significant improvements
of 12.20% and 3.70%, respectively. In addition, for small-scale
objects like STO, we achieve gains of 3.30%. Given the inherent
background noise of airplanes, flexible sampling points are
crucial. Compared to the AlignConv, our approach improves
mAP for APL by 8.10% and achieves notable gains of 5.40%
and 5.00% for large-scale TC and APO, respectively.

To further demonstrate the effectiveness of the proposed
RFAM, we employ a gradient-based heatmap to visualize
the feature maps of detectors with different alignment strate-
gies (Fig. 10). As evidenced in the 1 row of Fig. 10(b),
the fixed convolution kernel in standard convolution struggles
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TABLE VI
EVALUATION OF USING VARIOUS RATIOS FACTOR 7) IN SALA STRATEGY ON
THE DIOR-R DATASET

n 100 075

mAP  66.00 66.10
The best result is highlighted in bold.

0.50
65.90

0.25
65.60

dynamic
66.20

to capture slender objects’ features compared to DCN-based
methods [Fig. 10(c)—(e)]. This is because standard convolution
can only focus on features at fixed positions, whereas DCN-
based methods offer greater flexibility for feature extraction.

While DCN can capture relatively complete object features
[Fig. 10(c)], it also introduces background noise (e.g., dam).
A key limitation of DCN is its inability to incorporate objects’
direction information, leading to suboptimal high-precision po-
sitioning performance. Conversely, AlignConv utilizes more
flexible feature sampling points [Fig. 10(d)], which reduces
background interference while maintaining adequate feature
learning. However, small objects (e.g., airplane) benefit from
additional contextual features for enhanced learning, whereas
slender objects require precise localization to achieve high-
precision boundary detection. As shown in Fig. 10(e), RFAM
enables robust and aligned localization feature extraction for
both slender and small objects.

D. Evaluation of Hyperparameters

1) Ratio Factor n: The ratio factor 7 is introduced into the
SALA strategy to ensure the quality of sample selection by
controlling the distribution of samples. As shown in Table VI,
different values are tested to seek the optimal value. We can see
that when 1 = 0.25, the sampling range is small enough to avoid
noise, and the mAP reaches 65.60%. As 7 increases, the detec-
tor can learn more information from the selected high-quality
samples, thus improving detection performance and reaching a
peak of 66.10% when 1 = 0.75. Based on the above discussion,
we adaptively set the value of 7 based on the object’s shape.
From Table VI, it can be observed that mAP achieve its peak
values when using the detector with adaptive 7, which proves the
effectiveness of our proposed adaptive method and demonstrates
that the key to improving detection performance through spatial
assignment is to obtain more positive samples while reducing
the effect of noise.

2) Ratio Factor «: The scale factor « is introduced in the
RFAM to control the expansion coefficient to determine the
initial sampling positions of the anchor. Because we have added a
set of learnable offsets, the sampling positions of the convolution
kernels can be adaptively adjusted. As shown in Table VII,
different values are tested to find the best value, and the im-
pact of various factors is shown. When « < 1, the sampling
positions are reduced to focus on internal features, which is
not friendly for obtaining edge features of objects with large
aspect ratios (e.g., BR). As a increases, the detector can capture
more information from higher-quality context features, so the
performance increases and reaches its peak when o = 1.1. Since
invalid background information interference needs to be consid-
ered, the performance begins to decline when the threshold is
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TABLE VII
ANALYSIS OF DIFFERENT HYPERPARAMETER o« OF RFAM
ON THE DIOR-R DATASET
@ APL  APO BR STO VE WM | 6-mAP  mAP
0.8 | 6290 51.60 40.90 5630 4870 6590 | 52.55 65.90
0.9 | 63.10 49.70 4140 56.60 48.70 65.70 52.52 65.40
1.0 | 63.10 50.60 41.60 56.70 48.80 6590 52.78 66.10
1.1 | 69.60 5130 42.60 57.30 50.00 66.00 54.47 66.20
1.2 | 63.00 49.10 42.10 56.70 49.00 65.70 52.60 65.50
1.3 | 67.20 5240 41.60 5650 48.90 65.60 53.70 66.00

6-mAP indicates the performance of the categories listed. The best result is highlighted in bold.

further increased (e.g., STO, VE, and WM). Considering the
similarity of the DOTA dataset distribution to that of DIOR-R,
it is reasonable to set the weight parameter o of RFAM to 1.1.
However, for HRSC2016, which contains more objects with
large aspect ratios, setting « to 1.3 is more appropriate.

E. Comparison With State-of-the-Art

In this section, we assess the robustness and superiority of
our SARFA-Net by evaluating its performance on five challeng-
ing remote sensing datasets for oriented object detection and
comparing it with other state-of-the-art models.

1) Results on DIOR-R Dataset: We compare the results
of different methods on the DIOR-R dataset in Table VIII.
Specifically, based on S2A-Net [10], our proposed SARFA-Net
improves mAP by 2.68%. Our method demonstrates superior
detection performance in most categories, especially with ex-
tremely small and aspect ratio objects such as APO, TS, and
VE, achieving the best results. For challenging categories like
APO, HA, and VE, we achieved significant mAP gains of 3.07%,
4.43%, and 1.41%, respectively. Compared with other dynamic
label assignment methods, ATSS [16] utilizes statistical results
to guide sampling, which is initially developed for object detec-
tion in natural scenes. We adapt it for oriented object detection in
remote sensing and obtain 1.70% mAP improvements compared
with Rotated ATSS [16], as shown in Table VIII. SASM [24] en-
hances the model’s ability to learn objects with large aspect ratios
by setting dynamic thresholds. However, it achieves a 6.39%
lower mAP compared to our model. Specifically, exemplified
by APO, BR, and SH with large aspect ratios, SARFA-Net
achieves mAP improvements of 5.27%, 13.19%, and 2.28%,
respectively. Some qualitative detection results of SARFA-Net
are shown in Fig. 11. From the cases, our method performs well
on oriented objects in remote sensing images, even with extreme
aspect ratios and scales.

2) Results on DOTA-V1.0 Dataset: The comparison of our
method with other state-of-the-art methods is presented in
Table IX. As shown, our method achieves 75.66% and 75.69%
w.r.t mAP based on R-50 with FPN and R-101 with FPN, re-
spectively, which outperform other state-of-the-art methods. Re-
markably, our method also obtains the best results in some very
challenging categories, such as BD, TC, and SBF. Compared
with the well designed 2-D Gaussian distribution of GGHL [49]
(D-53 means DarkNet53 [63]), we only use an intuitive 2-D
ellipse to assist positive sample sampling, achieving a mAP
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TABLE VIIT
COMPARISONS WITH THE ADVANCED ORIENTED DETECTORS ON DIOR-R DATASET

Methods APL [ APO | BF [ BC | BR | CH | ESA [ ETS [DAM [ GF [ GTF | HA [ Oop [ sH [ STA [ STO [ TC [ TS | VE [ WM [ mAP
Two-stage

Gliding Vertex [42] 6267 | 38.56 | 7194 | 8120 [ 37.73 | 7248 | 78.62 | 69.04 | 22.81 [ 77.89 | 82.13 [ 46.22 [ 54.76 | 81.03 | 74.88 | 62.54 | 8141 | 5425 [ 4322 | 65.13 | 6291
Rotated Faster RONN [53] | 66.52 | 46.80 | 7176 | 81.43 | 40.81 | 7825 | 7923 | 66.63 | 20.01 | 78.68 | 80.19 | 44.88 | 57.23 | 80.91 | 74.17 | 68.02 | 81.48 | 54.63 | 47.80 | 64.41 | 64.63
Rol-Transformer [12] 63.18 | 4433 | 7191 | 8126 | 4219 | 72.64 | 7930 | 69.67 | 29.42 | 77.33 | 82.88 | 48.09 | 57.03 | 8118 | 77.32 | 6245 | 8138 | 5434 | 4391 | 6630 | 6431
ReDet [14] 6322 | 44.18 | 7211 | 8126 | 43.83 | 7272 | 79.10 | 69.78 | 2845 | 78.69 | 77.18 | 4824 | 56.81 | 8117 | 69.17 | 6273 | 8142 | 5490 | 44.04 | 6637 | 6381
Oriented RCNN [54] 6331 | 43.10 | 7189 | 8117 | 44.78 | 72.64 | 8012 | 69.67 | 3378 | 77.92 | 83.11 | 4629 | 5831 | 8117 | 74.54 | 6232 | 8129 | 5630 | 4378 | 65.26 | 64.53
One-stage

Rotated RetinaNet [51] 59.54 [ 2503 | 70.08 | 8101 [ 2826 | 72.02 | 5535 [ 56.77 | 21.26 [ 6570 [ 7028 [ 30.52 | 4437 [ 77.02 [ 59.01 | 5939 [ 8118 [ 3843 [ 39.10 [ 61.58 [ 54.83
SASM [24] 6141 | 4603 | 7322 | 8204 | 2941 | 71.03 | 6922 | 5391 | 30.63 | 70.04 | 77.02 | 39.33 | 47.51 | 78.62 | 66.14 | 62.92 | 79.93 | 5441 | 40.62 | 6301 | 59.81
S2A-Net [10] 67.98 | 44.44 | 7163 | 8139 | 42.66 | 7272 | 79.03 | 70.40 | 27.08 | 7556 | 81.02 | 43.41 | 5645 | 8112 | 68.00 | 70.03 | 87.07 | 53.88 | SL.12 | 6531 | 64.50
R3Det [11] 6255 | 4344 | 7172 | 8148 | 3649 | 7263 | 7950 | 6441 | 27.02 | 77.36 | 77.17 | 40.53 | 5333 | 79.66 | 6922 | 61.10 | 8154 | 5218 | 43.57 | 64.13 | 6191
GWD [44] 6652 | 46.80 | 71.76 | 8143 | 40.81 | 7825 | 7923 | 66.63 | 29.01 | 78.68 | 80.19 | 44.88 | 57.23 | 80.91 | 74.17 | 68.02 | 81.48 | 54.63 | 47.80 | 6441 | 64.63
KLD [45] 69.68 | 28.83 | 7432 | 8149 | 29.62 | 7267 | 7645 | 63.14 | 27.13 | 77.19 | 7894 | 39.11 | 4218 | 79.10 | 7041 | 58.69 | 8152 | 47.78 | 44.47 | 62.63 | 6031
Rotated FCOS [55] 6231 | 42.18 | 7534 | 8132 | 3926 | 74.89 | 7742 | 68.67 | 2600 | 73.94 | 78.73 | 41.28 | 54.19 | 80.61 | 6692 | 69.17 | 8720 | 5231 | 47.08 | 6521 | 6321
Rotated ATSS [16] 6219 | 44.63 | 7155 | 8142 | 41.08 | 7237 | 7854 | 67.50 | 30.56 | 75.69 | 79.11 | 42.77 | 5631 | 8092 | 67.78 | 69.24 | 8162 | 5545 | 47.79 | 64.10 | 63.52
CFA [56] 6110 | 44.93 | 77.62 | 8467 | 37.69 | 7571 | 82.68 | 72.03 | 3341 | 7725 | 79.94 | 4620 | 5427 | 87.01 | 7043 | 6958 | 8155 | 5551 | 4953 | 6492 | 65.25
SARFA-Net (Ours) 69.60 | 47.70 | 7630 | 8140 [ 41.00 | 77.90 | 79.50 | 66.20 | 30.20 | 78.10 | 8110 | 47.20 | 57.50 | 88.00 | 71.80 | 69.90 | 8150 | 56.00 | 49.20 | 65.80 | 65.80
SARFA-Net* (Ours) 69.60 | 51.30 | 74.90 | 8150 | 42.60 | 77.60 | 8020 | 70.90 | 31.90 | 77.70 | 80.80 | 47.50 | 57.30 | 8090 | 72.10 | 70.30 | 8150 | 5920 | 50.00 | 66.00 | 66.20
SARFA-Net! (Ours) 7180 | 53.60 | 77.80 | 89.50 | 43.90 | 78.60 | 8740 | 71.20 | 37.30 | 79.00 | 8330 | 49.50 | 5830 | 8840 | 72.00 | 70.10 | 89.70 | 61.90 | 49.70 | 65.70 | 68.90

All methods default to relying on “3x™ training schedule and use ResNet-50 as backbone. * indicates ResNet-101 as backbone. t indicates random rotate data enhancement. Red and blue: Top two performances.
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Visualization of detection results on the DIOR-R dataset.

Fig. 11.

advantage of 3.14%. SCRDet [13] claims that feature informa-
tion and the number of anchors are two key factors affecting
the performance of small object detection. It uses the attention
mechanism Multi-Dimensional Attention Network (MDA-Net)
and adjusts the sampling step size to more effectively improve
the feature extraction of small objects in complex backgrounds.
However, for SV and SH, its mAP is 3.24% and 15.31% lower
than ours. STD [62] is based on stacked vision Transformer
blocks and uses separate network branches to predict the po-
sition, size, and angle of the bounding box, which is 2.15%
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mAP higher than our results. However, it uses HiViT-B [64] as
the backbone network, which consumes huge computation and
training costs.

Fig. 12 demonstrates our model’s ability to detect oriented
objects of varying scales and extremely aspect ratios, where
denoted by the red or green dotted line is the main region
of concern. Specifically, row 1 shows that our SARFA-Net
significantly outperforms the baseline in aligning objects with
large aspect ratios, which is attributed to enhanced learning
the edge features and flexible sampling positions. Compared to
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TABLE IX
COMPARISONS WITH THE ADVANCED ORIENTED DETECTORS ON DOTA-V1.0 DATASET

Methods Backbone | PL | BD [ BR | GIF [ sv | v [ sH [ 7c | BC | ST [ sBF [ RA | HA | SP | HC [ mAP
Two-stage

Oriented RCNN [54] R-50 89.23 | 7797 | 54.05 | 73.38 | 74.44 | 78.07 | 87.93 | 90.54 | 77.08 | 84.68 | 61.38 | 65.54 | 76.27 | 70.96 | 51.39 | 74.19
AOPG ([35] R-50 89.27 | 83.49 | 5250 | 69.97 | 73.51 | 8231 | 87.95 | 90.89 | 87.64 | 84.71 | 60.01 | 66.12 | 74.19 | 68.30 | 57.80 | 75.24
Rol Trans. [12] R-101 88.64 | 7852 | 43.44 | 7592 | 68.81 | 73.68 | 83.59 | 90.74 | 77.27 | 81.46 | 58.39 | 53.54 | 62.83 | 58.93 | 47.67 | 69.56
Gliding Vertex [42] R-101 89.64 | 85.00 | 5226 | 77.34 | 73.01 | 73.14 | 86.82 | 90.74 | 79.02 | 86.81 | 59.55 | 70.91 | 72.94 | 70.86 | 57.32 | 75.02
One-stage

S?A-Net [10] R-50 89.11 | 82.84 | 4837 | 71.11 | 78.11 | 7839 | 87.25 | 90.83 | 84.90 | 85.64 | 60.36 | 62.60 | 6526 | 69.13 | 57.94 | 74.12
R3Det [11] R-101 88.76 | 83.09 | 5091 67.27 | 76.23 | 80.39 | 86.72 | 90.78 | 84.68 | 83.24 | 61.98 | 61.35 | 66.91 70.63 | 53.94 | 73.79
SASM [24] R-50 87.51 80.15 | 51.07 | 70.35 | 7495 | 75.80 | 84.23 90.90 | 80.87 | 84.93 | 58.51 65.59 | 69.74 | 70.18 | 42.31 72.47
Rotated ATSS [16] R-50 88.94 | 79.80 | 48.71 | 70.74 | 7580 | 74.02 | 84.14 | 90.89 | 83.19 | 84.05 | 60.48 | 65.06 | 66.74 | 70.14 | 57.78 | 73.37
CFC-Net [57] R-101 89.08 | 80.41 | 5241 | 70.02 | 70.02 | 78.11 | 87.21 | 90.89 | 84.47 | 85.64 | 60.51 | 61.52 | 67.82 | 68.02 | 50.09 | 73.50
SCRDet [13] R-101 89.98 | 80.65 | 52.09 | 6836 | 6836 | 60.32 | 72.41 | 90.85 | 87.94 | 86.86 | 65.02 | 66.68 | 66.25 | 68.24 | 65.21 | 72.61
KLD [45] R-50 89.13 | 79.94 | 51.23 | 72.56 | 7824 | 7890 | 87.10 | 90.87 | 85.01 | 83.81 | 59.84 | 64.83 | 69.92 | 70.48 | 55.35 | 74.48
PSC [58] R-50 88.27 | 73.20 | 44.55 | 62.29 | 77.79 | 77.30 | 87.04 | 90.88 | 78.47 | 72.01 52.69 | 61.14 | 66.36 | 69.68 | 58.10 | 70.65
GGHL? [49] D-53 89.74 | 85.63 | 44.50 | 77.48 | 76.72 | 80.45 | 86.16 | 90.83 | 88.18 | 86.25 | 67.07 | 69.40 | 73.38 | 68.45 | 70.14 | 76.95
H2RBOX-v2F [59] R-50 89.45 | 80.72 | 5429 | 72.60 | 81.68 | 8398 | 83.44 | 90.88 | 86.11 | 86.04 | 64.77 | 69.42 | 76.38 | 79.64 | 65.08 | 77.97
RTMDet-tiny' [60] R-50 89.19 | 80.01 | 47.96 | 69.63 | 82.06 | 83.35 | 88.62 | 90.90 | 86.25 | 86.87 | 60.06 | 62.69 | 74.25 | 71.93 | 56.85 | 75.38
G-Rep [20] R-50 87.76 | 81.29 | 52.64 | 70.53 | 80.34 | 80.56 | 87.47 | 90.74 | 8291 | 8501 | 61.48 | 68.51 | 67.53 | 73.02 | 63.54 | 75.56
YOLO-v8 [61] D-53 84.90 | 64.00 | 3830 | 54.80 | 58.40 | 73.50 | 77.20 | 93.30 | 67.70 | 72.10 | 54.20 | 57.70 | 60.50 | 47.10 | 47.70 | 63.40
STD? [62] HiViT-B 89.15 85.03 | 60.79 | 82.06 | 80.90 | 85.76 | 88.45 | 90.83 87.71 87.29 | 73.99 | 71.25 85.18 | 82.17 82.95 82.24
SARFA-Net (Ours) R-50 89.06 | 8292 | 4996 | 71.60 | 77.56 | 81.10 | 87.72 | 90.88 | 85.02 | 86.03 | 62.05 | 66.94 | 7534 | 71.45 | 57.39 | 75.66
SARFA-Net (Ours) R-101 89.12 | 86.11 51.85 | 70.27 | 76.60 | 79.55 | 87.54 | 90.90 | 85.59 | 85.70 | 65.48 | 64.07 | 76.61 71.07 | 5497 | 75.69
SARFA-Nett (Ours) R-50 89.81 8524 | 57.08 | 77.57 81.06 | 83.08 | 88.86 | 90.86 | 84.90 | 88.73 | 72.11 71.11 79.29 | 78.19 | 73.53 80.09
SARFA-Nett (Ours) R-101 89.42 | 84.59 | 57.68 | 79.45 | 81.16 | 8523 | 89.20 | 90.79 | 83.92 | 88.06 | 68.81 | 69.14 | 79.35 | 7426 | 65.39 | 79.10
1 means multiscale training and testing. t indicates random rotate data enhancement. Red and blue: Top two performances.

Ours S*A-Net S*A-Net Ours
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Large aspect ratio object

Small object

Classification error
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Fig. 12.

S%A-Net, we improve the detection performance of objects with
extreme aspect ratios (e.g., missed detections and misalignments
of SHs and HAs, and a single BR being identified as multiple
objects). In addition, rows 2 demonstrates that the detection
performance of our method for tiny objects (e.g., missed de-
tection of STs and SVs). Densely packed objects can result in
false positives and misclassifications due to the ambiguity of

Hs | X Bs Pec

Detection results are visually compared on the DOTA-v1.0 dataset. The area surrounded by the red or green dashed line is the focus of attention.

semantic features. Different from some networks [65], [66] that
are specifically designed to extract fine-grained features, we use
RFAM to reduce the effect of erroneous semantic sampling.
As shown in row3, we reduce the false detection of LVs in
dense SVs and some misclassification problems (e.g., SHs on the
shore, HA is identified as SH). In addition, our method achieves
competitive mAP of 80.09% and 79.10% with R-50 and R-101



8878

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

TABLE X
PERFORMANCE COMPARISON WITH DIFFERENT STATE-OF-THE-ART METHODS ON THE HRSC2016 DATASET

Methods Rol Trans. [12] Gliding Vertex [42] R3Det [11] CSL [46] DAL [15] S2A-Net [10] SASM [24] SARFA-Net (Ours)
mAP 86.20 88.20 89.26 89.62 89.77 90.17 90.27 90.40
The best result is highlighted in bold.
TABLE XI

PERFORMANCE COMPARISON WITH DIFFERENT STATE-OF-THE-ART METHODS ON THE FAIR1IM-V1.0 DATASET

Methods  Gliding Vertex [42]  Rotated RetinaNet [51]  Faster R-CNN [67]  Rol Trans. [12]  Orinented R-CNN [54] = SARFA-Net (Ours)
mAP 29.92 30.67 31.18 35.29 45.60 46.34
The best result is highlighted in bold.
TABLE XII

Visualization of detection results on the HRSC2016 dataset.

Fig. 13.

backbones, respectively, through multiscale training and testing.
Generally speaking, the detection performance of R-101-FPN as
the backbone network is superior to R-50, but the results are the
opposite. We speculate that our network SARFA-Net possess
robust detection performance, which enables high-precision de-
tection using the resource-saving R-50.

3) Results on HRSC2016 Dataset: To further evaluate the
generalization ability of the proposed method, we further con-
duct experiments on the HRSC2016 dataset, and the results are
detailed in Table X. Notably, our method achieves a remarkable
90.40% mAP, which surpasses the comparative methods by a
large margin. The detection results on the HRSC2016 dataset,
as depicted in Fig. 13, depicting the powerful ability of our
proposed model for the objects with large aspect rations.

4) Results on FAIRIM-VI.0 Dataset: The FAIRIM-v1.0
dataset is a challenging multicategories dataset. As shown in
Table XI, the experimental results show that our model achieved
the best mAP of 46.34% compared with five other models, which
fully demonstrates the superiority of our model in multicate-
gories fine-grained detection tasks.

5) Results on UCAS-AOD Dataset: Cars and airplanes in
UCAS-AOD are usually small, distributed in any direction,
and surrounded by complex scenes. The results are shown in
Table XII. The proposed SARFA-Net achieves 90.10% mAP,
verifying the superiority of sample selection and the robustness
for small objects.

6) Efficiency Comparison: Comparison results of mAP (%),
FPS (img/s), FLOPS (G), and parameters (M) are also per-
formed on the DOTA dataset. All experiments are based on

COMPARISON WITH THE ADVANCED ORIENTED DETECTORS ON THE
UCAS-AOD DATASET

Methods Car Airplane  mAP
Rotated RetinaNet [51] 84.64 90.51 87.57
S2A-Net [10] 89.30 90.16 89.73
RIDet-Q [68] 88.50 89.96 89.23
RIDet-O [68] 88.88 90.35 89.62
Rotated Faster RCNN [53] 84.64 90.51 87.57
SASM [24] 89.56 90.42 90.00
Rol Trans. [12] 88.02 90.02 89.02
DAL [15] 89.25 90.49 89.87
Ours 89.50 90.60 90.10
The best result is highlighted in bold.
TABLE XIII

EFFICIENCY COMPARISON WITH DIFFERENT METHODS IN MAP (%), Fps
(TASK/S), FLOPS (G), AND PARAMETERS (M) ON THE DOTA-V 1.0 DATASET

Methods mAP  GFLOPs / FPS(img/s)  Parameters(M)
Faster R-CNN [67] 69.05 211.30/ 6.4 41.14
Rol Trans. [12] 74.61 22529 /4.4 55.13
Rotated RetinaNet [51]  68.43 21592/173 36.42
SZA-Net [10] 74.12 17248 /7.2 36.21
Ours 75.66 198.11 /5.8 39.22

The best result is highlighted in bold.

R-50-FPN, using a single L40 GPU with a batch size of 1. The
resolution of the input image is 1024 x 1024. Table XIII shows
the detailed experimental results of different methods. S>A-Net
requires 36.21M Parameters and 172.48 GFLOPs, achieving
74.12% mAP and 7.2 FPS. The proposed SARFA-Net achieves
75.66% mAP and 5.8 FPS. Compared with the baseline, the
computational cost of the proposed method is slightly higher
(39.22 Parameters versus 36.21 Parameters). It can be seen
that the proposed method can achieve better performance with
comparable computational cost.

7) Discussion: SALA 1is proposed to reduce the model’s
missed detection of specific objects by balancing the number of
positive samples. In terms of mAP indicators, although SALA
improves detection accuracy, it also has potential risks of mis-
detection. The edge features of large aspect ratio objects and
the contextual features of small objects often carry background
features in dense areas. For example, in the second row of
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Fig. 12 (left side), it can be clearly seen that some buildings
with similar features are still detected as STs; in the third row,
although LVs can be effectively detected in dense vehicles,
there are also SVs that is misdetected as LVs. Our RFAM
can extract complete alignment features through more flexible
sampling points, reduce the interference of target background
features. However, RFAM is not designed to address the above
problems, and the misdetection brought by SALA cannot be
completely eliminated. We speculate that the introduction of
redundant context information affects the detection effect. In
future work, we plan to add some attention mechanisms to obtain
appropriate and sufficient context information to further improve
the performance.

V. CONCLUSION

In this article, a novel SARFA-Net is presented for the
accurate AOOD in RSIs, which incorporates the SALA and
RFAM. SALA, centered on SAS and TCM, alleviates the issue
of insufficient positive samples in remote sensing images by
dynamically setting thresholds based on suitable, continuous
multilevel feature maps. In addition, RFAM addresses the issue
of feature misalignment between anchors and GTs. Extensive
experimental results demonstrated the effectiveness of our pro-
posed model and the superiority compared with state-of-the-arts.
In addition, the oriented object detection model SARFA-Net also
has the prospect of being applied to natural scene text detection,
lesion detection in medical images, and obstacle detection in
intelligent driving.
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