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ABSTRACT Sand and dust storms significantly challengemicrowave andmillimeter-wave communications,
particularly in arid and semi-arid regions. Various models have been developed to predict attenuation caused
by these storms theoretically and empirically based on two meteorological parameters, namely visibility
and humidity. However, these models are found unable to predict most of the attenuation measurements.
This study presents a hybrid Machine Learning (ML) model that predicts dust storm attenuation for 22 GHz
terrestrial links using meteorological data. The received signal levels were measured for a 22 GHz link
over a month in Khartoum, Sudan. The visibility, humidity, atmospheric pressure, temperature and wind
speed were also monitored simultaneously by Automatic Weather Station (AWS). The proposed model
incorporates XGBoost for feature selection and combines Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) layers to capture both short-term and long-term dependencies in meteorological data.
The results demonstrate a strong correlation between meteorological parameters and dust storm attenuation.
Themodel’s performance is validated against the measured data at 22 GHz, outperforming existing empirical
and theoreticalmodels. TheRMSE for the proposedmodel is 0.07, while all existing theoretical and empirical
models are higher than 0.25. Furthermore, the proposed model demonstrates significant enhancements over
the available MLmodel for dust attenuation prediction. This hybrid ML approach offers a more accurate and
robust solution for predicting microwave and millimetre wave attenuation during dust storms, enhancing the
reliability of communication systems in affected regions.

INDEX TERMS Dust storm attenuation, microwave propagation, meteorological parameters, terrestrial
communication, machine learning, XGBoost, LSTM, GRU.

I. INTRODUCTION
Severe weather phenomena known as sandstorms (haboob)
are frequently seen in dry semi-arid and nearby arid areas.
The prevalence of sandstorms is dependent upon both human
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activity and natural climate. Dust storms are common inmany
parts of the world, such as North Africa, the Middle East,
Southwestern North America, the Northwest Chain, and arid
parts of India [1].

Dust and sand storms result from temperature and air pres-
sure differences between tropical regions with warm climates
and high-altitude regions with cold climates. Strong winds
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produced from these differences may cause sand and dust
particles to be lifted into the skies. The wind speed is directly
related to the quantity of sand and dust particles the wind
carries. Additionally, the relative humidity that is accom-
panied by the presence of abundant water resources and
verdant vegetation along the wind’s path rises. Dust storms
are therefore complex phenomena involving a wide range of
atmospheric elements. In recent studies, it has been extrap-
olated that Sudan and American dust storms often appear
in the wet season, followed by thunderstorms. Whereas dust
storms in other parts of the world appear frequently in the dry
season [1], [2].

Dust storms have wide impacts on human health, trans-
portation and communication systems. The risks to human
health include respiratory and cardiovascular problems while
transportation systems face hazardous driving conditions,
long delays or cancellations of flights and infrastructure dam-
age. Communication systems may suffer from severe signal
attenuation which may break the link during the storm [3].
Recently, migration to the 5th and 6th generations of mobile
communication has provided high bandwidth relying on mil-
limeter waves. Previously, dust storm intensity was measured
by dust concentration in cubic meters which was difficult to
measure precisely. Fortunately, in recent years dust storms
can be measured with visibility reduction. Moderate dust
storms are classified with optical visibility ranging from
1000 m to 500 m, while a severe dust storm is when the
visibility is less than 500 m [3], [4].
Relative humidity has been observed to accompany sand

and dust storms based on the currently available literature.
The moisture content of dust’s dielectric constant can be
directly impacted by an apparent shift in relative humidity
during a storm, which will significantly reduce the signal
power because of modifications to the properties of the dust
particles. Elsheikh et al. found that during a dust storm rel-
ative humidity increases from 20% to 70%. The dramatic
increase in relative humidity has directly affected the dust par-
ticle dielectric constant and consequently degraded the signal
significantly [3]. Moreover, Elsheikh et al. have studied the
effect of the humidity on sand and dust storm attenuation
prediction. Humidity was observed to be higher during the
dust storm events [3]. The available models are used to incor-
porate the effect of the humidity in the dielectric constant.
The predicted attenuation using humid dielectric constant is
much higher than the predicted attenuation using dry dust
conditions. Eltahir et al. concluded from measurement that
dust particles have irregular shapes [5]. Musa et al. have
discussed the effect of canting angle on signal attenuation
and cross-polarization during the dust storm.Wind turbulence
during storms also affects the orientation angle of falling dust
particles which describes the orientation of a particle’s axis
of symmetry (or revolution). Falling dust particles in the air
may be subjected to wind shear and turbulence, which could
cause canting angles and oscillations. However, A. Musa
et al. have attempted to model these effects by relying on

approximations; the actual dust particle has an irregular
shape, which is difficult to model [6]. In addition, the
effect of rapid change in temperature and atmospheric pres-
sure accompanied by the dust storm on signal attenuation
has not yet been studied [7]. Shamim et al. have applied
ML techniques using data measured over one month. Their
machine-learning prediction model used all meteorologi-
cal features to provide good agreement. Furthermore, they
employed Pearson’s Correlation Coefficient (r) to evalu-
ate the relationship between meteorological parameters and
microwave signal attenuation. Their analysis highlighted
the significance of incorporating multiple input features to
enhance the accuracy of predictions for microwave sig-
nal attenuation [8]. Dust storms in Khartoum significantly
affected the received signal level. These slow-moving, tur-
bulent events disrupted weather stations and communication
links, though parameters generally returned to normal after-
ward [7]. Signal drops were aligned with changes in pressure,
visibility, and temperature, while wind speed and humidity
exhibited opposite trends. Visibility and humidity were key
factors, with the latter altering the properties of dust particles.
Shamim et al. [8] emphasized the importance of incorporating
multiple meteorological features to improve the accuracy of
microwave signal attenuation predictions.

A recent research endeavor has explored the impact of sand
and dust storms on electromagnetic wave propagation within
communication networks. The results presented a statistical
model correlating attenuation, frequency and visibility, uti-
lizing NASA data dedicated to the Gulf region. The study
compared the attenuation effects caused by sandstorms with
those from rain and gaseous absorption, offering valuable
insights into how various atmospheric conditions influence
communication network performance [9].

From the available literature, prediction models can
be classified into mathematical, empirical and machine-
learning models. Mathematical models are based on certain
assumptions to ease the complex computation of signal
propagation based on Maxwell’s equations analytically or
numerically [10], [11], [12], [13], [14]. Two empirical mod-
els have been developed based on long-term measurements.
These models are the first models to investigate and incor-
porate the relative humidity into the attenuation prediction
formula [3], [5], [14]. Despite significant progress in predict-
ing microwave signal attenuation due to dust and sandstorms.
However, many existing models still face limitations. Tra-
ditional empirical and mathematical models, often rely on
simplifying assumptions that hinder their ability to fully cap-
ture the complex atmospheric interactions involved. These
models typically struggle to account for rapid fluctuations
in temperature, atmospheric pressure, humidity, wind speed
and the irregular shapes of dust particles, leading to inaccura-
cies in predicting attenuation. While some empirical models
attempt to incorporate humidity and other meteorological
factors, they lack the dynamic adaptability needed for more
precise predictions.
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ML model improves the prediction of micro- and mil-
limeter wave attenuation by effectively capturing complex
relationships within meteorological data and signal attenu-
ation. Its capability to process high-dimensional data and
adapt to new information enhances accuracy and provides
valuable real-time insights, making it particularly suited for
telecommunications applications. For time-series data, where
data points are ordered and dependent on previous time
steps, machine learning models must consider the temporal
relationships between observations. Recurrent Neural Net-
works (RNNs) are particularly useful for such tasks. More
advanced versions of RNNs, like LSTM and GRU networks,
are designed to capture these dependencies by maintaining
a memory of past data points, making them effective in
sequential prediction tasks.

In recent years, many studies have applied deep learning
techniques to improve the performance of time-series predic-
tions in complex domains [15], [16]. Traditional models often
struggle to capture long-term dependencies in sequential data.
For example, early traffic prediction models relied on simple
time-based data, such as past speed or congestion levels from
the previous few seconds, to predict future traffic states [17].
However, these models were limited in their ability to deter-
mine which past states were most relevant, leading to sub
optimal predictions.

To address this limitation, Fernandes et al. [18] intro-
duced combined LSTM networks for traffic flow forecasting,
demonstrating that LSTMs can effectively predict traffic
flow for multiple future time steps by addressing key model
aspects such as input features and time frames. Haque
et al. [19] demonstrated that hybrid models like GRU-LSTM
outperform single-layer models in high-resolution tempera-
ture forecasting by capturing both short-term and long-term
trends, with GRU proving consistently robust across diverse
locations. Similarly, Hossain et al. [20] combined convolution
neural networks (CNN), GRU, and fully connected neural
networks for wind energy generation forecasting, demon-
strating that hybrid architectures can effectively capture both
short-term fluctuations and long-term trends. The proposed
approach outperformed traditional models such as neural net-
works (NN), RNN, and LSTM, achieving significantly higher
performance in short-term wind power predictions.

These results underscore the strength of LSTM and
GRU models in managing complex, nonlinear, and high-
dimensional data, making them powerful tools for time-series
prediction tasks across a variety of domains.

Shamim et al.’s study presented a machine learning
approach for predicting microwave signal attenuation dur-
ing dust storms, achieving some success but also facing
significant limitations [8]. However, their model relied on
a basic regression-based method, which struggled to cap-
ture the temporal dependencies in meteorological data, such
as the dynamic fluctuations in humidity and visibility over
time. Additionally, by including all available meteorologi-
cal features without adequate filtering, the model became

susceptible to noise, which ultimately diminished its predic-
tive accuracy. This underscores the need for more advanced
techniques that can better handle complex interactions among
features and temporal variations in the data.

This work contributes to the enhancement of micro and
millimeter wave attenuation prediction during dust storms
by introducing a hybrid ensemble machine learning model.
It integrates XGBoost for feature selection with LSTM
and GRU layers to effectively capture temporal patterns.
By focusing on critical meteorological variables such as
visibility, humidity, atmospheric pressure, temperature, and
wind speed, the model aims to provide more accurate and
robust predictions of signal attenuation, particularly in arid
regions often impacted by dust and sandstorms. This hybrid
ensemble ML approach addresses the limitations of prior
empirical andMLmodels, improving prediction performance
through advanced pre-processing and adaptive learning tech-
niques. As a result, it presents reliable attenuation predictions
based on meteorological and signal attenuation data, further
enhancing our understanding of microwave signal behavior
in challenging atmospheric conditions.

The remaining sections of this paper are organized as
follows: Section II details the experimental methodology,
including the data collection process, data pre-processing
techniques, and the ML work flow. Section III presents the
correlation analysis between meteorological parameters and
microwave signal attenuation, followed by the ML model’s
training, validation, and test results for the proposed predic-
tion. Furthermore, provides an in-depth discussion, compar-
ing the proposed hybridmodel’s performance against existing
models, highlighting its strengths in handling sequential data
and feature selection. Finally, Section 4 concludes the study
and outlines possible directions for future research.

II. METHODOLOGY
This section presents the proposed methodology for predict-
ing microwave signal attenuation using a hybrid XGBoost,
LSTM and GRU model. The methodology begins with Data
Measurement, detailing the collection of meteorological data
and the setup of the communication link. Following this,
we describe the process of Signal Attenuation Calculation,
explaining how the signal loss during sand and dust storms
is computed. The methodology further covers data prepro-
cessing techniques, feature selection using XGBoost [21],
and the architectural design of the model, which integrates
LSTM [22]-GRU [23] layers for sequential learning. Addi-
tionally, we outline steps taken to handle missing data, nor-
malize features, and optimize model performance, ensuring
robust predictions under diverse meteorological conditions.

A. DATA COLLECTION
Figure 1 shows the location of the climate conditions mea-
suring equipment and a microwave link in Khartoum, Sudan,
based on the analysis of the one-year data collected from
May 31, 2014, to June 1, 2015 [3], it was found that nearly
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FIGURE 1. Location map of microwave links and automatic weather
station in Khartoum.

one-third of the dust and sand storms occurred between
June 1, 2014, and July 3, 2014. Consequently, only the data
from this specific period (June 1 to July 3, 2014) was utilized
for training the ML model. The microwave link, operated by
MTN’s mobile operator company, Sudan branch, is known as
the Maygoma-Kouku link. This link operates at a frequency
of 21.3 GHz with a path length of 2.8 km. Both antennas are
vertically polarized, with diameters of 0.6 meters, gains of
40.5 dBi, and a transmitted power of 11 dBm. The Maygoma
antenna has a height of 17 meters, while the Kouku antenna
is positioned at 24 meters. The link is situated about 5 km
from the Khartoum Airport meteorological station, which
is equipped with a Vaisala transmissometer for measuring
visibility within a range of 10 to 10,000 meters.

FIGURE 2. Block diagram explaining the process of data collection.

The microwave link specifications, including RX fre-
quency, antenna gain, and transmission power, are summa-
rized in Table 1.

The meteorological station also features sensors that mea-
sure relative humidity, atmospheric pressure, temperature,
and wind speed. The HMP155 sensor reliably tracks both
humidity and temperature, while the LT31 sensor measures
the visibility offering insights into fog and dust storm condi-
tions. Additionally, the WMT52 sensors monitor wind speed
and direction, providing a comprehensive view of the envi-
ronmental conditions. The Vaisala BAROCAP®PTB330

TABLE 1. Microwave link specifications.

provides ±0.10 hPa accuracy across a 500–1100 hPa range,
with ±0.1 hPa temperature dependency from -40◦C to
+60◦C.

The received signal level of the selected microwave link
was analyzed to compute the attenuation in dB/km, a crit-
ical parameter for assessing and predicting microwave link
performance. Figure 2 illustrates the overall data collec-
tion and synchronization process, combining meteorological
parameters from the Automatic Weather Station and signal
measurements from the terrestrial microwave link. Attenua-
tion is preferred over the received signal level as it provides
a more standardized and reliable measure for comparison.
During clear weather conditions, the received signal level was
observed to be -43.8 dBm, which was used as the reference
signal level for further calculations. The absolute values of the
received signal levels from the selected data were calculated
and subtracted from the reference level to determine the total
attenuation in dB. This total attenuation was then divided by
the microwave link length of 2.8 km to calculate the specific
attenuation in dB/km [3]. The collected meteorological data,
as summarized in Table 2, shows awide range of environmen-
tal conditions observed during the study. Optical visibility
ranged from 100 to 10,000 meters, with an average of
8,688.04 meters and a standard deviation of 2,461.87 meters,
reflecting varying dust storm intensities. The temperature
fluctuated between 25.1◦C and 44.7◦C, averaging 35.68◦C
with a standard deviation of 4.13◦C. Relative humidity values
spanned from 6% to 74%, with a mean of 21.57% and a
standard deviation of 13.87%, indicating substantial variabil-
ity in moisture levels. Atmospheric pressure ranged narrowly
between 958.5 and 967.8 Pa, averaging 963.8 Pa with a
small standard deviation of 2.12 Pa. Wind speed varied from
calm conditions to 35.57 knots, averaging 9.40 knots with a
4.08-knot standard deviation. Lastly, signal attenuation due
to dust storms ranged from 0.107 to 3.357 dB/km, with a
mean attenuation of 0.660 dB/km and a standard deviation of
0.192 dB/km, highlighting significant variations in the impact
of dust storms on signal strength.

B. DATA PREPROCESSING
Data pre-processing is a critical step that ensures the model’s
robustness and improves its predictive accuracy.

The following steps were carefully applied to prepare the
dataset:
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TABLE 2. Weather station specifications.

1) HANDLING OF MISSING DATA
Missing data values in the dataset were addressed using
linear interpolation. This technique estimates missing values
based on adjacent data points, preserving the continuity and
consistency of the time-series data. This method is essential
for sequential models like LSTM and GRU, which rely on
smooth temporal transitions for accurate forecasting. By fill-
ing in gaps without introducing biases, the model can better
learn from the full dataset, ensuring that no information is
lost.
Linear interpolation is based on the Straight-Line

equation (1):

y+ y1 =
(x − x1) .(y2 − y1)

(x2 − x1)
(1)

where (x1, y1) and (x2, y2) are the known data points. x is the
point at which you want to estimate the value of y. And y is
the interpolated value at x.

2) NORMALIZATION
All features were normalized using Standard Scaler as shown
in equation (2) to standardize the input data. This transforma-
tion ensures that each feature has a mean of 0 and a standard
deviation of 1, which is crucial for models involving gradient-
based optimization. Normalization prevents features with
larger numeric ranges (such as temperature or wind speed)
from disproportionately influencing the model’s training pro-
cess [24]. As a result, the model treats all input variables
equally, allowing it to converge faster and perform more
efficiently. One of the best performance normalization is

Standard Scaler formula is:

z =
x − µ

σ
(2)

where z is the normalized value, z is the original data point, x
is the mean of the data, and σ is the standard deviation of the
data.

The Standard Scaler formula is directly addresses the
problem of the features (temperature, wind speed, visibility
humidity, pressure) with varying numeric ranges by normal-
izing them to a common mean and standard deviation. This
normalization ensures that all features are treated equally by
the model, which is essential for gradient-based optimization
methods such as gradient descent. By normalizing data, mod-
els can achieve faster convergence, improved performance,
and more stable training processes.

3) DATASET SPLIT
The dataset was split into a 90% training set (35,140) and
a 10% test set (3,905), following best practices in machine
learning for evaluating model performance. This split allows
the model to be trained on the majority of the data while
reserving a portion for testing, thus ensuring the model is
evaluated on unseen data. This split is key for assessing the
generalization capability of the model, providing a realistic
estimate of its performance in real-world conditions.

4) CROSS-VALIDATION
To further ensure the robustness of the model and reduce
the likelihood of over fitting, k-Fold Cross-Validation (CV)
was applied [25]. This method divides the training data into
10 folds training the model on 9 folds while validating it
on the remaining fold. The process is repeated 10 times,
each time with a different validation fold. The final model’s
performance is averaged across all 10 iterations, providing
a reliable measure of how well the model performs across
different subsets of the data. CV significantly reduces bias
and variance in model evaluation, ensuring that the results
are not skewed by any particular dataset split [26], [27].

C. MODEL ARCHITECTURE
The proposed model is a hybrid ensemble that combines
XGBoost, LSTM, and GRU layers. This architecture was
specifically chosen for its ability to manage both fea-
ture selection and temporal dependencies, making it highly
effective for predicting microwave signal attenuation under
varying meteorological conditions. As shown in Figure 3,
the model begins with data preprocessing, where missing
values are handled through interpolation, and the data is nor-
malized to ensure consistent scaling across all features. The
preprocessed data is then passed to the XGBoost algorithm,
which ranks and selects the most significant meteorologi-
cal features, such as visibility, humidity, and temperature.
These selected features are input into a sequential model
that consists of an LSTM layer followed by a GRU layer,
both of which are used to capture the short-term and long-
term temporal dependencies in the data. The architecture is
designed for optimal efficiency and accuracy. Dropout layers
are applied after each recurrent layer to prevent over fitting,
and a final Dense layer with 100 units and the Rectified
Linear Unit (ReLU) activation function is used for the out-
put. The model is trained using the Adam optimizer with a
learning rate of 0.001, and performance metrics such asMean
Squared Error (MSE), Mean Absolute Error (MAE), and
RootMean Squared Error (RMSE) are tracked throughout the
training process, as shown in Table 3.

1) RATIONALE BEHIND THE MODEL
XGBoost is known for its exceptional performance in ranking
features by importance, making it ideal for feature selection
in complex datasets. XGBoost’s ability to assess the contribu-
tion of each feature to the model’s predictive power enables
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the identification of the most relevant variables, significantly
enhancing the model’s overall efficiency. By leveraging
XGBoost’s advanced gradient boosting algorithms, practi-
tioners can effectively identify and retain the features that
have the greatest impact on the target variable, thereby reduc-
ing the inclusion of irrelevant or noisy data that could hinder
model performance. This process of feature selection not only
simplifies the model but also improves its interpretability,
making it easier to understand the relationships between the
selected features and the predictions [28], [29].

The most significant meteorological factors which are vis-
ibility, humidity, temperature and wind speed are included
in the prediction model. This method reduces noise by
excluding irrelevant variables, leading to improved model
performance and faster computation. Furthermore, XGBoost
is highly efficient and scalable, handling large datasets
with ease while providing interpretable results about fea-
ture significance. This efficiency is crucial when working
with high-dimensional meteorological data, as it prevents
over fitting and ensures the model remains computation-
ally manageable. Meteorological conditions that influence
microwave signal attenuation are dynamic and evolve over
time, making LSTM and GRU layers ideal choices for
capturing these temporal relationships. LSTM layers are par-
ticularly good at learning long-term dependencies, where
past atmospheric conditions (such as prolonged humidity or
temperature changes) have lasting effects on signal attenu-
ation. GRU layers, while similar to LSTMs, offer a more
computationally efficient solution by simplifying the internal
structure, reducing the number of parameters while main-
taining comparable performance.This combination of LSTM
and GRU ensures that the model not only learns short-term
variations (such as sudden changes in wind speed or visibility
during a storm) but also captures longer-term trends (such
as gradual shifts in pressure or humidity) that could impact
signal strength.

The hybrid integration of XGBoost with LSTM and
GRU offers a theoretically advantage approach by lever-
aging the strengths of each component. XGBoost excels
in feature selection, isolating the most significant mete-
orological variables while reducing noise and improving
model interpretability. LSTM layers effectively capture long-
term dependencies in sequential data, such as sustained
humidity changes, while GRU layers handle short-term vari-
ations, like sudden drops in visibility or spikes in wind
speed, with greater computational efficiency. This syn-
ergy ensures a robust balance between accurate feature
extraction and temporal pattern recognition, outperforming
traditional machine learning models and hybrid architec-
tures like CNN-GRU or standalone LSTM-GRU combina-
tions, particularly in handling complex dynamic atmospheric
data [30].

As described in Algorithm 1, the overall model structure
combines the strengths of feature selection and temporal
learning to provide robust predictions of microwave signal
attenuation.

FIGURE 3. Schematic representation of the hybrid XGBoost-LSTM-GRU
model architecture for microwave signal attenuation prediction.

2) EXPERIMENTAL SETUP
The experiment setup involves the utilization of Keras (ver-
sion 2.14.0) [31] and TensorFlow (version 2.14.0) [32]
(version 2.14.0), both of which are integrated into the Visual
Studio Code (VSCode) environment. This configuration
facilitates a streamlined development process, allowing for
efficient model building and training. Keras [31] serves as a
high-level API for constructing neural networks, leveraging
Tensor Flow as its backend to perform the heavy lifting of
computations. By maintaining these specific versions, the
experiment aims to ensure compatibility and leverage the lat-
est features and improvements offered by these frameworks,
thereby enhancing the overall performance and reliability
of the ML models being developed. All data preprocessing
stages, model training, hyper parameter tuning, and model
evaluation were performed using this platform. Hyper param-
eters were selected using a grid search approach, testing
various combinations of learning rates, batch sizes, and acti-
vation functions to identify the optimal configuration for
the model. The results of this search informed the final
parameters used for training, ensuring a balance between
performance and computational efficiency.

To identify the most relevant features, XGBoost was used
for feature selection. The top-ranked meteorological features
were then fed into a sequential model, which integrated
LSTM and GRU layers for capturing temporal dependencies
in the data. This hybrid model architecture was designed
to capture both short-term variations (such as sudden drops
in visibility or spikes in humidity during dust storms) and
longer-term weather trends. The model was trained for

VOLUME 13, 2025 12559



E. A. A. Elsheikh et al.: Dust Storm Attenuation Prediction Using a Hybrid ML Model Based on Measurements

Algorithm 1 Hybrid XGBoost-LSTM-GRU for Signal
Attenuation Prediction

1) Input: Preprocessed meteorological dataset
2) Output: Predicted signal attenuation (dB/km)
3) Data Preprocessing: (a)

a) Handle missing data using linear interpolation.
b) Normalize features using Standard Scaler.
c) Split dataset into training (90%) and testing

(10%) sets.
d) Apply 10-fold CV to the training data.

4) Feature Selection (XGBoost): (a)
a) Train XGBoost model with hyperparameters:
· n estimators = 300
· learning rate = 0.1
· max depth = 10

b) Rank features based on importance and select
the most relevant meteorological variables.

5) Model Construction: (a)
a) Input selected features to an LSTM layer with

128 units.
b) Add a GRU layer with 128 units.
c) Apply Dropout (rate= 0.2) after each recurrent

layer.
d) Add a Dense layer with 100 units (ReLU acti-

vation) for output.
6) Model Training: (a)

a) Train the model using the Adam optimizer with
learning rate = 0.001.

b) Use MSE as the loss function.
c) Track MAE and RMSE during training.

7) Model Evaluation: (a)
a) Evaluate the model on validation and test sets

using MAE, RMSE, and R2 metrics.
b) Generate training and validation loss/error

plots across epochs.
8) Output: Predicted signal attenuation (dB/km) for the

test set.

100 epochs, with key performance metrics such as loss MSE,
MAE, and RMSE tracked at each epoch [33]. Hyper param-
eter tuning was conducted using a random grid search to
optimize the model [34], focusing on minimizing the loss
function.

The performance of the model was evaluated using several
regression metrics, which provided a detailed understanding
of how well the model predicted microwave signal attenua-
tion under varying meteorological conditions.

These metrics included:
Mean Absolute Error (MAE): This metric measures the

average magnitude of the errors in the predictions, providing
a straightforward interpretation of how close the predicted
values are to the actual values as shown in equation (3).

MAE =
1
nT

∑nT

i=1
|pi − ai| (3)

TABLE 3. Common specifications.

Mean Squared Error (MSE):MSE is used as the primary
loss function for the model. It calculates the average squared
difference between predicted and actual values, penalizing
larger errors more heavily as shown in equation (4).

MSE =
1
nT

∑nT

i=1
(pi − ai)2 (4)

Root Mean Squared Error (RMSE): The square root of the
MSE, RMSE is useful as it provides an error metric that is
on the same scale as the original target variable (signal atten-
uation). This metric is particularly useful when we want to
evaluate the model’s prediction errors in a more interpretable
way as shown in equation (5).

RMSE =

√
1
nT

∑nT

i=1
(pi − ai)2 (5)

Coefficient of Determination (R2): This metric measures the
proportion of variance in the target variable that is explained
by the model. A higher R2 value indicates that the model has
captured a larger portion of the variance in the data as shown
in equation(6).

R2 = 1 −

∑nT
i=1 (ai − pi)2∑nT
i=1

(
ai − ai

)2 (6)

where pi represents the predicted value, ai represents the
actual value and, nT number of training samples.

III. RESULTS AND ANALYSIS
In this section, we analyzed the performance of the pro-
posed hybrid XGBoost-LSTM-GRU model in predicting
microwave signal attenuation caused by adverse atmospheric
conditions such as dust and sandstorms. The evaluation pro-
cess involved 10-fold CV to ensure the model generalized
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well across the dataset and minimized overfitting. Tables 4, 5
and 6 provides an overview of the model’s performance met-
rics across all 10 folds, including MAE, MSE, RMSE, and
R2 for the training, validation, and testing sets. The Training
MAE values across the folds consistently remained at 0.020,
indicating that the model learned the underlying patterns of
the data without significant over fitting. The Training RMSE
values ranged from 0.030 to 0.032, with a high average R2 of
0.983, indicating that the model captured a large proportion
of the variance in the training data. Validation results showed
MAE values between 0.029 and 0.032, demonstrating that
the model was able to generalize well to unseen validation
data. The Validation RMSE values ranged from 0.056 to
0.087, with Validation R2 scores between 0.786 and 0.904,
indicating strong predictive performance even in the vali-
dation phase. In the Testing phase, the MAE values ranged
from 0.030 to 0.031, while the RMSE values ranged between
0.065 and 0.076. The Test R2 scores, which averaged 0.860,
further confirmed that the model consistently minimized pre-
diction errors and performed well on unseen test data. The
model was trained for 100 epochswith a batch size of 48 using
the Adam optimizer. As shown in the training metrics, the
training loss rapidly decreased during the first 10 epochs and
gradually stabilized around 0.001, while the validation loss
converged around 0.005. The consistent alignment between
training and validation losses indicates that the model effec-
tively learned the data patterns without over fitting. TheMAE
and RMSE values steadily declined across both the training
and validation sets, with final MAE values around 0.031 for
validation, demonstrating that the model’s predictions closely
matched actual values. Similarly, the RMSE values for the
training set converged to 0.031, and for the validation set
to 0.070, confirming that the model was well-optimized and
generalized effectively to unseen data. The results confirm
that the proposed model is suitable for predicting microwave
signal attenuation under varying atmospheric conditions.

The average training and validation results of the model
for MAE, MSE, and RMSE are shown in Figure 4 (a),
(b), and (c), respectively. To further validate the proposed
model, the Root Mean Square Error (RMSE) of the pre-
vious empirical and mathematical predictions was assessed
using the ITU-R P.311-14 method [14]. The results were
then compared with those of the proposed model for 22 GHz
millimeter-wave links, as presented in Table 8. The compar-
ison of performance metrics underscores the advantages of
the proposed model over existing empiricaland mathemati-
cal methods. Previous studies, such as those by Goldhirsh
et al. [32]. and Ahmed et al. [10], reported high RMSE
values exceeding 2, indicating substantial prediction errors.
In contrast, the proposed model achieved an RMSE of 0.070,
demonstrating significantly greater accuracy. Although mod-
els like those by Eltahir et al. [14]. accuracy. Althoughmodels
like those by Eltahir et al. [14]. and Elfatih et al. [3] had lower
RMSE values (0.22 and 0.26), they lacked comprehensive
evaluation metrics. Additionally, the proposed model’s R2

value of 0.860 further validates itsstrong predictive capability,

TABLE 4. Training results.

TABLE 5. Validation results.

highlighting its effectiveness in forecasting microwave signal
attenuation during dust storm

Additionally, in the ablation study, the proposed model
demonstrated strong performance across various metrics
compared to the only available ML model for predicting
attenuation during dust storms at 22 GHz, as shown in
Table 7. The comparison of performance metrics between
Shamim et al.’s model and the proposed hybrid model reveals
notable improvements in predictive accuracy.

The proposed model achieved a training MAE of 0.001,
an RMSE of 0.031, and an R2 of 0.983, significantly sur-
passing Shamim et al. [8] results, which included an MAE
of 0.0285, an RMSE of 0.0751, and an R2 of 0.847. During
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TABLE 6. Test results.

the validation phase, the proposed model also performed
well, recording a MAE of 0.005 and an RMSE of 0.071,
while Shamim et al. had a MAE of 0.0277 and an RMSE
of 0.0725. Although test metrics for Shamim et al. [8]
were not available, the proposed model continued to demon-
strate its effectiveness with a MAE of 0.005 and an RMSE
of 0.070.

Overall, the proposed model demonstrates good and con-
sistent performance, underscoring its value in predicting
micro and millimeter wave signal attenuation during dust
storms. These results further highlight the efficacy of the
proposed hybrid model, particularly its ability to capture
complex, time-dependent meteorological factors impacting
signal attenuation.

Advanced feature selection (XGBoost) and temporal mod-
eling (LSTM-GRU) contribute to the model’s good perfor-
mance over traditional methods. Moreover, incorporating
ensemble learning methods enhances the model’s adapt-
ability and ensures better generalization to new, unseen
data.

The developed hybrid XGBoost-LSTM-GRUmodel in this
study significantly improves predictions of micro- and mil-
limeter wave signal attenuation during dust and sandstorms.
By using XGBoost for feature selection, it effectively iso-
lates keymeteorological variables like visibility, temperature,
wind speed, and humidity, thereby reducing noise in high-
dimensional datasets. This targeted approach surpasses the
feature identification methods employed in previous ML
model-based studies [8], which often lack advanced tech-
niques like stepwise elimination. The model’s integration of
LSTMandGRU layers captures both long-term dependencies
and short-term variations of meteorological parameters and
their impacts on signal attenuation, enabling it to adapt to
rapidly changing conditions during dust storms.

FIGURE 4. Performance metrics (MAEW,RMSEand MSE) of the model.

Unlike traditional theoretical and empirical models that
struggle with the physical complex characteristics of dust
storms, this hybrid approach leverages machine learning’s
strengths to enhance predictive performance across diverse
atmospheric conditions. Overall, the proposed model offers
a robust framework for accurately modeling signal behavior
during extreme weather events, paving the way for future
research in this area. However this approach requires a large
number of real time measurement data for the region where
the model needs to be utilized. Data availability could be a
challenge for accurate prediction.
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TABLE 7. Performance comparison and ablation study of machine
learning models.

TABLE 8. Comparison of RMSE among empirical, mathematical, and
proposed models.

IV. CONCLUSION
Various models have been developed to predict attenuation
caused by sand and dust storms theoretically and empirically
based on two meteorological parameters, namely visibility
and humidity. However these models are found unable to
predict most of the attenuation measurements. The meteoro-
logical parameters and received signal strength of a 22 GHz
microwave link in Khartoum, Sudan, were concurrently

monitored over one month period. Variations in signal levels
were analyzed in relation to atmospheric pressure, visibility,
temperature, wind speed, and relative humidity. A hybrid
ensemble model combines XGBoost for feature selection
with LSTM and GRU layers for temporal learning was used
to predict the dust storm attenuation. The analysis shows a
strong correlation between meteorological parameters and
dust storm attenuation. The model’s performance is validated
against the measured data at 22 GHz. The RMSE for the
proposed model is 0.07, while that for all existing theoretical
and empirical models are varied from 0.22 to 2.84. This
hybrid machine learning approach offers a more accurate and
robust solution for predictingmicrowave andmillimeter wave
attenuation during dust storms, enhancing the reliability of
communication systems in affected regions. However this
approach requires a large number of real time measurement
data for the region where the model needs to be utilized.
Data availability could be a challenge for accurate predic-
tion. Future works will focus on expanding the dataset to
include different geographic locations, enhancing the thereby
improving the model’s ability to generalize to other envi-
ronmental conditions. Additionally, more advanced temporal
models, such as transformers, are planned to be explored to
further capture long-term dependencies.
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