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Abstract—Semantic segmentation of remote sensing images has
produced a significant effect on many applications, such as land
cover, land use, and smoke detection. With the ever-growing remote
sensing data, fusing multimodal data from different sensors is a
feasible and effective scheme for semantic segmentation task. Deep
learning technology has prominently promoted the development
of semantic segmentation. However, the majority of current ap-
proaches commonly focus more on feature mixing and construct
relatively complex architectures. The further mining for cross-
modal features is comparatively insufficient in heterogeneous data
fusion. In addition, complex structures also lead to relatively heavy
computation burden. Therefore, in this article, we propose an
end-to-end learnable multimodal fusion network (LMF-Net) for re-
mote sensing semantic segmentation. Concretely, we first develop a
multiscale pooling fusion module by leveraging pooling operator. It
provides key-value pairs with multimodal complementary informa-
tion in a parameter-free manner and assigns them to self-attention
(SA) layers of different modal branches. Then, to further harness
the cross-modal collaborative embeddings/features, we elaborate
two learnable fusion modules, learnable embedding fusion and
learnable feature fusion. They are able to dynamically adjust the
collaborative relationships of different modal embeddings and fea-
tures in a learnable approach, respectively. Experiments on two
well-established benchmark datasets reveal that our LMF-Net pos-
sesses superior segmentation behavior and strong generalization
capability. In terms of computation complexity, it achieves compet-
itive performance as well. Ultimately, the contribution of each com-
ponent involved in LMF-Net is evaluated and discussed in detail.

Index Terms—Deep learning (DL), learnable fusion, multimodal
data, remote sensing, semantic segmentation.
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1. INTRODUCTION

acquisition of remote sensing data is becoming increas-
ingly convenient, leading to a kind of exponential growth of
remote sensing data. Moreover, the types of remote sensing data
are also becoming more diverse, including optical data, LIDAR
data, synthetic aperture radar (SAR) data, etc. The massive
amount of remote sensing data and abundant data type have
provided a strong data support for the application of remote
sensing interpretation in the fields of ecological protection [1],
[2], national defense construction [3], [4], etc. The industrial ap-
plication based on remote sensing technology is also developing
toward diversification [5], [6], [7].

Semantic segmentation, which aims to identify the semantic
label of each pixel via an automated model, is a critical one
among various remote sensing interpretation tasks. Due to the
greatly significant effect on land cover and land use [8], [9],
smoke detection [10], [11], water body extraction [12], [13],
urban management [14], [15], [16], etc., semantic segmentation
has gained widespread attention. Drawing support from deep
learning (DL) technology, the performance of semantic segmen-
tation has made a considerable advancement.

However, these DL approaches are generally applicable to
single-modal remote sensing data, e.g., optical images. While
single-modal data are vulnerable to obstruction, noise, light-
ing, etc., causing the semantic representation capability to be
relatively limited. As illustrated in Fig. 1(a), it is difficult to
discriminate whether the red object in the box is low vegetation
or tree only through this optical image, because these two
categories have specially similar colors. And the shadow of this
object is obscured by a nearby building, making it impossible
to speculate the height through its shadow. While the digital
surface model (DSM) image presents that this object has an
obvious height above the ground. Accordingly, its category can
be determined as free. Similarly, in Fig. 1(b), it is unable to
distinguish the category of the object in box just merely relying
on the elevation information of DSM. Yet, the color and texture
features in optical image can clearly reflect that it belongs to the
category of building.

Evidently, different modal remote sensing data have their
own unique characteristics, such as color information of optical
data and elevation information of DSM data. In the context
of increasingly abundant remote sensing data, incorporating
multimodal data is a feasible and effective solution for remote
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Fig. 1. Limitations of single-modal remote sensing data. OPT, DSM, and GT
means optical image, DSM image, and ground truth, respectively. Best viewed
in color.

sensing semantic segmentation task. The comprehensive uti-
lization of these multimodal data can contribute to exert the
effect of complementary information. Therefore, many scholars
have conducted explorations in this research direction. Fan
et al. [17] built a hierarchical fusion structure by leveraging
cross-layer features. Zheng et al. [18] employed category-prior
knowledge to guide multimodal fusion under the situation of
sample imbalance. Besides, MoCG [19] and FTransUNet [20]
are also typical representative networks for utilizing cross-modal
attention mechanism. Nevertheless, the majority of current ap-
proaches commonly concern more on feature mixing and con-
struct relatively complex architectures. The cross-modal fea-
tures are underutilized in heterogeneous data fusion, and the
information exchange between fused collaborative features and
modal-specific features is comparatively insufficient. In addi-
tion, complex structures also result in a relatively high compu-
tation burden, posing challenges for their practical application.

For this purpose, in this article, we propose a novel learnable
multimodal fusion network (LMF-Net) for semantic segmen-
tation task to address the problems analyzed previously. To be
concrete, we first design a multiscale pooling fusion (MSPF)
module to assign key-value pairs with complementary informa-
tion in a parameter-free mean to SA layers of different modal
branches. Then, two learnable fusion modules are developed,
i.e., learnable embedding fusion (LEF) and learnable feature
fusion (LFF). They fully utilize cross-modal information and
are able to dynamically adjust the collaborative relationships of
different modal embeddings and features in a learnable manner.
Finally, we integrate MSPF, LEF, and LFF into an encoder—
decoder segmentation architecture and establish the end-to-end
LMF-Net. The achieved performances on two challenging mul-
timodal semantic segmentation datasets, ISPRS Vaihingen [21]
and ISPRS Potsdam [21], confirm the effectiveness and practi-
cability of the proposed LMF-Net.

Our main contributions of this article can be succinctly sum-
marized in the following.
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1) This article designs an MSPF module to provide key-value
pairs with complementary information in a parameter-free
approach by leveraging pooling operator.

2) This article exploits an LEF module to dynamically adjust
the collaborative relationships of cross-modal 1-D embed-
dings in a learnable manner.

3) This article develops an LFF module to realize learnable
collaboration of cross-modal 2-D features in heteroge-
neous data fusion.

4) This article conducts extensive experiments and detailed
analyses on two well-established benchmarks to evaluate
the segmentation capability and computation efficiency of
the LMF-Net.

The rest of this article is organized as follows. Section II
provides a brief review of some relevant achievements from
single-modal semantic segmentation to multimodal semantic
segmentation. Section III offers a detailed description of the
proposed LMF-Net framework. In Section IV, we implement
sufficient experiments on two challenging datasets to verify
the performance and generalization capability of our LMF-Net
pipeline. In this Section, the experimental settings and analyses
are fully presented as well. Then, a depth discussion about the
proposed LMF-Net architecture is given in Section V. Finally,
Section VI conclude this article.

II. RELATED WORK

In this section, we briefly review several remarkable research
achievements based on DL technology in single-modal segmen-
tation and multimodal segmentation in series.

A. Single-Modal Segmentation in Natural Scene

CNN significantly promotes the progress of visual recognition
technology. Based on the CNN architecture, Long et al. [22] pro-
posed a fully convolutional network for dense pixel prediction.
It is the first CNN segmentation model which makes end-to-end
training available. Chen et al. [23], [24] established a significant
structure by leveraging atrous convolution and its derivative
atrous spatial pyramid pooling module, called DeepLab. Owing
to the outstanding behavior, DeepLab series occupy an important
position in semantic segmentation task. In the same period,
Zhao et al. [25] introduced a type of pyramid pooling module
(PPM) to capture the contextual information and multiscale
information of images, named PSPNet. It substantially reduces
the segmentation errors and effectively improves the accuracy of
semantic understanding. In addition, U-Net [26] is also a kind of
typical encoder—decoder network. It has been widely adopted in
medical image interpretation and has had profound inspiration
for subsequent work [27], [28], [29].

With the proposal of SETR [30], semantic segmentation
steps into the era of transformer [31]. Based on the successful
application of ViT [32] in vision tasks, SETR constructs a
ViT+decoder framework and converts image semantic segmen-
tation to a sequence-to-sequence prediction task. Unlike SETR
whose decoder is a CNN architecture, segmenter [33] utilizes a
mask transformer to decode semantic features. It also enables
the patches and class embeddings to be processed jointly. Xie
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et al. [34] elaborately designed a lightweight model, dubbed
SegFormer. It simplifies SA operation and replaces positional
encoding with a 3 x 3 depthwise (DW) convolution [35]. Ex-
periments imply that SegFormer not only achieves satisfactory
results, but also alleviates the problem of high computation
overhead. Empowered with the extraordinary capability, trans-
former architecture has gradually become a popular scheme in
semantic segmentation task and has enlightened many following
studies [36], [37], [38], [39], [40].

B. Single-Modal Segmentation in Remote Sensing

Along with the improvement of Earth observation technology,
the number of remote sensing images manifests an explosive
growth. Aiming to fulfill the demand for refined classification
of massive-scale data, many researchers have also extended DL
to remote sensing semantic segmentation. ResUNet-a [41] is
a representative work of introducing the thought of computer
vision methodology into remote sensing interpretation. It inte-
grates the design concepts of residual connection [42], atrous
convolution [23], [24], PPM [25], etc., and its effectiveness is
demonstrated through a series of quantitative and qualitative
experiments. Ma et al. [43] proposed an efficient segmenta-
tion network, called FactSeg that principally focuses on small
objects. In the respect of its network structure, foreground
activation is applied to activate small-scale objects while to
suppress background. From the perspective of optimization,
the small object mining approach is used to tackle the sample
imbalance issue. In order to improve the segmentation results
of fine-structured geographic entities, Deng et al. [44] lever-
aged attention mechanism to develop a CCANet. It constructs
a kind of class information constraint to acquire the explicit
long-range dependency and achieves impressive performance in
extensive experiments. Furthermore, motivated by giving con-
sideration to both local information and long-range contextual
dependency, Wu et al. [7] presented CMTFNet that combines
the local feature extraction capability of CNN with the global
feature expression capability of transformer. It shows a strong
competitiveness compared with many existing popular models.
Moreover, [45], [46], [47], [48] are also preeminent methods
with significant influence on remote sensing semantic segmen-
tation for specific objects, such as photovoltaic panels, roads, and
buildings.

C. Multimodal Segmentation in Remote Sensing

Since the imaging mechanism is diverse, remote sensing data
exhibit various modalities, such as optical images, hyperspectral
images, SAR data, DSMs, and so on. Currently, there is a broad
consensus that different modal data have complementary infor-
mation [18], [49], [50], [51], [52]. Hence, the field of multimodal
interpretation is attracting an increasing number of researchers.
Wu et al. [53] exploited a novel cross-modal interaction frame-
work which combines a cross fusion module and a multimodal
features aggregation module to aggregate optical feature and
SAR feature. It shows relatively obvious superiority in urban
impervious surface segmentation task. Nonetheless, in terms of
the fusion for the optical image and the SAR image, on the
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whole, data limitation is a major obstacle to the development of
this research direction. To this end, Li et al. [54] and Ren [52]
separately constructed the WHU-OPT-SAR dataset and a fusion
dataset covering Xi’an, Dongying, and Pohang, and thence,
introduce MCANet and DDHRNet on the basis of attention
thought. Their work produces a notable advancement for this
area. The authors in [55] and [56] developed a CNN-based
and a transformer-based fusion manner for joint hyperspectral
image and LiDAR data segmentation, respectively. Both of them
are able to improve the extraction capability for multimodal
features and their generalization performances have also been
validated on various benchmarks. The authors in [18] and [57]
built cleverly designed fusion models by employing CNN archi-
tecture to realize the complementarity between texture informa-
tion and elevation characteristics. Besides, CMFNet [58] exerts
the advantage of transformer architecture to learn long-range
dependencies of fused features, contributing to capture more
discriminative expressions in optical and DSM data. It reduces
the decoding ambiguity to a certain extent as well. In order
to excavate informative cues from low-quality feature maps
of DSM and capture multiscale adjacent contextual features,
Ma et al. [59] presented ABHNet. The collaboration of detail
and deep features brings a definite enhancement on small-scale
object segmentation.

Although many breakthroughs have been made in multimodal
remote sensing semantic segmentation, we argue that there is
still much potential space for further exploitation of cross-modal
collaborative features. Motivated by this viewpoint, we present
a novel LMF-Net for the fusion of multimodal remote sensing
data. And to verify the availability of this framework, we also
conduct a series of experiments and compare it with many state-
of-the-art methods.

III. METHODOLOGY

In this section, we provide a comprehensive introduction of
the proposed LMF-Net. Specifically, Section III-A overviews the
architecture of the entire LMF-Net. It is carefully elaborated for
the diversity of remote sensing data type. The core ingredients of
the LMF-Net, including MSPF, LEF, and LFF are exhaustively
illustrated in Sections III-B—III-D.

A. Network Architectiure

As shown in Fig. 2, the proposed LMF-Net is an end-to-end
model. It adopts a kind of encoder—decoder architecture in
semantic segmentation based on a two-stream SegFormer [34]
model. LMF-Net takes different modal data as input. For the sake
of clarity, we utilize modalityl and modality2 for explanation
in the following sections. And in our experiments, the two
input types are optical remote sensing images and DSM data,
respectively.

According to Fig. 2, we set four stages in encoder to gradually
reduce the resolution of the inputs. Except for the first stage
which uses four times downsampling operation, all others use
two times downsampling operation. That means, assuming that
the height and the width of the inputs are H and W. After feature
extraction of each stage, their size will become H/4 x W/4,
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H/8 x W/8, H/16 x W/16, and H/32 x W/32, respectively.
In each stage, overlap patch embedding (OPE) is first to serialize
the features of image form. Compared to nonoverlap pattern,
patches with overlap are more conducive to preserve the con-
tinuity of local structure. After the OPE, we set a transformer
block which is composed of [V x repeated fusion self-attention
(FSA) and multilayer perceptron (MLP). The workflows and
parameter settings of OPE and block are consistent with those
of the SegFormer [34] model. To mix the information from
modalityl and modality2 in FSA, we introduce a multiscale
cross-modal fusion module by leveraging pooling operator,
named MSPF. Besides, we further explore a learnable fusion
scheme for 1-D image embeddings of the two modalities at the
output of each stage, which can be termed as LEF. Details about
the presented MSPF and LEF will be described in the subsequent
sections.

Correspondingly, in order to reconstruct the input data, we
collect the output features from each stage and individually
perform MLP and upsampling (UPS) operation. Notice that
all features are temporarily restored to H/4 x W /4. As a con-
sequence, for features in stagel, only MLP is performed, but
UPS is excluded. Next, we concatenate these reconstructed
features of different resolutions from the two modal branches,
and then compress their channels through a parallel convo-
lution unit. After that, we exploit another learnable fusion
scheme, called LFF, which is specifically designed for 2-D
image features. In LFF, modalityl branch, modality2 branch
and the fusion branch all contribute to the final prediction.
Ultimately, after a four times UPS operation, the full-resolution
segmentation results are obtained. And parameters of the pro-
posed LMF-Net will be optimized toward the direction in
which the objective function decreases. For the network in-
ference, the output format is the same as that of the network
training.

B. MSPF

Due to its superiorities, for instance, satisfactory effect and
simple architecture, transformer framework has been widely
recognized in many fields. However, MLP-like structure requires
a significant amount of computation resources. For images,
particularly for remote sensing images with extremely large size,
the extra-long sequence length will pose a prohibitive cost for the
training of the model. For this reason, many scholars have also
explored solutions represented by pooling operator to reduce
the computation complexity of MLP-like transformer [60], [61],
[62], [63]. Inspired by these valuable studies, we introduce this
parameter-free method into the task of remote sensing multi-
modal interpretation as well and present MSPF to reduce the
computation overhead. Based on the aforementioned pioneering
work, MSPF further integrates multiscale heterogeneous remote
sensing features and assigns these fusion features to SA unit of
different modal branches. The workflow of the proposed MSPF
module is given in Fig. 3.

We suppose that X and Y denote the features of modality 1 and
modality2, respectively. Note that both X and Y are in the form
of 2-D image. Similar to [63], we also adopt pyramid pooling
approach to capture implicit contextual information. It can be
expressed as follows:

ey
@)

where pool; indicates pooling operators with different kernel
sizes. FX and FY separately represent the features of modality 1
and modality?2 after pooling. While considering the information
fusion, we integrate pooling features from heterogeneous modal-
ities at the same resolution level and send them into a shared
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operation. That is
S; = sharedOP(concat([F;*, F)'])), i=1,2,...,N. (3)

In actual implementation, to avoid causing more computation
burden, the shared operation is only a simple convolution opera-
tor. And it is noteworthy that features at different levels all share
the same operation. Then, the pixelwise addition is conducted
between the integrated features and different modal features of
the same level. Subsequently, we flatten these multiscale features
and concatenate them together

O% = concat([S; + F{*, Sy + F5*,...,Sn + Fila)  (4)

OY =concat([S; + FY,So + F) ,...,Sn + Fyla) (5

where fl means flattening operation. O and OY are the output
of the MSPF module.

With regard to the sequence length of X and O (here, we
only take the case of one modality as an example), we formalize
them as follows:

L(Xy) = hw (©6)
hw  hw hw

LIOX)y= —— 4+ 4+ ... 4 = 7

(07) T%+r%+ +T12v %)

where h and w are the height and width of the features. r1—r
all stand for pooling ratios and in most practices, they are power
series of integer 2. Therefore, we have

11 1
L(OX):hw-<2+2+-~-+2)
5 r

2 N

= hw - ((21)2 + (21)2 + (;)2 4+t (21{[)2>
e (4 2)

< hw

= L(Xjp). ®

Obviously, compared with Xy and Yj, the sequence length of
OX and OY is relatively short owing to the effect of pooling.
More importantly, the intermodal heterogeneous information
and the intramodal contextual information are both integrated
in OX and OY. Thereby, regarding the calculation of key-
value vectors in SA of different modal branches, we replace
the directly flattened X and Y with compressed O and OV,
respectively. To be concrete, the three core elements, query @,
key K, and value V' can be computed as follows:

QY = XaWxq, K* = O Wxg, V¥ =0 Wxy  (9)

QY =YaWyq, K¥Y = O¥Wyg, V¥ =O0YWyy  (10)

where Wx g, Wx i, Wxv, Wyq, Wy i, Wy are all the linear
projection matrices. Therefrom, FSA can be written as follows:

QF x (KT X
\/dhead ) <V

Y Y\T
FSA(Y) = softmax (QX(K)) x VY
Vv dhead

FSA(X) = softmax ( (11)

(12)
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where the superscript 7' is the signal of matrix transposition.

C. Learnable Embedding Fusion

Aiming to utilize the complementary effect of different modal
data in the form of 1-D image embeddings, we establish an LEF
module at the output layer of each stage. Fig. 4 displays the
structure of the proposed LEF in detail.

The LEF module consists of an embedding learning com-
ponent and an embedding fusion component. For the embed-
ding learning component, it takes the 1-D image embedding
of modalityl and modality2 as input. These embeddings are
first concatenated together. Then, we apply an average pooling
operation to aggregate global information along the dimension
of embedding quantity and obtain a channel-maintained aggre-
gation embedding. This process can be formulated as follows:

AE = avg_pool(concat([IEX, IEY])) (13)

where IEX and IEY are the input embedding of modalityl
and modality2, AE is the aggregation embedding. Considering
that the embeddings of different modalities have differentiated
contributions to the final prediction, we thus leverage an em-
bedding learner following a softmax function to learn a kind of
embedding mask

EM = softmax(learneremy, (AE)) (14)

where EM is the embedding mask. The learner. in our sub-
sequent implementation is a two-layer MLP with a nonlinear
mapping. In (14), the tensor slicing operation before softmax is
omitted for simplicity. The generated mask is able to adaptively
adjust the importance of different modal embeddings in modality
merging from the perspective of channel.

In the embedding fusion component, the embedding mask acts
as akind of weight coefficient. It multiplies with the embeddings
of two modal branches. Next, we add the two adjusted branches
together and feed the branch sum into a linear mapping unit to
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obtain a fusion embedding FE

FE = LMU(EM* - IEX + EM" - 1EY) (15)

where - stands for tensor multiplication with broadcast mecha-
nism. The linear mapping unit LMU in our experiments consists
of a linear layer with channel reduction, an activation function
GELU() and a linear layer with channel expansion. After that,
we assign the fusion information to modalityl and modality2
through elementwise addition

OEX = LN(EX +FE) (16)

OEY = LN(EY + FE) a7

where OEX and OEY are the outputs of the LEF module,
LN is layer normalization [64]. This shortcut connection not
only preserves intramodal characteristics, but also incorporates
intermodal commonalities.

D. Learnable Feature Fusion

LEF mainly focuses on learnable fusion for 1-D embeddings.
Naturally, we further build another learnable fusion approach,
LFF, which realizes information collaboration in the form of 2-D
image features. The fusion process is depicted in Fig. 5.

In LFF, we first concatenate the upsamling reconstruction
features of modalityl IF¥ and modality2 IFY . Then, we input
the combined features into a feature learner and obtain a mask
that describes spatial importance in information fusion through
a softmax function

FM = softmax (learner (concat([IF~, IF¥]))) (18)

where FM is the feature mask. The feature learner learners., in
general can be any operators that maintains the image feature
size. In our LFF structure, it is a pointwise (PW) convolution.

»(+
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Feature Output
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Feature Output
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Modality2
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»(+
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___________________ Output
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Fig. 5. Illustration of LFF. Feat learner means feature learner. In LFF, 2-D

features of different modalities are represented by the cuboids of different colors.
Best viewed in color.

The feature mask can be regarded as a gating factor that aggre-
gates information from two modalities. Different from LEF, we
set two consecutive convolution-BN-ReLLU (CBR) units in the
LFF module to capture a reconstructed fusion feature FF

FF = CBR(CBR(FM* - IFX + FMY -1FY))  (19)

where CBR is the initial letter of convolution, batch normaliza-
tion [65], and ReLLU. The former CBR unitis basedon3 x 3 DW
convolution while the latter is PW convolution. Next, following
a similar thought of LEF, we still assign FF to modalityl and

modality2 through pixelwise addition, i.e.,
OF* = FX + FF (20)

OFY = FY +FF. (21)



LI et al.: LMF-NET: A LEARNABLE MULTIMODAL FUSION NETWORK FOR SEMANTIC SEGMENTATION OF REMOTE SENSING DATA

Yet, the final output of the LFF also includes FF, rather than
just OFX and OFY . And FF participates in generating the final
classification probability as well.

IV. EXPERIMENTS

In this section, we perform several experiments on two ex-
tensively used remote sensing semantic segmentation datasets
to confirm the effectiveness and generalization of the proposed
LMF-Net. Experimental settings and corresponding results are
also explicitly elucidated.

A. Datasets

We evaluate the proposed multimodal fusion method on two
extensively used benchmark datasets, i.e., the International So-
ciety for Photogrammetry and Remote Sensing (ISPRS) Vaihin-
gen [21] and Potsdam [21] dataset. A brief introduction of these
two datasets is listed as follows.

1) Vaihingen: The Vaihingen' dataset published by ISPRS
was used as the official dataset of the ISPRS 2-D Semantic
Labeling Contest. It was captured over the small village of
Vaihingen in Germany. This area is characterized by many
detached buildings and small multistory buildings. This dataset
is partitioned into 33 large-scale true orthophoto (TOP) tiles
with a spatial resolution of 9cm. The average size of these TOP
tiles is 2064 x 2494 pixels. Among them, 11 tiles are used for
training purpose, 5 other tiles are taken as the validation set,
and the remaining 17 tiles are utilized to evaluate the model’s
behavior. In Vaihingen, each tile is formatted as a 8-bit TIF file
which is composed of three types of bands corresponding to
near infrared, red and green wavelengths. The DSM defined
on the same grid as TOP tile is encoded as a 32-bit single
channel gray-scale TIF file, and its value indicates the DSM
height. All pixels in this dataset are categorized with respect to
six predefined categories, represented by impervious surfaces
(white), building (blue), low vegetation (cyan), tree (green),
car (yellow), and clutter/background (red). Several TOP tile
samples, corresponding DSMs and corresponding annotations
in the Vaihingen dataset are shown in Fig. 6. The proportion
of different categories in the Vaihingen dataset is described in
Fig. 8(a). This demonstrates that the occurrence of these classes
is highly imbalanced, making the dataset very challenging.

2) Potsdam: Similar to the Vaihingen dataset, the Potsdam?
dataset was also one of the ISPRS contest datasets. While, this
dataset is relatively larger in volume. It consists of 38 TOP
tiles with a ground sample distance of 5 cm. The width and
height of each tile are both 6000 pixels. The study area in this
dataset is characterized by a typical historic city with narrow
streets, large building blocks and dense settlement structures.
Fig. 7 displays some samples of TOP tile, DSM and ground
truth of the same area. Concretely, each TOP tile and DSM are
defined on the same grid and they are also formatted as TIF

![Online]. Available: https://www.isprs.org/education/benchmarks/
UrbanSemLab/2d-sem-label-vaihingen.aspx

2[Online]. Available: https://www.isprs.org/education/benchmarks/
UrbanSemLab/2d-sem-label-potsdam.aspx
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(b) (©)

Fig. 6. Several example tiles, corresponding DSMs and corresponding anno-
tations in the Vaihingen dataset. Legend—White: Impervious surfaces; Blue:
Buildings; Cyan: Low vegetation; Green: Trees; Yellow: Cars; Red: Clut-
ter/background. (a) IRRG. (b) DSM. (c) GT.

(b)

Fig. 7. Several example tiles, corresponding DSMs and corresponding an-
notations in the Potsdam dataset. Legend—White: Impervious surfaces; Blue:
Buildings; Cyan: Low vegetation; Green: Trees; Yellow: Cars; Red: Clut-
ter/background. (a) RGB. (b) DSM. (c¢) GT.

files. Besides, this datasest has been annotated manually into six
most common land cover categories as well, which is consistent
with the Vaihingen dataset, i.e., impervious surfaces (white),
building (blue), low vegetation (cyan), tree (green), car (yellow),
and clutter/background (red). Nevertheless, there are four types
of bands for each tile in total in the Potsdam dataset, namely,
near infrared, red, green, and blue wavelengths. As regards the
partition of the Potsdam dataset, there are 18 tiles, six tiles, and
14 tiles in training part, validation part, and test part, respectively.
The pixel distribution of different categories in this dataset is
shown in Fig. 8(b). The number of pixels of category car only
accounts for 1.69% of the total dataset, indicating that there is
also a problem of relatively imbalanced distribution of categories
as well.


https://www.isprs.org/education/benchmarks/penalty -@M UrbanSemLab/2d-sem-label-vaihingen.aspx
https://www.isprs.org/education/benchmarks/penalty -@M UrbanSemLab/2d-sem-label-vaihingen.aspx
https://www.isprs.org/education/benchmarks/penalty -@M UrbanSemLab/2d-sem-label-potsdam.aspx
https://www.isprs.org/education/benchmarks/penalty -@M UrbanSemLab/2d-sem-label-potsdam.aspx
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Fig. 8.  Percentage of pixels for different categories in the Vaihingen and the
Potsdam dataset. (a) Vaihingen. (b) Potsdam.

B. Evaluation Metrics

Similar to most work on multimodal semantic segmentation
task, we adopt three extensively-used evaluation metrics repre-
sented by overall accuracy (OA), mean intersection-over-union
(mlIoU), and mean F}-score (mF) to evaluate the performance
of different approaches.

OA can be written as follows:

NCO[TCCt

OA =
Nan

(22)

where Neomeet and Ny separately characterize the quantity of
properly discriminated pixels and the total number of pixels.
Normally, a higher OA means a better segmentation behavior
and vice versa.

For the purpose of calculating mF7 indicator, we first concen-
trate on the performance of a certain category C. True positives,
abbreviated as TP, indicates that the pixels should belong to
category C and are also correctly identified. False negatives (FN)
means that the pixels are labeled as C, but are recognized as
any of the other categories. As for the false positives (FP), its
definition is that the annotations of those pixels fall into other
categories and yet they are classified as category C. On the basis
of the acquired TP, FN, and FP, IoU value of a certain category
can be determined by the formula

TP

IoU = ———.
TP+FP+FN

(23)
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Furthermore, we can calculate precision and recall per category
as

TP
Precision = 24)
TP+FP
TP
Recall = . (25)
TP+FN
Then, the F}-score of category C can be obtained through
Precision - Recall
Fg=(1+5% B=1. (26

" 32 . Precision+Recall’

Ultimately, by averaging IoU and Fj-score across all of the
categories, we have

Cn
1
mloU = — IoU; 27
Cn
1
) e p— E Fy, 28
miy CN e 1; ( )

where C'y expresses the number of categories. Similar to OA,
a higher mloU or mF} implies that the network can probably
achieve a more satisfactory performance.

In addition, apropos of the computation cost, we utilize two
indicators to describe the behavior of different networks, i.e., the
quantity of optimizable parameters and floating point operations
(FLOPs).

Parameters of linear layers are related to the input and output
neurons

Param(Linear) = (Li, + 1) * Loy (29)

where L;, and L, represent the number of input neurons and
output neurons, respectively. While parameters of convolution
layers can be described as

Param(Conv) = (K * Kg % Cin + 1) * Cout (30)

where Ky and K separately express the width and height
of convolution kernel. Cy, and Cyy; denote input channels and
output channels, respectively. In particular, for PW convolution,
Kyw and Ky are both 1. Nonetheless, for DW convolution, due
to the situation that a convolutional kernel is only responsible for
the operation of one channel, the formula for parameter quantity
becomes

Param(DW Conv) = Ky * Kg * Ciy + Cout. (31)

It is worth noting that the computation process for parameters
aforementioned all involves bias.

Accordingly, we can obtain the FLOPs for linear layers and
convolution layers

FLOPs(Linear) = 2L;, * Loyt (32)
FLOPS(COHV):QCin*KW * KH * Wout * Hout * Cout (33)
FLOPs(DW Conv) = 2C;, * Kw * Kg * Wout * Hout. (34)

In a similar vein, the computation for FLOPs value all contains
bias as well.
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TABLE I
QUANTITATIVE RESULTS ACHIEVED FOR THE VAIHINGEN DATASET

F1(%)
Method Imp_surf Building Low_veg  Tree Car OA(%) mFy(%) mloU(%)
DSMFNet [66] 90.25 91.59 78.39 87.49 77.18 - 84.98 74.36
TreeUNet [67] 92.50 94.90 83.60 89.60  85.90 90.40 89.30 80.92
SA-GATE [68] 92.95 96.05 84.45 8991 87.34 91.06 90.14 82.30
CF-Net [69] 91.40 95.10 80.30 88.80  89.10 89.30 88.94 80.42
LA-Net [70] 92.40 94.90 82.90 88.90 81.30 89.80 88.08 79.09
C3Net [71] 93.00 96.10 85.40 90.30  85.40 91.30 90.04 82.15
CaFE [18] 91.19 93.89 79.10 89.10  79.04 - 86.46 76.68
CMFNet [58] 92.37 94.94 83.34 89.03  83.04 90.05 88.54 79.77
CIMFNet [72] 92.13 96.07 80.26 88.26  90.91 - 89.52 81.44
MEFNet [73] 92.75 95.61 84.21 89.26  88.82 90.63 90.13 82.26
CEGFNet [57] 92.27 95.91 81.39 88.59  87.89 - 89.21 80.86
TokenFusion [49] 92.85 96.27 85.18 90.27  85.08 91.25 89.93 81.99
CEN [74] 92.83 95.99 85.37 90.35 80.16 91.13 88.94 80.53
PACSCNet [17] 92.92 96.11 84.08 89.61  89.11 90.92 90.37 82.67
CMX [50] 93.07 95.98 84.69 90.16  87.45 91.15 90.27 82.50
FTransUNet [20] 92.69 96.23 84.14 89.74  84.81 90.89 89.52 81.35
LMEF-Net 93.08 96.12 84.71 90.02  89.41 91.19 90.67 83.15

The first column lists the name of different multi-modal semantic segmentation approaches. The next five columns show the F1 value
for each category in Vaihingen. And three kinds of overall performance indicators are recorded in the remaining columns. Bold font is

the maximum value in its column.

C. Implementation Details

We train the proposed multimodal fusion framework LMF-
Net in an end-to-end manner. Owing to the GPU memory
limitation, we crop the original large-size remote sensing image
through sliding window technique. The resolution of every input
slice is set to 512 x 512 pixels. One branch’s input modality
is optical image and the other branch is raw 32-bit floating
point DSM image in all experiments. Aiming to deal with the
problem of class-imbalanced distribution, we adopt weighted
cross entropy loss to characterize the gap between the network
output and the ground truth. The losses of different branches
are first calculated separately, and then averaged. And they are
equally important. During the training procedure, pretrained
weights on ImageNet [75] are loaded and AdamW [76] is
employed to update the gradients of model parameters. The
batch size is set to 6. In addition, the learning rate value is
initialized to 2 x 107*, and then it is declined according to a
“poly” learning rate schedule with warmup strategy [77], where
the power factor is set to 0.9. The decay coefficient and drop
path rate are separately set to 0.05 and 0.1 to prevent overfitting
phenomenon.

D. Experimental Results

1) Performance on Vaihingen: The segmentation results of
different neural networks achieved for the Vaihingen dataset
are provided in Table I. Here, all of the models are trained
on multimodal remote sensing data, namely, paired optical and
DSM images. From these statistical records, we can see that the
proposed LMF-Net has relatively satisfactory behavior on each
category. The obtained Fj scores are superior to the majority
of approaches. Besides, from the perspective of comprehensive
capability, LMF-Net is only slightly inferior to C3Net [71] in
OA, yet the mF; and mloU indicator outperform all compari-
son methods, reaching 90.67% and 83.15%, respectively. This
fully demonstrates that our fusion framework is available and

effective. It is able to learn more distinguishable expressions by
properly leveraging multimodal remote sensing data.

In order to intuitively assess the segmentation effect, we fur-
ther give the qualitative results in Fig. 9. Here, we select several
representative and high-performance methods covering natural
scene segmentation and remote sensing scene segmentation for
comparison. It can be observed that the visualizations produced
by LMF-Net are relatively close to the semantic annotations.
In rowl, row3, and row4, each car instance is independently
distinguished through LMF-Net and there are quite few pixels
which are misidentified from low vegetation to tree. Moreover,
as displayed in row?2 and row3, LMF-Net generates more smooth
boundaries at the edges of building and impervious surfaces, as
well as low vegetation and impervious surfaces, compared with
other models.

2) Performance on Potsdam: We next evaluate our LMF-Net
and other extraordinary methods on the Potsdam dataset. The
comparison results are recorded in Table II. It can be found that
our proposed LMF-Net also possesses powerful competitiveness
on this larger and more challenging dataset. The OA, mF7,
and mloU achieve 91.40%, 92.84%, and 86.83%, respectively.
These three indicators are all better than the comparison mod-
els listed in this table. While, regarding the categories with
relatively few samples and scattered distribution, for instance,
low vegetation and car, our proposed LMF-Net obtains more
prominent behavior and realizes the highest F score, separately
reaching 88.33% and 96.16%. This suggests that the LMF-Net
is able to capture more generic expressions from multimodal
remote sensing data and to generalize to different remote sensing
scenes.

Similarly, the visualization results of these representative
networks on Potsdam are also presented in Fig. 10. We can
notice that the LMF-Net achieves more accurate predictions
and relatively sound effects for detail information. In rowl,
LMF-Net obtains a better recognition result for the scene where
vegetation is distributed on both sides of a narrow road. As shown
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Visualization of results achieved for the Vaihingen dataset. The label legend of each category can be referenced to the bottom of this figure. (a) Optical

images. (b) DSM images. (c¢) Ground truth. (d) Results of SA-GATE [68]. (e) Results of TokenFusion [49]. (f) Results of PACSCNet [17]. (g) Results of

FTransUNet [20]. (h) Results of the proposed LMF-Net. Best viewed in color.

TABLE II
QUANTITATIVE RESULTS ACHIEVED FOR THE POTSDAM DATASET

F1(%)

Method Imp_surf Building Low_veg Tree Car OA(%)  mF1(%) mloU(%)
V-FuseNet [78] 90.91 93.23 84.30 86.23  90.56 - 89.05 80.41
DSMFNet [66] 91.64 92.24 84.66 86.80  89.02 - 88.87 80.09
TreeUNet [67] 93.10 97.30 86.80 87.10  94.10 90.60 91.68 84.90
SA-GATE [68] 93.41 97.14 87.31 88.50 9547 91.10 92.36 86.05
CaFE [18] 91.23 95.01 85.12 89.83 92.17 - 90.67 83.10
CMFNet [58] 91.19 93.91 86.14 86.25 95.15 88.48 90.53 82.91
CIMFNet [72] 90.58 94.95 84.97 84.72  94.25 - 89.89 81.93
MFNet [73] 93.40 96.85 87.18 88.78  96.11 91.02 92.46 86.22
CEGFNet [57] 90.61 94.61 85.12 85.20 94.88 - 90.08 82.23
TokenFusion [49] 93.56 97.15 87.37 88.67  95.87 91.11 92.52 86.33
CEN [74] 92.03 96.71 86.70 88.35 94.52 90.12 91.66 84.82
MFTransNet [79] 90.87 95.79 82.55 83.90 90.16 87.93 88.65 79.96
CMX [50] 92.86 96.36 88.16 89.17  95.88 90.94 92.48 86.20
PACSCNet [17] 92.89 96.26 87.13 87.63  95.48 90.43 91.88 85.21
FTransUNet [20] 92.91 96.16 87.64 88.93  95.69 90.65 92.27 85.83
LMF-Net 93.36 96.99 88.33 89.35  96.16 91.40 92.84 86.83

The first column lists the name of different multi-modal semantic segmentation approaches. The next five columns show the F1 value
for each category in potsdam. And three kinds of overall performance indicators are recorded in the remaining columns. Bold font is the

maximum value in its column.

in this row, the strip-shaped impervious surfaces extracted by
our method is more complete and does not occur interruption
phenomenon. Likewise, the low vegetation with similar shape
is effectively classified in row2 and row3 as well. In particular,
as displayed in row4, for object with special structure, such as
concave and cavity, LMF-Net still clearly identifies the outline
of this building.

3) Complexity Analysis: Apart from the classification capa-
bility, we continue to have a comprehensive assessment about the
computation complexity of different methods. The comparison
results between LMF-Net and other well-performing models
are listed in Table III. As a note, FLOPs indicator is measured
by a 512 x 512 image slice and the mF} is obtained on the
Vaihingen dataset. It can be found that the proposed LMF-Net
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Visualization of results achieved for the Potsdam dataset. The label legend of each category can be referenced to the bottom of this figure. (a) Optical

images. (b) DSM images. (c) Ground truth. (d) Results of SA-GATE [68]. (e) Results of TokenFusion [49]. (f) Results of PACSCNet [17]. (g) Results of

FTransUNet [20]. (h) Results of the proposed LMF-Net. Best viewed in color.

TABLE III
EVALUATION OF THE LMF-NET AND SEVERAL ADVANCED APPROACHES IN
TERMS OF COMPUTATION COMPLEXITY

Method Params(M) FLOPs(G) mFy(%)
DSMFNet [66] 50.92 518.00 84.98
SA-GATE [68] 110.85 164.88 90.14
CMFNet [58] 106.29 312.70 88.54
CIMFNet [72] 71.41 118.80 89.52
MFNet [73] 94.67 85.72 90.13
TokenFusion [49] 4591 80.04 89.93
CEN [74] 118.12 526.49 88.94
PACSCNet [17] 94.05 150.26 90.37
CMX [50] 66.56 57.07 90.27
FTransUNet [20] 203.99 264.61 89.52
LMF-Net 42.90 71.42 90.67

FLOPs is measured by a 512 x 512 image slice. Bold font is the best value
in its column.

has the minimum number of network parameters and the second
least FLOPs among all comparison approaches. Furthermore,
LMF-Net is able to achieve the optimal mF; score even in
case where the parameters and FLOPs are less than the second
best method by exceeding 5S0M and 70G, respectively. The
above-mentioned analysis suggests that our LMF-Net has rel-
atively strong competitiveness in both identification capability
and model complexity.

TABLE IV
ABLATION STUDIES REGARDING THE SEGMENTATION RESULTS AND
COMPUTATION OVERHEAD OF DIFFERENT MODULES IN THE PRESENTED
LMF-NET ON THE VAIHINGEN AND POTSDAM DATASET

Module mloUy(%) mloUp(%) Params(M) FLOPs(G)
baseline 80.54 84.30 44.68 72.77
+MSPF 82.22 85.86 40.90 69.41
+LEF 82.54 86.08 46.61 73.08
+LFF 82.53 85.95 44.75 74.47
+LEF&LFF 83.20 87.09 46.68 74.78
LMF-Net 83.15 86.83 42.90 71.42

V. DISCUSSION

In this section, we have a detailed discussion about our LMF-
Net and analyze its efficacy. Section V-A provides the ablation
studies to verify the performance of each module. Section V-B
compares three different fusion schemes. Then, the design
choice of pooling operator types is elucidated in Section V-C.
Finally, we show some heatmap samples in Section V-D.

A. Ablation Studies About Different Modules

Table IV reports the ablation studies on three critical modules,
i.e., MSPF, LEF, and LFF, on the Vaihingen and Potsdam dataset.
mloUy and mloUp separately represent the mloU performance
on the Vaihingen and Potsdam dataset. The baseline here consists
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TABLE V
EFFECT OF THREE FUSION SCHEMES IN DIFFERENT MODULES
ON THE VAIHINGEN DATASET

Module Scheme mloU(%) mF1(%)
baseline - 80.54 89.00
MSPF I 80.76 89.13
MSPF F 82.06 89.99
MSPF A 82.22 90.09
LEF I 79.16 88.04
LEF F 80.97 89.28
LEF A 82.54 90.28
LFF I 80.70 89.07
LFF F 82.41 90.21
LFF A 82.53 90.27

of a two-stream SegFormer [34] models, but there is no informa-
tion interaction between the two streams. Then, we successively
plug three modules into the baseline approach to validate their
capability.

Asisshownin Table IV, the proposed MSPF, LEF, and LFF all
contribute to significant benefits on both two datasets, achieving
an increment of over 1.5% in mloU. The combination of the
two learnable fusion schemes is still able to further improve
the performance, realizing the mloU indicator of up to 83.20%
and 87.09% on these two datasets, respectively. Nonetheless, it
should not be neglected that the computation complexity of the
LEF and the LFF is relatively high. Compared to the baseline
model, the combination of them leads to an increase of about
2 M Parameters and 2 G FLOPs as well. As aresult, we introduce
the MSPF to appropriately reduce the computation cost. It can
be seen that Parameters and FLOPs decrease to 42.90 M and
71.42 G, respectively. They are even lower than the baseline
model. This indicates that the MSPF makes the whole pipeline
more compact. Although the introduction of pooling causes
some information loss, there is only a negligible decrease in
performance. The proposed model still shows competent seg-
mentation behavior on both the Vaihingen and Potsdam dataset.
Thus, the above-mentioned ablation studies prove that the union
of three carefully designed modules ensures the superiority
of the LMF-Net in terms of segmentation performance and
computation efficiency.

B. Comparison of Three Fusion Schemes

Then, we assess the effectiveness of three fusion schemes in
MSPF, LEF, and LFF. The results achieved for the Vaihingen
dataset are fully recorded in Table V. Here, I means that the
optical branch and the DSM branch are independent, and there
is no information exchange in each proposed module. For F', it
represents that we only fuse optical branch and DSM branch, yet
the fused embeddings/features are not assigned to each branch
any more. The meaning of A is that we not only combine the
embeddings/features of optical and DSM modality, but also
assign the fusion results to these two branches.

From Table V, we can find that in contrast to the baseline,
scheme I does not bringing about noticeable improvement. For
the LEF, the value of mloU and mF} even decreases in a certain
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TABLE VI
COMPARISON OF LEVERAGING TWO POOLING OPERATORS
ON THE VAIHINGEN DATASET

Pooling Type mloU(%) mF1(%)
MazPool 82.04 89.99
AvgPool 82.22 90.09

extent when adopting scheme I. This implies that unreasonable
utilization of multimodal data probably gives rise to performance
degradation. Nevertheless, modality fusion schemes, namely, F’
and A, have more superior effects for the MSPF and the LFF.
There is an obvious increment in mIoU and mF indicator. Even
for the LEF, the results of scheme F' also surpass those of the
baseline and scheme I, which suggests that modality fusion is
more conducive to fully develop the complementary advantage
of optical and DSM embeddings/features. In addition, compared
to scheme F', the performance is further enhanced by applying
scheme A, especially for the LEF. It demonstrates that taking
into account both complementary information and specificity
information of different modal data is beneficial for the neural
network to learn more discriminative representations. For this
reason, based on the results of this experiment, we select scheme
A in designing the proposed LMF-Net architecture.

C. Design Choice of Pooling Operator

Generally, there are two widely utilized pooling operators,
i.e., MaxPool and AvgPool. We individually employ these two
pooling operators in the MSPF module and observe their effects.
The results achieved for the Vaihingen dataset are documented
in Table VI. It can be noticed that both of these pooling operators
perform well in the MSPF while AvgPool is slightly ahead of
MaxPool, reaching 82.22% and 90.09% in the matter of mIoU
and mF metric, respectively. One possible reason could be that
the extracted features are comparatively smooth through taking
pixel average. Therefore, when compared with other excellent
models, the pooling operators are all set to AvgPool in the LMF-
Net.

D. Visualization of Heatmaps

A heatmap typically highlights the region of interest. It is
able to reveal the activation status of intermediate feature maps
in a model. In order to have a better explanation for the effec-
tiveness of the proposed method, we provide several heatmaps
of the baseline model and LMF-Net in Fig. 11. The colorbar
legend about these heatmaps is jet. Note that regions with high
temperatures indicate stronger feature responses and vice versa.

Asshownin Fig. 11, saliency regions present how the baseline
model and LMF-Net determine which category a pixel belongs
to. Compared with the baseline model, the contour of feature
responses of the LMF-Net is closer to the ground truth and the
corresponding activated values are higher. Besides, our method
can extract more accurate local details about some small objects,
e.g., cars. These phenomena mean that our method has certain
advantages in facilitating the acquisition of discriminative se-
mantic features. It also contributes to a better prediction effect.
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Fig. 11.

Visualization of heatmaps. (al) is the optical image. (b1) represents the ground truth of the same area as (al). (a2)~(a6) indicate the heatmaps generated

by the proposed LMF-Net on the category of impervious surfaces, building, low vegetation, tree, and car while (b2)~(b6) show the heatmaps obtained by the
baseline model for these five categories. (c) and (d) are presented in the same form. Best viewed in color.

VI. CONCLUSION

In this article, we propose an LMF-Net for remote sensing
semantic segmentation. To be specific, we introduce an MSPF
module by leveraging pooling operator. MSPF can generate
key-value pairs with multimodal complementary information
in a parameter-free mean. Then, to further harness the cross-
modal collaboration embeddings/features in heterogeneous data
fusion, we elaborate two learnable fusion modules, namely, LEF
and LFF. To objectively and comprehensively validate the per-
formance of our LMF-Net, we perform sufficient experiments
on two challenging public datasets, ISPRS Vaihingen and ISPRS
Potsdam, and compare the LMF-Net with plenty of remarkable
models. The achieved results fully demonstrate that the proposed
LMF-Net has powerful competitiveness in both segmentation
performance and computation efficiency. Besides, the effect of
MSPF, LEF, and LFF is deeply discussed as well. Concerning
future research, we will still devote ourselves to the research of
multimodal remote sensing data fusion and will attempt to adopt
some semisupervised or unsupervised learning strategies to deal
with the challenge of insufficient annotations.
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