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Abstract— Introduction: Cortico-muscular (CM) interac-
tions provide insights into the flow of information between
neural and motor systems. Reduced CM phase con-
nectivity has been linked to functional impairments in
clinical populations. Objective: This study aimed to deter-
mine whether similar reductions occur in individuals with
Parkinson’s disease (PD), characterized primarily by motor
impairments. Specifically, it aimed to characterize elec-
troencephalography (EEG) and electromyography (EMG)
power spectra during a motor task, assess CM phase
connectivity, and explore how an additional cognitive task
modulates these measures. Methodology: Fifteen individu-
als with early-stage PD and sixteen age-matched controls
performed an isometric knee extension task, a cognitive
task, and a combined dual task, while EEG (128 chan-
nels) and EMG (2x32 channels) were recorded. CM phase
connectivity was analyzed through phase coherence and
phase dynamics modeling. Results: The strongest CM
phase coherence was observed in the lower beta band
(12.5-15 Hz) over the Cz electrode and was significantly
higher in healthy controls compared to individuals with
PD during the motor task. The phase dynamics model
additionally revealed stronger directional coupling from
the Cz electrode to the active muscle, than in the reverse
direction, with less pronounced phase coupling in the PD
cohort. Notably, CM phase coherence exhibited distinct
scalp topography and spectra characteristics compared
to the EEG power spectrum, suggesting different mech-
anisms underlying Parkinsonian pathological beta power
increase and CM phase connectivity. Lastly, despite high
inter-individual variability, these metrics may prove useful
for personalized assessments, particularly in people with
heightened CM connectivity.

Index Terms— Cortico-muscular connectivity, dynamic
Bayesian inference, early-stage Parkinson’s disease, EEG,
EMG, isometric knee extension, motor-cognitive dual tasks,
phase coherence, phase dynamics model.

[. INTRODUCTION

ARKINSON’S disease (PD) is a neurodegenerative dis-
P order, characterized by a variety of non-motor symptoms,
such as cognitive decline, depression, and disturbance of sleep
[1], [2], but mainly by motor symptoms such as bradykinesia,
rigidity, and tremor [3], [4]. These motor symptoms have been
associated with enhanced beta-band (13-30 Hz) oscillations in
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the basal ganglia, cortico-basal ganglia loop and cerebral cor-
tex [9], [10], [11], [12], [13], [14], [15], [16]. This connection
is particularly evident in studies showing that both pharma-
cological interventions [17] and deep brain stimulation [18],
[19] effectively reduce the beta-band over-synchronization
in afferents to the motor cortex, and alleviate motor symp-
toms. Given the observed alterations in brain rhythms and
motor functioning, combined electroencephalography (EEG)
and electromyography (EMG) present a promising approach
for investigating functional alterations in PD and exploring
their potential as diagnostic tools.

Optimal screening tools for early diagnosis of PD are
still lacking. The presymptomatic phase of Parkinson’s dis-
ease pathology in olfactory structures and enteric nervous
system starts more than a decade before the onset of typi-
cal clinical manifestations and diagnosis [5], [6]. Currently,
patients are predominantly diagnosed using the Movement
Disorder Society Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [99], which primarily focuses on assess-
ing motor deficits. Even at the stages, where the motor
symptoms are already present, detection remains challenging,
with movement-disorder specialists encountering error rates
of approximately 20 % [6], [8]. For this reason, researchers
have been working to identify new, specific, and sensitive
biomarkers through direct measures such as magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
cerebrospinal fluid (CSF) analysis, and genetic studies [6].

The analysis of brain activity using combined EEG
and EMG has not yet been adopted in the diagnostic or
examination protocols for PD [6]. Both methods are cost-
effective, portable, and capable of recording activity during
movement. While EEG is limited in its capacity to measure
the activity of subcortical nuclei, some of which the PD
directly impacts, cortical regions are also indirectly influenced
by activity in these nuclei. The prefrontal association areas,
crucial for cognitive functions, are influenced by brainstem
nuclei via connections to the limbic loop centers. Additionally,
the degradation of the substantia nigra affects premotor and
motor areas by disrupting the nigro-striatal pathway, which
in turn affects the cortico-striatal pathway projecting to the
motor cortex [3], [7], [20], [21].

A combined EEG and EMG measurement assesses both
central and peripheral neural activities, facilitating the investi-
gation of their functional interactions during movement. It can
quantify the synchronization between sensorimotor cortical
areas and motor neuron pools, reflecting the cortico-spinal
interaction and central drive to skeletal muscles. In this study,
we aim to explore the CM connectivity in people with early-
stage PD, to determine whether detectable changes in CM
connectivity are present.

Various metrics and models have been developed to capture
the type, strength, and direction of cortico-cortical connectiv-
ity, such as phase-amplitude coupling [19], magnitude-squared
coherence [22], [23], phase coherence or phase locking value
[60], [61], [62], and autoregressive modeling techniques such
as Granger causality, directed transfer function [63], [64]
and (nonlinear) partial directed coherence [65], [66], [67].

Other methods include model-free methods that are based
on information theory, such as mutual information, transfer
entropy [68], [69], [70] or (time-frequency) maximal infor-
mation coefficient [71], [72]. Moreover, various methods for
assessing effective connectivity have been explored, where
the parameters of preselected models are estimated based
on empirical data. Notable examples of these methods are
dynamic causal modeling [73] and dynamical Bayesian infer-
ence [74], [75], [76].

One of the well-established connectivity measures for CM
connectivity is magnitude-squared coherence [22], [23], [24],
[25]. Strong CM magnitude-squared coherence has been
observed in the beta frequency range (13-30 Hz) between
different areas of sensorimotor cortex and active peripheral
muscles, predominantly during sustained voluntary contrac-
tions [23], [26], [27], [28], [29], [30], [31], [32], [33], [34].
Numerous studies have investigated CM connectivity using
magnitude-squared coherence, but the method has limitations.
These include its symmetry, which prevents assessing the
direction of connectivity between signals, and its linearity,
which fails to capture the complexity of the nonlinear senso-
rimotor system [59]. Moreover, magnitude-squared coherence
analysis can detect whether two processes exhibit oscillations
within the same frequency range, but cannot separate the
effects of amplitude and phase [61] or determine whether
these oscillations are independent or coupled [62], [78]. In
this study, we chose to evaluate functional connectivity within
the phase domain, as it enables direct exploration of tem-
poral relationships between neural signals [77] and leverages
the time-domain strengths of EEG and EMG methodologies.
Phase coherence or phase locking value can measure the
consistency of the phase difference between two signals over
time and across frequencies, giving additional insights into the
phase coupling or synchrony between signals. This has been
proposed as essential for processes such as perceptual binding,
long-range synchronization, or control of the excitability in
distant neuron groups [61], [79], [80], [81], [82]. Phase
analysis has already been used in examining CM interactions
[83], [84], [85], also using more general multi-spectral phase
coherence [86], [87], but we could not find any research on PD.

Additionally, we employ phase dynamics modeling to over-
come the symmetry limitation of phase coherence and its
inability to assess coupling directionality. We aim to model
the CM phase connectivity as a system of coupled phase
oscillators following the Kuramoto model [88], [89], of which
parameters are inferred via dynamical Bayesian inference [74],
[75], [76]. This method falls under effective connectivity
approaches, where a specified model directly explains the
causal dynamics [90]. It allows for a detailed definition of
the coupling functions between the signals and enables the
determination of the coupling direction between EEG and
EMG. The phase dynamics model describes a phase oscillator
and its rate of phase change, which is governed by the intrinsic
frequency. When coupled to other oscillators, the oscillator is
also influenced by their phases via coupling functions. By find-
ing the most influential coupling functions, we can characterize
the strength and nature of the signal coupling [91], [92]. The
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TABLE |

DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF PARTICIPANTS

People with PD Controls
Mean SD Mean SD
Age (years) 63.8 6.2 63.7 7.2
BMI 253 4.1 24.6 73
Years of Edu. 11.9 3.6 15.5 3.7
MoCA 27.1 1.6 27.3 1.7
UPDRS III 14.7 6.8 - -
UPDRS Total 27.5 15.9 - -

BMI: body-mass index, Edu.: Education, MoCA: Montreal Cognitive
Assessment Score, UPDRS: Unified Parkinson’s Disease Rating Scale.

simplicity and scalability of the phase dynamics model make
it well-suited for capturing the oscillatory activity commonly
observed in EEG and EMG signals. The method has been
previously applied to modeling cortico-cortical connectivity
[93], [94], [95], but its application to CM connectivity has not
yet been explored.

This study investigates CM phase connectivity in individuals
with early-stage PD and age-matched healthy controls during
an isometric knee extension task. Alongside the motor task,
participants also perform a dual-task condition involving a
cognitive, non-verbal -3 subtraction task, which has been
demonstrated to influence motor functioning [96], [97], [98].
Our objectives are to: characterize the EEG and EMG power
spectra, as well as CM phase connectivity, with a particular
focus on the beta-band; assess how the addition of a cognitive
task modulates these measures; and evaluate their potential as
biomarkers for diagnosis or rehabilitation.

[I. METHODOLOGY
A. Participants

A total of 22 people with an early diagnosis of PD
(Hoehn and Yahr stage I-II) have been recruited in the study,
together with 27 age and gender-matched healthy participants.
All patients with PD received anti-parkinsonian medications.
Motor performance in all participants was assessed by the
MDS-UPDRS scale [99], administered by an experienced
neurologist. In the final analysis of this study, data from 15
patients with PD (6 females) and 16 healthy participants (7
females) were included.

Several participants were excluded due to the unavailability
of data (some participants did not complete this part of the
study), or excessive noise in the collected data. The average
and standard deviation of the body-mass index, years of
education, the Montreal Cognitive Assessment (MoCA) score,
and UPDRS scores are shown in Table I for both cohorts.
UPDRS scores are not available for the control cohort.

All participants provided written informed consent prior to
the study. The study adhered to the Declaration of Helsinki
and received approval from the ethics committee. The study
was registered at IRB of Trieste University Hospital - ASUGI,
Trieste, Italy (ASUGI protocol number: 106/2021; approved
on 20.12.2022) and on ClinicalTrials.Gov under the code
NCTO05477654.
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Fig. 1. Overview of experimental tasks. Subfigure A: Schematic repre-
sentation of the experimental tasks. Subfigure B depicts the motor task,
specifically an isometric knee extension task. It was taken and edited
with permission from the published study protocol of Marusic et al. [100].

B. Experiment

The experiment was conducted as part of our clinical trial.
For a comprehensive description of the methodology and
protocols, please refer to Marusic er al. [100]. In this part
of the experiment, participants engaged in three tasks (see
Fig. 1A): a single task - motor, a single task - cognitive, and
a dual task, where they had to perform motor and cognitive
tasks simultaneously. The motor task was performed with each
leg separately.

The motor task is shown in Fig. 1B. Participants had to
perform an isometric knee extension task, which involved a
32-second force tracking session with a trapezoidal pattern
(6-second rising phase, 20-second sustained phase, 6-second
decline phase). The task was performed with the right and
left lower limbs separately. Participants were instructed to
actively contract their knee extensors to produce force up to
30 % of their maximum voluntary contraction (MVC). A knee
extension dynamometer equipped with a force sensor was used
to provide feedback to participants. Feedback was shown on
the computer screen in front of them, together with the desired
force level.

In the cognitive task, participants performed a 32-second
non-verbal serial -3 subtraction, starting from a randomly
selected number between 300 and 500, reporting only the final
result.

The order of limb usage and task conditions was counter-
balanced across participants, with the single task conditions
performed before the dual task for each limb. Each of the five
conditions was repeated twice.

C. EEG and EMG measurements

EEG activity was recorded with a mobile 128-electrode
wireless system (CGX, Cognionics Inc., San Diego, USA),
following the 10-5 electrode placement system [101]. We used
Ag/AgCl wet electrodes, with a 500 Hz sampling rate, 24 bits
of resolution, and no filter settings. The electrode impedance
was kept below 20 k2 for each channel and balanced across
all channels within a 5 k€2 range. Reference and ground elec-
trodes were placed on the right and left mastoids, respectively.

EMG activity was monitored using two wireless 32-channel
probes (MUOVI, OT Bioelettronica S.r.1., Torino, Italy), with
electrodes positioned on the bilateral vastus lateralis muscles.
We used Ag/AgCl wet electrodes, with a 2000 Hz sampling
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Fig. 2. Analysis diagram, showing the processing workflow of the
acquired EEG and EMG signals, including the preprocessing and main
connectivity analysis steps.

rate, and no filter settings. The electrode, serving as both
the reference and ground, was placed on the patella of each
knee. EEG and EMG signal synchronization was achieved by
a common TTL pulse that was sent via the PowerLab data
acquisition toolbox in LabChart software (AD Instruments,
Sydney, Australia) to both the EMG and EEG systems. This
allowed us to achieve offline alignment of the signals with
sub-millisecond accuracy.

A schematic overview of the EEG and EMG data analysis
pipeline is shown in Fig. 2. The code used to preprocess
the data and calculate connectivity measures is avail-
able on GitHub at https://github.com/NinaOmejc/
cmcpd.git. It was written in Matlab (version 2023a, The
Math Works, USA), using EEGLAB toolbox [102] for prepro-
cessing, Multiscale Oscillatory Dynamics Analysis software
[103] for phase connectivity analysis and custom scripts. To
synchronize the data, EMG data was resampled from 2000 Hz
to 500 Hz and aligned with the EEG using a common TTL
pulse. Following the alignment, extensive preprocessing was
applied to both the EEG and EMG data.

1) Preprocessing: We first excluded non-task data and
removed flat-line EMG electrodes. Next, we removed the trend
in the signal by subtracting the moving average calculated
over 10-second time windows. The data were then filtered
using a high-pass filter with a 1 Hz cut-off frequency and
a low-pass filter with a 150 Hz cut-off frequency (Hamming
windowed sinc FIR filters) [102]. We employed the Zapline-
plus method to remove line noise [104], [105]. EEG electrodes
with excessive artifacts were automatically detected using the
Clean Rawdata EEGLAB plug-in with subsequent manual
inspection. The final set of bad electrodes was interpolated
using spherical spline interpolation. On average, we interpo-
lated 24/128 electrodes per data set (SD=10.8). After channel
interpolation, another manual inspection was conducted to
remove any bad data segments. Subsequently, the EEG data
was re-referenced to the average reference, and both EEG and
EMG data were downsampled to 300 Hz. Table in Appendix I
(Supplementary Material) presents the final amount of clean
data, categorized by cohort and task.

As the final two preprocessing steps, two independent
component analyses (ICA) were performed on EEG data,

using runica (Infomax) algorithm in EEGLAB toolbox. In the
first ICA, data from each participant (over all tasks) were
concatenated to facilitate the removal of ocular, muscular,
and cardiac independent components (ICs) specific to each
individual. ICs were selected with the help of ICLabel plug-in
[106], which provides a classification label and its probability.
Additionally, we also considered scalp topography, the scalp
data variance accounted for, dipole position, power spectrum,
and time series itself. On average, 32 ICs were removed (SD
= 9) per participant. Remained ICs were projected back to the
scalp electrodes.

In the second ICA step, we merged all EEG data from a
single task across all participants to identify task-specific brain
components. With the same approach as for the first ICA step,
we manually retained the top 20 ICs across all datasets. Again,
kept ICs were projected back to the electrodes.

Importantly to note, we did not rectify EMG data to not
additionally modify the frequency spectrum and the phase of
the signals [108], [109], [110]. However, for further analysis,
we reduced the data dimensionality by averaging all 32 EMG
time series for each leg. Beforehand, we confirmed that
prior averaging had a minimal impact on the results [see
Appendix II (Supplementary Material)].

2) Continuous wavelet transform: To calculate phase coher-
ence, we first transformed the continuous, cleaned EEG and
EMG data into the time-frequency domain. We calculated
continuous wavelet transform, W, (w, t), of a signal x(¢) at
angular frequency w and time ¢ as in [94], [103]:

WX(CU,I):/ lﬁ(w(u—l))x(u)wdu’ (1)
0
Y() = o (@2 T @)
2

We employed a Morlet wavelet ¥ (u) with a central fre-
quency parameter fy = 1, 30 voices per octave, and a
zero-mean property ( [ ¥ (1)dt = 0). Symbol i is the imaginary
unit. The frequency boundaries were 4-90 Hz. EEG wavelet
power |[Wy(w,)|> was computed for each scalp electrode,
and EMG wavelet power from the averaged time series of 32
electrodes per leg.

Due to the limited number of trial repetitions, we averaged
the wavelet power over time. To further conduct group anal-
ysis, we performed a z-transformation on the EEG wavelet
power, across all electrodes and frequencies. This standard-
ization ensured fair averaging across subjects by focusing
on relative, not absolute, power values across electrodes and
frequencies. Further details on z-transformation are described
in Appendix III (Supplementary Material).

After standardization, we simplified the results by averaging
the data from the left and right muscle contractions. This
reduction transformed the initial five conditions (see Fig. 1A)
into three consolidated task categories: a motor task, a cog-
nitive task, and a dual task. Before combining the data, we
checked for lateral differences above the central brain region
but found none, likely due to the chosen motor task. The
neuronal population responsible for knee extension movement
is located medially within the motor cortex gyri [111], with
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regions from both hemispheres positioned so closely that EEG
could not distinguish positional differences.

Finally, to conduct statistical comparisons on our 2-by-3
design with non-normally distributed values, we computed p-
values using the Scheirer—Ray—Hare (SRH) test [112] at each
frequency. To account for multiple comparisons, we applied
the false discovery rate (FDR) correction [113]. Differences
were considered significant if p-values were below the signif-
icance level @ = 0.05. We examined differences in the main
factors of task and cohort, as well as their interaction effect.
We further assessed the pairwise significance using the non-
parametric Wilcoxon test [115].

3) Phase coherence calculation: Phase coherence or phase
locking value [60], [114] is a statistical method that computes
how consistent or stable the phase difference between the
two signals is over time, regardless of whether the actual
phase difference is zero [61], [62]. Phase coherence PC(w)
was calculated pairwise between each EEG electrode and the
averaged EMG of each leg, following Eq. (3).

T
! 1 (Beeg (@.1)—Bemg (@.1))
PC@) = |7 D't s@| 3)

t=1

where O, (w, t) is the angle of Wy (w,t), T represents the
number of time points and w the angular frequency. Phase
coherence was calculated at each time point ¢ but was then
averaged over both trials.

We conducted z-transformation and statistical analyses over
frequencies using the same approach as in the wavelet
power analysis. Additionally, we extracted individual maxi-
mum low-beta (13-20 Hz) values and statistically compared
the distributions between cohorts and tasks, using a pairwise
non-parametric Wilcoxon rank-sum test [115].

To assess the statistical significance of observed patterns
against random phase coherence, we performed surrogate
analysis [116]. To create the surrogate time series, we used the
cycle phase permutation surrogates [116], which are designed
for phase dynamics. We created N=30 surrogate time series
per participant, which resulted in N % (N — 1)/2 = 435 phase
coherence surrogates.

4) Phase dynamics modeling: We further modeled phase
connectivity between two signals as coupled phase oscillators.
The model was based on the Kuramoto model [88], [89],
which is well-suited for biological signals due to their inherent
rhythmicity [91]. The phase dynamics of two coupled oscilla-
tors i and j are described in Eq. (4):

b = wi +qi6:,0;) +&,
Oj=w;j+q;0;,0)) +5§;. “4)

A pair of differential equations tell how the phase 6; of
the signal i changes with its intrinsic frequency w; and
by the influences from other oscillators, as described by
qi(0;,0;). The term & corresponds to the white noise. A similar
relationship applies reciprocally to oscillator j. An extended
version of the phase dynamics model with 24 coupling terms
inside the coupling function g;(6;, 8;), that was fitted to the
data, is shown in Appendix IV (Supplementary Material).

We first applied a 4th-order Butterworth filter with a zero-
phase distortion to the data, selecting the low beta-band
range (12.5-20 Hz). We then extracted the instantaneous pro-
tophase signals using the Hilbert transform and converted them
to phase signals via the protophase-to-phase transformation
[117]. We then fitted the extended phase dynamics model to
the phase signals of each EEG electrode on the scalp and the
average EMG signal of each leg.

We applied dynamical Bayesian inference to reconstruct
the matrix of coupling coefficients and noise strength, fully
characterizing the oscillator coupling [75], [76], [94]. Further
details of the inference method can be found in Appendix V
(Supplementary Material).

The model was inferred over the 3-second time windows,
with a 50 % overlap. The main outcome of dynamical
Bayesian inference analysis is a N x K matrix, where K = 50
represents the inferred coefficients cg, which include the oscil-
lator’s intrinsic frequency and the coupling terms. Each of the
two equations contributes 25 coefficients, which are calculated
for all N time windows. Due to the initial convergence of the
prior, we removed the results of the first 5 windows from the
final analysis.

After the parameter inference, we aimed to identify the
most significant coupling terms in the model. To do this,
we calculated the average absolute values of each of the 24
coefficients across all participants and compared them to distri-
butions of surrogate absolute parameter values. The surrogates
were calculated as explained in the previous subsection for
phase coherence calculation. Coupling terms with absolute
values above the surrogate threshold (average + 2 SD) over
all categories were considered dominant coupling terms.

To quantify the coupling strength between two oscillators
i and j, we calculated the Euclidean norm of the dominant

coupling terms: @) = /3" (ct/)2, where M denotes
the set of indices corresponding to the dominant coupling
terms.

Lastly, we compared the individual shapes and variances
of the coupling functions. To accomplish this, we calculated
the similarity index [118], which represents the correlation
coefficient between the coupling functions: p = %,
where (-) denotes spatial averaging over the 2D domain, ¢
denotes g — (q), and ||g|| = +/{gq), with additional conditions
0 <= ¢ and ¢ <= 2m. We calculated the similarity indices
between the median coupling functions of each cohort and
the dominant coupling function, as well as among the median
coupling functions of each cohort.

[1l. RESULTS

We conducted an experiment involving an isometric knee
extension task, with and without an additional cognitive com-
ponent. It included 16 people with Parkinson’s disease (PD)
and 15 matched healthy controls (HC). Following data collec-
tion and preprocessing, we computed power frequency spectra
and cortico-muscular (CM) phase coherence and modeled the
CM data as coupled phase oscillators by inferring the phase
dynamics model using dynamical Bayesian inference. The
results are presented in the same sequence.
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Fig. 3. Topological distribution of relative EEG wavelet power. EEG
power distribution is shown across tasks (motor, dual, cognitive), fre-
quency bands (alpha, beta low, and beta high), and cohorts (people with
PD and healthy controls) over the scalp electrodes. The power values
were standardized across electrodes and frequencies and averaged
across the trial length, trials, and participants within the cohort. The
black dots on the plots correspond to electrode positions. Some dots
over the strongest activity regions are enlarged for easier comparison.
The five groups of enlarged electrodes are the fronto-central cluster
(FCz, Fz, FC1, FC2), central electrode Cz, and parieto-occipital cluster
(Pz, POz, PO1, PO2). Note that the values are z-scored, making them
relative to each other, and, consequently, include negative values.

A. Wavelet power frequency spectra

First, we show the results of EEG wavelet time-frequency
transformation. Fig. 3 shows the topographical distribution of
standardized EEG power for three frequency bands: alpha
(7-12 Hz), beta low (12.5-20 Hz), beta high (20.5-30 Hz),
whereas the topographical distributions of power in gamma
low (30.5-48 Hz) and gamma high (52-90 Hz) can be seen
in Appendix VI (Supplementary Material).

An initial observation is that each task exhibits a distinct
topographical power distribution that is consistent across both
cohorts and, to some extent, across frequency bands. During
the motor task (first row in Fig. 3), the highest relative power
was observed over the fronto-central region, (at enlarged
electrodes Fz, FCz, FC1, and FC2). High rhythmic activity in
this region spanned a range of frequencies, from alpha to low
gamma. In the dual task, the fronto-central region continued
to show high relative power (second row in Fig. 3) but it was
generally lower compared to the single motor task. During the
cognitive task (third row in Fig. 3), activity over sensorimotor
areas decreased even further, and only relatively strong high
beta power was observed in a healthy cohort.

Conversely, the medial parieto-occipital region (enlarged
electrodes Pz, POz, PO1, and PO2) exhibited the highest
activation during the cognitive task, particularly in the alpha
and low beta bands. This strong rhythmic activity was less
pronounced during the dual task and even less so during the
single motor task.

To further quantify the differences, we looked at frequency
spectra at the three regions with the highest activity: fronto-
central cluster, central Cz electrode, and parieto-occipital
cluster, and plotted them in Fig. 4. The frequency spectra
match the topographical plots, illustrating distinct patterns of
activity across different brain regions, independently of the
cohort. In the fronto-central region, the strongest power was
observed during the motor task; in the central region, peak
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Fig. 4. Wavelet power spectra of EEG & EMG signals, categorized
by region, cohort, and task. The subplots present spatially standardized
EEG power spectra for fronto-central (Fz, FCz, FC1, FC2), central (Cz),
and parieto-occipital (Pz, POz, PO1, PO2) brain regions, along with
EMG power spectra for the vastus lateralis muscle, as indicated by the
titles. Colors represent cohort-task groups as indicated in the legend.
Solid lines indicate the mean power of the active leg, dashed lines
indicate the mean power of the passive leg, and shaded areas represent
the +/— one standard error (SE). Significant differences between tasks
and cohorts at particular frequencies are marked at the top of the plots
with dark markers, as depicted by the legend in the EMG subplot.
Frequency is plotted on a logarithmic scale. Note that the values are
z-scored, making them relative to each other, and, consequently, include
negative values.

power was greatest during the dual task; and in the parieto-
occipital region, the highest peak power occurred during the
cognitive task. Across all tasks, the dominant power was
observed in the 4-30 Hz range, with prominent peaks in the
alpha and high beta bands. However, it is important to note
that not all observed qualitative differences were statistically
significant.

Statistically significant task-related differences were
observed only in the central Cz electrode and parieto-
occipital regions. At Cz, power during the cognitive task
was significantly lower when compared to the single motor
task for frequencies between 4-6 Hz (mean p-value =
0.01) and 29-90 Hz (mean p-value = 0.007) and when
compared to the dual task, power was lower for frequencies
between 4-17 Hz (mean p-value = 0.003) and 26-90 Hz
(mean p-value = 0.006). In the parieto-occipital region, we
observed statistically significant differences between motor
and cognitive tasks during 7-14 Hz (mean p-value = 0.009).

Statistically significant differences between cohorts were
observed exclusively within the gamma frequency ranges.
These differences were significant in the fronto-central cluster
for all frequencies exceeding 30 Hz (mean p-value = 0.005)
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the respective scalp electrode and the EMG signal of the active leg. The upper four plots depict phase coherence at 12.5-15 Hz across both
cohorts (people with PD / healthy) and tasks (motor / dual). The lower four plots represent CM phase coherence for the same categories but at
a 15-20 Hz frequency range. The enlarged dot corresponds to the location of the Cz electrode. B: CM phase coherence of active muscle at Cz
electrode across all frequencies (x-axis). Solid lines represent the mean, while the shaded areas represent the +/— 1 SE. Significant differences
between cohorts for the motor task are marked with black dots at the top of the plots but note that these p-values were uncorrected for multiple
comparisons. C: The inset plot shows distributions of maximum low-beta values between 12.5-15 Hz for the four groups, as color-coded by the
legend. The abbreviation n.s. indicates a non-significant difference, while the star denotes p < 0.05. Note that the values are z-scored, making
them relative to each other, and, consequently, include negative values. Positive phase coherence indicates that the phase coherence for a specific
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and at the Cz electrode, specifically within the narrow fre-
quency range of 35 to 40 Hz (mean p-value = 0.04). People
with PD exhibited consistently lower relative power compared
to healthy controls.

The EMG frequency spectra for muscle contractions at
30 % MCV peaks between 40-50 Hz (Fig. 4, subfigure
EMG). While we observe higher power during the single
motor task compared to the dual task, the differences are not
statistically significant. Similarly, although the healthy cohort
demonstrates higher peak power in both tasks, we do not find
statistically significant differences in the peak EMG power
spectra. However, we do observe significant differences at
frequencies above 82 Hz (mean p-value = 0.04).

B. Cortico-muscular phase coherence

We first present the topographical plots of relative (stan-
dardized) CM phase coherence between the EEG electrodes
and the averaged EMG for the active muscle in Fig. SA. The
plots show the distribution of CM phase coherence for the
low beta-band, separated into frequency ranges of 12.5-15 Hz
and 1520 Hz. We focused on the beta-band, as has been
previously documented as an important frequency range for

CM coherence and isometric contraction in general (see Intro-
duction). The topographical plots of other frequency bands
are in Appendix VIII (Supplementary Material). Collectively,
these plots revealed that the central region around the Cz elec-
trode exhibits the relatively strongest phase coherence with the
EMG signal of the active muscle. Based on this observation,
we further analyzed the phase coherence at the Cz electrode.
Appendix II (Supplementary Material) presents example phase
coherence results for two individual participants, while the
group analysis is shown in the B and C parts of Fig. 5.

In Fig. 5B, we show CM phase coherence over the fre-
quency spectrum for all four cohort-task groups. By comparing
phase coherence values between them, none of the signifi-
cantly different frequencies survived the multiple comparisons
correction. However, we used uncorrected pairwise significant
differences between cohorts found in frequency ranges 13—
15 Hz and 18-19 Hz (see black dots on top of Fig. 5B)
as guiding ranges to extract maximum CM phase coherence
values. The reason we decided to also check maximum values
over the range, instead of only looking at differences in par-
ticular frequencies, is that there is generally a high variability
in peak coherence (e.g. see [27], [36], [46], [120], [123]). This
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approach thus better accounts for inter-individual differences,
as different subjects normally have peak CM phase coherence
at different peak frequencies.

We depicted distributions of maximum coherence levels for
each cohort-task group with boxplots in inset Fig. 5C. We
found significant differences in the main factor task (p =
0.031) and significant pairwise differences between people
with PD and healthy controls during the single motor task
(p = 0.031), in the frequency range of 12.5-15 Hz. No such
significant pairwise differences were observed during the dual
task (p = 0.74). Additionally, we did not find any significant
differences between maximum CM phase coherence in the
frequency range of 15-20 Hz (not shown). Given that z-
transformation is not commonly employed in this field, we
also provide the non-transformed values of phase coherence in
Appendix IX (Supplementary Material), where the median was
chosen as an aggregating function. The findings are consistent
with those obtained after z-transformation. Additionally, in
Appendix IX (Supplementary Material) we also present the
results for the CM phase coherence between Cz EEG and the
EMG of the passive muscle, where, as expected, there were
no significant differences between the cohorts or tasks.

C. Phase dynamics modeling

After obtaining a strong beta-band CM phase coherence
at the Cz electrode, we modeled the same signals using the
phase dynamics model. In this subsection, we present the
inferred coupling functions for the four task-cohort groups,
and compare their shapes and coupling strengths.

Inferred coupling functions between EEG Cz electrode and
average EMG of the active muscle are graphically presented
in Fig. 6A.

The coupling function plots are derived by graphing all 24
coupling functions over the period from O to 2w, with each
function weighted according to the inferred coefficients. If
there are no dominant terms, the landscapes appear unstruc-
tured; conversely, the plots exhibit discernible structure when
dominant terms are present. By visually comparing the median
landscapes between the cohorts, a diagonal structure is evident
in the healthy cohort during both tasks, which is absent in
the patient cohort. To quantitatively compare the coupling
functions, we used a similarity index. The results are for the
active muscle presented in Fig. 6B for the motor task and
in Fig. 6C for the dual task. The analysis revealed that the
median similarity index within the healthy cohort for the motor
task is 0.34 and 0.58 for the dual task. On the other hand,
between the median healthy cohort and individual patients
with PD, we observe notably lower median similarity indices
(motor task: -0.05, dual task: 0.13). In the motor task, no
significant differences between the cohorts were observed. In
the dual task, the differences between cohorts were statistically
significant (p = 0.046), suggesting that the coupling functions
of people with PD differ significantly from those of the healthy
cohort.

Furthermore, inferred models for the active muscle are
shown in Appendix IX (Supplementary Material). The inferred
intrinsic frequencies of the phase oscillators range between
13.6 and 15 Hz, aligning well with the peak levels of the low-
beta CM phase coherence in the healthy cohort. Notably, the
models presented only include dominant coupling functions.
To identify them, we compared the absolute magnitudes of
inferred coefficients to the surrogate distribution, as shown
in Appendix X (Supplementary Material). We found two
significant dominant coupling terms in the connectivity to the
active muscle: p11 8in(@emg — Oceg) and pi12 cos(Oemg — Oeeg),
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which are plotted in Fig. 6D. The similarity indices between
them and the coupling functions of individual groups are
shown in Fig. 6E. They are higher in the healthy cohort
for both motor (o = 0.76) and dual tasks (p = 0.88). In
people with PD, the similarity indices are markedly lower,
with p = —0.24 in the motor and p = 0.26 in the dual task.

Finally, the coupling strength was quantified by calculating
the norm of the two coefficients corresponding to the dominant
coupling terms. The distributions of coupling strengths for
both directions, tasks, and cohorts are shown in Fig. 7. We
observed that the strength of coupling from EEG to EMG
was significantly greater than in the reverse direction (p =
1.6 x 107%), which is to be expected. Further analysis of
coupling strengths in the active muscle between cohorts and
tasks using the SRH test revealed that the main effect of the
task was not significant (p = 0.83), while the main effect of
the cohort approached significance (p = 0.056). No significant
differences were found when comparing the cohorts for each
task individually (motor task: p = 0.34, dual task: p =
0.10). However, pairwise comparisons of coupling strength
between cohorts, irrespective of the task, showed a significant
difference (p = 0.0494), indicating stronger coupling in the
healthy cohort.

The phase modeling results between Cz EEG and the EMG
of the active muscle, as presented here, are also shown for
the passive muscle in Appendix XI (Supplementary Material).
In summary, no statistically significant dominant coupling
functions were observed in either group, and no significant
differences were found between the cohorts.

IV. DiscussioN

This study investigated cortico-muscular (CM) phase con-
nectivity in early-stage people with Parkinson’s disease (PD)
and age-matched healthy controls during three tasks: the motor
task (isometric knee extension task), the cognitive task (silent
serial -3 subtraction task) and the dual task, where both motor
and cognitive tasks had to be performed simultaneously. We
calculated phase coherence and inferred the phase dynamics

model. The findings of our study are point by point discussed
below.

Topographical task-dependent variations in wavelet
power spectra outweigh the cohort differences. Our study
demonstrates that distinct patterns of rhythmic brain activ-
ity emerged across cortical regions under the three task
conditions. While these patterns in power spectra were not
consistently significant across the entire frequency range, the
general pattern remained observable, particularly in the lower
frequency ranges up to 20 Hz. In the fronto-central areas,
the wavelet power was the lowest during the cognitive task,
characterized by minimal motor involvement, and the highest
during the motor task, where focused motor actions domi-
nated the participant’s attention. During the dual task where
participants engaged in both motor and cognitive activities
simultaneously, power levels were at an intermediate level. An
inverse trend occurred in the parieto-occipital region, where
the power up to 20 Hz peaked during the cognitive task,
indicating increased cognitive demands. Notably, this region
encompasses the intraparietal sulcus (IPS), a critical area
involved in arithmetic processing, and number comparison,
such as subtraction [124]. These observations align with the
dual-task interference concept, which attempts to explain how
neural resources are dynamically allocated across cortical
regions during multitasking [125], [126], [127], [128].

People with early PD on medications did not show
enhanced power in beta band. While we observed the highest
peak in the high beta band power (20-30 Hz) in the fronto-
central regions during the motor task, it was not significantly
higher in comparison to age-matched controls. The absence
of elevated power in beta-band, a phenomenon previously
reported in people with PD [9], [10], [11], [12], [13], [14],
[15], aligns with the characteristics of our cohort, who are
receiving medication [17], and are in the early stages of the
disease experiencing minimal motor impairment.

EMG power spectrum up to 80 Hz shows no significant
variations by task or cohort. Analysis of the EMG power
spectra revealed that the healthy cohort exhibited slightly
stronger higher frequency activity in the active muscle for both
the single motor and the dual task. However, these differences
were not statistically significant until frequencies exceeded
80 Hz, a range that is generally less relevant for combined
EEG-EMG analysis. Additionally, in people with PD, no
resting tremor was observed, which is commonly associated
with increased power in the lower frequency range (around
3-6 Hz [129]). This absence can be attributed to the fact that
patients were in the early stage of the disease, where tremor
symptoms were minimal or absent, as well as to the effects of
medications. Furthermore, resting tremors are typically lower
in lower limbs and suppressed during voluntary motor activity.

The scalp topography of CM phase coherence differs
from the topography of the power spectrum during
motor tasks. Phase coherence analysis of the motor tasks
revealed that the highest phase coherence in the sensorimotor
region occurred above the Cz electrode, almost across the
entire frequency spectrum (4-90 Hz). Surprisingly, that region
does not overlap with the region of the highest wavelet
power during movement, which is the fronto-central region.
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To investigate this, we compared our results with two relevant
studies [130], [131]. Both studies suggest that there may
be greater similarities between the topographical patterns of
phase and magnitude-squared CM coherence than between
phase coherence and wavelet power. This implies that wavelet
power and phase coherence may reflect different aspects of
neural activity. While wavelet power might indicate intense
processing that occurs independently of muscle connectivity,
phase coherence directly reflects the synchronization between
motor output in the central motor cortex and muscle activity,
as measured by EMG. These results could also be related to
seemingly contradictory phenomena: On one hand, beta-band
desynchronization is expected in motor areas during movement
preparation and execution [132], but in PD, this desynchro-
nization is disinhibited, leading to elevated beta power [9],
[10], [11], [12], [13], [14], [15], [16]. On the other hand,
high beta-band magnitude-squared coherence between EEG
and EMG is typically observed before and during movement
[23], [26], [27], [31], [34]. In our study, we observed that both
phenomena may exhibit distinct topographies and frequency
ranges within the beta band.

Early-stage PD cohort on medication showed differ-
ences in CM phase coherence in the lower beta-band
(12.5-15 Hz) during the single motor task. We found
differences in CM phase coherence already in patients with
early-stage PD, who are on anti-parkinsonian medications,
which has not been observed previously [13], [133]. The
differences were observed in the lower beta-band, specifically
between the 12.5 and 15 Hz frequency range, where the
healthy cohort showed elevated CM phase coherence, which
was not observed in people with PD. The significant difference
was not substantial, likely due to high variability among
participants and the older age of the control group, who
typically also exhibit reduced connectivity due to age-related
factors [39], [40], [41], [42], [133], potentially influencing the
observed difference in phase coherence as well.

Elevated phase coherence was observed only in the healthy
cohort during the single motor task, but not during the dual
task, which included a cognitive component. The addition of
cognitive tasks requires divided attention, which can impair
motor performance, particularly in elderly adults and individ-
uals with movement disorders [134], [135]. Previous research
has also shown a reduction in beta-band CM magnitude-
squared coherence during dual-task conditions [136], [137].
This reduction has been attributed to the hypothesis that beta-
band synchronization in the motor cortex requires focused
attention, and decreased attention impairs motor neuron
recruitment, a mechanism thought to be underlying the cortical
beta-band oscillations [136], [138], [139], [140], [141], [142],
[143], [144].

Modeling phase coupling with the phase dynamics
model revealed directional asymmetry, showing signif-
icantly stronger phase coupling strength from the Cz
electrode to the active muscle than vice versa. Despite
using different methodologies and examining different mus-
cle groups, our finding aligns with previous studies that
employed partial directed coherence [145] and Granger
causality [81].

The dominant coupling terms in the phase dynamics
model were more pronounced in the healthy than in
the patient cohort. We identified two dominant coupling
terms that were particularly strong in connectivity to the
active muscle: p11 8in(@emg — Oeeg) and pi12 cos(Oemg — Oeeg)-
They represent the sine and cosine components of the phase
difference between the EMG and EEG, effectively capturing
the phase-locking behavior and reflecting the coupling between
cortical and muscular oscillatory activity. The diagonal struc-
ture of the coupling function suggests that the coupling is
determined by the phase difference between the two oscillators
[146]. When the coupling function is positive, the influenced
oscillator accelerates, and vice versa when it is negative.
Such mechanisms are the basis for synchronization phenomena
between the oscillators. As a side note, the fact that the inferred
dominant terms include phase difference information supports
the use of phase coherence measure as a metric of constant
phase difference.

Dominant coupling functions showed qualitatively stronger
coupling strength in the healthy cohort compared to the
patient cohort, although only marginally significant when the
task factor was disregarded. We also observed high variabil-
ity among participants. Notably, the coupling strength was
stronger during the dual task than the single motor task, which
is in contrast with the results obtained from phase coherence
calculations and something we have to yet better understand.

Neural and behavioral metrics were not significantly
correlated. Correlating neural connectivity measures with
behavioral outcomes provides insight into the extent to which
neurophysiological interactions, measured via EEG and EMG,
underlie motor performance. While this has not been previ-
ously reported in the paper, we also analyzed the relationship
between UPDRS scores and connectivity measures using
Spearman correlation, with results presented in Appendix XII
(Supplementary Material). We hypothesized a negative corre-
lation between phase connectivity measures and the UPDRS
score and observed such a trend for the CM low beta phase
coherence during the motor task. The correlations to the dual
task and coupling strength of the phase dynamics model
were weak or inconsistent. Moreover, none of the correlations
were significant. All in all, we think that the UPDRS may
not be the optimal behavioral measure, as it relies on sub-
jective scores rather than direct physical measurements, and
because all subjects were in the early stage of PD with low
scores.

Neurophysiological markers show limited robustness
for clinical diagnosis of PD. With this study, we sought
to evaluate the potential of CM connectivity measures as
neurophysiological markers for clinical practice. Although we
did not directly assess this by employing classification models,
our observations show significant inter-subject variability. This
suggests that the markers may not be robust or reliable
enough for general disease classification. However, they could
still be valuable for assessing individual improvements in
rehabilitation, especially in people exhibiting strong CM phase
connectivity.

Limitations of the study. It is important to acknowledge
several limitations of the study. The primary limitation is the
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low number of trials done by each participant. As the CM
connectivity measures are already inherently variable and have
high individual differences [36], [46], [120], [123], [147],
this even further increased the variance and constrained the
assessment of phase connectivity in time. Additionally, we
believe this limitation reduced the study’s statistical power,
preventing some significant differences from surviving correc-
tion for multiple comparisons.

Moreover, the study did not account for the delay between
EEG and EMG phases when calculating phase coherence
or fitting the phase dynamics model. Whereas some studies
incorporate delay into the model ([121], [122]) or calculate the
delay to assess connectivity direction (e.g. [22]), others do not
(e.g. [94]). In our case, we assume the delay is constant, which
implies that the phase difference remains stable and should not
substantially affect the results. However, this assumption could
have introduced a potential source of error.

Lastly, our analysis remained at the surface level of both
the brain and muscle. For greater spatial accuracy, it would be
more appropriate to directly analyze the time series of dipole-
fitted independent components. A similar decomposition could
be applied to motor units within the muscle. However, at
this initial stage, we chose to remain at the surface level to
also explore the potential for clinical applications, which are
more straightforward to implement when source analysis is
not required.
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