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Abstract—Cryptographic network protocols play a crucial role
in enabling secure data exchange over insecure media in modern
network environments. However, even minor vulnerabilities can
make protocols an easy target for cyber attackers. Therefore,
it is essential to investigate the threats and vulnerabilities
stemming from the cryptographic network protocols. Further-
more, it is necessary to comprehensively investigate the weak-
nesses of network protocols that use cryptographic primitives
to inform users and developers about potential attack points.
This comprehensive survey examines the relationship between
encryption schemes and network protocols and presents an in-
depth review of associated threats and vulnerabilities. Given
that most cryptographic protocols operate in the Transport and
Application layers of the Transmission Control Protocol/Internet
Protocol (TCP/IP) protocol stack, our investigation primarily
centers around encryption algorithms used by representative
and notable cryptographic network protocols such as Transport
Layer Security (TLS) and Secure Shell (SSH). Furthermore,
we delve into the attackers’ methods to exploit the already
identified and existing vulnerabilities, seeking to understand the
mechanisms employed to compromise these protocols. Through
this survey, we aim to provide the readership with an in-
depth understanding of the existing and new vulnerabilities
associated with modern cryptographic protocols and provide
valuable insights into securing them effectively. We also discuss
the existing challenges and future research directions in this
domain.

Index Terms—Cryptographic Network Protocols, Vulnerabili-
ties, Encryption Algorithms, Transport Layer Security (TLS), Se-
cure Shell (SSH), HyperText Transport Protocol Secure (HTTPS)

I. INTRODUCTION

Cryptographic Network Protocols (CNPs) are the backbone
of secure communications over networks. Since the inception
of the networks and Internet, security has always been an
afterthought, at least for the TCP/IP protocol stack. Therefore,
over time, either cryptographic protocols have been added
to the communication protocols as add-ons, or cryptographic
primitives have been embedded in the existing protocols. In the
TCP/IP protocol stack, most of the communication protocols
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that use cryptographic primitives are used at the top two layers,
i.e., the Application and Transport layers. Among others,
a representative CNP is the Secure Socket Layer/Transport
Layer Security (SSL/TLS) that employs Public Key Infras-
tructure (PKI), i.e., public/private key algorithms and hash
functions to guarantee end-to-end security. By establishing
secure network connections and encrypting the transmitted
data, SSL/TLS protects network users from a range of cyber
threats such as Man-in-the-Middle (MitM), Distributed Denial
of Service (DDoS), SQL injection, and other application-level
attacks. Google Chrome has observed that approximately 95%
of monitored traffic utilizes SSL/TLS as a security solution [1].

While CNPs have proven to be effective solutions for
network security and are widely implemented; even a minor
vulnerability can result in significant damage to clients and
systems in terms of cybersecurity risks. Many vulnerabilities
may arise from different sources such as from the use of
outdated encryption algorithms [2], [3], analysis of encryption
patterns [4]], [S)], or exploitation of weaknesses in the network
protocols [6]. Exploiting these vulnerabilities provides the
attackers with opportunities to infiltrate or infect systems
with malware and enables them to perform other malicious
activities in the network ranging from eavesdropping to active
attacks.

It is worth noting that certain vulnerabilities discovered in
obsolete encryption schemes remain active in modern network
environments due to the coexistence of diverse CNP versions
on the Internet. While many servers adopt secure crypto-
graphic algorithms and state-of-the-art protocols by following
the latest version like TLS v1.3, numerous web servers still
need to support outdated encryption schemes for compatibility
reasons. A report reveals that over 68% of web servers con-
tinue to support TLS v1.0 and v1.1, both of which employ out-
dated encryption algorithms, despite the increasing adoption
of TLS v1.3 [7]]. This necessitates continued attention to old
protocols and algorithms, even if they are not recommended.

Supporting older versions of network protocols ensures
service compatibility, but it also poses a security risk as the
old version inherit their known vulnerabilities. These protocols
have evolved over various iterations, with frequent updates
to encryption algorithms. While network service providers
maintain support for previous versions to ensure compatibility,
this practice results in the coexistence of diverse versions of
network protocols in modern networks. However, the encryp-
tion algorithms supported by older versions may be inadequate
in the contemporary network environments. Former CNPs
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Fig. 1: Scope and objectives of our work. Red boxes in (a) and orange boxes in (b) represent topics covered in this paper.

were developed in different environments, and their encryp-
tion algorithms were tailored to the computing environments
of that time. As computing environments advanced, certain
encryption algorithms were deprecated due to their inherent
weaknesses [8]], [9]. Using previous versions of CNPs exposes
Internet users to the vulnerabilities associated with outdated
encryption algorithms. Exploiting these vulnerabilities in a
mixed protocol environment is an enticing prospect for at-
tackers [6], [10]. To this end, despite the introduction of
TLS v1.3, a significant update aimed at addressing existing
vulnerabilities, the classic approach of exploiting protocol
mixtures to compromise secure communications persists [11]].

A considerable number of surveys in the literature focus
on the security of application domains such as Internet of
Things [12], Intelligent Transportation System [13], Sensor
Networks [[14]], and so on. Furthermore, despite the coexistence
of diverse protocols and versions pertaining to the upper layers
of the TCP/IP protocol stack, existing surveys tend to focus on
narrow scopes such as encryption algorithms within specific
domain or algorithm properties [15[], [L6]. This limited scope
hinders the attainment of a comprehensive understanding of
modern security channels where a multitude of protocols and
algorithms are in use. Moreover, there is a notable scarcity
of surveys specifically addressing vulnerabilities in TLS v1.3.
While a few surveys have been conducted on encryption
schemes of SSL/TLS post the release of TLS vl1.3, they
predominantly focus on its robustness, rather than its vulner-
abilities [17]], [18], [19]. It is also important to note that even
seemingly secure protocol may yield unexpected results due
to the intricate interactions of their complex software compo-
nents. While there are no documented algorithmic vulnerabil-
ities in TLS v1.3 so far, several implementation flaws have
been identified in the literature [20], [21]], [22], [23], [24]. In
the modern heterogeneous and complex network environment
with diverse CNPs, these flaws may be linked to existing
vulnerabilities, highlighting the necessity for a comprehensive
investigation of the existing efforts in this direction. To the
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best of our knowledge, there are few comprehensive studies
that discuss CNP encryption algorithms’ security in detail
and provide a one-stop shop for practitioners, researchers,
software developers, and security designers to make informed
decisions in their specific fields. Recognizing this gap, our
study explores the evolution of encryption algorithms and
updates in encryption strategies within modern CNPs to en-
hance security. Furthermore, we delve into vulnerabilities that
have necessitated security patches, providing insights into their
exploitation and properties.

A. Scope and Contributions

The main objective of this paper is to conduct a com-
prehensive analysis of encryption schemes used in modern
CNPs, focusing on data protection protocols operating in the
Transport and Application layers of the TCP/IP protocol stack.
Layers lower than the Transport layer (including network,
link, and physical layers) employ cryptographic mechanisms
including IPSec [61]. However, we do not address them for
several reasons. First, security in the lower layers primarily
focuses on protecting packets or signal transmission against
spoofing, sniffing, or interference, whereas our emphasis is
on the encryption of the actual information being transmitted.
Second, the layers below the Transport layer are primarily
managed by network service providers, meaning identifying
their encryption and operational mechanisms can be challeng-
ing due to their security policies. Several custom encryption
methods used in the Transport and Application layers often
leverage lower layer protocols features [62f], [63l]. However,
we do not include them, because encryption methods that
leverage lower-layer features are typically designed for spe-
cific environments and have not been adopted as widely as
encryption algorithms included in popular network security
protocols. Therefore, in this paper, we focus on CNPs utilized
in the Transport and Application layers, where we examine
the security strategies and vulnerabilities associated with their
encryption schemes. Figure [I] illustrates the scope of our
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TABLE I: Related Surveys for the Past 12 Years

Covered Contents

Category Paper  Year Encryptlon Earlier TLS  TLS v1.3 Application Layer Vulnerabilities Description
Algorithms Protocols
251 2013 [=) O O O [=) Encryption algorithms
26 2014 =) O O @) o Symmetric encryption algorithms
TR 2014 =) O [@) O O Asymmetric encryption algorithms
T 28] 2017 [=) O O O [ Symmetric encryption algorithms
T R29T 2017 o @) @) O =) Encryption algorithms
Encryption 130: 2017 =) O O O =) Cryptography algorithms in IoTs
Algorithm 31 2017 [ [=) [@) O [=) Encryption algorithms on IoT
1321 2019 [ O O O [ Encryption algorithms
T B3] 2019 [ O O O [=) Encryption algorithms
34 2020 =) O O @) =) Symmetric encryption algorithms
T6l 2021 [ O [@) [ [=) Cryptography algorithms in IoTs
T B3] 2023 [ O O O - A review of cryptographic algorithms
T B6I 2023 o O O O =) Comparative analysis of encryption algorithms
T 137 2024 [ O O [@) =) RSA and elliptic curve encryption systems
TI38] 2024 [ O [@) O [=) Lightweight encryption algorithms for IoTs
T [B9] 2024 [ - [@) [=) - Lightweight encryption algorithms for IoTs
[40 2013 [ [=) O O [ SSL/TLS
Tl 2014 [=) - [@) O - Server Forward Secrecy
T [2] 2014 = =) O [=) =) Forward Secrecy
[43] 2015 [ [ O [=) [=) Secure communication for IoT
T44] 2015 [=) [=) O [ [ Security issues for Ad hoc
T3] 2015 [=) [ O [ [=) Security in software defined networks
T M6l 2016 o =) O O [ J SSL/TLS
1471 2017 [=) O O [=) [ Secure communication for VANETSs
48] 2019 [=) O O [=) [ Secure communication for Smart Grids
(171 2020 =) =) - - =) HTTPS traffic
[49] 2020 O =) O o [ Overall insight of IoT
150] 2020 [ O O [ [ Secure communication techniques for 5G
Secure 1511 2020 [=) O O [ [ Security in IoTs
Communication ~ [18] 2021 [=) [ - [ [ Flaws summaries in TLS
B2 2021 = =) O ) ) Security in I0Ts
[53] 2021 o O [J O O TLS vI.3 handshake
T4 2022 @) [=) [@) [=) @) DNS encryption
T[] 2022 ) ) O ) [ Security in I0Ts
9] 2022 = =) [=) [=) =) QUIC security issues
155] 2023 = [ [ [=) =) TLS interception mechanisms
156! 2023 [=) [=) O [=) [=) Secure communications for UAV traffic
1571 2023 O - O [=) [ Internet measurement techniques for cyber security
1581 2024 [=) [=) o [@) [=) Post-Quantum TLS
159] 2024 [=) O O [ =) Authentication protocol for IoTs
T 160] 2024 [=) [=) O [=) [=) Secure data transmission in [0Ts
Our Work ° ° ° ° ° Encryption schemes and vulnerabilities

in modern network communications

O : Not Covered
@ : Partially Covered
@ : Covered

survey. In the Transport layer, SSL/TLS plays a crucial role
in ensuring secure communication between network endpoints.
Originally developed for Transmission Control Protocol (TCP)
security, SSL/TLS serves a significant and pivotal role in
Internet security. Furthermore, SSL/TLS has also been adopted
by other protocols beyond TCP because of its convenience
and reliability, and most modern communication protocols
that do not include security functions themselves, such as
encryption, rely on SSL/TLS for their secure communication.
Consequently, understanding SSL/TLS is fundamental for as-
sessing Transport layer security. It is also worth mentioning
that TLS is the evolved version of SSL.

Earlier versions of TLS, v1.0 through v1.2, share the
same handshaking process, with minor changes in the list of
secure ciphers. On the other hand, TLS v1.3 introduced major
changes in the handshaking process and a distinct set of cipher
suites compared with previous versions. Thus, we classify TLS
into two categories: TLS v1.0 through v1.2 (denoted as earlier
versions) and TLS v1.3. After examining TLS, we explore
vulnerabilities that exploit weaknesses in TLS encryption
schemes or systemic vulnerabilities. Since several encryp-
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tion schemes in the previous versions of TLS are deemed
vulnerable, we explore their properties and the exploitation
strategies of adversaries in detail. We divide the vulnerabilities
into four different categories, depending on their exploitation
target: Key Exchange, Network Connection, Block Cipher
Algorithms, and Stream Cipher Algorithms. Meanwhile, TLS
v1.3 does not have known insecure encryption schemes (at
the time of writing this paper), and thus, our focus shifts
to investigating the attempts to weaken encryption algorithms
and implementation bugs that may lead to unexpected results,
e.g., protocol downgrading. These bugs are classified into
four different categories depending on their attack strategies:
Encryption Library, Memory Access, Network Connection, and
Bypassing. We delve into their problems and effects, which
lead to unexpected results while using TLS v1.3.

In the Application layer, numerous protocols support a
wide range of services. However, it is common for many
Application layer protocols to rely on SSL/TLS rather than
implementing their specific security solutions. Hence, vul-
nerabilities presented in SSL/TLS are inherited by the Ap-
plication layer protocols. Consequently, attacks specifically
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targeting Application layer protocols are considered less sig-
nificant compared with those focusing on SSL/TLS, which
offer broader applicability. A report from Edgescan indicates
that the share of attacks targeting specific Application layer
protocols, aside from a few exceptions such as HyperText
Transfer Protocol Secure (HTTPS) and Secure Shell (SSH),
is relatively low [64]. Therefore, we focus on both protocols
in the Application layer.

HTTPS employs SSL/TLS as a security protocol akin to
other Application layer protocols. Given its widespread use,
attacks on HTTPS are indicative of challenges faced by
other protocols. This prevalence also makes it a prime target
for attackers. HTTPS inherits vulnerabilities from SSL/TLS,
and thus we exclude overlapping vulnerabilities caused by
SSL/TLS. Therefore, our focus is on exclusive attacks exploit-
ing HTTPS properties, categorized into two types: vulnerabil-
ities related to insecure encryption algorithms and domain-
specific vulnerabilities (denoted as Encryption Algorithms
and Domain in Figure [I] respectively to avoid redundancy).
In contrast, SSH stands out as a unique Application Layer
protocol, providing security functions without relying on
SSL/TLS. Its distinctive nature has contributed to its long-
standing use with many systems supporting the protocol.
This popularity, however, renders SSH a secondary target for
attackers, leading to a variety of attacks on SSH [64]]. While
SSH manages its own encryption mechanisms and available
algorithm list, the encryption algorithms mostly overlap with
those used in SSL/TLS. Therefore, we focus on exploring
vulnerabilities that arise from SSH’s unique cryptographic
mechanisms, not those from the encryption algorithms. To
this end, we categorize the vulnerabilities into two groups:
vulnerabilities related to SSH access and those originating
from SSH communication (denoted as Access and Packet
Transmission in Fig. [T] respectively).

Regarding the literature, we heavily relied on the available
research databases including but not limited to IEEEXplore,
ACM, Elsevier, Springer, Scopus, MDPI, ScienceDirect and
Common Vulnerabilities and Exposure (CVE).

B. Existing Surveys

Our investigation traversed existing surveys conducted over
the past 12 years, all of which pertain to encryption schemes
and secure communication. The synthesis of our inquiry
findings is succinctly presented in Table [l We define five
distinct topics our investigation covers, represented in the
“Covered Contents” column. These topics are classified into
three tiers for comparison: The first tier, “Not Covered,” is
indicated by an empty circle symbol (O), signifying that a
specific topic received no coverage within the survey. The
second tier, “Partially Covered,” is depicted as a half-filled
circle (@), denoting that the topic was touched upon but not
as the primary focus. Finally, the third tier, “Covered,’ is
represented by a filled circle symbol (@), denoting that the
topic corresponds with our concentrated focus.

Existing surveys can be classified into two principal cat-
egories: Encryption Algorithms and Secure Communication.
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The surveys belonging to the Encryption Algorithm category
delve into encryption algorithms used in diverse application
domains, primarily emphasizing their operational details and
vulnerabilities of the algorithms. As secure algorithms have
been adopted in a plethora of application domains, researchers
moved their focus from investigating general encryption algo-
rithms to encryption algorithms used in specific application
domains. In other words, the verticals have considerably
expanded along with the technological developments, and the
scope of existing works encompasses a wide range including
Internet of Things (IoT) [30], [31], [16], [38], [39], compre-
hensive cipher algorithm analysis [25], [29], [32], [33], [35],
[36] and specific algorithms such as symmetric [26], 28], [34],
asymmetric [27]], and authentication algorithms [37]. Never-
theless, most of the existing studies lack an examination of
vulnerabilities that come from practical usage related to proto-
cols. They focus on scrutinizing encryption algorithms and/or
investigating encryption algorithms' vulnerabilities rather than
vulnerabilities stemming from practical usages of encryption
algorithms. Only a handful of surveys whose topics are related
to networks partially cover encryption strategies of TLS and
Application layer protocols [30], [31], [16], [39].

Surveys classified as Secure Communication examine se-
curity strategies and vulnerabilities in encrypted channels.
These studies have been conducted across various application
domains and verticals, offering an extensive perspective of en-
cryption scheme implementations. They cover SSL/TLS [40],
(461, (18], [651], [S3l, [55], its specific properties [41], [42] and
various other protocols, such as QUIC [19], DNS [54], and
HTTPS [17]. Furthermore, encryption and security methods
have been extended to other domains with increased concerns
of cybersecurity, such as IoT, Vehicular Ad hoc Networks
(VANET), 5G networks, and so on. These extended security
mechanisms were tailored to the unique characteristics of each
domain and have been reviewed in existing surveys [43]], [44],
(451, (471, 1481, (490, (501, [15], (521, (511, 156], 1571, 1581,
[59], [60]. These surveys tangentially examine the encryption
algorithms used to establish secure communications. Even
though some of these surveys contain more topics relevant
to our survey by covering the practical usage of encryption
schemes, they limit the investigation of encryption strategies
and protocols to a specific area of their interests. Thus, these
surveys only partly cover the topics and do not explore them
thoroughly.

In addition, both categories share a common trait: limited
coverage of content pertaining to TLS v1.3. This lack of
research addressing TLS v1.3 can be attributed to its relative
novelty and a reduced number of identified vulnerabilities
compared with its predecessors. Of all the conducted surveys,
only a few within the “Secure Communication” category
encompass content related to TLS v1.3 [18]], [17], [19], [55].
Existing studies cover topics distinct from our survey, focusing
on encryption schemes in specific network protocols and
delving into their operations, algorithms, and vulnerabilities.
For instance, Joarder and Fung examined the security of Quick
UDP Internet Connections (QUIC) protocol, a TLS v1.3-
compliant protocol [19]. They covered a similar scope to our
interests including vulnerabilities in network protocols and
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encryption schemes. However, their analysis only focuses on
QUIC-specific properties, extending its scope to encompass
broader protocol security matters unrelated to encryption. Sim-
ilarly, Shbair et al. [17] and Levillain et al. [[L8] also align with
our research interests; however, they offer cursory analyses
of specific aspects pertinent to our focus. Particularly, they
prioritize vulnerabilities in outdated TLS versions, omitting a
thorough examination of the potential benefits of TLS v1.3
and its vulnerabilities. Furthermore, Carnavalet et al. discusss
the differences between and advantages of TLS versions [55]].
However, they emphasize on TLS mechanism rather than its
encryption algorithms, and the covered vulnerabilities are also
elaborated but limited to interception attacks. While these
surveys may touch upon some topics of our interest, they lack
an in-depth vulnerability examination stemming from within
the overall encryption schemes.

C. Organization

The remainder of this paper is organized as follows: In
Section [[I, we provide an overview of security in upper layers
protocols of network including Transport and Application
layer protocols. This is followed by Section [[II] and [[V] that
present attacks on previous versions of TLS and TLS v1.3.
After exploring attacks on the Transport layer, we illustrate the
attacks on Application layer protocols represented by HTTPS
and SSH in Section [V] and respectively. We discuss open
research challenges in Section and conclude the paper with
our final remarks in Section [VIII

II. OVERVIEW OF SECURITY IN UPPER LAYER NETWORK
PROTOCOLS

This section introduces the background necessary to under-
stand the vulnerabilities of encryption algorithms employed
in the upper network layer protocols, the transport and ap-
plication layers. First, we classify encryption algorithms and
briefly discuss their encryption characteristics. After that, we
introduce an overview of secure network protocols used in the
Transport layer tracing the history of their available encryption
algorithms alongwith their cryptographic features. Finally,
cryptographic protocols used in application layer protocols,
specifically SSH and HTTPS, are covered. The evolution
of the encryption algorithms employed by both protocols is
scrutinized with their cryptographic characteristics.

A. Cryptography for Network Security

Cryptography for network security can be categorized into
two classes depending on the number of keys: asymmet-
ric cryptography and symmetric cryptography. Asymmetric
cryptography uses two keys, denoted as public and private
keys, one for encryption and the other for decryption, while
symmetric cryptography uses one key for both encryption and
decryption. They have their own advantages and disadvantages
and can be employed for different purposes to establish
secure network environments. Furthermore, these two can be
used in combination (as in TLS). As a prelude, this section
briefly discusses these two classes of cryptography and their
characteristics.
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1) Asymmetric Cryptography
Prime number-based and elliptic curve-based algorithms are
two representative examples of asymmetric cryptography and
are widely used for network security. Rivest, Shamir, and
Adleman (RSA), a prime number-based algorithm is one of the
most used security mechanisms [68]. In the RSA algorithm,
for a given message M, where 0 < M < N, and a user’s
public key PUy = (e, N), a ciphertext C' can be calculated as
follows:
C = M®modN, (1)

where N denotes a large integer, a multiplication of two large
enough prime numbers, N = p X g. The ciphertext C' can be
decrypted using the user’s private key PRy = (d, N):

M = C%nodN. (2)

On the other hand, elliptic curve-based asymmetric algo-
rithms employ elliptic curve graphs to generate key pairs [69].
Equation (3) illustrates the shape of the elliptic curve E,(a, b):

v =a34az+b mod p. 3)

Next, a generator G should be selected as a point on the
E,(a,b), with an order of n. A user randomly selects a
prime integer d smaller than n, followed by calculating a
corresponding public key using the following equation:

PU,=d-G. “4)

Elgamal encryption can be implemented based on the ellip-
tic curve. To encrypt a message M, where M is a point on the
Ey(a,b), a user selects a random number k, where 0 < k < n,
and generates a pair of values as a ciphertext (C' = (C1,C2)).

Ci=k-G, (5)
Cy = M + k- PU,. (6)

A receiver can decrypt the ciphertext C' with the private key
as follows:

d-Ci=d-(k-G)=k-(d-G)=k- PUy, (7)
CQ—d-C1:(M-Fk'PUk)—(k'PUk):M. )

Asymmetric cryptography serves two key functions. First,
when a message is encrypted with a public key, only the
owner of the corresponding private key can decrypt it, ensuring
confidentiality. Second, if a message is encrypted with a user’s
private key, it can be verified that the user generated the
ciphertext, which serves as a digital signature.

The Diffie-Hellman algorithm is another representative
prime numbers-based asymmetric cryptography [70], which
can be used only to exchange cryptographic keys. It requires
two public parameters, a large enough prime number p and a
primitive root g, which can generate all the non-zero residues
when modulo operation is conducted on p. With public pa-
rameters, a sender and a receiver selects a random number
a and b, respectively, for their private key, then both sender
and receiver generate their public keys S_PU, and R_PUy
as follows:

S_PU, =g¢g* mod p, 9
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R _PU, =¢* mod p. (10)

The sender sends S_PUj to the receiver, and the receiver
sends R_P Ry, to the sender. The public keys are each raised to
the power of their corresponding private key and then modulo
operation is conducted by p, resulting in generating shared
secret key for them. The secret key has the same value due to
the following property shown in the equation (TI)):

Shared_Key = (R_PUy)* mod p = (S_PUy,)® mod p.
1D

Asymmetric cryptography presents lower risks of key leak-
age since it eliminates concerns over key distribution. This
advantage is often leveraged as an additional measure for
information protection, such as authentication. Consequently,
asymmetric encryption algorithms are commonly employed
to authenticate web server certificates, with Digital Signature
Algorithm (DSA) and Diffie—-Hellman-based algorithms are
the most prevalent for authentication purposes. Another critical
use of asymmetric cryptography is the exchange of keys used
in symmetric cryptography. Due to the computational intensity
of n-th power calculations required in asymmetric cryptog-
raphy, decryption takes a longer time. Hence, asymmetric
encryption is frequently used to exchange keys for symmetric
encryption that is more appropriate for fast encryption. In the
TLS encryption process, algorithms such as RSA are utilized
to exchange symmetric encryption keys.

2) Symmetric Cryptography

Symmetric cryptography has two classes: block cipher and
stream cipher. Block cipher encrypts plaintext of a fixed block
size, while stream cipher encrypts continuously in the form of
bits stream. Block cipher encrypts a plaintext by breaking it
up into fixed size blocks (depending on the algorithm and its

mode). Equations and illustrate the process.
Plaintext = block; || blocks || blocks ... || block,. (12)

Every block is subjected to the encryption process (FE)
specified in each block cipher algorithm using a key and
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the blocks. The encrypted blocks are calculated once more
according to the block cipher mode of operation (MO) and
delivered to the receiver:

Ciphertext = E(blocky, k) - MO || E(blocks, k) - MO

.. | E(blocky, k) - MO.
(13)

Since the receiver knows both the MO and the k, it can
decrypt the received blocks sequentially. Block ciphers employ
a variety of operations, including substitutions, shifts, column
shuffling, and additions, to render plaintext unintelligible. Each
algorithm has its own unique set of operations. For example,
Triple Data Encryption Standard (3DES) generates ciphertext
by performing a single DES cipher operation three times
in succession, while Advanced Encryption Standard (AES)
employs a series of operations organized into rounds, requiring
10 rounds to produce a block cipher. These algorithms encrypt
plaintext in blocks, which are then fragmented and reassem-
bled into a continuous text at the receiver’s end. To facilitate
block-level encryption operations, block encryption methods
utilize block cipher modes of operation that offer features
such as error propagation prevention, parallel processing, per-
formance enhancement, and attack mitigation. Consequently,
block ciphers, in conjunction with these modes, provide more
efficient, faster, and secure encryption functionalities. The
primary block cipher algorithm used in TLS is AES, famous
for its robustness and efficiency. As the mode used for
AES, Galois/Counter Mode (GCM) and Counter with Cipher
block chaining Message authentication code (CCM) are rep-
resentative; both modes provide the Authenticated Encryption
with Associated Data (AEAD) properties that are essential in
modern TLS by generating secure authentication tags, which
guarantee both data confidentiality and integrity.

Stream ciphers, on the other hand, generate ciphertext in the
form of a bits stream, using an encryption key and a random
number generator to create a key stream, which sequentially
encrypts the plaintext into a byte stream:

Key_stream = Key_Gen(Key,IV), (14)
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where Key_Gen is a stream key generator and IV denotes an
initial vector. Using the key stream, stream cipher algorithms
encrypt the message M in sequence:

Ciphertext = Key_Gen(Key,IV); ® M;, (15)

where 7 denotes ¢-th value and @ denotes a bit-wise or byte-
wise exclusive OR (XOR) operation. When received by the
receiver, the stream is decrypted in sequence by reversing
the encryption process. ChaCha20 is the representative stream
cipher algorithm in TLS, paired with the polyl1305 Message
Authentication Code (MAC) algorithm to provide AEAD
property.

In TLS environments, symmetric cryptography is utilized to
encrypt data transmitted over a network due to its relatively
fast encryption speeds and lower computational complexity
compared to asymmetric ciphers. However, symmetric cryp-
tography faces several challenges. The primary issue is key
distribution; for these algorithms to function correctly, the
encryption key must be exchanged with the communicating
parties, and this process is not inherently secure. A solution
to this problem is the use of asymmetric encryption algo-
rithms, which can securely exchange symmetric encryption
keys. It enables secure key exchange to enable fast encrypted
data transfer using the exchanged key. Another issue is the
encryption function’s reliability. Since the same key is used
for both encryption and decryption, data collection is eas-
ier, making it more susceptible to attacks than asymmetric
ciphers. As computing power increases, simpler block cipher
algorithms are vulnerable to brute force attacks or downgrade
attacks. Block ciphers can be compromised either through
weaknesses in the algorithm itself or through specific features
of the mode, such as influencing adjacent blocks or using
consistent padding, which can introduce vulnerabilities. This
allows attackers to decrypt ciphertext, rendering the encryption
ineffective. Meanwhile, stream ciphers are vulnerable due to
the importance of IVs in their encryption process; predictable
generation patterns can expose stream cipher algorithms to
attacks. These issues will be further examined in subsequent
sections.

B. Transport Layer Security

This section provides an overview of TLS with a focus
on encryption schemes utilized in the protocol. Commonly,
secure communication in Transport layer protocols is achieved
through the adoption of SSL/TLS or SSL/TLS-based mech-
anisms. Therefore, our main interest lies in the encryption
schemes used in SSL/TLS.

SSL/TLS employs two types of encryption algorithms to
ensure secure data transmission. Asymmetric cryptography,
while slower, offers better security and is used to exchange
encryption keys for symmetric encryption. Symmetric encryp-
tion, in contrast, provides faster encryption and decryption
speeds, making it more efficient when handling large volumes
of data to be securely transmitted. The exchanged encryption
key, known as the session key, is used to encrypt and decrypt
data during transmission and remains valid for the duration of
the established SSL/TLS session. As it has been maintained
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TABLE II: Encryption Algorithms Supported Until TLS v1.2

Algorithms
— Diffie-Hellman (DH)
— Elliptic-Curve Diffie-Hellman (ECDH)

Type

Key Exchange

Algorithms — Rivest Shamir Adleman (RSA)

— Secure Remote Password (SRP)
Certificate - Some.Digitall Signature Standards (D_SS)
Authentication combined w1th‘n0n—ephemeral algorithms

. — ANONymous signature (ANON)

Algorithms

— Kerberos

— Data Encryption Standard (DES) / 3DES

— Rivest Cipher 2/4 (RC2/4)
Encryption — International Data Encryption Algorithm (IDEA)
Algorithms — Camellia

— SEED

- ARIA
g:iztﬁfn _ Cipher Block Chaining (CBC)

for a long time, earlier versions of SSL/TLS, especially SSL,
employ encryption algorithms that have become outdated and
vulnerable to attacks. Most encryption algorithms in the list
of SSL ciphers were identified as vulnerable, and SSL was
banned in modern networks for this reason. Thus, we focus on
the encryption schemes used in TLS, including earlier versions
that are widely used in modern networks.

TLS has undergone constant changes with each version,
primarily involving updates to the available encryption algo-
rithms. However, a significant change was made with version
1.3 to address a fundamental problem that arose from the
operational aspect of the earlier TLS versions such as in
the process of algorithm negotiation. Figure [2] illustrates the
change in the handshaking process. In Figure the hand-
shake protocol in earlier versions uses two Round Trip Time
(RTT) for algorithm negotiation, allowing clients to establish
secure connections with various counterparts. This negotia-
tion process involves aligning a “cipher_suite” for algorithm
matching that encompassed key exchange, Certificate Authen-
tication (CA), encryption, and MAC algorithms. Once the
“cipher_suite” is negotiated, the client generates a pre-master
secret, which is used in combination with other information
from the SSL/TLS handshake to derive the master secret. From
this master secret and the agreed upon encryption settings, the
symmetric encryption key (session key) is generated, which
remains valid for the duration of the session. The session key
is included in the “ClientKeyExchange” message and sent to
the server. At this stage, the “ChangeCipherSpec” message is
also sent, indicating that encryption is ready. Once this bit is
activated, both parties begin transmitting data using the agreed-
upon encryption algorithms. However, this negotiation strategy
is vulnerable because malicious servers can force ordinary
connections to change their versions or algorithms to which
they can easily attack.

To resolve this problem, TLS v1.3 adopted several strate-
gies distinct from the earlier versions, as shown in Fig-
ure [2b] The client sends public key exchange information
in the “key_share” field, which includes available curve
specifications and finite field parameters. Additionally, sup-
ported algorithms for digital signature exchange are commu-
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TABLE III: Encryption Algorithms in TLS version 1.3

Type Algorithms
Key Exchange — Diffie-Hellman Ephemeral (DHE)
Algorithms — Elliptic-Curve Diffie-Hellman Ephemeral (ECDHE)
Certificate — Rivest Shamir Adleman (RSA)
Authentication — Elliptic-Curve digital signature algorithm (ECDSA)
Algorithms — Edwards-curve Digital Signature Algorithm (EdDSA)
Encryption — Advanced Encryption Standard (AES)
Algorithms — ChaCha20-Poly1305

— Galois/Counter Mode (GCM)
Mode of . . .
o . — Counter with Cipher Block Chaining-Message
peration

Authentication Code (CCM)

nicated through the “signature_algorithms” field. If a Pre-
Shared Key (PSK) has already been established, the client
includes two additional fields: “psk_key_exchange_modes”
and “pre_shared_key.” The PSK is an encryption key gen-
erated during a previously established session, and if the
session is still valid, the key can continue to be used.
The “psk_key_exchange_modes” field specifies information
such as the algorithm used and key length, while the
“pre_shared_key” field contains the actual public PSK that has
been exchanged. Based on the combination of fields received,
the server responds with the “key_share” field if a new key
exchange is required or with the “pre_shared_key” if the PSK
is to be reused. In both cases, these fields serve the same
function as those sent by the client.

One notable change is that TLS v1.3 no longer supports
insecure algorithms and the TLS version negotiation. This
change prevents TLS vl.3-based secure connections from
being compromised by replacing trustworthy algorithms with
vulnerable ones. However, to achieve this goal, the available
algorithms must be trustworthy. This led to the next charac-
teristic of TLS v1.3, where the available algorithms need to
satisfy specific properties: Forward Secrecy and Authenticated
Encryption with Associated Data (AEAD). They are related
to key exchange and data encryption algorithms, respectively.
Forward Secrecy guarantees that leakage of a single session
key does not affect different sessions by using ephemeral
keys during the key exchange [71]. In other words, Forward
Secrecy protects the past sessions if the keys are compromised
in the future, and in case of a key compromise, the damage
is limited to the session that used the compromised session
key. As a data encryption-related property, AEAD provides
reinforced data encryption authentication. Transmitted data
consists of ciphertexts and MAC that allows receivers to
inspect the received data’s correctness. Encryption algorithms
satisfying the AEAD property utilize plaintexts and ciphertexts
to generate associated data, which are used to calculate MAC.
This additional authentication process makes it difficult to
analyze and manipulate the data without an encryption key.

TLS v1.3 only requires a single RTT to establish a secure
network channel and has a simplified “cipher_suite” that only
has encryption and MAC algorithms to be used for secure
communications. To achieve this, TLS v1.3 simplifies the list
of available algorithms, resulting in making the use of the
key exchange algorithm and digital certificate authentication
algorithm predictable. As a result, only a few algorithms
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remain in each field in TLS v1.3; algorithms not commonly
used or failed to meet the required properties were banned.
Tables [lIf and enumerate the updates to the encryption
algorithms used in TLS. Non-ephemeral algorithms have been
removed from the list of available algorithms for key exchange
and certificate authentication, and non-AEAD algorithms have
been discarded from the list of algorithms for data encryption.
Although algorithms like Camellia and ARIA are considered
trustworthy, they have also been removed due to their infre-
quent uses.

On the other hand, this simplification also makes it chal-
lenging for new algorithms to be officially added in TLS v1.3.
While a few algorithms have been suggested as drafts, they
are still awaiting official acceptance [72l, [73], [74l, [75],
[76], and currently, they can only be used through private
extensions.

C. Application Layer Security

SSL/TLS stands as a de facto standard to establish secure
network channels, protecting the Transport layer and above of
the TCP/IP protocol stack. Within this landscape, an array of
Application layer protocols serves diverse application services,
many of which did not originally encompass encrypted com-
munication. Nevertheless, the escalating concern over security
vulnerabilities in network services has fueled a surge in secure
communication practices. This has prompted most Application
layer protocols to opt for integration with the SSL/TLS pro-
tocol, enabling a shielded communication framework.

The strategic union with SSL/TLS yields several encap-
sulation benefits. Notably, this approach offers significant
convenience for application layer protocol developers, as a
single security layer assumes the responsibility of safeguarding
multiple protocols. This reduces the scope that the protocol
designers must consider, enabling them to emphasize func-
tionality without becoming embroiled in intricate security
specifications. As an encapsulated layer, SSL/TLS specifica-
tions (RFC 5246 and 7301) show benefits when Application
layer protocols adopt it. However, this symbiotic reliance
on SSL/TLS encryption schemes exposes Application layer
protocols to the same vulnerabilities that SSL/TLS has. It
makes attackers concentrate on discovering vulnerabilities of
SSL/TLS, not a specific Application layer protocol. Supporting
this perspective, the report issued by Edgescan demonstrates
that SSL/TLS is a main target of modern network attacks [64].
However, this report also indicates that SSH and HTTPS are
also major targets, implying that investigating attacks and
vulnerabilities is essential.

Our focus narrows down to these heavily targeted Ap-
plication layer protocols due to their substantial prevalence.
While these protocols share a plethora of vulnerabilities with
SSL/TLS, we emphasize the vulnerabilities intrinsic to the
characteristics and encryption paradigms of Application layer
protocols, which is an attack point that the attackers predomi-
nantly exploit. Within this framework, we spotlight the two
most frequently attacked protocols. Foremost is the HTTP
based protocol, wherein HTTPS stands as the secure HTTP
utilizing SSL/TLS. This widely used and targeted protocol
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can represent other SSL/TLS-dependent application layer pro-
tocols, as they adopt the same channel encryption strategy as
HTTPS and are vulnerable to similar attacks. Therefore, we
delve into the intricacies of HTTPS, examining its processes
and encryption-related vulnerabilities.

SSH, however, distinguishes itself by diverging from the
typical SSL/TLS-reliant protocol model. Developed before
SSL/TLS, SSH serves as a distinctive protocol designed to
ensure secure communication between end points. Its unique
attributes have made the protocol essential in numerous sys-
tems, resulted in becoming the the second most targeted
Application layer protocol. Unlike its SSL/TLS counterparts,
SSH operates with an independent encryption process, char-
acterized by similar yet subtle distinctions from SSL/TLS. We
examine the encryption algorithms used by SSH and their
vulnerabilities that exploit the characteristics of the algorithms.

1) HyperText Transfer Protocol Secure (HTTPS)

HTTP serves as a foundation for the exchange of hypertext-
based data across networks. In its early stage, HTTP was tai-
lored for the transmission of text-based data, including formats
like HyperText Markup Language (HTML) and Cascading
Style Sheets (CSS). However, as web services grew more
complex and heterogeneous, the need to accommodate diverse
data types became more important. This evolution prompted
over 15 years of development, wherein HTTP underwent
continuous enhancements through the addition of extensions.
This adaptability made HTTP popular so far, having been a
basis for various modern web protocols.

Along with this long enhancement, a huge number of attacks
against HTTP have been discovered. For the baseline HTTP,
the attack tactics were relatively straightforward as transmitted
data without encryption can be easily eavesdropped by passive
attackers. The advent of HTTPS was a direct response to
these vulnerabilities [77], resulting in its wide scale adoption.
Serving as a fusion of HTTP and SSL/TLS, HTTPS usage
has witnessed consistent growth. The report issued by Web
Almanac highlights that the share of HTTPS exceeds 85%
across both mobile and desktop environments in 2022 [78].
In the HTTPS paradigm, HTTP data is transferred to the
Transport layer for delivery. The data are split by the proper
Transport layer protocol rule and then encrypted by the encryp-
tion strategy of SSL/TLS. Other Application layer protocols
that entrust their security to SSL/TLS also follow this process.

2) Secure Shell Protocol

The initial version of SSH was proposed in 1996 as a secure
alternative to insecure network communication protocols like
Telnet and Remote Shell [[79], but it suffered from several vul-
nerabilities [80], [81]. To address these concerns, an improved
version of SSH was introduced in 2006, denoted as SSH v2,
serving as the primary version up to this day. Although subtle
variations exist between applications, they primarily follow
the SSH v2 specification [[82]. Compared with its predecessor,
SSH v2 incorporates more robust encryption algorithms and
offers a wider array of functionalities, including file transfers.
Over its extensive history, the SSH protocol has undergone
multiple updates, incorporating not only resilient algorithms
but also supplemental operations such as FTP-related exten-
sions.
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TABLE IV: Encryption Algorithms in SSH 2.0

Type Algorithms
Key Exchange ~ Diffie-Hellman (DH)
Algorithms — *Elliptic-Curve Diffie-Hellman (ECDH)
’ — *Elliptic Curve Menezes-Qu-Vanstone (ECMQV)
e — Rivest Shamir Adleman (RSA)
iiﬁigzgtceation — Digital Signature Standard (DSS)
Algorithms — *Elliptic-Curve digital signature algorithm (ECDSA)
— °Edwards-Curve Digital Signature Algorithm (EdDSA)
— Advanced Encryption Standard (AES)
— Blowfish
— Twofish
Encryption — Triple Data Encryption Standard (3DES)
Algorithms — Serpent
— ARCFOUR (RC4)
— IDEA
— Carlisle Adams and Stafford Tavares-128 (CAST-128)
Mode of - TCépher—Block Chaining (CBC)
Operation — TCounTeR (CTR)

— ¥Galois Counter Mode (GCM)

* : Added in RFC 5656
o : Added in RFC 8709
1 : Added in RFC 4344
1 : Added in RFC 5647

Unlike other Application layer protocols, SSH stands as a
unique protocol that facilitates encrypted connections without
relying on SSL/TLS. Its operational principles resemble those
of SSL/TLS. Like SSL/TLS, SSH generates a symmetric key
and disseminates it using an asymmetric encryption algorithm.
Moreover, it features authentication and integrity functions
akin to those present in SSL/TLS. However, SSH distinguishes
itself by executing its security functions on the Application
layer in contrast to SSL/TLS-dependable protocols, and sup-
ports additional access control options. We concentrate on
the features and vulnerabilities. These vulnerabilities typically
stem from the use of insecure encryption algorithms and flaws
in the flow of processes.

Table enumerates the encryption algorithms available
within SSH with many also finding utility in SSL/TLS. Algo-
rithms without any symbols in the table are initial algorithms
incorporated in SSH v2 [83]. Subsequent updates introduced
additional algorithms through various RFCs including 5656,
8709, 4344, and 5647. These updates aimed not only at
adopting secure algorithms but also at disabling encryption
algorithms considered as vulnerable with certain algorithms
being officially recommended in RFC documents [84], [85].

Given the substantial overlap between encryption algorithms
used in SSH and those in TLS, we refrain from going into their
details. However, SSH has several encryption algorithms not
included in SSL/TLS, such as CAST-128, Blowfish, Twofish,
and Serpent. These, though distinct, are not frequently uti-
lized in modern networks for various reasons. CAST-128 and
blowfish, due to their utilization of 64-bit cipher blocks, are
susceptible to birthday attacks and are considered unsafe [[10]].
Twofish and Serpent were finalist algorithms in the AES
competition held from 1997 to 2000. In the competition,
however, Rijndael emerged as the victorious algorithm and
subsequently became the standard AES encryption method,
constraining the influence of other contenders. Moreover, side-
channel attack vulnerabilities were identified in the Twofish
encryption algorithm owing to its key processing mecha-
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Fig. 3: Classification of vulnerabilities in the earlier versions of TLS. Targets are represented by navy boxes, strategies by gray
boxes, and the names of publicly known attacks by white boxes. Wide boxes indicate attacks with multiple properties. These
attacks are classified into four main cases: Key Exchange/Authentication, Network Connection, Block Cipher Algorithm, and

Stream Cipher Algorithm.

nism [86]. While numerous efforts were made to address
these vulnerabilities over time, Twofish and Serpent became
obsolete after Rijndael was selected for the AES standard.
Except for these vulnerable or infrequently used algorithms,
SSH supports similar encryption algorithms as SSL/TLS does.
Since vulnerabilities of common algorithms are covered in
Sections and we concentrated on investigating other
weaknesses linked to SSH’s properties. Section |VI| introduces
unveiled attack strategies aimed at exploiting SSH’s encryption
mechanisms.

III. ATTACKS ON EARLIER VERSIONS OF TLS

Attacks on earlier versions of TLS exploit various vulner-
abilities, encompassing a range of strategies. For example,
some attacks focus on disabling target systems by establishing
numerous connections, and other attacks try to establish illegal
connections by exploring commonly used ports [87], [64].
SHAttered and SLOTH exploit vulnerabilities in the MAC
algorithms used in early versions of TLS [88]], [89]. Heartbleed
(CVE-2014-0160) exploits a bug related to incorrect memory
bound checking, leading to potential data leaks when the
request size differs from the actual size [90]. Furthermore,
there is a category of attacks that leverages weaknesses in
the TLS connection process. The triple handshake attack, also
known as a MitM attack, is a notable representative, placing
attackers in the middle of a secure connection [91]].

Beyond these attacks, other vulnerabilities are exploited
within or related to encryption algorithms utilized for es-
tablishing TLS channels. This constitutes our primary focus.
Starting from the list of encryption algorithms in Table [MI]
we comprehensively investigate various attack strategies that
align with our research goals and systematically categorize
them into four distinct classes: Key Exchange/Authentication,
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Network Connection, Block Cipher, and Stream Cipher. Fig-
ure [Bl illustrates details of these classes.

A. Key Exchange Algorithms

The first category we discuss, involves vulnerabilities that
exploit key exchange algorithms. These vulnerabilities pri-
marily downgrade a key exchange algorithm to a vulnerable
version, thereby granting attackers to obtain information or
decipher the entire encrypted traffic.

1) Cross Protocol Attack

In the context of modern TLS attacks, algorithms that
have been excluded from TLS v1.3 are noteworthy because
they were banned for security apprehensions. Certain attacks
exploit vulnerabilities in cross-protocol communication to exe-
cute malicious authentication, thereby leading to MitM attacks.
A remarkable study by Mavrogiannopoulos et al. shows sce-
narios wherein a MitM attack can succeed by identifying an
encryption key shared between a server and a client, which
remains valid for more than two encryption algorithms [92]].
This sophisticated attack builds upon the approach introduced
by Wagner and Schneier, originally targeting SSL, and forces
normal Elliptic Curve Diffie-Hellman (ECDH) based connec-
tions to use weaker algorithms [93]]. The strategy causes the
server and client to communicate with different algorithms,
allowing the attacker to exploit the server as an oracle to
recover the client’s pre-master secret. By accessing this oracle,
the attacker can obtain the key capable of decrypting every
session key generated from the DH algorithm, since normal
DH employs a static pre-master secret. The Application Layer
Protocol Confusion Analyzing and Mitigating Cracks in TLS
Authentication (ALPACA) attack also shows a MitM sce-
nario [94]. This attack exploits immature identification in the
certification process which only verifies domains excluding the



This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3526605

IEEE COMMUNICATIONS SURVEYS & TUTORIALS

real content. By manipulating request messages, the attacker
confuses clients, creating an opportunity for the MitM attack to
succeed. The ALPACA attack provides empirical evidence of
the vulnerable cases. The authors of the ALPACA investigated
1.4M distinct websites and found 114,197 websites that were
susceptible to downgrading attacks, which means that around
8% of websites were vulnerable to this attack. We argue that
even 8% is a significant number.

2) Timing Attack

Eavesdropping proves to be an efficient strategy for certain
attacks, particularly targeting non-ephemeral key exchange
algorithms vulnerable to timing or pattern analysis attacks.
A noteworthy example of such an attack is Raccoon, which
aims at exploiting these vulnerabilities in the context of DH
algorithms used in TLS [95]. This attack is applicable to both
ephemeral and static DH algorithms; however, the extractable
information from secure connections using ephemeral DH al-
gorithms is relatively insignificant. Raccoon attacks primarily
focus on secure connections utilizing static DH algorithms for
key exchange. The method of the attack requires capturing
packets during the initial step of a TLS connection. These
collected packets play a pivotal role in enabling the attacker to
measure the timing, which serves as an oracle originating from
the TLS server. Through this timing-related oracle, the attacker
can infer the pre-master secret, which will subsequently be
converted into a shared key. They found 3.33% of Alexa
top 100k websites meet the conditions that the Raccoon
attack needs to succeed. However, due to the complexity and
many prerequisites, Raccoon is considered a difficult attack
to perform. Nevertheless, it plays a crucial role in warning
about the risks associated with outdated versions of TLS. As
another example of a timing attack, Brumley and Tuveri dis-
covered that elliptic curve-based encryption algorithms using
Montgomery’s ladder for scalar multiplication in OpenSSL are
susceptible to a timing attack [96]. To prove this vulnerability,
they represented an encryption key recovering scenario in a
TLS handshaking process using the ECDSA key exchange
algorithm. As a distinct scenario applicable to ephemeral key
exchange cases, it could be considered a fatal attack strategy to
incapacitate encryption algorithms. Most attacks on encryption
schemes target software-level vulnerabilities, CacheBleed, a
particular timing attack, turned out an exploitable point in
an architectural domain by verifying a vulnerability stemmed
from micro architecture [97]. This strategy is available when
specific versions of Intel architecture access their memory,
enabling attackers to reveal an RSA key by adopting an
old cache collision attack [98]. Through experiments, they
achieved a high recovery rate of 60% by observing 16,000
times of RSA decryption process. Both timing attacks are
significant examples, because they work on hardware-related
domains that had been considered vulnerability-free areas.
These instances remind us to keep watching every component
that composes the whole encryption steps.

3) Key Generation Algorithm

Meanwhile, encryption algorithms used in the Key Ex-
change and the certificate authentication steps underwent
significant changes due to several security issues. The RSA
algorithm serves as a representative target for attackers. A
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prevalent technique used in attacking RSA involves an old
chosen cipher attack known as the Bleichenbacher vulnera-
bility [99]. Through this attack, a message encrypted with
512-bit or 1024-bit keys between 300 thousand and 2 million
trials can be decrypted. Noteworthy variants of this attack
are the Return Of Bleichenbacher’s Oracle Threat (ROBOT)
and Bleichenbacher’s new Cache ATtack (CAT), which were
discovered decades later from the release of the original
attack [100], [101]. The attack methodologies employed herein
rely on the use of an RSA PKCS#1 v1.5 padding oracle,
affording attackers the capability to retrieve plaintext from
RSA-encrypted ciphertexts. These instances demonstrate that
the outdated vulnerability can remain exploitable even within
contemporary network environments. By exploring the top 1M
websites on Alexa, more than 20,000 websites that could be
vulnerable to a ROBOT attack were discovered, and the CAT
showed that the attack can also affect TLS 1.3, albeit with a
lower success rate for CAT attacks. Vulnerabilities in the Key
Exchange algorithms have been discovered toward ECDSA as
well as RSA [[102], [96]. Fan et al. showed OpenSSL has a
vulnerability due to insecure implementation in the ECDSA
key generation step [[102]. This vulnerability stemmed from a
specific multiplication method and enables attackers to obtain
information around half bit of a used key by a side channel
attack. With the discovered key information, they proved that
it is possible to recover an entire encryption key by using
diverse arithmetic operations.

4) Downgrade Attack

Shifting a key exchange algorithm, rather than downgrading
the connection protocol, represents another valid strategy
against TLS. Remarkable examples of such attacks include
Factoring RSA Export Keys (FREAK) and Logjam, both of
which exploit vulnerabilities in the OpenSSL libraries [2],
[3]]. These attacks exploit the use of special cipher algorithms
intended for export in the 1990s. Although they were forgot-
ten, these algorithms continued to exist within the OpenSSL
libraries until the 2010s. Their security flaw came from the
usage of excessively short key sizes, rendering them suscepti-
ble to brute force attacks empowered by enhanced computing
capabilities. In the FREAK attack, targets were coerced into
using the RSA_export key [2], while Logjam manipulated the
target into employing the DHE_export key [3]. Both attacks
were identified at the time of publication with approximately
20% of popular websites exposed to the vulnerabilities. De-
spite the availability of stronger 1024-bit or 2048-bit keys,
the attacks forced the use of the vulnerable 512-bit keys.
The aftermath of these attacks led to the removal of export
cipher algorithms from the OpenSSL libraries. Additionally,
such incidents prompted the simplification of algorithms used
in TLS v1.3, along with the adoption of a non-negotiable
connection strategy. Furthermore, vulnerabilities associated
with non-ephemeral algorithms in key exchange protocols
resulted in removing them from the available list [8], [LO3].
This step was taken to enhance the overall security of TLS
implementations.

5) Other Minor Attacks

Secure Remote Password (SRP) protocol was also supported
in the key exchange process of earlier TLS [104]. As a
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password-based algorithm, it has suffered from dictionary
attacks and side channel attacks, which infer password related
information [[104]], [105], [L06]. In TLS connection, however,
this protocol is not practical due to its low adoption rate. The
password-based strategy requires a manual password setup,
which is more suitable to manage private servers, not public
services. It leads to a low acceptance rate of SRP in TLS
connections, and this low utilization resulted in eliminating
SRP in TLS v1.3. Since SSH protocol is a primary user of
SRP, we discuss it in detail in Section

B. Network Connection Protocols

Downgrading attacks target not only robust algorithms but
also network connection protocols. These attacks convert TLS
network connections to SSL, which incorporates many weak
encryption algorithms. This gives attackers an opportunity
to select a weak encryption algorithm for each field of
“cipher_suite”. In practical instances, observed attacks have
demonstrated the shift of key exchange or block ciphers to
vulnerable options.

1) Vulnerable Algorithms with CBC Mode (Padding Oracle)

One prominent attack leveraging the downgrade approach
is Padding Oracle on Downgraded Legacy Encryption (POO-
DLE) [107]. Previous versions of TLS support a negotiation
mechanism to match algorithms supported by counterparts.
When attackers conduct MitM attacks between servers and
clients, they can establish SSL v3.0 connections with their
targets if SSL v3.0 connection is supported for compatibility
reasons. Once an SSL v3.0 connection is successfully estab-
lished, the attacker can initiate a padding oracle attack. This
attack exploits a padding process utilized in a block cipher
mode of operation and exploits SSL v3.0’s improper handling
of padding responses. Block cipher algorithms employ padding
schemes to fill the remaining space within a block when the
data size does not align with the block size. Since attackers are
placed in the middle, they can collect transmitted ciphertexts,
which have the padding patterns. By analyzing these data, the
attackers can deduce whether altered bits are for the padding
or not. They can further determine exact bits by repeatedly
making requests if the bits are not for the padding. This
approach allows attackers to reveal one byte of encrypted
messages only within 256 SSL v3.0 requests.

Although most systems disabled the use of SSL v3.0 after
the introduction of the POODLE attack, new vulnerabilities
related to POODLE have emerged [108]. New POODLE
variants exploit the case of a valid padding with an invalid
MAC, indicating that the Cipher Block Chaining (CBC) mode
is still susceptible to a POODLE attack. Two variants, Zom-
bie POODLE and GOLDENDOODLE, were discovered in
a Citrix application delivery controller [109], [11]. Zombie
POODLE was identified in the Citrix load balancer. This
attack is available when the target was still using outdated
operations that were recommended to be avoided due to the
initial POODLE attack. It achieved a high success rate by ex-
ploiting information about invalid padding with a valid MAC.
GOLDENDOODLE exhibited a similar exploit scenario and
impact as Zombie POODLE did, but with significantly fewer
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requests to achieve success. A report indicates that over 2,500
out of 1 million Amazon Alexa top domains had vulnerabilities
to Zombie POODLE attacks, and approximately 1,000 of
them were susceptible to GOLDENDOODLE attacks [110].
Fortunately, security patches were implemented by network
services vendors to mitigate these threats.

2) Vulnerable Algorithms with Downgrade Attack

Another attack that downgrades TLS to SSL is Decrypting
RSA with Obsolete and Weakened eNcryption (DROWN) [6].
This cross-protocol attack enables attackers to decipher secure
channels by exploiting multiple vulnerabilities of an unsafe
connection protocol. DROWN attacks could be successful
due to certain vulnerabilities in SSL v2.0. It exploits the
TLS weakness using the same RSA private key for SSL
v2.0 connections because it employs ephemeral keys for the
RSA key exchange step [111l], [112]. The attack exposed
around 11 million servers to potential risks. Subsequently,
most servers disabled the use of SSL v2.0 after the discovery
of the DROWN attack, to block DROWN and its variants.
The existence of such attacks underscores the significance of
addressing old vulnerabilities and discontinuing support for
outdated secure network connection protocols.

C. Block Cipher Algorithms

Among the block cipher algorithms, DES-based algorithms
were banned earlier due to their inadequate key lengths. The
increase in computing power facilitated breaking their encryp-
tion through straightforward brute force methods, rendering
them insecure. In addition to these delisted algorithms, certain
attacks focus on exploiting other block cipher characteristics
used in TLS.

1) Birthday Attack

One such attack is Sweet32, which targets 64-bit block
size encryption algorithms, including standard DES and Blow-
fish [10]. Notably, 3DES was the active TLS encryption
algorithm at the time of Sweet32’s publication. 3DES had a
usage rate of just 1%, but nearly 90% of servers supported
the encryption algorithm when this attack was discovered.
This birthday attack on 64-bit block ciphers requires a large
dataset and necessitates the attacker to monitor the target’s
secure connection for an extended period. Furthermore, several
prerequisites must be met for a successful attack, including
access to some plaintext and ciphertext and the issuance of a
duplicated key. Although Sweet32 was not widely applicable,
it brought attention to the vulnerability of short-length block
ciphers, leading to the decision to delist 3DES, the second
most widely used algorithm.

2) CBC Mode (IV Reuse)

Block ciphers generally require a mode operation to address
data size (bigger files) and ensure data integrity. Among
several modes, vulnerabilities and attacks against CBC mode
were discovered. For example, the Browser Exploit Against
SSL/TLS (BEAST) attack, introduced in 2011 (CVE-2011-
3389), exploits a vulnerability in the old CBC mode system
during the IV creation process [[113]]. Since some older systems
used a fixed IV for CBC mode, allowing attackers to exploit
this weakness and reuse the IV to break the CBC mode. This
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led to the encryption of all blocks in CBC mode being im-
pacted by the initial block created with the IV, facilitating the
breaking of the algorithms by narrowing down the information
required for attackers to guess.

3) CBC Mode (Padding Oracle)

Another attack on CBC mode is known as the Luckyl3
attack, which utilizes a padding oracle from header informa-
tion of the TLS MAC [3]]. Employing a timing attack strategy
with side-channel sniffing, Lucky13 exploits time differences
between TLS messages with varying bytes of padding to infer
the data of transmitted packets. Variants of Lucky13 have been
studied by generating attack scenarios focusing on different
environments or targets. Lucky Microseconds attack targets
servers utilizing s2n-tls implementation, an open-source TLS
developed by Amazon [114]. Another Lucky13 variant, named
Lucky Strike [[115]], was proposed to attack cloud service envi-
ronments. Vigorous activities to attack block cipher algorithms
have led service providers to opt for stream cipher algorithms,
known for fast and secure encryption when establishing secure
connections [116].

The vulnerabilities highlighted previously have led to the
obsolescence and deprecation of widely-used algorithms in
TLS v1.3. In addition to these, certain block ciphers have
faced deprecation for distinct reasons. Some of these ciphers
are banned due to low utilization rates; they deemed secure
algorithms when TLS v1.3 was developing, even though their
vulnerabilities were discovered recently [L17], [118]]. Fortu-
nately, these vulnerabilities have not resulted in significant
damage as the attacks operate within constrained scenarios
and the algorithms are seldom employed. Nevertheless, it is
imperative to acknowledge that their potential impact could
amplify with changing environmental conditions in the future,
akin to the obsolete algorithms, necessitating ongoing moni-
toring and scrutiny.

D. Stream Cipher Algorithms

Stream cipher algorithms were often selected to avoid
vulnerabilities in block cipher algorithms and to expedite the
encryption process. Notably, Rivest Cipher 4 (RC4) was a
representative stream cipher algorithm utilized in the earlier
versions of TLS. Stream ciphers operate at the bit level,
encrypting data by bit-level eXclusive OR (XOR) operations
with a key stream. However, potential vulnerabilities in a key
stream or a key stream generator were also introduced.

One significant attack against RC4 is the Numerous Oc-
currence MOnitoring & Recovery Exploit (NOMORE), which
demonstrates a vulnerability in RC4 in practice [4]. The
attack involves injecting a script to create connection re-
quests and collecting a large volume of request data over 50
hours. Attackers can analyze a bias presented in the random
number stream by utilizing collected data. While NOMORE
requires considerable data accumulation time, attackers may
still find the weakness within a few hours with a 94%
success rate. Another bias-based attack on RC4 is the Bar
Mitzvah attack [123]], which originated from research papers
introduced in 2001 [124], [[125]. The attack leverages the poor
initialization of RC4, resulting in a pattern in the creation
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Fig. 4: Types of Attacks on TLS Version 1.3

of the key stream. By employing sniffing methods, attackers
can calculate the bias in the key stream. These pattern-based
attacks on RC4 had insisted that the algorithm should be
deprecated [126], leading to a significant decline in using RC4
encryption algorithms compared with the its usage before the
publication of these attacks [127]. Consequently, ChaCha20
was chosen as the default stream cipher for TLS v1.3.

To date, no stream bias-related weaknesses have been
discovered in ChaCha20. However, a library vulnerability in
ChaCha20 was reported when an ephemeral nonce was reused
(CVE-2019-1543). Since the usage of a non-ephemeral algo-
rithm conflicts with the policy of TLS v1.3, libraries related to
this vulnerability were swiftly corrected. It was confirmed as
a bug, and no stream bias-related vulnerabilities in ChaCha20
have been reported so far. Thus, ChaCha20 continues to be
considered a robust algorithm, and its maintenance is expected
to continue for the foreseeable future.

IV. ATTACKS ON TLS v1.3

The attacks discussed in the preceding section are dis-
covered strategies that exploit vulnerable encryption schemes
utilized in earlier versions of TLS. TLS v1.3 addressed these
concerns by simplifying its available algorithm list and elim-
inating their negotiation process during the connection setup
stage. These inherent attributes thwart any attempts at network
channel downgrading and firmly prohibit the use of insecure
encryption algorithms. Notably, the adoption of TLS v1.3
has surged to nearly 50%, bolstered by its robust security
measures. This adoption rate is anticipated to continue its
upward tendency, according to the F5 report [128]. However,
even the seemingly flawless protocol can encounter challenges.
In addition, despite the release of TLS v1.3, numerous servers
must support the earlier versions of TLS due to compatibility
issues. Given the SSL exploitation examples, supporting old
versions of TLS may turn into new vulnerabilities.

This section turns its focus to the vulnerabilities of TLS
v1.3 since its release. While no algorithmic vulnerabilities
have been detected in TLS v1.3 so far, our investigation
focuses on the reported vulnerabilities. They are primarily
classified as software bugs and conducting abnormal behaviors
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TABLE V: Discovered Vulnerabilities on TLS v1.3

Title Environment Vulnerable Versions Authority Descriptions Type
ot .L?igT;OJ OpenSSL 1.0.2 - Weaknesses in PKCS#1 v1.5 Encryption C

CVE-2019-11727 firefox 68 before Mozila Force to use PKCS#1 v1.5 only for authentication C
CVE-2019-17023 firefox 72 before Mozila Enable to downgrade version of TLS C
CVE-2020-13777 gunTLS 3.6.x ~ 3.6.14 MITRE Incorrect cryptography for encrypting a session ticket A, D
CVE-2020-24613 wolfSSL 4.5 before MITRE Mishandling TLS server data allow attackers conceal A
CVE-2020-3285 Cisco FTD 6.4.0 ~ 6.4.0.8 Cisco Bypassing a TLS 1.3 to access blocked URLs D
CVE-2020-8660 CNCF envoy 1.13.0 before MITRE Bypassing a TLS inspector in CNCF Envoy environments D

Dunkelman et al. [119] AES - - An advanced boomerang attack on AES A
OpenSSL I.1.1

Lee et al. [21] GnuTLS 3.6.4 - Downgrading attacks on TLS 1.3 C
BoringSSL master

Akgn;t'zilzaéllova OpenSSL - - Vulnerabilities on psk_ke mode C

CVE-2021-22890 curl 7.63.0 ~ 7.75.0 HackerOne Bad handling of TLS 1.3 session tickets C,D
CVE-2021-22901 curl 7.75.0 ~ 7.76.1 HackerOne UAF vulnerability after get a session ticket B
CVE-2021-3336 wolfSSL 4.7.0 before MITRE Not stop a certain anomalous peer behavior A, C

1.0.2 ~ 1.0.2zb
CVE-2021-4160 OpenSSL I.1.1 ~ 1.1.11 OpenSSL A carry propagation bug in MIPS environments A
3.0.0 before 3.0.1
Soig;t;lgg TEOJ ChaCha - - Differential-Linear attack against ChaCha A
]érucker and OpenSSL 3.0.0 - A reflection attack on TLS 1.3 C
ueron [23]

Perianin et al. [24] OpenSSL 1.1,x - A timing attack using CPU cache memory A
CVE-2022-25638 wolfSSL 5.2.0 before MITRE Bypassing a authentication for abnormal connections D
CVE-2022-25640 wolfSSL 5.2.0 before MITRE Not properly enforce a requirement D
CVE-2022-38152 wolfSSL 5.5.0 before MITRE A bug of wolfSSL_clear() library function B
CVE-2022-39173 wolfSSL 5.5.1 before MITRE Causing buffer overflow in a handshaking process B
CVE-2022-42905 wolfSSL 5.5.2 before MITRE Enable to steal Sbytes in a special condition B
CVE-2022-42961 wolfSSL 5.5.0 before MITRE ECDSA key disclosure via a Rowhammer exploit B, C
CVE-2023-3724 wolfSSL 5.6.2 before wolfSSL Inc.  Creating a predictable session master secret key A, C
CVE-2023-4807 OpenSSL - OpenSSL A bug of Poly1305 MAC implementation
CVE-2023-24609 Matrix SSL 4x ~ 4.6.0 MITRE Wrong memory access in pre-shared key handling A, B
CVE-2023-6129 PowerPC CPU - OpenSSL A bug of Poly1305 MAC implementation A

Bariant et al. [121] AES128 - - An advanced boomerang attack on AES128 A
CVE-2023-6937 wolfSSL 5.5.6 before wolfSSL Inc. A bug of TLS message checkup C
CVE-2024-28755 Mbed TLS 3.5x ~ 3.6.0 MITRE TLS version change in the session reset process C
CVE-2024-28836 Mbed TLS 3.5x ~ 3.6.0 MITRE TLS version negotiation available C
CVE-2024-37309 CreateDB 5.7.2 before Github Allowing client-initiated renegotiation C

Fischlin et al. [122] UDP - - Compromise of the AEAD characteristic D

not specified in TLS v1.3 such as protocol downgrading.
Multiple vulnerabilities related to encryption schemes have
been uncovered, and their collective overview is presented
in Table [V| The Description field of the table outlines the
specific nature of these vulnerabilities, illustrating summaries
of discovered vulnerabilities identified in TLS v1.3. They
are primarily stemmed from software defects rather than
inherent flaws of encryption schemes. These defects possess
the potential to be combined with diverse attack scenarios,
depending on the attacker’s intentions. They may not have
materialized into practical attacks so far, these vulnerabilities
could be significant challenges in the future. We classify the
vulnerabilities into four distinct categories of encryption li-
braries, memory access, network establishment, and bypassing,
as depicted in Figure

A. Encryption Libraries (Type A)

Vulnerabilities categorized as Type A in Fig 4] and Table [V]
mean to have a weakness related to encryption libraries. Since
these problems originate from wrong cipher processes, they
can be easily combined with other types of vulnerabilities
to bypass robust encryption schemes. An illustrative instance
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of this classification is CVE-2020-13777. In this case, an
erroneous encryption key is employed due to an implemen-
tation flaw, replacing the key that should be utilized. This
vulnerability is considered a dual-type weakness, as it has a
potential to facilitate certificate bypassing.

As attack strategies have been advanced, hardware-related
traits became an exploitable point to attack TLS v1.3. CVE-
2021-4160 exposes a vulnerability linked to the Micropro-
cessor without Interlocked Pipelined Stages (MIPS) architec-
ture. In OpenSSL, a carry propagation bug was discovered
within the MIPS32/64 squaring procedure, which significantly
affected numerous elliptic curve algorithms. This weakness
primarily stems from an architecture-oriented issue related to
the key generation. However, its impact extends to various
facets, notably targeting every elliptic curve-based algorithm.
Another advanced attack by Perianin et al., combined a
deep learning technique and hardware-related vulnerabilities
to restore an encryption key [24]]. They discovered that a cache
operation could be vulnerable when a specific math library of
OpenSSL is used. This library contains a scalar multiplication
method named w-ary NonAdjacent Form (WNAF), which was
identified as vulnerable [[102]. Perianin et al. figured out that it
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was still in use in generating an ECDSA certificate, leading to
disclosing the key by integrating another cache attack [129].
The attack scenario is not a practical threat, because this
protocol was already considered as a deprecated method.
However, it is noteworthy that Perianin et al. made a successful
encryption pattern recognition by using a deep learning model.
CVE-2023-6129 highlights yet another implementation flaw
arising from Performance Optimization With Enhanced RISC
- Performance Computing (POWER PC) CPU-based plat-
forms [130]. This bug stems from an issue within the OpenSSL
library associated with Poly1305 on PowerPC CPUs, where
vector register restoration occurs in an incorrect order. This
erroneous restoration can enable attackers to execute a range
of activities, spanning from DoS attacks to gaining full control
over the system. While no instances of impact have been
reported thus far, the broad spectrum of potential attacks
underscores the critical importance of exercising caution and
implementing appropriate safeguards.

Meanwhile, several other vulnerabilities were reported to
be caused by wrong specific functions. A function named
SanityCheckTls13MsgReceived proved a susceptibility to data
leakage by malicious servers, as documented in CVE-2020-
24613. Another weakness (CVE-2021-3336) came from the
DoTls13CertificateVerify function, exhibiting an inability to
handle abnormal situations. It sends several types of signatures
without corresponding certificates, creating chances for non-
authentication and potential MitM attacks. Both vulnerabilities
were revealed within the wolfSSL application and subse-
quently remedied in later versions.

CVE-2023-3724 is related to session key generation. When
a client does not receive a Pre-Shared Key (PSK) and Key
Share Extension (KSE), a session key is generated through
Input Keying Material (IKM). However, a predictable value
can be selected as the IKM value, making a secure channel
vulnerable. It does not violate a certificate process of TLS
v1.3, but attackers can break channel reliability established by
the IKM values if they can eavesdrop.

The last case of Type A, CVE-2023-4807, came from a
bug related to Poly1305 implementations. It works when a
user’s X86_64 processor supports Advanced Vector Extensions
512-bit Integer Fused Multiply-Add (AVX512-IFMA) instruc-
tions. Through this bug, a specific register of systems can
be changed by an attacker, causing diverse abnormal results
from damaging applications to system breakdown. Fortunately,
these exploits require conditions that TLS v1.3 fundamentally
prevents, such as using incorrect algorithms or predictable key
generation. This implies that TLS v1.3 becomes more secure
over software updates. However, precedents such as export
algorithms developed long ago, have already been observed
causing vulnerabilities that later evolved into new exploits,
such as FREAK, DROWN, and Logjam. Therefore, even if the
vulnerabilities addressed in this section are already resolved
through software updates, the possibility remains that they
could re-emerge as new vulnerabilities when combined with
other factors. This indicates that we need to keep paying
attention to vulnerabilities that have already been resolved.

Apart from vulnerabilities arising from implementation
flaws, notable cases in Type A involve attempts to compromise
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encryption algorithms previously considered secure. For exam-
ple, Dunkelman et al. demonstrated an improved boomerang
attack that significantly reduced computational complexity by
employing data discarding strategies and variant tracing [119].
Briant et al. also introduced a new boomerang attack [121],
proposing an advanced framework using a mixed-integer linear
programming model to launch boomerang attacks against
AES-based encryption algorithms. While both strategies have
succeeded in reducing computational complexity in limited
environments, they remain ineffective at fully recovering the
encryption keys used in real-world scenarios.

The ChaCha encryption algorithm has also been subjected
to attempts to compromise. Coutinho and Neto proposed an
enhanced linear approximation strategy that simplifies cipher
analysis [120]. Through this approach, they have improved
the complexity of existing differential linear attacks on the
ChaCha algorithm [131]. These advances suggest that en-
cryption algorithms considered secure today may become
vulnerable in the future. Thus, it is crucial to continuously
monitor for emerging vulnerabilities and threats to ensure
timely detection and mitigation.

B. Memory Access (Type B)

Type B vulnerabilities are rooted in memory-related is-
sues, leveraging defects in memory management of applica-
tions. These vulnerabilities encompass a range of anomalies,
including use-after-free bugs (CVE-2021-22901), segmenta-
tion faults (CVE-2022-38152), buffer overflows (CVE-2022-
39173), and over-reads (CVE-2022-42905 and CVE-2023-
24609). These flaws provide unauthorized access to memory
addresses, furnishing attackers with a platform for executing
more intricate exploits. These attacks exploit illicit memory
access to load and execute malevolent code, which can conduct
versatile capabilities, including encryption-related attacks.

By exploiting these unauthorized pathways, attackers can
conduct many malicious actions, encompassing data manipula-
tion, malware deployment, and beyond. While exploiting unau-
thorized memory access may pose a challenge, its successful
execution empowers attackers to execute their malicious in-
tentions. A noteworthy precedent of such vulnerabilities is the
Heartbleed attack (CVE-2014-0160), unearthed in 2014. This
attack misused OpenSSL heartbeat functions to gain unautho-
rized access to memory space. This attack works as follows:
when the client specifies a request content size larger than the
actual size, the server responds based on the manipulated size.
As a result, an issue arises where data beyond the intended
content size is unintentionally read from the server’s memory
and included in the response. It made a huge impact on modern
security by showing the risks associated with memory leaks.

While the preceding examples elucidate vulnerabilities
rooted in software, a distinctive attack stems from a hardware
vulnerability. CVE-2022-42961 brought attention to a novel
Rowhammer attack that exposed a private ECC signature
key [132]. The leaked private key empowers attackers to
recover an ECDSA key integral to network establishment. This
poses a serious threat to the establishment of a secure network
connection, given the insecure digital signature created by
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the recovered key. The compromised certificate key, when
exploited, has the potential to compromise encrypted channels,
impeding the secure transmission of data. Memory-targeted
attacks have a high privilege, which can exert most activities
on a system. Due to their catastrophic potential, these Type
B vulnerabilities demand persistent attention. Their capacity
to undermine security, coupled with their potential for severe
effects, emphasizes the need for continuous monitoring and
proactive strategies.

C. Network Connection (Type C)

Type C vulnerabilities imply unauthorized operations of
TLS v1.3 related to the network connection control. The
protocols in TLS v1.3 mandate that certificate algorithms
uphold forward secrecy and ephemeral key properties. To
ensure their integrity, comprehensive investigations have been
undertaken to inspect the resilience of encryption algorithms
employed in earlier versions of TLS.

Jager et al. highlights a significant deficiency in PKCS#I
v1.5, demonstrating its failure to meet the forward secrecy
characteristic [20]. They demonstrated that PSKs could be
decrypted within the duration of a TLS session and within a
time frame of 18 minutes to 202 hours for the QUIC protocol.
Consequently, they strongly advocated for the exclusion of
this PSK algorithm in the new TLS framework. Despite its
popularity in TLS v1.2, this vulnerable PSK algorithm was
banned from TLS v1.3 due to its susceptibility to exploita-
tion across various scenarios. A dual approach was adopted
that prohibits both vulnerable versions and the algorithms
themselves. However, a subsequent revelation emerged in the
form of CVE-2019-11727, suggesting a residual possibility of
the same attack exploiting PKCS#1 v1.5. It forces a client
and server to sign PKCS#1 vl1.5 signatures in a TLS v1.3
connection when those are available at the server.

In the realm of certificate algorithms, additional vulnerabil-
ities stemmed from PSKs’ ephemeral key properties are dis-
covered. Akhmetzyanova et al. explored cases wherein PSKs
are shared among users in several potential scenarios [22]].
Meanwhile, another vulnerability leveraged the property of
PSKs, failing to validate certificate authentication when they
are shared between a server and a client. Drucker and Gueron
investigated this strategy, unveiling the potential for malicious
servers to impersonate genuine TLS v1.3 servers. It was named
a “selfie attack,” spotlighting vulnerabilities in the PSKs’
group_authentication mode [23]].

A problem can also arise during the handshake message
generation process. CVE-2023-6937 highlights a case in which
the absence of boundary validation during handshake message
generation allows intrusion into the session key space. While
this issue does not compromise core protocol requirements,
such as authentication or key negotiation, it raises concerns
about potential anomalies. For instance, multiple encryption
keys could be used within the same session, or an unencrypted
ServerHello message might be transmitted.

Certain vulnerabilities even precipitate TLS version down-
grades, despite such actions being prohibited within TLS
v1.3. Lee et al. brought to light new vulnerabilities in the
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network stacks of MacOS and Windows that enabled version
downgrades [21]. Exploiting these flaws in the TLS fallback
mechanism across multiple browser versions, they illuminated
reasonable downgrading scenarios. They found that approxi-
mately 8.6% of servers do not support the Signaling Cipher
Suite Value (SCSV) mechanism, which prevents downgrade
attacks. Another instance of version downgrading emerged in
CVE-2019-17023, targeting specific versions of the Firefox
browser. In their retry request process, they negotiate a version
of TLS, which was prohibited in TLS v1.3.

TLS version negotiation issues have been identified in CVE-
2024-28836 and CVE-2024-37309. CVE-2024-28836 high-
lights a scenario in which a TLS v1.2 connection can be
established even when TLS v1.2 is disabled. This vulnerability
arises because the server may revert to its TLS v1.2 imple-
mentation. If the server is intended to allow only TLS v1.3,
this fallback could not only facilitate a downgrade attack but
also lead to Denial of Service (DoS) attacks. Similarly, CVE-
2024-37309 reveals that several versions of the CreateDB
client, which are used to create new PostgreSQL databases,
permit negotiation of the TLS version when requesting security
parameters, potentially resulting in a version downgrade or re-
source exhaustion DoS attacks, akin to the issue in CVE-2024-
28836. Moreover, this downgrade issue was also observed
during SSL/TLS session resets. CVE-2024-28755 indicates
that the mbedtls_ssl_session_reset() function in Mbed, a
development platform and operating system for IoT devices,
may not preserve TLS v1.3 after a session reset. Consequently,
a re-established SSL/TLS connection may revert to TLS v1.2,
thereby indicating that a downgrade attack is possible in these
situations.

D. Bypassing (Type D)

Previous vulnerabilities exploited algorithmic or implemen-
tation flaws, rendering encryption schemes used in TLS v1.3.
However, a distinct class of vulnerabilities, denoted as Type D,
circumvents the encryption schemes inherent to the new TLS
paradigm. In earlier versions of TLS, attackers were able to
bypass secure encryption schemes by negotiating algorithms or
protocols. However, TLS v1.3 does not allow this circumstance
through its robust mechanism, and has additional security
restrictions such as managing a black list. In terms of this
facet, it can be a critical strategy to bypass the reliability of
TLS v1.3. We discuss this case in detail, to prevent future
vulnerabilities.

Modern network ecosystems commonly employ TLS in-
spectors, specialized network monitoring systems designed
to oversee various facets of network activities, encompassing
handshake processes, cipher algorithm selection, and connec-
tion establishments. These insights serve several purposes,
bolstering network security. Notably, CVE-2020-8660 exposed
the potential for bypassing TLS inspectors within specific
Cloud Native Computing Foundation (CNCF) Envoy environ-
ments, revealing a crack in modern network surveillance sys-
tems’ armor. It exploits that TLS extensions are not inspected
in the inspector, which enables attackers to violate security
restrictions defined by the surveillance systems.
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Attacks on HTTPS are classified into secure communication and domain, and attacks on SSH are classified into access and

secure communication.

Contemporary network defense mechanisms, managed by
dedicated network enterprises, protect systems against exter-
nal threats. Such systems maintain blacklists of malicious
URLSs, curbing access to these domains for network users.
Nevertheless, CVE-2020-3285 demonstrated a lapse in this
safeguarding. Exploiting an erroneous connection handling
within the Snort application, this vulnerability facilitated the
access of blacklisted URLs by network users.

Bypassing can extend beyond monitoring systems and
manifest during the authentication process. CVE-2020-13777
and CVE-2021-22890 underscore how incorrect session ticket
handling can lead to bypass vulnerabilities. In the case of
CVE-2020-13777, certain versions of the Gnu TLS application
persists in utilizing erroneous data that deviated from the
correct encryption key. When communication is established
with this incorrect data, the network connection fails to
recover, culminating in authentication bypass. In a distinct
scenario, CVE-2021-22890 exploited an interaction between
HTTPS proxy and libcurl within specific environments. The
libcurl library mishandled proxy session tickets from HTTPS
proxy servers, thereby exposing a potential for MitM attacks
orchestrated by malicious HTTPS proxy servers.

Some bypassing vulnerabilities are predicated upon the
satisfaction of specific conditions rather than operational flaws.
A striking illustration appeared in CVE-2022-25638, where
the data in the ‘sig_algo’ field of a certificate message made
a way for authentication bypass in certain versions of the
wolfSSL. Certainly, an implementation flaw can lead to the
bypass. A separate revelation emerged in CVE-2022-25640
attributed to an implementation lapse that bypassed the certifi-
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cate verification process in the wolfSSL. It happened because
the library was not checking requirements properly. These
vulnerabilities were promptly addressed in subsequent updates.
Fischlin et al. [122] argue that UDP environments compromise
the security of TLS v1.3. They demonstrated that in UDP-
based environments, such as QUIC and DTLS, indiscriminate
and repetitive packet transmissions can lead to forgery issues
related to the use of sliding-window techniques. This situation
compromises the integrity of AEAD (Authenticated Encryp-
tion with Associated Data). To address this problem, they have
proposed a feature called “robustness”, which is a channel’s
property to filter out any misplaced ciphertexts and correctly
receive ciphertexts that fit into the supported order.

V. ATTACKS ON HTTPS

The popularity of SSL/TLS makes many attackers focus
on discovering vulnerabilities to break the protocol. How-
ever, doing so is challenging because the latest verison of
TLS (v1.3) recommends using secure and dependable al-
gorithms. Thus, recently, the attackers attempted alternate
approaches, exploiting the properties of Application layer
protocols. HTTPS is one of the most attacked Application
layer protocols as stated in the Edgescan report [64]. It has
been updated through several versions, possessing diverse ex-
tensions to support numerous functions. Accordingly, various
attack strategies targeting HTTPS have been discovered, in-
cluding code injection [133], Denial-of-Services (DoS) [134],
Phishing attacks [133], and one that extracts a user’s personal
information by monitoring and analyzing a keyboard typing
tendency [136]. More attacks can be launched on HTTPS by
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leveraging different strategies. For instance, existing research
results introduced vulnerabilities examined between HTTPS
and the Wi-Fi protocol [137], [[138]], yet they predominantly
stem from the Wi-Fi protocol, and only tangentially involving
HTTPS. Clearly, these types of attacks can be critical threats
against the security of HTTPS [64]. However, they are out of
the scope of this paper because our main focus encompasses
attacks and vulnerabilities undermining encryption algorithms
by exploiting the specific attributes of HTTPS; they choose
bypassing encryption schemes, not breaking them. In addi-
tion, HTTPS utilizes SSL/TLS protocol for secure network
communication, and their vulnerabilities are covered in the
previous sections. Therefore, this section only focuses on
the exclusive vulnerabilities exploiting HTTPS properties. We
conduct an in-depth analysis targeting properties of HTTPS,
categorizing the strategies into two primary domains, Secure
Communication and Domain-based attacks, as illustrated in
Figure [5a] The vulnerabilities scrutinized within each category
are depicted in Figure [

Type (A) in Fig[6] also denoted as Secure Communication in
Figure [5a] encompasses the cases of deliberate manipulations
of encryption algorithms. HTTPS, known as a secure version
of HTTP, makes it harder for the attackers to decipher the
ecnrypted transmitted data. For instance, attempting to decode
encrypted data utilizing a brute force technique on AES-
256 would require over a decade of relentless effort [139].
However, this complexity diminishes if attackers can pinpoint
specific target data sizes or discern data transmission patterns.
Termed an inference attack, this method exploits the character-
istics of Application layer protocols to narrow down the target
range and expedite the decryption process significantly [140].
Type (B) in Fig[6] also denoted as Domain in Figure [5a] fo-
cuses on circumventing strong encryption mechanisms through
distinct attributes of HTTPS. These attacks induce clients
to access vulnerable websites, subsequently leveraging the
susceptibilities of these sites. This is feasible due to the
diversity of cybersecurity standards across different countries,
coupled with the utilization of domain names for HTTPS
access. In the following sections, we explore both attack types,
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investigating the characteristics they exploit.

A. Secure Communication

1) Inference Attack (TLS compression)

The Compression Ratio Info-leak Made Easy (CRIME) at-
tack operates as an inference attack, exploiting vulnerabilities
in HTTPS compression techniques [[140]. HTTPS uses com-
pression to reduce the size of transmitted data. It was a useful
strategy for a large volume of data and a tendency of increasing
data size. However, if MitM attack is possible, CRIME can
disclose particular data such as the length of transmitted data.
An attacker inserts additional data on hijacked request, which
changes the compression rate and size of compressed data.
By analyzing data differences, the attacker can deduce the
encrypted content accessed by victims. This inference enables
to narrow down target ranges, facilitating efficient chosen-
plaintext attacks [141]. The target ranges include numerous
types of data; some of which have private information. For
example, attackers can hijack web sessions if the data is an
HTTP cookie that has session information.

2) Inference Attack (Response)

Inference strategies are also applicable to HTTP response
messages. The original bicycle attack introduced the concept
of inferring a particular component’s length from the HTTP
response [142]. Although this attack was impractical due to
its excessive requirements, such as physical access and a fake
CA, it can have dire consequences if it succeeds. A few years
later, a practical bicycle attack emerged, showcasing scenarios
wherein password length could be inferred, contingent upon
knowledge of the IP address and user information [143].
This attack shows the potential case that can guess personal
password details from secure AES-GCM traffic. As it provides
the means to identify password length, this strategy signif-
icantly undermines secure encryption algorithms, rendering
it susceptible to basic attacks like brute force. For instance,
the success rate doubles when an attacker knows the length
of the passwords. Even a secure encryption algorithm can
be compromised if attackers can specify the data length,
and it enables swift interpretation over a short period. These
inference attacks show the reality that algorithmic security
does not guarantee overall security if there are vulnerabilities
in other components of a system or in the other layers of the
network.

3) Inference Attack (Combination)

One simple strategy against CRIME attacks is disabling
the TLS compression function in web browsers. However,
this attack has recurred with the Browser Reconnaissance
and Exfiltration via the Adaptive Compression of Hypertext
(BREACH) attack [144]]. Disabling the TLS compression
makes HTTP protocol employ gzip for the reduction of the
volume of network traffic. By exploiting gzip compression
algorithms, attackers can infer characters within the HTTP
response as the CRIME attack did. The similarity between
gzip and TLS compression schemes allows attackers to infer
content size, granting an interpretation of a single byte in the
HTTP response per request. This vulnerability can be exploited
for various vicious purposes, including extracting Cross-Site
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Request Forgery (CSRF) token values from malicious servers
and establishing connections with victims using stolen tokens,
resulting in substantial damage; over 95% of one CSRF token
data can be recovered, and it can sometimes be decrypted in
as little as 30 seconds.

Regarding encryption schemes, the concern with CRIME
and BREACH is applicable to any ciphersuites within TLS
connections that employ compression techniques. This risk
persists despite the activation of HTTP Strict Transport Se-
curity (HSTS), a protocol designed to protect against attacks
such as cookie hijacking and downgrading. Fortunately, the
vulnerabilities can be prevented by disabling compression
techniques, and software updates appeared to deal with these
inference attacks. Nonetheless, a more sophisticated strategy
emerged, namely HTTP Encrypted Information can be Stolen
through TCP-windows (HEIST) [145]]. When users access ma-
licious websites, their browsers execute malicious JavaScript
that the attackers installed. It enables the attackers to trace a
specific API call, sneaking TCP windows-related data, which
can delimit a range of encrypted data. This extracted data
is then combined with inference attack techniques to retrieve
encrypted information from user request packets. On average,
the HEIST attack is 280% faster than other compression
vulnerability-based attacks, which is a remarkable advantage
in the modern network connection environment having limited
connection time. Notably, this attack does not necessitate a
MitM approach and operates solely through JavaScript execu-
tion. Proposed countermeasures, such as disabling JavaScript
and cookies in web browsers, impede the user experience in
web environments; though they are effective.

B. Domain-related Attack

The second type of attack on HTTPS primarily exploits
the inherent nature of HTTPS users accessing websites via
domains. This method is attractive because individuals usually
do not verify the domain names rigorously. It works like a
downgrading attack by leveraging regional domain characteris-
tics. Alashwali et al. investigated the security disparities across
regional domains, uncovering vulnerabilities that came from
security policies across various countries [146]]. Such incon-
sistencies can be exploited to redirect users to vicious servers
or IPs and induce them to use insecure security protocols.
Some countries permit insecure protocols or algorithms based
on their specific needs for complicated reasons. Alashwali
et al. has categorized three cases where URL and HTTPS
strategies are inconsistent and found over 1000 domains in
each case. These security policy differences enable attackers
to exploit these permissions, potentially transforming secure
connections into downgraded TLS versions or even plain
HTTP communications. Some attacks exploit domain names
themselves. Unoccupied domains can be easily acquired by
anyone, including attackers. They try to get recently expired
domains or fake domains similar to trustworthy domains.
These domains are frequently misused to inadvertently lead
users to malicious websites.

An advanced variant exploits both domain and certificate in-
formation properties. Delignat-Lavaud and Bhargavan showed
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vulnerabilities arising in multi-domain scenarios employing
the same encryption key for authentication and session ticket
generation [147]. Here, an authorization process of a server
certificate is managed through a virtual host, which involves
fallback algorithms. After investigation, 36% of Internet In-
formation Services (IIS) servers, 35% of Apache servers,
and 14% of NginX servers were exploitable via the fallback
mechanism [147]]. The authors also showed that this process
can be used to open a backdoor to cross-site scripting (XSS),
redirecting users to malicious sites. Such an attack can evade
robust security measures akin to HSTS and effectively under-
mine encryption schemes by exploiting authentication process
flaws.

C. Other Attacks Exploiting HTTP Properties

Some attacks aim to bypass security protection mechanisms
rather than undermining encryption schemes. Notable exam-
ples include HTTPS Request Smuggling (HRS) and Cross-
Site Request Forgery (CSRF), both of which exploit HTTPS
properties to bypass encryption [148], [149]. HRS manipulates
HTTP request parameters to confuse victims and initiate
malicious activities, while CSRF exploits pre-validated session
identifiers to covertly execute unauthorized requests. These at-
tacks are further extended to various advanced versions [[150]],
[L51], [152]] and are significant examples of attacks leveraging
HTTPS properties to bypass strong encryption techniques.
While HRS and CSRF are not directly related to vulnerabili-
ties in encryption algorithms, we include them due to their
potential to exploit HTTP characteristics, bypass SSL/TLS
authentication, and access private data.

VI. ATTACKS ON SECURE SHELL

Secure SHell (SSH), a distinctive application layer protocol,
has a variety of identified vulnerabilities. Encryption algo-
rithms allowed to use SSH are akin to the ones for SSL/TLS.
Thus, SSH also suffers from the similar algorithmic vulner-
abilities introduced in Section This section focuses on
attacks independently designed to compromise the encryption
schemes employed in SSH, which can be categorized into two
classes: Access and Secure Communication, as illustrated in
Figure [5b] Figure [7] depicts the points of these attacks.

The first category is related to its authentication process. Be-
cause of a unique characteristic of the protocol, SSH permits



This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3526605

IEEE COMMUNICATIONS SURVEYS & TUTORIALS

SRP which is deprecated by other protocols due to security
issues. It allows users to access identifications and passwords,
causing diverse vulnerabilities related to their creation. We
discuss the attacks that utilize this property to extort login
authority by attackers. The second category encompasses cases
exploiting the features of SSH packet communication. As a
responsive protocol, SSH connections keep communicating
during the lifetime of the sessions. Various features generated
in these communications are exploitable by attackers. We
demonstrate malicious activities capitalized on them.

Beyond these categories, one popular attack on SSH, Ad-
dress Resolution Protocol (ARP) spoofing, has evolved into a
primary strategy for MitM attacks, particularly as encryption
ciphers grow more robust. However, we do not cover this type
of attack in detail because it is conducted in lower layers of the
TCP/IP protocol stack and does not engage with encryption
algorithms.

A. Access

One of the most distinctive properties of SSH is its sim-
ple authentication mechanism. Despite the robust certificate
authentication offered by SSH, many users select personal
accounts for accessing SSH servers, and some users set their
accounts with a weak text-based password. Many SSH servers
use the default port number, causing several issues. Weak
account IDs and passwords can be easily exposed to simple
hacking attempts or security threats. The attacks become even
easier when default port numbers are used. Through macro-
based attacks, such as a bot, attackers can target SSH servers
that meet the conditions, including using the default port
number or weak account IDs and passwords. To counter such
attacks, many systems employ Intrusion Detection Systems
(IDSs) that block access if abnormal activities (including
excessive login attempts) are detected. For applications sup-
porting SSH functions, there are usually useful IDSs pro-
vided by the application publishers, but in a default SSH
environment, users need to update the IDS settings using the
configuration file. However, like the port setting, default IDS
settings are often used. Such default IDS settings also render
them vulnerable to brute force attacks using bots or scripts. For
example, attackers can avoid detection by making just enough
login attempts to not trigger the alarms and then disconnecting
before trying again because they know the default IDS setting
values. These brute force attacks can be categorized into
the following methods: Dictionary attacks, Guessing tools,
Botnets, and Scripts, as depicted in Figure [5b}

Dictionary attacks depend on a list containing commonly
used account names and passwords, systematically attempting
logins using these records [153]. Another variant relies on
guessing tools that automatically predict user passwords or
decipher password creation patterns, enabling attackers to
target SSH users. Prominent password-cracking tools, such as
Hydra, Ncrack, and Patator, excel in this task [154], [155],
[156]. Similarly, Botnets constitute an automated brute-force
strategy, similar to guessing tools. Attackers distribute these
Botnets, which then search a target system thoroughly for
valuable data to facilitate password guessing. This data can
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include parts of a dictionary or even direct passwords/accounts
for login. Some Botnets are equipped with automated login
functions or can download additional malware, enabling more
advanced attacks. Notable examples include Brickerbot and
Reaper, which primarily focus on IoT devices’ network con-
nections [157], [158]. The other method of brute-force attack
is implementing malicious script code that is designed to
automate attack attempts (denoted as Scripr in Figure [Sb).
Other automatic strategies require complicated techniques for
spreading and monitoring their malicious works. However,
script-based attacks can spread through simple activities, such
as malicious website operations. Therefore, as a more straight-
forward approach compared with guessing tools or botnets,
script attacks can be executed by numerous individual attack-
ers. Their functionalities resemble those of previous automatic
attacks, with BruteSpray being an illustrative example [159]].

B. Secure Communication

Attacks on SSH communications often target vulnerabilities
in network connections, particularly network packets. Similar
to attacks on HTTPS, SSH communications can be susceptible
to eavesdropping, allowing attackers to narrow down the range
for decrypting ciphertexts. However, with the advancement of
robust encryption algorithms, SSH is now largely immune to
eavesdropping and inference-based attacks. The majority of
modern SSH attacks are brute force in nature, as previously
discussed. Nevertheless, it is important to consider all types
of attacks, including outdated ones, since strategies like down-
grading can still be exploited at any time.

1) Inference attack (Typing / Tendency)

The timing attack is a representative one that uses the SSH
characteristic [[136]. It exploits the fact that SSH sessions
persist until they are terminated and collects keyboard typing
(keystrokes) patterns or periodic activities. Attackers then
deduce the progression of communication by analyzing the
keystroke patterns and SSH packets intercepted during inter-
active sessions. Attackers can extrapolate specific information
through the pattern analysis of SSH packet transmissions and
tendencies. Essentially, this inference attack allows them to
infer the size and segment of transmitted data by closely
examining these behavioral patterns. This reduces the data
size and makes it easy to decrypt, potentially incapacitating
even robust encryption algorithms. Fortunately, this attack has
been reported as non-practical, and the latest SSH incorporates
enhanced robustness against attacks utilizing packet pattern
analysis [160]. Due to these challenges, modern timing at-
tacks target vulnerable network systems across various envi-
ronments, rather than aiming for a specific protocol [161],
[162]. Over time, they have been gradually upgraded to cope
with defense systems [97]], [24]]. However, adopting robust
encryption schemes and the development of diverse detection
metrics have made timing attacks difficult to succeed, because
they still need various conditions such as eavesdropping and
decryption.

2) Inference attack (Library Bugs)

The other form of inference attack is shown in Fig. [5b] a
OpenSSH library bug. It exploits vulnerabilities in an open
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library to retrieve plaintext from ciphertext [163]]. This type
of attack shows that the SSH Block Packet Protocol (BPP),
considered to be a secure protocol, can be exploited due
to a design flaw introduced in RFC 4253. The bug in the
OpenSSH library that implements BPP allowed attackers to
deduce the size of the last block. Consequently, the SSH BPP
inadvertently leaks information related to the transmitted data
size, and this information can make it susceptible to a brute
force attack. After revealing this vulnerability, the OpenSSH
team released OpenSSH v5.2, incorporating a patch to mitigate
this attack vector. However, the threat of plaintext recovery
attacks persisted even after the bug fix. From OpenSSH version
5.2 to version 7.4, three additional bugs were discovered [164].

Over time, encryption techniques have significantly im-
proved in reliability. Furthermore, innovative categorization
methods have been proposed to classify SSH attacks more
efficiently, enhancing the efficacy of security systems [165],
[166]. Consequently, the efforts to reinforce cybersecurity have
restrained recent successful attacks in modern SSH network
environments.

VII. OPEN RESEARCH CHALLENGES

This section introduces several research challenges derived
from our comprehensive investigation of CNPs. We selected
three distinct topics: network protocols that support secure
communications, future encryption algorithms, and cyber
threats exploiting encryption algorithms in modern networks.

A. Protocols for Secure Communication

Throughout this paper, we introduce investigation results of
vulnerabilities related to the encryption schemes of CNPs. Old
CNPs have out-of-date encryption schemes and algorithms,
which are vulnerable to various attacks. However, the release
of new versions resolves these problems by revising their
available algorithm list. For example, the latest CNPs, such
as TLS v1.3 and SSH 2.0, manage only robust encryption
schemes. They are evaluated as trustworthy protocols, and only
some implementation bugs have been reported, not algorithmic
vulnerabilities. In this context, in the following, we discuss
future challenges related to modern CNPs.

1) Software Bug and Vulnerability Detection

Since up-to-date CNPs are theoretically flawless, modern
network environments can be more secure as the usage of
the CNPs increases. However, the problem is that network
protocols are implemented in complicated conditions where
numerous libraries and programs are entangled. As shown in
Table [V] protocols have unexpected results because of their
complexity, which may develop into a security weakness.
Resolving bugs requires a deep understanding of the relevant
knowledge, and they are typically reported by researchers or
service providers after completing their analysis. However, this
maintenance approach is too passive for Internet users who are
exposed to a real-time attack. Therefore, developing detection
techniques that perceive software bugs or vulnerabilities of
protocol workloads in real-time can make a significant impact
on future network security.
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Another challenge is predicting the lifespan of encryption
algorithms, which is influenced by evolving factors such as
computing power and network environments. As these envi-
ronments continuously change, research into the relationship
between the lifespan of encryption algorithms and computing
conditions has been critical. A theoretical framework that
accounts for contemporary conditions is essential for pre-
dicting the lifespan of encryption algorithms. This type of
analysis has long been conducted to proactively phase out
algorithms before they become vulnerable [[167]], [9], and it
is expected to remain important in the future. Moreover, with
the development of next-generation cryptographic techniques
and the advent of quantum computing, the need for research
into encryption algorithm lifespans will likely intensify.

2) Versions Compatibility

One of the major problems with the modern CNPs is that
they work simultaneously in various versions. It makes CNPs
vulnerable to downgrade attacks, even though it has the advan-
tage of service compatibility. Finding a solution to resolve the
compatibility issues can therefore make a remarkable impact
on modern network security; however, it is not a practical
approach considering countless network service providers and
Internet users. A compromise could involve detecting changes
in encryption schemes such as version downgrading or en-
cryption algorithm change. These malevolent changes can
cause downgrade attacks that are the most disruptive attack
to modern robust CNPs. Downgrading strategies aim to ma-
nipulate CNPs by changing protocol versions to obsolete ones
or robust algorithms to vulnerable ones. It allows attackers
to exploit existing vulnerabilities, which generates enormous
expenses for cybersecurity by expanding the security coverage
to consider. Through the detection, systems can prevent the
source of downgrade attacks effectively by corresponding their
threats depending on the security levels of changed schemes,
such as disabling network connections or rolling back to safe
versions. In this vein, security monitoring may play a pivotal
role as well as the role of enabling technologies such as Threat
Intelligence (TI) and Digital Twin (DT) can be investigated.

B. Future Encryption Algorithms

Due to the abundance availability of computing power and
capabilities, various encryption algorithms that used to be
secure have become vulnerable [9]], [139]]. Moreover, attack
strategies also have evolved. While earlier attacks utilized
naive methods like brute force, modern attacks use smart
strategies, such as oracle exploitation [144] and deep learn-
ing [24]. In the past, algorithm robustness was improved by
increasing the key size, which is the most convenient approach.
However, the smart attack strategies promoted the advance-
ment of encryption algorithms because they can break the
simple countermeasure by pinpointing the target to decipher.
Improvement in computing power and advancement of attack
strategies threatened ordinary encryption algorithms, causing
new types of encryption algorithms to counter the threats.
Quantum computing capabilities will render the existing algo-
rithms insecure as it can break the encryption by either brute-
force or combing other methods such as Artificial Intelligence
(AI).
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1) Post-Quantum Cryptography

Quantum computing can break modern encryption algo-
rithms that are generally considered as robust algorithms.
Breaking them generally requires huge computing power to
find the cryptographic keys, and quantum computing is known
to have sufficient capability to do that. More precisely, prime-
factor-based encryption algorithms, represented by public key
cryptography are more vulnerable to such attacks [168];
fortunately, symmetric encryption algorithms resist quantum
computing by expanding their encryption key [169]]. It implies
that modern key exchange algorithms will not be secure after
Q-day. Since those algorithms have been adopted in the most
up-to-date network protocols for secure communication, the
emergence of quantum computing can cause the reconstruction
of these protocols. In response to these threats, Post-Quantum
Cryptography (PQC) has been studied, having 5 different
types: Lattice-based Cryptography, Multivariate Cryptogra-
phy, Hash-based Cryptography, Code-based Cryptography, and
Isogeny-based Cryptography [[170], [171]. These five types of
PQC can replace existing public key cryptography in principle.
However, these types of algorithms are expected to require
additional time for enhanced security, because they are still
under investigation and not in commercial use. Therefore,
research in PQC stabilization is needed for future network
security.

The advancements in quantum computing further necessitate
changes not only in encryption algorithms, but also in mecha-
nisms that utilize these algorithms. TLS is a representative
example. It relies on public key cryptography to securely
exchange keys used for encrypting data in transit. However,
it faces significant vulnerabilities in the presence of quantum
computing, which can easily break the underlying computa-
tional hardness assumptions [168]]. To address this challenge,
new key exchange mechanisms, such as KEMTLS, have been
proposed; it utilizes a Key Encapsulation Mechanism (KEM)
to enhance security against quantum attacks [[172]. Since KEM
was proposed and developed, various advanced strategies and
analyses have been carried out [173[], [174)], [L75], [L76].
Furthermore, efforts to support a secure network environment
against quantum computing-based attacks have been made
by organizations such as the National Institute of Standards
and Technology (NIST) and the Internet Engineering Task
Force (IETF), requiting continuous researches [177]], [178].
Nevertheless, further research is needed in this direction to
deal with compatibility and efficiency.

2) Homomorphic Encryption

Homomorphic Encryption (HE) is considered to be the
prospective standard in encryption algorithms. The ground-
breaking concept of HE, unveiled in 2009, ensures consis-
tent results between computations on ciphertext and plain-
text [179]. Despite this remarkable advancement, practical
limitations such as cipher performance and the effective man-
agement of encryption noise have emerged [180]. Numerous
studies have been undertaken to address these constraints,
yet they persist as unsolved challenges [181]]. The realization
of Fully Homomorphic Encryption (FHE) could position HE
to replace contemporary standard algorithms, given the satis-
faction of FHE conditions. FHE guarantees uniform results
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even after an infinite number of operations. Consequently,
research focused on mitigating limitations or understanding the
implications of applying this algorithm within modern network
systems holds significant importance.

3) Attribute-based Encryption

Attribute-based Encryption (AE) leverages specific at-
tributes or information to encrypt data [182]. This approach
allows AE to use a wide range of attribute combinations as
encryption keys, making it difficult for attackers to break the
encryption. AE is particularly effective in modern network
environments such as cloud and distributed systems, where
nodes perform complex operations [183]], [184]. By selecting
appropriate attributes, AE can securely differentiate between
nodes without the need for highly complex encryption opera-
tions.

This method is not only efficient in distributed systems,
but also in cryptographic scenarios where temporary data is
involved. Traditionally, encryption keys are generated using
random values, but keys can also be derived from temporary
information available in the system. For example, Gonde et
al. proposed generating a key stream by using network infor-
mation as the encryption key for session establishment [62].
However, since AE relies on information to generate encryp-
tion keys, the system security depends on the nature of that
information. If easily predictable attributes are used, the en-
cryption becomes vulnerable. Commonly used attributes may
be scalable, but their generality increases the likelihood that
attackers could predict them. Therefore, balancing between
general and unique attributes is essential for the effective
operation of AE [185)]. The selection of proper attributes
is the most critical factor in this encryption mechanism,
and as different domains require different sets of attributes,
identifying suitable attributes for specific use cases remains
an important area of research.

C. Exploitation of Encryption Algorithms

Encryption brought about significant changes in diverse
aspects, contributing to supporting secure network communi-
cation for Internet users. There have been positive aspects,
but not always. Attackers are also able to use encryption
algorithms to conceal their malicious activities, and diverse
cyber attacks have been employing encryption tactics as this
has become popular and easy to do.

1) Malware Exploiting Encryption

Ransomware is a representative attack exploiting encryption
techniques for a main attack strategy. Ransomware aims to
disable target systems by encrypting the victim’s data for
extorting ransom. Modern ransomware manages its encryption
algorithms for data encryption and encryption key delivery,
akin to TLS. They mainly exploit encryption algorithms
considered hard to decipher, which include most encryption
algorithms used in TLS and even private algorithms [186].
Except for ransomware, the other malware uses encryption
strategies partially, not a main attack method [187], [188].
They encrypt transmitting data through encryption techniques
to avoid surveillance systems. In addition, some other attacks
exploit encryption schemes for obfuscation, which disable
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target systems or specific data [189]. While these attacks
have been commonly discovered in the modern network, no
existing studies investigate encryption schemes adopted by
malware. Existing surveys still focus on classifying malware
with classic types, which are not suitable to address up-to-date
cyber threats [190], [191]. Therefore, there is an urgent need
to develop a countermeasure against these types of malware
exploiting encryption algorithms.

2) Encrypted Traffic from Malware

Early studies in traffic analysis aimed at detecting malicious
activities primarily focused on identifying significant features
for traffic classification [192], [193]. However, these ap-
proaches have demonstrated limited effectiveness when faced
with encrypted traffic [194]], [195], [196]. Malicious actors
could easily use encryption algorithms to obscure the content
and address, making it difficult for surveillance systems to
detect the malicious activities. In this vein, the emergence of
Machine Learning-based methods has significantly improved
traffic classification techniques, with models like Convolu-
tional Neural Network (CNN) and Long Short-Term Memory
(LSTM) playing a crucial role [197], [198]. These models
excel at processing large datasets and can simultaneously com-
pute a wide array of features, helping to overcome challenges
in traffic classification by effectively utilizing communication
features such as packet data and handshake messages [199],
[200]. Furthermore, in recent years, Natural Language Process-
ing (NLP) models have demonstrated exceptional performance
in classifying sequential data [201]], [202], making them partic-
ularly suited for the task of malware traffic classification [203]],
[204], [205]. Given their strengths, NLP-based classification
methods and other Al-based techniques are poised to become
a promising direction for future traffic classification research.

VIII. CONCLUSION

Encryption schemes play a pivotal role against the multi-
tude of threats that have proliferated in the modern network
environment. Malicious activities have become sophisticated,
and encrypted channels are the primary shield against threats.
Nevertheless, modern studies neglect to investigate encryption
schemes used in network communications as the stability of
modern CNPs has improved. However, their vulnerabilities are
a significant target that we must persistently focus on, and they
can lead to catastrophic results in cybersecurity, even if their
flaws are trivial.

Our investigation exhibits a new approach to exploring
modern vulnerabilities stemming from modern network pro-
tocols, depending on encryption schemes. This approach is
a novel classification methodology, considering that existing
surveys for encryption schemes stand traditional classification
approaches such as malware types, or restricted domains.
In this paper, we organized encryption strategies and their
weaknesses depending on network protocols, with SSL/TLS,
HTTPS, and SSH serving as our principal subjects. Our
presentation of the intricacies and vulnerabilities inherent in
the mentioned protocols constitutes a distinctive and exhaus-
tive survey. With this investigation, we can yield a profound
understanding of modern encryption methodologies and vul-
nerabilities exploitable by attackers. In closing, we suggest
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various open research challenges that could be derived from
our investigation.

This survey contributes to various aspects. The first is a
novel classification approach. Our approach emphasizes en-
cryption schemes in the exploration of contemporary network
vulnerabilities, and it applies to other domains. For instance,
malware using encryption schemes can be explored. Second,
we investigated vulnerabilities of TLS v1.3, which have never
been addressed in the existing surveys. It is considered a
robust protocol, using only secure encryption algorithms so
far. However, several implementation flaws and studies have
been reported, and we scrutinized its causes and backwash.
Finally, individuals can gain a more adept comprehension of
the constantly evolving and dynamic field of cybersecurity by
understanding the historical vulnerabilities comprehensively.
With comprehension, they can proficiently cope with their
problems when they need to figure out the encryption schemes
of CNPs. Through the contributions, we expect that prospec-
tive investigations can analyze their research subjects from
diverse points of view with a profound understanding of
modern network protocol security.
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