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ABSTRACT The state of health (SOH) of a Li-ion battery is determined by complex interactions among
its internal components and external factors. Approaches leveraging deep learning architectures have
been proposed to predict the SOH using convolutional networks, recurrent networks, and transformers.
Recently, Mamba selective state space models have emerged as a new sequence model that combines fast
parallel training with data efficiency and fast sampling. In this paper, we propose SambaMixer, a Mamba-
based model for predicting the SOH of Li-ion batteries using multivariate time signals measured during
the battery’s discharge cycle. Our model is designed to handle analog signals with irregular sampling
rates and recuperation effects of Li-ion batteries. We introduce a novel anchor-based resampling method
as an augmentation technique. Additionally, we improve performance and learn recuperation effects by
conditioning the prediction on the sample time and cycle time difference using positional encodings.
We evaluate our model on the NASA battery discharge dataset, reporting MAE, RMSE, and MAPE. Our
model outperforms previousmethods based onCNNs and recurrent networks, reducingMAEby 52%,RMSE
by 43%, and MAPE by 7%.

INDEX TERMS Li-ion battery, mamba, state space model, state of health prediction, multivariate time
series, deep learning.

I. INTRODUCTION
Lithium-ion (Li-ion) batteries are among the most widely
used energy storage solutions today, powering everything
from consumer electronics to electric vehicles. They even
resulted in the 2019 Nobel Prize in Chemistry [1]. Their
popularity stems from their high energy density, long
lifespan, and low self-discharge rate, making them both
efficient and durable [2].
However, ensuring safety, reliability, and efficiency of

Li-ion batteries over time requires sophisticated battery
management systems (BMS) that monitor, control, and
optimize battery performance. Accurate prediction of the
state of health (SOH), state of charge (SOC), and remaining
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useful life (RUL) is essential to prevent unexpected failures
and extend battery life.

Traditional BMSoften rely on equivalent circuit models [3]
as well as electrochemical models [4]. However, thesemodels
are limited by their complexity and sensitivity to varying
operational conditions. In recent years, many data-driven
approaches to predict SOH (see Section II), SOC [5], [6],
or RUL [7], [8] for Li-ion batteries have been proposed. These
approaches learn complex, non-linear relationships directly
from data, providing more accurate, adaptive, and scalable
solutions for real-time health monitoring [9].

We noticed that most recent works do not consider recent
advances of deep learning [10], [11]. We acknowledge that
some works [12] focus on deploying models on embedded
devices to show that small deep learning-based models can
be used for real-time health monitoring of Li-ion batteries.
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At the same time, the problem of SOH prediction is a
multi-disciplinary problem that requires expertise in many
different disciplines, such as battery technology, signal
processing, and deep learning. Some works use modern
transformer architectures [13], [14], [15], which have shown
great success in many deep learning disciplines, such as
natural language processing and computer vision. However,
these architectures are not well-suited for analog time signals
with many measurement samples because of their quadratic
work complexity [16] and their substantial need for resources
and large datasets to train successfully [17].
Recently, Mamba [18], a selective state space model,

has been proposed as a new deep learning architecture that
combines the best of both worlds: fast parallel training, being
able to handle long-range dependencies, fast inference and
sub-quadratic work complexity. In this paper, we propose
SambaMixer, a Mamba-based model to predict the SOH
of Li-ion batteries from multivariate time signals measured
during the battery’s discharge cycle. Our model addresses
the challenges of modeling long-range dependencies in
time series data, handling multivariate time signals, and
addressing the problem of varying signal lengths, irregular
sampling rates, and recovery effects of Li-ion batteries.
We evaluate our model on NASA’s real-world dataset of
Li-ion battery discharge cycles [19] and demonstrate its
superior performance compared to state of the art deep
learning models.

In this sense, we summarize our main contributions in this
paper as follows:

1) Introducing Mamba selective state space models to the
task of Li-ion battery SOH prediction frommultivariate
time signals.

2) Developing an anchor-based resampling scheme to
resample time signals to a fixed length while serving
as a data augmentation method.

3) Applying a time-based positional encoding scheme to
address sample jitter, time signals of varying length,
and recovery effects of Li-ion batteries.

We have released our code on GitHub.1

II. RELATED WORK
This section provides a comprehensive review of the most
relevant works on the prediction of state of health for Li-ion
batteries and structured state space models.

A. STATE OF HEALTH PREDICTION OF LI-ION BATTERIES
Ren and Du [20] categorizes state of health prediction
methods into two classes: model-driven and data-driven
methods. In this work we focus on data-driven methods.

Many studies combine recurrent networks and convolution
networks to predict the SOH of Li-ion batteries. Mazzi et al.
[10] use a 1D-CNN followed by BiGRU layers, utilizing
measured voltage, current, and temperature signals from
the NASA PCoE dataset [19]. Yao et al. [11] develop

1GitHub Repo: https://github.com/sascha-kirch/samba-mixer

a CNN-WNN-WLSTM network with wavelet activation
functions, also using the same dataset. Shen et al. [21]
employ an extreme learning machine algorithm on voltage
signals measured during the charging mode. Wu et al.
[22] combine convolutional and recurrent autoencoders with
GRU networks. Zhu et al. [23] use a CNN-BiLSTM with
attention for both SOH and RUL estimation. Ren et al.
[24] utilize an autoencoder feeding parallel CNN and LSTM
blocks. Tong et al. [25] develop an ADLSTM network with
Bayesian optimization. Tan et al. [26] propose a feature
score rule for LSTM-FC networks. Crocioni et al. [12]
compare CNN-LSTM and CNN-GRU networks. Li et al. [27]
introduce an AST-LSTM network. Yang et al. [28] merge
CNN with random forest in a CNN-RF network. Garse et al.
[29] use a random forest regression and FC network in
the RFR-ANN model. Chen et al. [30] tackle SOH with a
self-attention knowledge domain adaptation network.

Other studies focus on transformer-based models.
Feng et al. [13] introduce GPT4Battery, a large language
model (LLM) fine-tuned to estimate SOH on the GOTION
dataset [31]. It employs a pre-trained GPT-2 backbone,
followed by a feature extractor and two heads for charging
curve reconstruction and SOH estimation. Gomez et al. [14]
use a temporal fusion transformer on a Toyota dataset [32],
integrating Bi-LSTM layers for time series forecasting.
Zhu et al. [15] develop a transformer with sparse attention
and dilated convolution layers on the CALCE [33] and
NASA PCoE datasets. Huang et al. [34] use singular value
decomposition before inputting data into a transformer
model. Nakano et al. [35] combine a CNNwith a transformer
model in an experimental EV, feeding voltage, current, and
speed signals along with the SOC.

B. STRUCTURED STATE SPACE MODELS
Recently, state space models (SSMs) have emerged as
a new sequence model architecture in the field of deep
learning, challenging the performance of transformers [36]
and the inference speed of RNNs. While transformers are
successfully used in most fields of deep learning, their
quadratic scaling law makes them challenging and expensive
to use for certain tasks with long sequences. At the same
time, RNNs are limited by their sequential nature and
compressed state representation, which hinders efficient
training through parallelization and the ability to capture
long-range dependencies.

The LSSL model by Gu et al. [37] incorporated the
HiPPO framework [38] into SSMs and demonstrated for
the first time that a SSM’s parameters can be trained with
gradient based optimization. They further highlighted the
duality of SSMs’ recurrent and convolution representations,
which allows for O(N ) complexity during inference in the
recurrent view and parallel training using the convolution
representation on modern hardware accelerators. The S4
model by Gu et al. [39] constrained its state matrix A to have
a certain structure, enabling a more efficient construction

2314 VOLUME 13, 2025



J. I. Olalde-Verano et al.: SambaMixer: SOH Prediction of Li-Ion Batteries Using Mamba SSMs

of the convolution kernel required for training. Subsequent
work by Smith et al. [40], Gupta et al. [41], Fu et al.
[42], and others [43], [44] further improved existing SSMs,
ultimately leading to the development of the Mamba model
by Gu et al. [18]. Mamba introduced selectivity into the SSM,
enhancing its performance while maintaining sub-quadratic
complexity during inference. This transformer-like perfor-
mance, while being fast like RNNs during inference, makes
it particularly suitable for sequential data tasks with long
sequences, such as audio [45], [46], images [47], [48],
[49], video [50], [51], NLP [52], segmentation [53], motion
generation [54], and stock prediction [55].
Recent works have focused on the connection between

attention and SSMs [56], [57] to simplify their formulation
and leverage the extensive research on attention mechanisms
in transformers, including hardware-aware and efficient
implementations. Behrouz et al. [58] extended Mamba-like
models to apply selectivity not only along tokens but also
along channels, making them particularly well-suited for
multivariate time signals, such as those found in the state of
health prediction of Li-ion batteries.

III. PRELIMINARIES
This section provides a brief introduction to the concepts of
state of health for Li-ion batteries and structured state space
models.

A. STATE OF HEALTH OF LI-ION BATTERIES
Li-ion batteries are widely used in portable electronics,
electric vehicles, and renewable energy storage systems due
to their high energy density, long cycle life, and low self-
discharge rate. The degradation of the battery’s performance
is often indicated by its state of health, which decreases over
time due to various internal and external factors that will be
detailed later in this section. The state of health of a battery is
a measure of its ability to deliver the rated capacity and power
compared to its initial state.

The state of health of a Li-ion battery, denoted as SOHk ,
represents the battery’s health as a percentage and is defined
as follows:

SOHk =
Qk
Qr

· 100, (1)

where Qk represents the battery’s current capacity at cycle k ,
and Qr denotes its rated capacity.

As the battery is used and repeatedly charged and
discharged, its SOH decreases with each cycle, which can be
observed in the measured voltage, current, and temperature
profiles. An example of this behavior is depicted in Fig. 1.

The end-of-life (EOL) of a battery is defined as the point at
which the battery can no longer deliver the rated capacity and
power, marking the end of its useful life. Typically, the EOL
of a battery is reached when the SOH drops below a certain
threshold, such as 70% of the rated capacity. It is important to
note that due to recuperation effects, the SOH of a battery can
increase again, surpassing the EOL threshold multiple times.

In this work, we set the EOL indicator to the first cycle after
the SOH drops below the threshold for the last time.

As mentioned earlier, the aging of Li-ion batteries is
influenced by both internal and external factors [59]. Internal
factors are related to the battery’s chemical properties,
while external factors include manufacturing processes,
environmental conditions, and battery usage, among others.

1) INTERNAL FACTORS
Zeng and Liu [60] identified 21 potential internal factors
that contribute to the degradation of a Li-ion battery’s
state of health. These factors can be categorized into three
fundamental concepts: loss of lithium inventory (LLI), loss
of active material (LAM), and increase in internal resistance.
Among these three groups, the loss of lithium inventory has
a significant impact on the aging process [61].

LLI factors include lithium precipitation and solid elec-
trolyte interphase (SEI) formation. Lithium precipitation
occurs at the anode during charging, where lithium ions
form dendrites that can puncture the separator, causing
short circuits [62]. SEI formation occurs during the first
charge, reducing the available lithium ions and affecting their
dynamics [63].

LAM factors primarily involve the degradation of lithium
oxide at the cathode, leading to gas generation and increased
internal resistance [64].

Increased internal resistance is also caused by elec-
trode corrosion [65], electrolyte decomposition [66], and
diaphragm degradation [67].

2) EXTERNAL FACTORS
External factors are categorized based on the battery’s
temperature, charge rate, overcharge/overdischarge level, and
mechanical stresses [68], [69].

Using a battery outside its specified temperature range
can affect the battery’s performance in different ways.
Both excessively high and low temperatures have adverse
effects. High temperatures can lead to the formation of a
solid electrolyte interface, degradation of the cathode, and
ultimately thermal runaway [70], [71]. Low temperatures
slow down the transport of lithium ions, increase internal
resistance, and impact the battery’s capacity [72].

Charging a battery at a high rate, meaning with a high
charging current, can lead to the precipitation of ions on the
anode, which is favored by the increase in temperature due to
the Joule effect [73], [74]. Similarly, overcharging a battery
can cause irreversible structural changes in the cathode and an
increase in internal resistance [75], [76]. Overdischarging a
battery can result in the dissolution of the anode material into
copper ions, which can generate dendrites during the charging
process [65].

In conclusion, a wide range of internal and external
factors can contribute to the degradation of a Li-ion battery’s
state of health, making it a complex and challenging
problem.
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FIGURE 1. Effect of aging on the voltage, current and temperature signals of various discharge cycles of a Li-ion battery measured at the battery’s
terminal. We show battery #05 of NASA’s battery dataset, which was cycled for 168 cycles using a constant discharge current of 2 A at an ambient
temperature of 24◦C.

B. STRUCTURED STATE SPACE MODELS
A state space model (SSM) describes the relationship
between an input signal x(t) and an output signal y(t) via
a hidden state h(t), which evolves over time according to
a linear dynamical system. The SSM is defined by the
following equations:

h′(t) = Ah(t) + Bx(t),

y(t) = Ch(t) + Dx(t). (2)

Matrix D transforms the input x(t) directly to the output y(t)
and is usually pulled from the SSM’s equation andmodeled as
a skip connection. Since most applications deal with discrete
signals, such as discretized analog time signals or text tokens,
and the fact that the above differential equation cannot be
directly solved, the SSM is discretized. This results in the
following discrete-time SSM:

ht = Āht−1 + B̄xt ,

yt = Cht , (3)

where Ā and B̄ represent the discretized state matrix and input
matrix, respectively. Various discretization techniques have
been employed, with the Zero Order Hold (ZOH) technique
being the most prominent one in recent studies.

Ā = e△A,

B̄ = (△A)−1 (
Ā−I

)
△B. (4)

In other words, the discrete SSM maps an input sequence
x ∈ RL×D

= {xt |t ∈ NL} to an output sequence y ∈ RL×D
=

{yt |t ∈ NL} with NL being the indices of the sequence
with L samples and D the dimensionality of individual data
points. Since matrices Ā, B̄ and C are constant over time, the
SSM is said to be a linear time-invariant (LTI) system. In an
LTI system, the recurrent representation of the SSM can be
written in form of a convolution:

K̄ =

(
CB̄,CĀB̄, . . . ,CĀL−1B̄

)
,

y = x ∗ K̄. (5)

Note that the convolution kernel K̄ is a function of the SSM
matrices and contains L elements, which is quite expensive

to compute for large L and dense matrices Ā ∈ RN×N .
Gu et al. [39] restricted matrix A to be a diagonal plus low
rank (DPLR) matrix with A = 3− PP∗, which allows for a
more efficient computation of the convolution kernel K̄.
To further enhance the performance of the SSM, Gu et al.

[18] introduced Mamba, which adds selectivity to the SSM
by making the matrices Bt , Ct , and 1t time-variant. This
means that each token is processed by its own matrix. It is
important to note that in Mamba, the matrix At is directly
optimized, while Bt ,Ct , and1t are constructed from learned
linear projections of the SSM’s input xt .
Behrouz et al. [58] highlighted that Mamba’s selectivity

applies only at the token level, but not at the channel level.
This means that information cannot be passed between chan-
nels, reducing its capability tomodel complex relationships in
multi-channel data. To address this issue, they introduced the
MambaMixer, which incorporates channel-wise selectivity
into the SSM. This makes it particularly suitable for handling
multi-channel data, such as images or multivariate time
series.
A little simplified, the MambaMixer consists of two

mixing operations, the token mixer Mtoken and the channel
mixerMchannel, which are defined as follows:

Mtoken : RL×D
7→ RL×D,

Mchannel : RD×L
7→ RD×L . (6)

Those mixers are built from one or more Mamba-like blocks.
To obtain the output y of a single MambaMixer block, the
input x is first processed by the token mixerMtoken and then
by the channel mixerMchannel:

ytoken = Mtoken(xtoken),

ychannel = Mchannel(xTchannel),

y = yTchannel. (7)

Note that the transpose operation is necessary to apply the
channel mixer along the channel dimension.
Inspired by DenseNet [77], MambaMixer further imple-

ments a learned weighted averaging of earlier blocks’ outputs
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to the current block’s input, which is defined as follows:

x(m)token =

m−1∑
i=0

α(i)m y(i)token +

m−1∑
i=0

β(i)m y(i)channel,

x(m)channel =

m∑
i=0

θ (i)m y(i)token +

m−1∑
i=0

γ (i)
m y(i)channel, (8)

where m is the current index of the M stacked MambaMixer
blocks, α(i)m , β(i)m , θ (i)m , and γ (i)

m are learnable parameters and
y(0)token = y(0)channel = xembedd, where xembedd is the input
to the encoder model.

IV. PROPOSED METHOD
In this section, we detail our proposed SambaMixer model
to predict the state of health of Li-ion batteries. We first
formulate the problem in Section IV-A. We then describe
the model architecture in Section IV-B. We further detail
the training procedure in Section IV-C and the sampling
procedure in Section IV-D.

A. PROBLEM FORMULATION
Let NB = {0, 1, . . . , 9 − 1} be the indices of 9 different
Li-ion batteries B = {bψ |ψ ∈ NB} and NψK =

{0, 1, . . . ,Kψ − 1} be the indices of Kψ different discharge
cycles Cψ = {k|k ∈ NψK } for each of the 9 different Li-ion
batteries in B. Each discharge cycle k consists of a sequence
of measured samples of the current signal Ik , voltage signal
Vk , temperature signal Tk and sample time Sk . All signals are
measured at the battery’s terminal.

Ik = {i(k)t },Vk = {v(k)t },Tk = {τ
(k)
t }, Sk = {s(k)t }, (9)

where t ∈ [0,Lψk ) ⊂ N is the index of individual samples,
with Lψk being the total number of samples in cycle k of
battery bψ . Note that Sk is the sample time in seconds, where
s(k)t=0 always starts at 0 s.

Through our anchor-based resampling introduced in
Section IV-B1 we ensure that for all cycles in Cψ the total
number of samples are equal Lψk = L.
By concatenating the input signals, we get the input tensor

Pk ∈ RL×4 for cycle k of battery bψ :

Pk = Ik ∥ Vk ∥ Tk ∥ Sk , (10)

where ∥ denotes the concatenation operation. The objective
of SambaMixer is to learn a parameterized function f2 that
maps the input tensor Pk to the state of health SOHk for a
given cycle k of a given battery bψ :

f2 : Pk 7→ SOHk . (11)

B. MODEL ARCHITECTURE
Fig. 2 illustrates the top-level architecture of SambaMixer,
which comprises five main components: resampling, input
projection, position encoding, encoder backbone, and the
prediction head.

We input a multivariate time series of current, voltage,
temperature, and sample time for a single discharge cycle k
of a given battery bψ . Our SambaMixer model then predicts
the state of health SOHk for that cycle.

1) ANCHOR-BASED RESAMPLING OF TIME SIGNALS
As the battery ages, the discharge cycles become shorter.
Further, different sample rates might be chosen to sample
the analog signals at the battery. Consequently, the number
of samples from different discharge cycles and batteries
varies significantly. Additionally, a larger number of samples
leads to a wider model, which requires more resources to
train. The required number of samples varies depending
on the discharge mode. For instance, in a constant current
dischargemode, the current remains nearly constant while the
voltage continuously drops. In such cases, a smaller number
of samples might be sufficient. On the other hand, high-
frequency discharge profiles may require more samples to
avoid anti-aliasing effects and accurately model the system
dynamics.

Our anchor-based resampling technique addresses two
main challenges: the need for a fixed number of samples for
all cycles as expected by the model architecture and the need
for data augmentation to improve the model’s generalization
capabilities. This augmentation of the training data with
physically plausible samples is crucial and well suited in
combination with our sample time position embeddings
introduced in Section IV-B3.

Generally speaking, we define a resampling function fR
that resamples the sample time sequence Sk of length Lψk .
Lψk varies for each cycle k and battery bψ . The result is the
resampled sample-time sequence S∗

k which has the the same
length L for all cycles and batteries.

fR : Sk ∈ RLψk 7→ S∗
k ∈ RL . (12)

After obtaining S∗
k , we perform linear interpolation on the

current, voltage, and temperature signals.
We conducted experiments using three different approaches

for the resampling function fR: linear resampling, random
resampling, and our anchor-based resampling. The results are
presented in Section V-D3.
In the case of linear resampling f lR, we take L equidistant

samples between the minimum and maximum values of Sk .

f lR(Sk ) := linspace(min(Sk ),max(Sk ),L). (13)

For the random resampling f rR , we draw L samples from a
uniform distribution U .

f rR (Sk ) := {skt }
L
t=0, with s

k
t ∼ U[min(Sk ),max(Sk )]. (14)

For our proposed anchor-based resampling f aR , we first define
the anchors by using linear resampling f lR and then add some
noise z to each anchor.

f aR (Sk ) := f lR(Sk ) + {zt }Lt=0, with zt ∼ U[−w
2 ,

w
2 ]
, (15)

VOLUME 13, 2025 2317



J. I. Olalde-Verano et al.: SambaMixer: SOH Prediction of Li-Ion Batteries Using Mamba SSMs

FIGURE 2. SambaMixer architecture. We input a multivariate time series of current, voltage, temperature, and sample time.
First, we resample the time signals using our anchor-based resampling technique. Then, we feed the resampled sample
time into the sample time positional encoding layer. Additionally, we feed the time difference between two discharge
cycles in hours into the cycle time difference positional encoding layer. The other signals, namely current, voltage, and
temperature, are fed into the input projection. The projected signals are added to the sample time embeddings and the
cycle time difference embeddings. Optionally, a class (CLS) token can be inserted at any position. The embedded tokens are
then fed into the SambaMixer Encoder, which consists of M stacked SambaMixer Encoder blocks. Finally, the output of the
encoder is fed into the head, which predicts the state of health of the current cycle k for battery bψ .

FIGURE 3. Resample techniques. (Original): The original sample time
sequence with Lψk samples. (Linear): linear resampling with L equidistant
samples. (Random): random resampling with L samples drawn from a
uniform distribution. (Anchor): anchor-based resampling with random
uniform noise z added to L equidistant samples.

where w is the interval width between two linearly resampled
samples. In Fig. 3 we illustrate the resulting sample time for
those three resample techniques.

2) INPUT PROJECTION
The resampled voltage, current, and temperature signals are
fed into the input projection. A simple linear projection layer
is used to project the multivariate time signal from RL×3 to
RL×dmodel .

3) SAMPLE TIME POSITION EMBEDDINGS
As shown in the top-level architecture in Fig. 2, we utilize
time information in our positional encoding layer to generate
position embeddings PE (k)

∈ RL×dmodel for cycle k , which
are then added to the projected tokens.

In the original transformer by Vaswani et al. [36], position
embeddings were added because the transformer lacks
knowledge of the order of its inputs due to the absence of
recurrence or convolutions. Among the various techniques
available to encode absolute or relative position, the sinu-
soidal position embedding introduced by the transformer is
still commonly used. It encodes the samples based on their
absolute position p in the sequence.

PEorig [p, 2i] = sin
(
p/10.0002i/dmodel

)
,

PEorig [p, 2i+ 1] = cos
(
p/10.0002i/dmodel

)
. (16)

In contrast, an SSM is a recurrent model, and inside
the Mamba block, we also have a convolution. However,
in VisionMamba by Zhu et al. [49], position embeddingswere
still added to capture the spatial position of image patches.
In this work, despite applying an SSM to causal time signals,
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we still include position embeddings, but instead of encoding
the position of each sample, as shown in Eq. 16, we encode
the sample time s(k)t of cycle k at position p. This results in
the positional embeddings PE (k)

st .

PE (k)
st [p, 2i] = sin

(
s(k)t=p/10.000

2i/dmodel
)
,

PE (k)
st [p, 2i+ 1] = cos

(
s(k)t=p/10.000

2i/dmodel
)
. (17)

The decision to add position embeddings is motivated by the
resampling of the time signals to have equal length L. As a
result, even though two samples from different cycles k are
located at the same absolute position p in the sequence, they
are likely sampled at different times. By encoding the sample
time, the model can learn from temporal information, such as
the duration of battery discharge, and become robust against
variations in sample rates and number of samples.

Furthermore, Li-ion batteries can recover their capacity
over time if not used. This implies that the state of health in
a certain cycle k depends not only on the start time t (k) of the
current cycle k , but also on the time difference1t (k) in hours
from the start time t (k−1) of the previous cycle (k − 1).

1t (k) := t (k) − t (k−1). (18)

Therefore, we include a second positional encoding to
represent the time difference1t (k) in hours between the start
time t (k) of the current discharge cycle k and the start time
t (k−1) of the previous cycle (k − 1). This allows the model
to learn the recovery of the battery’s capacity over time.
We calculate the positional embeddings PE (k)

1 for cycle k at
position p using the following formula:

PE (k)
1 [p, 2i] = sin

(
1t (k)/10.0002i/dmodel

)
,

PE (k)
1 [p, 2i+ 1] = cos

(
1t (k)/10.0002i/dmodel

)
. (19)

The final positional embedding PE (k) for cycle k is obtained
by summing the sample time positional embedding PE (k)

st and
the cycle time difference positional embedding PE (k)

1 :

PE (k)
= PE (k)

st + PE (k)
1 . (20)

Note that the cycle time difference positional embedding
PE (k)

1 is constant within a single cycle k while the sample
time positional embedding PE (k)

st is different for each sample
t in the cycle k .

We ablate different positional encoding methods in
Section V-D4.

4) ENCODER BACKBONE
We stack M SambaMixer blocks to obtain our SambaMixer
Encoder. The SambaMixer Encoder consists of a Time Mixer
module and a Channel Mixer module, each of which consists
of one or more Mamba SSM layers with different scan
directions. The Time Mixer module applies the SSM along
the token axis and consists of a single forward scanning
SSM due to the causal nature of sequence data. On the other
hand, the Channel Mixer module applies its SSMs on the

channel/feature axis, which does not have this causal nature.
Therefore, we apply forward and backward scanning SSMs
in the Channel Mixer module.

In addition to the TimeMixer andChannelMixer, learnable
weighted average layers incorporate the results from previous
layers, as described in Eq. 8.
The SambaMixer Encoder is a sequence-to-sequence

model, which means that the input and output dimensions
are equal. Optionally, a single learnable CLS token can be
inserted before passing the sequence through the encoder,
resulting in an input and output sequence of tokens of
Rdmodel×(L+1).

Our SambaMixer Encoder is inspired by the TSM2 model
proposed by Behrouz et al. [58]. Although no code was pro-
vided, we implemented the encoder backbone from scratch,
following the description in the paper. We made several
enhancements, including the incorporation of drop-path
regularization and the clarification of normalization and
activation layers, to align with current best practices and
address any ambiguities in the original description.

5) REGRESSION HEAD
The regression head takes the encoded sequence of tokens
from the SambaMixer Encoder as input. If a CLS token is
used, the regression head selects the token that represents the
encoded CLS token and projects it from Rdmodel into R using
an MLP. This projection is used to obtain the final prediction
of the state of health for a given cycle k . It is important to note
that the CLS token can be located at any position.

If no CLS token is used, we apply a mean operation
to average the encoded sequence of tokens. This averaging
operation produces a single token that represents the entire
sequence. The token is then projected from Rdmodel into R
using an MLP. This projection is used to obtain the final
prediction of the state of health for a given cycle k .

C. TRAINING
Similar to Mamba [18], we initialize the learned diagonal
matrix A of the SSM using the S4D-Real [43] initialization,
where An = −(n + 1). Additionally, for the bias of the
linear projection that constructs the learned step size 1,
we follow the approach described in [44] and log-uniformly
sample from the range [1min = 0.001,1max = 0.1]. All
remaining layers, such as convolutions, linear projections,
or normalization layers, are initialized with PyTorch’s default
initializer.

To train our SambaMixer model, we use the AdamW
optimizer [78] with a learning rate of 10−4, β1 = 0.9,
β2 = 0.999, and a weight decay of 5 · 10−2. We employ
the mean squared error (MSE) loss function and train the
model for 60 epochs. A step learning rate scheduler is used,
halving the learning rate every 20 epochs. During training,
we randomly sample a batch of 32 discharge cycles from
random batteries to predict the state of health of these cycles.
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TABLE 1. Hyperparameters for our SambaMixer models of varying model
size for a sequence length L = 128.

We apply drop-path regularization [79] with a drop-path
rate of 0.2, occasionally dropping entire mixer blocks.
Additionally, we utilize mixed precision training [80] to
accelerate the training process.

To ensure that all cycles have the same number of
samples and to augment the data, we employ our proposed
anchor-based resampling technique during training.

D. SAMPLING
To recap, our SambaMixer model takes a multivariate time
series of current, voltage, temperature, and sample time from
a single discharge cycle k of a battery bψ , along with the time
difference to the previous cycle k − 1, and predicts the state
of health SOHk for that cycle. We use the trained model to
predict the SOH of a given cycle k for a specific battery bψ .
To predict the complete capacity degradation of a battery,
we iteratively predict the SOH for all cycles of the battery.
In contrast to training, we use linear resampling to obtain time
signals of the same length.

It is important to note that in our sampling schema, the
prediction of the SOH for a cycle k is independent of the
prediction of the SOH for the previous cycle k − 1. This
means that the quality of the predictions is not affected by
the battery’s history, such as the number of cycles it has
undergone or the profile of the discharge cycle. This design
choice ensures that the model performs well in realistic
scenarios where the battery’s history is unknown.

V. EXPERIMENTS AND ABLATIONS
In this section, we present our results. We introduce the
dataset in Section V-A, followed by the metrics used for
evaluation in Section V-B. We present the results of our
experiments in Section V-C and the results of our ablations
in Section V-D. Table 1 shows the hyperparameters for our
SambaMixer models of varying model size. We consider
SambaMixer-L our default model.

A. DATASET
We use the discharge cycles from the Li-ion Battery
dataset provided by the NASA Ames Prognostics Center of
Excellence (PCoE) [19].
As shown in Table 2, this dataset includes multiple Li-ion

batteries that were tested under various discharge profiles,
ambient temperatures (Tamb), cut-off voltages (VCO), and
initial capacities. All of these batteries are 18650 NCA cells
with a nominal capacity of 2000mAh and an upper voltage
threshold of 4.2V.

TABLE 2. Discharge specifications for various NASA Li-ion batteries. For
the profile we report the discharge current signal form and the discharge
amplitude. Tamb is the ambient temperature, VCO is the cut-off voltage
and Initial Capacity is the initial capacity of the battery at the beginning
of the measurement campaign.

TABLE 3. Different training and evaluation splits for the NASA Li-ion
batteries used throughout our experiments and ablations.

Table 3 presents the various training and evaluation splits
that we compiled from these batteries. NASA-S follows the
same configuration as used by Mazzi et al. [10].

In our pre-processing, we remove cycles that have obvious
issues with the measurement setup, such as those where the
measured capacity occasionally drops to 0.0mAh. Specifi-
cally, we filter out cycles where the state of health drops
more than 10% from one cycle to the next. Additionally, for
each cycle, we remove individual samples that were recorded
after the load has been disconnected. We also calculate the
time between two cycles, which is needed for our positional
encoding, and we resample the time signals to have a constant
number of samples. During training, we use our anchor-based
resampling technique introduced in Section IV-B. During
inference, we use linear resampling.
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FIGURE 4. Capacity degradation as a result of repeated charge and
discharge cycles reported in terms of SOH for all batteries listed in Table 3.

Fig. 4 shows the capacity degradation for all selected
and pre-processed batteries, illustrating the state of health in
percent over the discharge cycle ID.

B. METRICS
We evaluate our results using the commonly used metrics
for state of health prediction: mean absolute error (MAE),
root mean square error (RMSE), mean absolute percentage
error (MAPE), and absolute end of life error (AEOLE). These
metrics are defined as follows:

MAE =
1
K

K∑
k=1

∣∣∣sohgtk − sohpredk

∣∣∣ , (21)

RMSE =

√√√√ 1
K

K∑
k=1

(
sohgtk − sohpredk

)2
, (22)

MAPE =
1
K

K∑
k=1

∣∣∣sohgtk − sohpredk

∣∣∣∣∣sohgtk ∣∣ , (23)

AEOLE =
∣∣eolgt − eolpred

∣∣ , (24)

where sohgtk represents the ground truth for cycle k , sohpredk
denotes the predicted value for cycle k , K represents the total
number of cycles, eolgt represents the ground truth of the end
of life indicator, and eolpred represents the prediction for the
end of life indicator.

C. EXPERIMENTS
In this section, we present the results of our experiments
using the SambaMixer-L model trained on the NASA-L
dataset. We demonstrate the estimation of state of health
for the entire battery lifetime in Section V-C1. Additionally,
we evaluate the performance of our model when trained
on datasets of different sizes in Section V-C2. We also
investigate the impact of scaling the model size and dataset
size on the model’s performance in Section V-C3. Finally,
we analyze the performance of our model when starting the

FIGURE 5. SOH prediction for battery #06. (Top) Predicted SOH vs. ground
truth SOH for each cycle. (Bottom) Prediction error for each cycle.

prediction at different cycle IDs to simulate pre-aged batteries
in Section V-C4.

1) SOH ESTIMATION FOR ENTIRE BATTERY LIFETIME
As described in Section IV, we input the resampled time
signal from a single discharge cycle and predict the battery’s
state of health for that specific cycle. By sampling the
model, as described in Section IV-D, we can obtain the
capacity degradation over the cycle ID for each battery in
the evaluation set. Figs. 5, 6, and 7 depict the comparison
between the predicted SOH values and the ground truth SOH
values. Additionally, we present the error for each cycle and
the resulting end-of-life (EOL) indicator.

We have observed that our SambaMixer model accurately
predicts the dynamics of the SOH curves and the EOL
indicator without any errors for the evaluation batteries #06,
#07, and #47. However, we have noticed that the model
exhibits a relatively large error when predicting SOH values
above 92% for battery #06. We hypothesize that this is due
to the model’s limited generalization ability caused by the
relatively small dataset, which does not include samples with
SOH values above 92% (refer to Fig. 8). Other Mamba-like
models, such as [51] and [48], have also encountered similar
issues with models overfitting easily.

Table 4 presents a comparison of our SambaMixer model
with [10], [24], and [25] for each battery in the evaluation set.
We observe that our SambaMixer model surpasses the works
compared. Only on battery #07 MAPE is slightly worse.

2) DATASET SPLIT
In this experiment, we evaluate the performance of our
SambaMixer model when trained on different training sets
and compare the results with the models discussed in [10].
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FIGURE 6. SOH prediction for battery #07. (Top) Predicted SOH vs. ground
truth SOH for each cycle. (Bottom) Prediction error for each cycle.

FIGURE 7. SOH prediction for battery #47. (Top) Predicted SOH vs. ground
truth SOH for each cycle. (Bottom) Prediction error for each cycle.

Specifically, we train our SambaMixer-L model on NASA-S,
NASA-M, and NASA-L. The results are presented in Table 5.

We observe that our SambaMixer model achieves the best
performance in terms of MAE, RMSE, and MAPE for all
datasets, except for MAPE on NASA-S.

3) MODEL SCALING
In this experiment, we evaluate the performance of our Sam-
baMixer model when trained with models of different sizes.

FIGURE 8. Histogram of SOH value counts. Comparison of train and eval
split of the NASA-L dataset. Number of bins: 50.

TABLE 4. Comparing our SambaMixer models with the state of the art on
the NASA Li-ion batteries. We report the MAE, RMSE and MAPE for each
battery. Best results per evaluation battery are highlighted in bold, second
best are underlined, and - are not reported.

We train our SambaMixer-S, SambaMixer-M, SambaMixer-
L, and SambaMixer-XL models on NASA-S, NASA-M, and
NASA-L datasets. The results are reported in Table 6.

We observe that the performance of our model increases
with the model size and the dataset size. This is expected
since larger models have a greater capacity to learn complex
patterns in the data, and larger datasets provide more data for
the model to learn from.

Fig. 9 plots the MAE for the SOH estimation task for
different model sizes and datasets. We can see that for
SambaMixer-S, increasing the dataset size from NASA-M to
NASA-L has almost no impact on the performance, indicating
that the model is too small to benefit from the additional data.
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TABLE 5. Performance of our SambaMixer model on the evaluation
metrics MAE, RMSE and MAPE when trained on different training sets.
Evaluation sets are the same for all datasets. Overall best results are
highlighted in bold, second best are underlined.

TABLE 6. Model scaling experiment. We report the metrics MAE, RMSE
and MAPE for the SOH estimation task for different model sizes and
datasets. Overall best results are highlighted in bold, second best are
underlined.

FIGURE 9. Model scaling experiment. MAE metric for the SOH estimation
task for different model sizes and datasets. Values are reported in Table 6.

Furthermore, increasing the model size from SambaMixer-
L to SambaMixer-XL slightly decreases the performance,
suggesting that themodel is too large for the dataset and likely
overfits to the training data.

4) SOH ESTIMATION FOR USED BATTERIES
In a real-world scenario, it is not only necessary to predict
the state of health for new batteries, but also for batteries that
have been used for an unknown number of cycles or where
not all discharge cycles have been recorded. A robust model is
expected to reliably predict the SOH values in such scenarios.

TABLE 7. SOH estimation performance on the evaluation batteries
starting at different cycle IDs. We report the metrics MAE, RMSE and
MAPE for the SOH estimation task and the AEOLE for EOL indication.
Capital letters in brackets for the start column represent Mazzi et al.’s
[10] notation for those scenarios. Best results per evaluation battery and
per start cycle are highlighted in bold, second best are underlined, and -
are not reported.

To simulate the prediction task for used batteries, we select
batteries from the evaluation set, remove the initial discharge
cycles, and update their cycle ID. Specifically, for batteries
#06 and #07, we conduct experiments starting the prediction
at cycles 0, 30, 70, and 100. For battery #47, we experiment
with starting points at cycles 0, 15, 35, and 50. In Table 7,
we present our results and compare them against the two best
models in [10].

We observe that SambaMixer outperforms the other mod-
els in all reported metrics for all batteries and starting points,
except for the MAPE for battery #07. Our SambaMixer
model performs the prediction task independently for each
cycle, making it robust against missing cycles and batteries of
different ages. The SOH prediction curve remains consistent,
with the metrics only varying for different starting points due
to normalization by the total number of cycles K for each
battery.

D. ABLATION STUDY
In this section, we analyze the impact of our contributions
and design choices. Unless otherwise specified, we utilize
our SambaMixer-L model, which was trained on NASA-L.
In Section V-D1, we examine the usage and position of
the CLS tokens that can be optionally inserted into the
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TABLE 8. Ablation study on usage and position of a learnable CLS token
in the embedded input sequence. Best results are highlighted in bold,
second best are underlined.

TABLE 9. Ablation study on different backbone architectures. Best results
are highlighted in bold.

input token sequence. In Section V-D2, we evaluate the
performance of our SambaMixer backbone and compare it
with a vanilla Mamba backbone from [18]. We further inves-
tigate the performance of various resampling techniques in
Section V-D3. Finally, we assess the performance of different
input projections and position encodings in Section V-D4.

1) USAGE AND POSITION OF CLASS TOKEN
We ablate the usage and the potential position of CLS tokens
inserted into the token sequence. We train our SambaMixer-
L model on NASA-L inserting a CLS token either at the tail,
middle or head and compare it with a model that inserts no
CLS token. If we use a CLS token, the head is attached to
the position at the output that corresponds to the position
where the CLS token was placed. If no CLS token is used,
we average the output of all output tokens and feed it to the
regression head. The results are reported in Table 8.

2) BACKBONE
In this ablation, we compare the performance of our
SambaMixer backbone with the Vanilla Mamba backbone
proposed by Gu et al. [18]. Both models are trained on the
NASA-L dataset, and the results are presented in Table 9.
The main objective of this ablation study is to demonstrate
the effectiveness of our SambaMixer backbone in handling
multivariate time signals.

We observe that our SambaMixer backbone outper-
forms the vanilla Mamba backbone. This is because the
SambaMixer backbone is specifically designed to handle
multivariate time signals and effectively capture the complex
relationships among the variables in the dataset.

3) RESAMPLING
In this ablation study, we compare the performance of various
resampling methods. We train our SambaMixer-L model on
NASA-L using linear, random, and our proposed anchor-
based resampling. The results are presented in Table 10.
The objective of this ablation study is to demonstrate
the effectiveness of our anchor-based resampling method
introduced in Section IV-B1.

TABLE 10. Ablation study on various resampling methods. Best results
are highlighted in bold, second best are underlined.

TABLE 11. Ablation study on various positional encoding methods. Best
results are highlighted in bold, second best are underlined.

Our anchor-based resampling method outperforms the
linear and random resampling methods. We hypothesize that
this is due to the fact that the anchor-based resampling acts
as a form of data augmentation, allowing the model to learn
more robust features from the data.

4) POSITIONAL ENCODING
In this ablation, we compare the performance of different
positional encoding methods to justify our choice of the
sample time positional encoding introduced in Section IV-B3.
We train our SambaMixer-L model on NASA-L using no
encoding, sample time encoding, and our proposed combined
sample time and cycle time difference encoding. The results
are shown in Table 11.

The addition of our proposed positional encoding to the
model significantly enhances its performance. Furthermore,
incorporating the time difference between discharge cycles
as an additional feature to the positional encoding further
boosts the performance. The rationale behind this is that
capturing the difference between discharge cycles is crucial
for capturing the recuperation effects of the battery and
adjusting the prediction accordingly.

VI. CONCLUSION
We present SambaMixer, a novel approach for predicting
the state of health of Li-ion batteries using a Mamba-based
selective state space model. Our model demonstrates superior
performance compared to the state of the art on the NASA
battery discharge dataset, achieving a 52% reduction in
MAE, a 43% reduction in RMSE, and a 7% reduction
in MAPE. To enhance the performance of our model,
we introduce a novel anchor-based resampling method and
incorporate sample time and cycle time difference positional
encoding. Our results indicate that our model achieves high
accuracy and robustness in predicting the state of health of
Li-ion batteries. It is capable of extracting information from
multivariate time series data and modeling recuperation
effects.

A. LIMITATIONS
While our model outperforms the state of the art on
the NASA battery discharge dataset, we acknowledge the
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limitations of our evaluation, which was confined to a
single dataset - the NASA battery discharge dataset. This
dataset exclusively comprises batteries of the same chemistry,
and our experiments have primarily focused on constant
discharge cycles.

B. FUTURE WORK
Future work should focus on evaluating our model on
various datasets and different battery chemistries to further
validate its generalization capabilities. Additionally, different
discharge profiles’ impact on themodel’s performance should
be investigated. Different model architectures and state
space models should be explored to further enhance the
performance of our model.
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