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ABSTRACT Accurate prognosis of degradation trend is considered very important for the maintenance of
critical industrial equipment and assets. This leads to an increase in service availability and life expectancy.
Accurate and timely degradation prognosis enables maintenance managers to efficiently plan maintenance
regimes and reduce failure occurrences. Recently, Artificial Intelligence (AI) based prognosis and prediction
techniques have been in the limelight and attracted the interest of the research community. One such popular
Al-based technique is the Long Short-Term Memory (LSTM), which is very efficient in making predictions
using time series and sequential data. This paper proposes a novel prognostic technique based on LSTM
to predict the degradation trend. The proposed LSTM technique uses a dynamic training window approach
with a fixed look-back window for forecasting future steps. The size of the training window is iteratively
increased for each prediction as more data is available. This enables the model to utilize the complete
sequence trends while making future degradation state predictions. To mitigate over-fitting during model
training, the dropout technique and L2 regularization are also incorporated into the proposed generic LSTM
model. The performance of the proposed LSTM-based technique is evaluated using experimental results
on a real-world application and data. As a case study, the degradation trend of Aerial Bundled Cables
(ABCs) using actual thermal degradation data acquired from in-service cables (ABC) is predicted. Moreover,
the proposed LSTM-based technique is further compared with a particle filter-based statistical prognosis
technique. Promising results validate the efficacy of the proposed LSTM-based approach for degradation
prognosis.

INDEX TERMS Long short-term memory (LSTM), increasing sliding window, prognostic technique,
degradation trend estimation, aerial bundled cables (ABCs).

I. INTRODUCTION

Condition monitoring plays a vital role in the predictive
and preventive maintenance of critical industrial machin-
ery and equipment. Condition monitoring measures specific
parameter(s) and identifies any irregularities and variations,
which may indicate a possible failure instance. The monitored
data or measurements contain the key details pertaining

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

to the current and historical health state of the equip-
ment. Sophisticated prognostic techniques can then be used
on the historical data to predict the future degradation
trend [1]. Accurate degradation trend prediction allows effi-
cient planning of maintenance activities & regimes, and
estimation of the Remaining Useful Life (RUL) [2]. Effective
degradation prognosis ensures upkeep, service availability,
and longevity of the asset. It also reduces the probability
of failure and system downtime over the lifespan of the
asset [3], [4].
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Various statistical and artificial intelligence (AI) based
prognostic methods have been reported in the contempo-
rary literature to predict the RUL of a system or critical
components [4]. Prognosis techniques can be broadly cate-
gorized into model-based, data-driven, and hybrid methods,
depending on the available data, algorithms employed, and
knowledge of the system [4], [5]. Model-based approaches
predict the future state using an available physical model that
outlines the physics of the failure mechanism. The acquired
training data when combined with the physical model pre-
dicts the future trend. Although model-based techniques
are generally accurate and effective in making predictions,
these high-fidelity models are costly, time-consuming, and
resource-intensive. In addition, as these models depend on
the physics of the system, they have limited reusability [4].
The data-driven approaches make use of the current and
previous states, without considering physical parameters.
A data-driven approach can be further divided into artificial
intelligence (AI) and statistical approaches [5]. As the name
suggests, Al approaches make use of Al-based techniques,
such as neural networks and fuzzy logic, whereas statistical
methods use probabilistic models including gamma process,
Gaussian process (GP) regression, Support Vector Machine
(SVM), and Bayesian filers, such as Kalman and Particle
filters, to make future state predictions [3], [4], [5]. In [4],
data-driven methods are more user-friendly and faster to
implement and deploy as compared to model-based methods.
A practical illustration of one of the statistical data-driven
methods, the Kalman Filter, is provided in [6] to predict the
remaining useful life of the asset. In [7], a neural network and
fuzzy logic-based approach to predict accelerated thermal
aging of electric power cables. In another study [8], a hybrid
approach is used for predicting the remaining service life of
rotating machines. They combine the convolution operation
of a neural network (NN) with the strength of a recurrent
neural network (RNN), specifically the Long Short-Term
Memory (LSTM), for efficient RUL prediction.

Il. LITERATURE REVIEW

Recently, Al-based techniques have attracted considerable
interest from the research community, in particular, Deep
Learning (DL) based methods, such as LSTM, have been in
the limelight for prognostics study of various systems [4].
LSTM has been reported to model damage propagation of
aircraft gas turbine engines and lithium-ion batteries [9], [10].
In [11] a deep LSTM model for the dual task of assessing
the degradation and then predicting the RUL of aero engines.
RUL of a turbofan engine is predicted by Paulo da Costa et al.
using the time series sensor data [12]. They combine global
attention mechanisms with LSTM architecture. This enables
it to learn RUL degradation and demonstrate effectiveness
over classical algorithms [12]. Another study predicted the
RUL of rotatory machines with the aid of LSTM and atten-
tion mechanisms. They use a one-dimensional Convolutional
Neural Network (CNN) to extract local features from the
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signal sequence and then feed them to a multi-layer LSTM
architecture with an attention mechanism [13].

LSTM and other Al-based approaches generally encounter
overfitting problems [14]. L2 regularization and dropout are
frequently used with LSTM to avoid overfitting and improve
the results of neural networks [15]. Various parameters, such
as network complexity, number of hidden neurons, etc., con-
trol the performance of these techniques [15]. Dropout turns
out to be more robust and improves performance in larger
networks as compared to L2. Whereas L2 tends to yield
higher predictive accuracy in small networks [15]. Dropout
tries to combine the predictions of many “‘thinned”” networks
to boost performance [16]. The dropout technique drops
some neurons during the training and allows the network to
use all the neurons during testing to avoid overfitting and
improve performance. L2 has become a norm to be applied
with dropout or separately in LSTM neural networks for
different applications such as speech recognition [17] and
RUL prediction [18]. In this reported work, Long Short-Term
Memory (LSTM) and its regularized versions are optimized
for degradation prognosis in a real-world application using
actual data.

In this research work, a novel prognostic technique based
on LSTM deep learning algorithm is proposed. The novel
technique modifies the classical LSTM model by incorpo-
rating an increasing training window approach in it. The
degradation prognosis of Aerial Bundled Cables (ABCs) is
selected as the case study to undertake the research and
predict the degradation trend. Three different LSTM variants,
namely generic LSTM (with increasing window), L2 regular-
ized LSTM, and LSTM with dropout incorporation, are used
for degradation trend estimation. A comparative analysis of
the three LSTM variants is also reported in this study. Further
comparison with particle filter-based statistical prognostic
technique is also reported.

The next section describes the research methodology and
details of the proposed novel LSTM approach. The following
section presents the case study description, including details
of data acquisition, model and data settings, data visual-
ization, preprocessing, and implementation of the proposed
LSTM-based scheme on the case study. This is followed by
results and discussion; and finally, the conclusion and future
work section is presented.

lIl. METHODOLOGY

Recently, Artificial Neural Network (ANN) models have
been widely used for AI and machine learning applica-
tions as compared to conventional regression and statistical
models [19]. Recurrent Neural Network (RNN) is a class of
artificial neural networks with deep architecture that contains
feedback connections to the preceding layers, thus it can
process variable length data [20]. RNN is a common network
used to model sequential data, such as the time-series data
used in this study. However, RNN has long-term dependency
limitations and vanishing gradient problems, and it often

VOLUME 12, 2024



W. B. Yousuf et al.: Novel Prognostic Methods for System Degradation Using LSTM

IEEE Access

fails to remember distant information. The Long Short-Term
Memory (LSTM) networks, a variation of RNN, are however
capable of capturing long-term dependencies by incorporat-
ing a memory cell that preserves the state over time [4].
Consequently, LSTMs have gained a lot of attention in a
variety of time-series problems such as weather forecasting
and speech recognition [21], [22]. Researchers in different
studies [9], [10], [11] have applied LSTM as an efficient
model for predicting the remaining useful life (RUL) of crit-
ical system components as well.

LSTM, like typical RNN architecture, can be considered
as a chain of repeated blocks of neural networks. Each mod-
ule/block of LSTM has four gates/layers interacting in a very
special way. Figure. 1(a) shows the chain structure with three
LSTM modules/blocks. The middle block shows an internal
architecture for the four gates/layers. These layers help in
understanding the internal mechanism of the LSTM network
and demonstrate its superiority over traditional RNNs.

Figure. 1. Pictorial representation of repeating LSTM mod-
ules, each with four layers/gates. (a) A set of three LSTM
blocks, (b) Forget gate representation, (c) Input gate and
candidate cell update state representation, (d) Current cell
state estimation using forget gate, input gate, and candi-
date update value, (e) Representation of the current state
output.

The main theme of the LSTM architecture is the flow of
information through the two horizontal lines connecting any
two LSTM blocks, as shown in Figure. 1(a) [9]. Each line
carries the output of the previous module to the input of
the next module. The circle under and outside the module
represents the input of the current state, while the circle above
and outside the block represents the output of the block. The
circles inside the modules show point-wise operations such
as the addition of vectors and rectangular boxes representing
the gates/layers. Lines that are merging show a concatenation
operation, whereas a line branching out simply contains a
copy of that signal. The bottom horizontal line on the left
of each block represents a combination/ concatenation of the
input of the current state (X) and the output from the previous
state output (h;_1). This is used to calculate the control signals
for the three gates (namely forget, input, and output), and
for the candidate update value of cell state, as shown in
Figure. 1(b)-(e). The forget gate is represented in Figure. 1(b),
while the input gate and its relation to the candidate cell
update are highlighted in Figure. 1(c). The top horizontal
line carries a copy of the previous state output (hi—1). This
is transferred to the current state output while being con-
trolled through the forget gate, input gate, and the cell update,
as shown in Figure. 1(d). The LSTM block output (hy) is
calculated by a nonlinear transformation of the current state
(c¢) and output gate (o), as shown in Figure. 1(e). In this way,
the LSTM can update its cell state by controlling what infor-
mation to add and what not to add, by using the forget, input,
and output gates. The stepwise details of LSTM working and
signal propagation along with mathematical representation
are given below.
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FIGURE 1. (a). Structure with three LSTM modules. (b). Forget gate
representation. (c). Input gate and candidate cell update state
representation. (d). Current cell state estimation using forget gate.
(e)- Representation of the current state output.

In the first step, the LSTM decides what information to
discard from the cell state. This is decided by the forget
gate (f;), which is typically a sigmoid function used on the
weighted previous state output (h_;) and the current input
(X¢). The forget gate provides a number between 0 and 1,
with 1 representing the information is kept, while 0 means
the information is dropped. The forget gate is illustrated in
Figure. 1(b) and is mathematically expressed as:

Fi=Wr X +Rp-h_y+bs (1)
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fi=o(f) 2)

Equations (1) and (2) show how the forget gate output is
generated where, f, is the forget gate input at time ¢, while f; is
the corresponding output of the gate. Wy represents the forget
gate weight for input signal X;, Ry is the recurrent weight for
h,—1 and by represents the bias. o is the nonlinear sigmoid
function, and **-” denotes matrix multiplication.

The next step decide what new information is to be updated
in the LSTM cell state. This is undertaken in two steps as
shown in (3)(4)(5), and (6). Firstly, the input gate (i;) decides
which values should be updated. Next, a nonlinear layer ¢
(tanh layer) creates a vector of new candidate values, that
could be added to the state. This is further illustrated in
Figure. 1(c) and mathematically expressed as:

iy =W;-Xi +Ri-hy—1 +bi 3)
ir =0 (ir) 4)
Ci=We-X,+Rchi +bc )
C=0¢(C (6)

where W;, R;, b; and W¢, Rc, bc are input weights, recurrent
weights, and bias of input gate and cell state layer, respec-
tively. i; is the input of the input gate, while i, is the gate
output. Similarly, C; is the input and C; is the corresponding
output for the candidate update values.

The two outputs i; and C; from the previous step are then
combined to update the old cell state with the new cell state,
as shown in Figure. 1(d) and mathematically expressed in (7):

Ci=fi*C_1+i;%C (7)

Finally, the output gate (o) controls the amount of infor-
mation on the cell states being kept in LSTM output. The
output gate’s input is generated as shown in (8). The output
gate typically uses a sigmoid function as shown in (9). Then,
tanh is applied to the cell state to push the values between
—1 and 1. Lastly, the two outputs from the tanh layer and
the output gate are combined to extract the LSTM unit output
(hy) at time instance t as illustrated in (10). This is shown in
Figure. 1(e) and mathematically represented as:

o =W, -X;: +R, - htfl + bo (8)
or =0 (0r) )
I’lt = Oy * ) (Ct) (10)

where, W,, b, represents the weights and bias of the output
gate, { is the activation function (tanh), the * represents scalar
multiplication, and (o;, 0;) have a similar meaning to (f[,ft).

The weights involved in the above LSTM model are
optimized during the training process. The classical LSTM
framework is trained up to a certain point in the dataset,
commonly referred to as the train-test split. Typically, the
train-test split reserves the larger share for training pur-
poses, such as keeping 70-90% for training and 30-10%
for testing [8], [9], [10]. However, a training split covering
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the majority of the dataset, say 90%, may result in overfit-
ting [14], [15]. Whereas, keeping a relatively lower training
proportion, say 60-70%, may reduce the prediction accuracy
as the model has to predict a considerable portion in time.
In the classical LSTM model, prediction of the future state
is made based on the training and the look-back window.
A “lookback period” determines the number of previous
instances/ states used to predict the next timestep(s). For
instance, a lookback period of 3 means the previous states
at time #-2, #-1, and ¢ are used to predict the next state at time
t 4+ 1. Typically, the size of the lookback period/ window is
also optimized/ determined in the training process. The subse-
quent future time step(s) prediction is made based on trained
weights up till the train-test split and the look-back window
input sequence. Therefore, the classical LSTM model heavily
depends upon determining the lookback period and the train-
test split. The lookback period combined with a number of
future step predictions can enhance the prediction efficiency
of the LSTM model. In this reported work, the proposed
LSTM scheme modifies the classical train-test split frame-
work and prediction mechanism.

In this study, an increasing sliding window-based training
approach is used to predict the future trend. Unlike the clas-
sical LSTM model with a fixed train-test split, the proposed
model uses a dynamic approach to the size of the training
window. For each prediction, the size of the training widow
is iteratively increased, while keeping a fixed look-back win-
dow size. The number of future steps predicted, ahead of
time, is also kept constant for each iteration. This will restrict
encountering a large portion of the test set, even when the
training set is smaller in size. The size of the training set
increases as more data is made available. Moreover, this
approach allows predictions to be made using all of the avail-
able data trends. For a better visualization and understanding
of the dynamic training window approach, Figure. 2 presents
an illustration to elaborate the iterative process. Consider a
particular case where the training window size is set to 20 in
the first iteration, then becomes 21 in the second iteration,
and so on. However, the number of future predictions made
stays the same, 10 in the case shown in Figure. 2; this will be
referred to as a 10-step prediction.

The proposed LSTM-based prognostic technique is used
for degradation trend estimation using real-world data. The
next sub-section outlines the case study highlighting aerial
bundled cables (ABCs), their composition, and the need for
prognosis. In addition, the data acquisition and thermal degra-
dation parameters are also discussed.

IV. CASE STUDY

A. AERIAL BUNDLED CABLES (ABC)

Aerial bundled cables (ABC) are an innovative solution
for overhead power distribution cables, used in various
parts of the world [23], [24]. Unlike classical uninsulated
overhead power distribution cables separated by air gaps,
aerial bundled cables are composed of multiple insulated
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FIGURE 2. Change the proposed model’s training and test set over each
iteration.

phase conductors. The aluminum phase conductors are
closely bundled together with a cross-linked polyethylene
(XLPE) insulation layer and assembled with a neutral con-
ductor. The XLPE insulation makes ABCs safer and more
reliable as they offer lesser pilferage losses among other
benefits [3]. ABC insulation makes it convenient to install
in densely populated areas with narrow gaps between build-
ings, making it a suitable candidate for power distribution in
congested urban areas. ABCs typically demonstrate a better
ability to withstand heat, cold, and intense sunlight due to
their insulation, and thus faults are less likely to occur on
ABCs than on classical uninsulated copper cables [25].
Nevertheless, ABCs may experience XLPE insulation
degradation due to various reasons including electrical,
mechanical, and thermal loadings exceeding the listed rat-
ings, and harsh environmental conditions, such as high
temperatures & humidity [3], [26]. ABCs have been reported
to have sudden failures, especially in marine and coastal areas
with high moisture content. Such failures are typically due
to moisture ingress through punctures/ ruptures in the XPLE
insulation. This may lead to dangerous situations including
voltage fluctuations and short circuits which leads to damage
to precious equipment and even power supply outages. More-
over, the higher temperature of coastal areas causes the wire
to overheat and degrade even further. All these factors in turn
cause aging and reduce the remaining useful life of the cables.
Due to the insulated nature of the XLPE-based ABCs,
physical or manual inspection of the cables is not possible.
However, conditional monitoring of the installed cables fol-
lowed by efficient prognosis is a candidate scheme to mitigate
such sudden failures. The prognosis of cables includes the
prediction of future health state based on historical monitor-
ing and current cable conditions. It is thus crucial to develop
degradation assessment schemes and predictive models that
can monitor the changing state of ABCs. Accurate progno-
sis aids maintenance managers in preventive maintenance
planning and in turn guarantees the upkeep and long life
of cables [20], [26]. In this reported work, the proposed
LSTM-based prognosis approach is applied to the actual
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field-acquired ABC data, the details of which are provided
in the next subsection.

B. DATA ACQUISITION AND THERMAL DEGRADATION
PARAMETER

In this research, coastal areas of Pakistan, in particular
Karachi with latitude and longitude coordinates of 24.86° N,
and 67.0° E, have been selected for acquiring non-destructive
data. Karachi is a metropolitan city located on the coast of
the Arabian Sea and has a moisture-rich environment. The
ABC cables installed in Karachi are XLPE insulated with
aluminum core; a pictorial representation of a sample cable
is displayed in Figure. 3.

FIGURE 3. A sample of aerial bundled cables installed at Karachi.

One of the main reasons for the insulation degradation
in ABCs is the moisture ingress, which leads to cable fail-
ure. ABCs are typically installed between two distant poles
using Insulation Piercing Connectors (IPCs). However, these
connectors may puncture the insulation to make electrical
contact. These punctures and subsequent cracks in cable insu-
lation act as a point of entry (POE) for moisture and humidity.
Typically, there is an opening near the connectors at both ends
of the cable, the opening and POE are shown in Figure. 4. The
penetrated moisture content and the passing current heating
effect degrade the ABC insulation over time.

POE for
moisture

FIGURE 4. Point of entry for moisture in abc.

In this research work, thermal conditional monitoring is
reported. A FLIR® E40 thermal imaging camera (TIC)
has been used for collecting thermography information
(temperature-energy distribution) of the in-service ABC. The
specifications of this camera are listed in Table 1.

The TIC-based thermographic results are used to monitor
the degradation of the installed ABCs. The data is acquired
at a constant time of the day to make effective compar-
isons and minimize environmental variations, such as light
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TABLE 1. Specifications of FLIR-E40 thermal imaging camera.

Characteristics Detail

Temperature range -4°F to 120°F (- 20°C to 650°C)

Frame rate 60Hz

Field of view/min focus 25°x19°/1.31 ft (0.4m)

distance

Resolution 19,200 pixels (160x120) Infrared
resolution

Accuracy +/- 2% (reliable temperature
measurement)

Thermal sensitivity <0.07°C at 30°C

and temperature intensity. Moreover, to mitigate inaccuracies
about atmospheric conditions, the TIC is kept at a constant
distance from the ABC; 5-6 inches at a horizontal angle.
Actual thermographic data acquisition instances are shown
in Figure 5.

FIGURE 5. Data acquisition using thermal imaging camera.

Two spans of ABC were used in this reported work for data
acquisition, named span B and span C. The span of each cable
is further divided into three smaller segments (namely, start,
middle, and end segments) due to the long cable length and
limited field of view of the TIC. Six thermal images were
taken at each test instance at predefined and fixed sample
points along the length of ABC as shown in Figure 6. Thermal
images are then captured at each of these smaller segments on
a monthly basis and a historical health monitoring database
of ABC is generated.

Six images were captured at each measuring instant
(3 images for each span). An example of the captured thermal
image of ABC is shown in Figure 7. The acquired thermal
images were then processed and the corresponding absolute
temperatures of the cable were computed. The data used in
the reported research is acquired at six different locations at
each measuring instant.
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FIGURE 6. Nomenclature used for thermographic data acquisition. Two
ABCs are used with each’s span further divided into three smaller
segments (start, middle, and end).

FIGURE 7. A sample of the captured thermal image of ABC.

The current(load) in the cable for each data acquisition
instance varies based on consumer usage. This loading effect
should be considered while generating the historical database.
Therefore, a thermal degradation parameter (TDP) is used
to incorporate the thermal parameters corresponding to the
electrical loading. TDP is equivalent to the temperature of the
cable per unit ampere current. A sample TDP data instance
used in the study is tabulated in Table 2:

TABLE 2. A sample thermal degradation parameter (TDP) data instance.

Thermal Degradation Parameter (°C/A)

Start Segment  Middle Segment  End Segment

SpanB  0.5726 0.5733 0.5800

SpanC  0.5797 0.5713 0.5688

C. IMPLEMENTATION /DATA SETTING

Applying LSTM to ABC thermal degradation data involves
understanding the nature of the data, preprocessing, and
visualizing the data, and then final training the neural
network. Once a model is learned, it is validated using
a cross-validation technique and then finally tested for
accuracy in predicting the degradation trend. The follow-
ing sub-sections outline the implementation details of the
model.
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D. DATA VISUALIZATION AND PRE-PROCESSING

Thermal degradation parameter (TDP) data collected for
aerial bundled cables over 630 days or 90 weeks is used in this
research. The recorded sensor readings are then tabulated; a
visualization representation of the processed TDP values is
shown in Figure 8. Typically, from week 30 to 70 the recorded
values showed a quadratic trend, and then after 70 weeks, the
values increased exponentially.

—— Processed TDP data

1.2 1

1.0 1

o
w
.

DEGRADATION
o
=3
L

o
S
.

0.2 1

0.0

0 10 20 30 40 50 60 70 80 920
WEEKS

FIGURE 8. Visualization of thermal degradation parameter values.

The rate of change feature is extracted from a data set of
90-week values and used as input to train the model. Thus
90 weeks of data is available for model training. This reported
work presents a novel approach of “Increasing Window”’;
in which the model is trained in each iteration with a pre-
diction step of 4 weeks. Increasing the window approach is
useful in processing the more recent data as the window size
grows, which is also beneficial for non-stationary and evolv-
ing sequences. Data used in the first iteration is 40 weeks
then for the next iteration window size will increase by one
week. For prediction in each iteration, the last 20 weeks
values from the training dataset of the total available data
(i.e. 90 weeks) are provided as a test dataset to predict data
value for the next 1 week. This predicted week is then added
to the test dataset for new predictions. Since the predicted
value is the rate of change therefore first prediction of each
iteration will be added to the actual value from the dataset.
The rest predictions will be added to the predicted ones. Our
validation strategy ensures that the model is evaluated on data
it has not seen during training, helping to identify any issues
with generalization. Early stopping prevents overfitting by
halting training when validation performance stops improv-
ing. We also ensure that the final model is evaluated on an
independent test set in each iteration to gauge its performance
in real-world scenarios.

E. NETWORK CONFIGURATION AND TRAINING
In this reported work, three different variants of the pro-
posed LSTM models have been configured followed by a
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comparison of these models. The first model is a generic
model with an LSTM layer and a fully connected dense layer,
the second model uses regularized LSTM with L2 regular-
ization applied to it and the third model incorporates dropout
with LSTM.

The first model uses a generic LSTM for predicting the
degradation of ABCs. It is a sequential model with an
LSTM layer followed by a dense layer. Hyperbolic tangent
(tanh) is used as an activation function for the LSTM layers.
An Adaptive Moment Estimator Adam optimizer is used
in this research to train the LSTM as it is known to pro-
vide good results in sparse gradients and noisy data [27].
In addition, Adam’s optimizer is considered more efficient
in terms of time and accuracy. In contrast, traditional batch
or stochastic gradient descent-based training algorithms for
deep neural networks are typically time-consuming in weight
optimization [27]. The epochs are set to a maximum of
100 and mean square error is used as an evaluation metric for
cross-validation.

The second model (L2 Model) aims to avoid overfitting
and thus adds regularization to the generic model. Over-
fitting is a serious concern while training a model using
neural networks, where the model learns the training data
perfectly and fails to generalize on test data. To avoid
over-fitting, the L2 regularizer is incorporated in Model 2
implementation. This paper uses a ‘kernel regularizer which
is applied to the layers of the LSTM model rather than
to the bias or the activity of the network. The L2 regular-
izer has a learning rate set to 1 x 107!0 and is added to
the LSTM layer of the network. L2 regularization is also
known as ridge regression in literature, it aims to prevent
over-fitting by penalizing complex models [28]. Euclidean
distance is used as a penalty term and the model learns
from features that have small weights rather than ignoring
them [28].

The third model incorporates a dropout layer in it, keeping
the configurations of the first model. The core idea of dropout
is to randomly drop units and relevant connections from the
neural networks during training. Figure. 9a shows a standard
neural network where each neuron in a layer relates to all
the other neurons of the next layer. However, in the case
of dropout, some neurons are dropped as can be seen in
Figure. 9b, neurons with a cross (X) in them have no con-
nections in the network. This prevents units from co-adapting
too much and consequently prevents the model from over-
fitting [28]. In the reported model, dropout with a probability
of 0.5 is used after the LSTM layer during the training
phase.

F. MODEL PERFORMANCE EVALUATION METRIC

The performance of the three models is evaluated using
the root mean square error (RMSE). It is a good estimator
for calculating the standard deviation of the distribution of
errors. It helps in understanding the accuracy of the model
while predicting degradation. RMSE is mathematically
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(b)

FIGURE 9. Neural networks and dropout (a) Standard neural network
without dropout (b) Neural network with dropout incorporated in it.

represented as:

s (F-n)

n

RMSE = (1D
Equation (11) shows how to calculate RMSE where Y denotes
the predicted TDP value and Y; is the actual or true value from
the dataset; while n is the size of the test set or a number of
predicted values.

V. RESULTS AND DISCUSSION

In this paper, the degradation of two spans of aerial bundled
cable; span B and C as explained above in the case-study
section, which are each further divided into three segments;
start, middle, and end is predicted. In the first experiment,
the LSTM is applied using various look-back sizes, and the
performance is compared based on RMSEs. The experiment
uses 5,8,10 and 20-step look-back values, while it predicts
the next 10 weeks prediction of which only the first 4 weeks’
values are reported in this study. For this experiment, TDP
data of the Span B start segment is used. The graphical rep-
resentation of the experiment is shown in Figure. 10; which
shows that the size of 20 steps has the lowest RMSEs through
all weeks of prediction. Therefore, a 20-step look-back will
be used in further experiments.

Next, the classical LSTM approach (no fixed lookback,
iterations, and increasing window) is compared with the
generic/proposed LSTM approach with an increasing slid-
ing window. Both the classical and proposed generic LSTM
models predict the future 4 weeks of degradation from the
input data fed to them. The classical model takes as input
the first 86 weeks of data to train and predicts the last
4 weeks. On the other hand, the generic model is provided
with 40 weeks of data for training, and it predicts the next
4 weeks using 20 look-back. Figure. 11 shows the prediction
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FIGURE 10. Comparison between different look-back sizes on four-step
prediction.

curves for both classical and proposed generic LSTM com-
pared with the original TDP trend. The proposed approach
outperforms the classical method as its prediction curve
closely matches the original TDP curve. Similar outcomes
are verified from the RMSE that was recorded for both mod-
els. The proposed approach presented an RMSE of 0.0067,
whereas, classical presented 0.1734 on TDP data.
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FIGURE 11. Comparison of classical and generic LSTM model’s prediction.

Figure 10 demonstrates the superiority of the proposed
generic LSTM approach. The proposed technique and its
variants, Generic, Dropout, and L2, were further tested with
the acquired ABC TDP data. The proposed LSTM model
then predicts a 4-step future degradation trend, i.e. four
weeks ahead in time. 1st Step predictions of the three LSTM
approaches are shown in Figure. 11, where 1st step means
predicting one step/week ahead. TDP data pertaining to
Span B, the start segment is used in this experiment. As a ref-
erence, the original TDP values are also shown in Figure. 12.
The three LSTM approaches capture the degradation trend
very well, as shown in Figure 12.

Similarly, 2nd Step, 3rd Step, and 4th Step predictions,
corresponding to 2, 3, and 4 weeks ahead, are shown in
Figure. 13-15, respectively. All these experiments use span B,
start segment data. The three LSTM approaches are com-
pared with the original TDP values in each of the figures,
Figure. 13-15.

As evident from Figure. 13-15, all three LSTM-based
approach predictions are very close to the original value,
and it is hard to conclude which scheme performs the best.
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for Generic LSTM for each span of the cable’s segments
is tabulated in Table 3. The mean value, across all span
segments, for each of the 1st, 2nd, 3rd, and 4th step errors
are also tabulated in Table 3.

Original
= GENERIC

L2 REGULARIZATION
—— Dropout

TABLE 3. RMSE-based comparison for generic LSTM model.

DEGRADATION
1= =4 o I g Lo
[ = o © o [N}
fe

SPAN B OF 1 2nd 3rd 4t
CABLE Step Error  Step Step Step
0.0 Error Error Error
0 10 20 30 a0 e 60 70 80 90 SEG: START 0.006746 0.015375 0.027560  0.044581
SEG: MID 0.014992 0.036163  0.063308  0.095608
FIGURE 12. Degradation of span B starts segment-1st step prediction. SEG: END 0.015309 0036952 0.062892 _ 0.092925
SPAN C OF
= CABLE
—— Original SEG: START 0.014368 0.034568 0.063088  0.102634
-+~ GENERIC SEG: MID 0.012532 0.030344  0.053660  0.082300
= ;2 REGSLAR'Z”'O“ SEG: END 0.010505 _ 0.026050 0.053012 _ 0.096825
fopou MEAN 0.012409  0.029909 0.053920 0.085812

Similarly, the RMSE-based comparison for L2 Regular-
ization and dropout-based LSTM models are tabulated in
Tables 4 and 5, respectively. Each of these tables lists all

span segments and presents 1-4 step errors; along with mean
0 10 20 30 40 50 60 70 80 90
WEEKS values.

DEGRADATION
o o o 4 L) -
¥ = o @ o N

0.0

FIGURE 13. Degradation of span B starts segment-2nd step prediction.
TABLE 4. RMSE of dropout model.

—— Original 2 SPAN B OF 1 2nd 3rd 4th
121 .. GENERIC CABLE Step Step Step Step
10! == L2 REGULARIZATION Error Error Error Error
- — Dropout SEG: START 0.007563 0.018092 0.033951 0.056081
2os/ SEG: MID 0.015181 0.036072 0.062274 0.093081
=) SEG: END 0.014381 0.033866 0.057915 0.085318
Z06| SPAN C OF
8,4l CABLE
SEG: START 0.015288 0.037351 0.069136 0.112515
0.2 SEG: MID 0.013129 0.030953 0.053104 0.078575
0.0 SEG: END 0.012042 0.032237 0.065743 0.114366
0 10 20 30 0 50 60 70 80 20 MEAN 0.012931 0.031428 0.057020 0.089989

WEEKS

FIGURE 14. Degradation of span B starts segment-3rd step prediction.

TABLE 5. RMSE Of L2 regularization model.

Lar— Original )
1.2/ — GENERIC / SPAN B of 1 2nd 3rd 4th
—— L2 REGULARIZATION CABLE Step Step Step Step
=101 —— Dropout Error Error Error Error
Sos SEG: START 0.006482  0.014305  0.024698  0.039785
o
Zo06 SEG: MID 0.014546  0.035043  0.061392  0.092346
2 . SEG:END 0.015058  0.035568  0.060476  0.089145
0.2 SPAN C of
CABLE
! o W o - - o - - - SEG: START 0.014374  0.034939  0.064972  0.107266
WEEKS SEG: MID 0.012641  0.030512  0.053848  0.081855
. - SEG:END 0.010343  0.026250  0.054280 _ 0.099472
FIGURE 15. Degradation of span B starts segment-4th step prediction. MEAN 0.012241 0029436 0.053278 0084978
Therefore, for comparison between the LSTM models, The mean values, as listed in Table 3-V, enable a com-
RMSE values for the 1st — 4th step of prediction for each parison of the three LSTM models. For better visualization
segment (start, middle, and end segments) of both spans, of this comparison, these mean values are also plotted
B and C, are calculated. The 1-4 step error-based comparison and shown in Figure. 16. As inferred from Figure. 16,
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the L2-based LSTM model outperforms the other reported
models and has the lowest mean values of errors for all
predictions.

0.1

0.08 __—+—GENERIC
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< 0.06
= 12
x .
% 004 —
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S 0.02 //
= r

0
1 4

2 3
No. of Step Error

FIGURE 16. Comparison between Generic, Dropout, and L2 models.

To further demonstrate the efficacy of the proposed
approach, the predicted thermal degradation of aerial bundled
cables is further compared to a statistical method using the
same approach. A particle filter (PF) statistical method [26]
to predict the insulation degradation of ABCs using the same
dataset. PF is used to estimate the future health of cable and
the RMSE for each cable is recorded after prediction. 1% step
prediction for both LSTM (L2 Regularization model) and
Particle filter is shown in Figure. 17. Span B, start segment
TDP data is used for this experiment.

1.2/ — Original -
fffff LSTM(L2 REGULARIZATION) *
1.0 = PARTICLE FILTER
Bos
3
206
Q
w
Q0.4
0.2
0.0
0 10 20 30 40 50 60 70 80 90

WEEKS

FIGURE 17. Degradation of span B starts segment-1st step prediction
comparison of the proposed LSTM-based prognosis scheme with a
particle filter-based statistical method.

The LSTM-based model and PF-based statistical model for
ABCs degradation trend prediction are further compared for
1-8 step predictions. The RMSE-based comparison of both
approaches is tabulated in Table 6. For a better visual repre-
sentation, the RMSE-based comparison is also illustrated in
Figure. 18.

It is evident from Figure 18, that the proposed method
with L2 regularization outperforms the PF-based statistical
method. The LSTM method predicts an error of 0.057 as com-
pared to 0.114 of the particle filter method. LSTM performs
2 times better in terms of evaluation metric than the statistical
(PF-based) method used for ABCs degradation prognosis.
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TABLE 6. Comparison of the proposed LSTM-based prognosis scheme

with a particle filter-based statistical method using the same dataset.

NUMBER OF STEPS LSTM PARTICLE FILTER
1st Step Error 0.00648263 0.041196919
2nd Step Error 0.01430561 0.054876762
3rd Step Error 0.02469821 0.079982197
4th Step Error 0.03978555 0.104727670
5th Step Error 0.05992040 0.128036344
6th Step Error 0.07693349 0.149832892
7th Step Error 0.10334202 0.168782621
8th Step Error 0.13435108 0.184706160
0.2
0.18 —+—PARTICLE FILTER _4
016 T ISTM (L2 REGULARIZATION) /

0.14
012 // //.
€01
“0.08 —

0.06 /

0.04 /

0.02 - ././

1 2 3 4 5 6 7 8
No. of Step Error

FIGURE 18. Comparison of the proposed LSTM-based prognosis scheme
with a Particle filter-based statistical method using the same dataset.

LSTM models reported in this research work produced pre-
cise predictions of the TDP dataset. The model testing result
proved the effectiveness of training as future trends were
accurately predicted. However, the results can be improved in
future research by implementing a deeper LSTM architecture
with multiple LSTM layers stacked on top of each other
and then connected with a dense layer [29]. More layers
could become harder to train but carries the potential to offer
improved results. Additionally, future work can include opti-
mization of the regularization techniques used in the reported
research work and applying the proposed model to similar
degradation prediction problems.

VI. CONCLUSION AND FUTURE WORK

The degradation prognosis of critical industrial component(s)
is of particular interest to the stakeholders for the upkeep
of infrastructure and timely planning of maintenance activ-
ities. This research reports a novel LSTM-based prognosis
algorithm for the degradation trend assessment of critical
assets. The proposed scheme presents a dynamic training
window approach, where the size of the training window
is iteratively increased while keeping constant values of
the lookback size and number of steps predicted ahead of
time. The prediction horizon of the proposed approach is
validated for up to 4 weeks as tabulated in Table 6. The
reported study focuses on predicting the degradation of Aerial
bundled cables (ABC) by applying the proposed LSTM to
actual thermal degradation data recorded through a thermal
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imaging camera. The proposed increasing sliding window-
based LSTM scheme outperforms the classical approach.
Three different variations of the proposed LSTM models
were investigated for degradation assessment. The reported
models include a generic LSTM with an Adam optimizer,
an L2-regularization-based LSTM model, and an LSTM with
a dropout layer. The three proposed LSTM models present
promising results with high prediction accuracy. However,
the L2 regularization-based proposed LSTM scheme outper-
forms the other presented methods. The L2 regularization-
based proposed LSTM model was also compared to a particle
filter-based statistical method. The proposed LSTM pre-
sented better results as compared to the statistical method.
In the future, the model can be used for predicting the remain-
ing useful life (RUL) or service life till the failure of the
cables. LSTM can be used for dual purposes, first to predict
the degradation of cables and then to estimate the remaining
service life of cables to allow the maintenance managers
to undertake timely repairs/ replacement of the damaged
wires. In addition, different regularization techniques can
be explored, such as the Monte Carlo dropout; which is a
Bayesian approximation of the regular dropout. Furthermore,
the proposed work can be used for cross-validation across
different cable segments to verify generalization and with
other time series data for degradation prediction in other
domains, such as aircraft wings, structural health monitoring
(SHM) of bridges, bearings, etc.
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