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Abstract— The diagnosis of lymph node metastasis
(LNM) is essential for colorectal cancer (CRC) treatment.
The primary method of identifying LNM is to perform
frozen sections and pathologic analysis, but this method is
labor-intensive and time-consuming. Therefore, combining
intraoperative fluorescence imaging with deep learning (DL)
methods can improve efficiency. The majority of recent stud-
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ies only analyze uni-modal fluorescence imaging, which
provides less semantic information. In this work, we mainly
established a multi-modal fluorescence imaging feature
fusion prediction (MFI-FFP) model combining white light,
fluorescence, and pseudo-color imaging of lymph nodes for
LNM prediction. Firstly, based on the properties of various
modal imaging, distinct feature extraction networks are cho-
sen for feature extraction, which could significantly enhance
the complementarity of various modal information. Sec-
ondly, the multi-modal feature fusion (MFF) module, which
combines global and local information, is designed to fuse
the extracted features. Furthermore, a novel loss function
is formulated to tackle the issue of imbalanced samples,
challenges in differentiating samples, and enhancing sam-
ple variety. Lastly, the experiments show that the model has
a higher area under the receiver operating characteristic
(ROC) curve (AUC), accuracy (ACC), and F1 score than
the uni-modal and bi-modal models and has a better per-
formance compared to other efficient image classification
networks. Our study demonstrates that the MFI-FFP model
has the potential to help doctors predict LNM and shows its
promise in medical image analysis.

Index Terms— Deep learning, multi-modal imaging, intra-
operative fluorescence imaging, colorectal cancer, lymph
node metastasis prediction.

I. INTRODUCTION

COLORECTAL cancer (CRC) is the third most commonly
diagnosed cancer and the third most common cause of

cancer-related deaths worldwide [1]. The incidence of CRC
has increased in recent years, and it accounts for about 10% of
all cancers [2]. Complete resection of the primary tumor and
regional lymph nodes is considered the most critical aspect
of CRC treatment [3]. The lymph node metastasis (LNM)
status significantly influences treatment decisions, including
the choice of preoperative neoadjuvant radiotherapy versus
surgery [4]. Preoperative conventional imaging methods such
as computed tomography (CT) and magnetic resonance imag-
ing (MRI) have some limitations in detecting LNM, such as
the risk of radiation, low diagnostic efficiency that requires
expert interpretation, etc., and need to be combined with other
techniques to confirm the diagnosis [5], [6], [7]. Although, the
utilization of lymph node biopsy can more accurately assess
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LNM; however, it leads to an expensive investment of time,
labor, and other costs [8].

In CRC, Zhao et al. explored potential genomic phenotypes
associated with deep learning (DL) features that facilitate
LNM prediction [9]. Lennard et al. enhanced the prediction
performance by utilizing a DL technique to analyze histo-
logical whole slide images (WSIs) to predict LNM in CRC
[10]. Furthermore, Li and colleagues proposed improving the
accuracy of LNM identification through the application of
MRI in conjunction with a pre-trained Inception-v3 model
on transfer learning [11]. However, the majority of studies
on the prediction of LNM in CRC use either preoperative
CT, MRI, or pathology imaging, or combine tissue genetic
information with deep learning methods for prediction, which
significantly raises implementation costs and reduces overall
efficiency. Furthermore, these preoperative imaging techniques
are incapable of visualizing the complete architecture of the
lymph node, and their intraoperative utility is significantly
restricted, leading to diminished detection efficiency and accu-
racy [12]. Nevertheless, intraoperative fluorescence navigation
systems enable both surgical navigation during surgery and
real-time imaging of multi-modal fluorescence images to
visualize tissues [13]. Due to the quick capture time and
affordable nature of intraoperative multi-modal fluorescence
imaging, the analysis of multi-modal fluorescence imaging
not only decreases the time and cost of labor but also has
the potential to assist in making clinical decisions during
surgery. Hence, we propose integrating DL with intraoperative
fluorescent multi-modal imaging to enhance the efficiency and
accuracy of intraoperative LNM prediction significantly.

Indocyanine green (ICG) is considered to be more effec-
tive in CRC lymph node identification since ICG penetrates
relatively deeply into the tissue of the colon compared to
other fluorescent tracers [14]. When injected intravascularly,
ICG binds to proteins and is transported through the lym-
phatic system, normally draining to the closest lymph node
in 15 minutes or less. It is becoming more typical to employ
near-infrared (NIR) fluorescence imaging (FI) to guide surgical
guidance following ICG injection [15], [16]. Fluorescence-
guided surgery offers advantages such as real-time imaging,
high visualization, enhanced contrast, non-invasiveness, pre-
cise navigation, and broad applicability, all of which contribute
to improved surgical safety, accuracy, and success rates. Typ-
ical fluorescence surgical imaging is available in three modes,
white light imaging (WLI), fluorescence imaging (FI), and
pseudo-color imaging (PCI). Most of the existing studies use
DL to analyze FI, mainly for cancer diagnosis or image
enhancement, etc., while few studies have been conducted to
predict LNM.

Compared to machine learning-based radiomics approaches,
DL offers the advantage of automatically learning hierarchical
features from raw data, eliminating the need for manual
feature extraction, and often achieving superior performance
in tasks such as image classification, segmentation, and pattern
recognition [17]. In the field of medical image analysis,
DL has been widely utilized for analyzing multi-modal images,
including CT and MRI. However, most multi-modal medical
imaging analysis methods employ the same feature extraction

network, which is unable to take into account the speci-
ficity of distinct imaging features. In addition, most of the
methods for multi-modal medical imaging feature fusion in
the intermediate stage of the model directly integrate the
features by dimensionally concatenating them or utilizing
the Transformer structure [18], but this is not able to focus
on the feature information at both the global and local
levels.

Most studies have increasingly incorporated DL methods to
process intraoperative FI for targeted medical tasks. Shen et al.
developed an FL-CNN model to extract relevant information
from glioma FI, enhancing the precision of intraoperative
glioma diagnosis to assist surgeons in accurately identifying
and removing gliomas [19]. Cahill et al. proposed a method
combining artificial intelligence (AI) with intraoperative FI
video analysis, which was utilized to improve the accuracy
of tumor identification for intraoperative tissue classification
of colorectal cancer [20]. The growing number of researchers
leveraging AI to analyze intraoperative fluorescence imag-
ing or video highlights the advantages of fluorescence-based
surgical guidance [21], [22], [23]. Additionally, Xiao et al.
developed a method for intraoperative glioma grading by com-
bining various imaging features and introduced DLS-DARTS
to fuse multi-modal near-infrared (NIR) fluorescence imaging,
resulting in improved predictive outcomes [24]. Multi-modal
medical imaging learning can take advantage of data from dif-
ferent medical imaging modalities to achieve comprehensive
analysis and diagnosis. Most of the studies analyzed FI, while
a few combined FI and WLI but lacked the analysis of PCI.
Hence, three intraoperative modality imaging types, WLI, FI,
and PCI, are utilized in our study to increase the information
on lymph node features in CRC, which improves the prediction
performance.

Here, we propose a multi-modal imaging learning frame-
work, called the multi-modal fluorescence imaging feature
fusion prediction (MFI-FFP) model, to extract and integrate
multi-modal intraoperative fluorescence information, including
the three modalities of WLI, FI, and PCI, for LNM prediction
in CRC. In this study, a CRC lymph node dataset is collected
and prepared specifically for the three modalities of WLI,
the first NIR fluorescence window (NIR-I, 700-900 nm) FI,
and PCI. First, we design a feature extraction framework
comprising three pre-trained branches to extract lymph node
features from the tri-modal images: the Inverse Residual
Network branch for white light image features, the Residual
Network branch for fluorescence image features, and the
Transformer Network branch for pseudo-color image features.
Subsequently, the integration of global and local feature infor-
mation from the three modal data is done by a multi-modal
feature fusion (MFF) module, which then produces the fusion
lymph node features. Moreover, LNM in cancer patients typi-
cally exhibit a more pronounced benign-malignant imbalance,
with the benign-malignant ratio escalating to 10:1 in extreme
instances [25], [26], [27]. Therefore, a novel loss function
is tailored to the data characteristics to address the issue of
class imbalance and the challenge of distinguishing between
classes in the dataset. The main contributions of our work are
summarized as follows:
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Fig. 1. The overall framework of the MFI-FFP Model. Stage I. The features of the three modal data are extracted using the inverted residual,
residual, and Transformer structures of the feature extraction branches, respectively. Stage II. The three extracted modal features are fused at the
global and local levels through the MFF module. Stage III. Lymph node metastasis prediction based on fused features.

• To fully utilize the feature information from each imaging
modality, we select three specialized feature extrac-
tion branches for the tri-modal images. This approach
enhances the model’s ability to capture and character-
ize features specific to each modality, and experimental
results confirm the effectiveness of this design.

• To comprehensively utilize the complementary informa-
tion contained in different modal imaging and provide
more comprehensive and accurate imaging characteri-
zation, we design a multi-modal feature fusion (MFF)
module to enhance the model’s ability to combine
multi-modal imaging information for decision-making.

• We propose a novel intra-class loss function based on the
combination of label-distribution-aware margin (LDAM)
loss and Focal loss, which increases the diversity of the
data while reducing the impact of the sample imbalance
problem.

II. METHODOLOGY

A. Multi-Modal Imaging Feature Extraction Branches
As demonstrated in Fig. 1, three feature extraction branches

are built at the beginning of the entire MFI-FFP model to
extract WLI, FI, and PCI image features. The advantage of
extracting multiple modal images utilizing distinct feature
extraction branches is that the feature information of each
imaging modality can be fully utilized, potentially enhanc-
ing the model’s characterization capacity. To ensure that the
primary feature information is retrieved with the least amount
of loss, we utilize a background removal method for the WLI
data to eliminate superfluous background interference noise.
Given that white light imaging (WLI) is characterized by high
pixel density and numerous features, we employ an inverted
residual structure to efficiently capture spatial details and
structural features. This module enhances computational effi-
ciency by reducing the number of operations in the bottleneck
layer while preserving critical feature representations, enabling
lightweight feature extraction. This makes it well-suited for
WLI, which typically demands high-resolution and detailed

spatial information. The inverted structure is particularly
advantageous for processing high-dimensional images like
WLI, as it balances accuracy with computational complexity.

In contrast, a conventional ResNet is used for fluorescence
imaging, which has three-channel values resembling the char-
acteristics of grayscale images. ResNet is effective at capturing
both fine and coarse features across different depths. Since
the spatial variability in fluorescence imaging is generally
lower than that in WLI, a standard ResNet is sufficient for
extracting the necessary hierarchical features without the need
for additional computational optimizations.

PCI data, which includes tissue size, edge feature, and
fluorescence intensity information is the result of mapping
fluorescence feature information on tissue imaging. To avoid
the WLI data losing some edge information during background
removal, no background removal procedure is applied to
the PCI data in this study. The Vision Transformer (ViT)
structure is used for pseudo-color imaging (PCI) due to its
ability to capture long-range dependencies within the data.
Unlike convolutional networks, the ViT model establishes
connections between local and global features, allowing it
to focus on multiple parts of the image simultaneously. This
capability enables effective capture of both local and global
relationships in PCI, which is essential for accurate feature
extraction. The extracted features from PCI can effectively
complement the WLI and FL features, enhancing the overall
feature representation and model performance.

In the feature extraction network branches, the WLI, FI, and
PCI sample spaces are defined as XW =

{
x1

W , x2
W , . . . , xn

W
}
,

X F =
{

x1
F , x2

F , . . . , xn
F
}
, and X P =

{
x1

P , x2
P , . . . , xn

P
}
,

respectively, and x i
W , x i

F , and x i
P ∈ RC×H×W . The corre-

sponding inverse residual, residual, and ViT feature extraction
branches are defined as functions FIR, FR, and FViT, respec-
tively. Thus, the procedure for extracting features is as follows
in (1) to (3).

f i
W = FIR(x i

W ) (1)

f i
F = FR(x i

F ) (2)



ZHU et al.: PREDICTION OF LNM IN COLORECTAL CANCER 1571

Fig. 2. The overall structure of the MFF module. The extracted features from the three modal data are fused with the global and local hierarchical
features through the GLFF module and a series of weighting operations are performed with the original features to produce the final fused features.

f i
P = FViT(x i

P ) (3)

where f i
W , f i

F , and f i
P are the three modal imaging features

corresponding to the lymph node with index i, respectively.
In this case, the ViT model is calculated as follows in (4)
to (7).

z0 =

[
xclass ; x1

p E; x2
p E · · · x N

p E
]
, E ∈ R(P2

·C)×D (4)

z′

ℓ = MSA (LN (zℓ−1)) + zℓ−1, ℓ ∈ [1, 2, · · · , L] (5)

zℓ = MLP
(
LN

(
z′

ℓ

))
+ z′

ℓ (6)

y = LN
(

z0
L

)
(7)

where xclass is the input PCI data, MLP represents the com-
putational process of the multilayer perceptual machine, and
MSA represents the computational process of the multi-head
attention mechanism.

It is evident how the single-head attention mechanism is
calculated for the MSA computation, as demonstrated in (8).

Attention(Q, K , V ) = soft max
(

QK T
√

dk

)
V (8)

where the value vector is V, the key vector is K, and the query
vector is Q. The single-head attention mechanism extends the
computation of the multi-head attention mechanism. The QKV
vector matrix is mapped several times by the multi-head atten-
tion mechanism, which then combines the vector matrices. The
equations (9) and (10) illustrate the computation procedure.

MultiHead(Q, K , V )

= Cat (head1, · · · , headh) (9)

headi = Attention
(

Q · W Q
i , K · W K

i , V · W V
i

)
(10)

To validate the effectiveness of the designed feature extrac-
tion network, Section IV-A demonstrates the structure with
experiments.

B. Multi-Modal Imaging Feature Fusion
After extracting the features of the three modal, WLI, FI,

and PCI data, feature fusion of the three modal features
is required. The spatial alignment of the tri-modal data is

ensured during acquisition, and the same size is maintained
throughout feature extraction and in the resulting feature maps,
ensuring that the features from each modality remain aligned.
In the feature fusion module, after summing the dimensions
of the tri-modal features, only weighting and multiplication
operations are applied at corresponding positions, maintaining
feature alignment throughout the entire process. Accordingly,
we propose the MFF module to perform global and local-level
feature fusion on the three modal features and finally out-
put the fused feature f̂ , as illustrated in Fig. 2. Initially,
an element-wise adding operation along the channel direction
is applied to the three retrieved modal characteristics, fW , fF ,
and fP , as shown in (11).

fadd = fW ⊕ fF ⊕ fP (11)

Additionally, fadd needs to be put into the global local
feature fusion (GLFF) module. The GLFF module has two
branches: the left branch handles global feature interaction,
while the right branch handles local feature interaction. The
Sigmoid function is subsequently utilized to output the results
after the operation has been added together. Local features
can capture specific details and unique information, whereas
global features are typically able to capture the general global
structure and semantic information of the image. To assist
the model in comprehending the overall features, the left
branch of the GLFF module implements a global average
pooling layer to gather global information about the complete
feature map. Furthermore, by using point-wise convolution
to interchange and integrate data between various spatial
locations or channels, both branches simultaneously alter the
dimensionality of the feature maps. In this model, global
features f gobal

add are extracted through Global Average Pooling,
summarizing the overall information from the input data
and capturing the global context. On the other hand, local
features f local

add are obtained using Point-wise Convolution,
which retains spatial details and local patterns in the data.
The GLFF module integrates both global and local features,
leveraging the summarization capability of global features and
the detail-preserving nature of local features to enhance feature
representation and improve model performance. The GLFF
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module process is as follows in (12) to (14).

f gobal
add = B N (PWC(ξ(PWC(G AP( fadd))))) (12)

f local
add = B N (PWC(ξ(PWC( fadd)))) (13)

f ′

add = σ( f gobal
add ⊕ f local

add ) (14)

where G AP is global average pooling, PWC is point-wise
convolution, ξ is the Rectified Linear Unit (ReLU) activation
function, σ is the Sigmoid function, and B N is the Batch
Normalization (BN) layer. Here, the input feature tensor shape
C ′

× H ′
× W ′ is compressed to C ′

γ
× 1 × 1, then restored to

C ′
× H ′

× W ′ using point-wise convolution, which exchanges
and integrates information.

The totals of the three modal features are subsequently
weighed individually using f ′

add , which is the fusion weight
information obtained from the GLFF module’s output. Finally,
the adding operation is carried out to complete the fusion of
the three modal features, as in

f̂ = ( f ′

add ⊗ fW ) ⊕ ((1 − f ′

add) ⊗ fF ) ⊕ ( f ′

add ⊗ fP ).

(15)

Additionally, to better adapt to various tasks and contexts,
the relative prominence of certain modal elements can be
dynamically changed. The GLFF output can assist the model
in narrowing its focus to the most pertinent data, and by
weighting and summing various modal features, the redun-
dancy between features can be minimized. Moreover, the
FI has fewer similar features to WLI and PCI, so a one-
minus weighting operation is adopted. The MFF enhances the
model’s capacity for generalization, increases its efficiency,
and prevents needless computational and storage overheads.

C. Loss Function
In colorectal cancer patients, metastatic lymph nodes con-

stitute only a small fraction of the total lymph nodes, resulting
in a significant imbalance between benign and malignant sam-
ples. To address this imbalance, LDAM Loss [28] is employed
in this study. Additionally, due to the similarities between
benign and malignant lymph nodes observed in intraoperative
fluorescence imaging, distinguishing between them can be
challenging. To tackle this issue, we use Focal Loss [29].
Finally, we design a novel intra-loss function to enhance
sample diversity, further improving model performance by
building on the combination of the previous losses. Thus, the
new loss function consists of LDAM Loss, Focal Loss, and
Intra-Loss, designed to enhance model prediction performance
by combining the strengths of these three loss functions.

1) LDAM Loss: The LDAM loss aims to minimize gen-
eralization boundaries based on margin. To enhance the
generalization performance of the minority class, the classi-
fication boundary can be shifted toward the majority class.
This loss can be employed with a priori strategies for training
with class-imbalanced data, including reweighting or resam-
pling, in place of the traditional cross-entropy function during
training [28]. The specific formula is shown in (16).

LLDAM = −

N∑
i=1

log

 ezy
i −1y

ezy
i −1y +

∑
j ̸=y ez j

i

 (16)

where1 j =
Ĉ

n1/4
j

, f or j ∈ {1, . . . , k} (17)

where Ĉ is the hyperparameter that needs to be adjusted, n j
is the class j sample size, k is the number of classes and zy

i is
the yth output of the model for the ith sample, which belongs
to class y. Moreover, LDAM is reweighted by frequency in
order to enhance its performance on class-imbalance learning.
In our loss function, the reweighted LDAM is used, as in

Lreweighted
LDAM = −

N∑
i=1

ωi log

 ezy
i −1y

ezy
i −1y +

∑
j ̸=y ez j

i

 . (18)

2) Focal Loss: Focal loss effectively suppresses the influence
of easily classified samples on the loss by reducing their
weight and increasing the weight of hard-to-classify samples,
thus enhancing the model’s focus on difficult-to-classify sam-
ples [29]. It addresses class imbalance issues and improves
model performance on minority classes. The formula is shown
blew

LFL = −

N∑
i=1

ωi (1 − pi )
κ log (pi ) (19)

where (1 − pi )
κ is a modulating factor, and κ is a hyperpa-

rameter needed to be setting. The higher value of (1 − pi )
κ

means that the model will pay more attention to hard samples
with small values of pi .

3) Intra Loss: In order to bring the intra-class samples
closer together and increase the diversity of the samples,
we propose the Intra-loss. Initially, the Pearson correlation
coefficient (PCC) is employed to determine the similarity
between neighboring samples within a class, as shown in

ρxi xi+1 =
Cov ( f (xi ) , f (xi+1))

δ ( f (xi )) δ ( f (xi+1))
(20)

where f (xi ) and f (xi ) represent the output of the model for
samples xi and xi+1, respectively; Cov(·) is the covariance
function; δ(·) is the standard deviation function. Therefore, the
average similarity of each class defines the feature diversity
φm of class m, as shown blew

ρm =

∑
xi ∈φm ρxi xi+1

nm
(21)

where nm is the number of samples belonging to class m, and
φm is the set of sample space on class m. As illustrated in (22),
distinct classes are required to have similar data distributions
in intra-class losses to concurrently tackle the class imbalance
problem of data scarcity and data density.

LIntra =

∑
m,k∈φ and m ̸=k

∥ρm − ρk∥
2
2 (22)

The final form of the loss function is shown below

LAll = Lreweighted
LDAM + αLFL + βLIntra. (23)

The proposed novel loss function has combined the afore-
mentioned three loss functions, which will address the issues
of sample imbalance and differentiation difficulty while also
increasing the intra-class variety.
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III. EXPERIMENTAL SETTINGS

A. Data
The intraoperative fluorescence dataset employed in this

study contains three modalities of WLI, FI, and PCI data,
where FI data are NIR-I fluorescence. The lymph node
samples used in this study are isolated during colorectal
cancer surgeries and imaged intraoperatively. For each lymph
node, we capture three types of modality images: white-light
imaging (WLI), fluorescence imaging (FI), and pseudo-color
imaging (PCI) using the intraoperative fluorescence device
(DPM-ENDOSCOPE-3D06 and DPM-0PENCAM-02, Zhuhai
Dipu Medical Technology Co., Ltd.). The training and test
datasets are provided by Beijing Fengtai Hospital, which
supplied multi-modal fluorescence images of isolated lymph
nodes from 49 patients. A total of 996 lymph nodes are
analyzed, 87 of which are metastatic, while the remaining
909 are non-metastatic, resulting in a negative-to-positive
sample ratio of approximately 10:1. In total, 2,988 multi-
modal images are collected, with 996 images per modality.
The dataset is split into train and test sets in the trials using
a 7:3 ratio, and the three modal images adhere to the same
dataset division guidelines.

To verify the model’s generalization performance and
robustness, we acquire multi-modal lymph node images from
19 colorectal cancer patients at the Cancer Hospital, Chinese
Academy of Medical Sciences. This external validation set
consists of 270 lymph nodes, yielding a total of 810 images,
of which 76 nodes are metastatic. Intraoperative isolated
lymph nodes are placed on medical placement cloths, in order
to reduce the interference of the background on the WLI data,
we sequentially perform the background removal operation
on all WLI image data via the Photoshop software. To avoid
inadvertent removal of the edge information of lymph nodes
in the WLI, the background removal operation was not carried
out on the PCI data so that the feature extraction network could
perform the supplementation corresponding to the missing
information during the model training. In the beginning, the
image size is adjusted to 224 × 224, and random horizontal
flip and random rotation operations are carried out.

B. Implementation Details
The three modal imaging data sizes input to the model are

(B, 3, 224, 224), where B is the batch size. In the feature
extraction network, the branching structure for extracting the
WLI data is a convolutional layer with an output dimension
of 32, immediately followed by 17 inverted residual modules,
and finally a convolutional and fully connected layer with
an output feature map shape of (B, 512, 7, 7). All the above
convolutional layers are immediately followed by the BN layer
and the ReLU6 activation function. The branching structure
of the extracted FI features uses the network structure of
ResNet18 [30] throughout, and the shape of the output feature
map is (B, 512, 7, 7). The feature branching structure of the
extracted PCI is the ViT structure, which is firstly sliced
and mapped to the data, then converted to the form of a
long sequence of vectors, immediately followed by stacking
of 12 Transformer modules, and finally outputting a feature

map with the dimensions (B, 512, 7, 7). Pre-trained weights
trained on the ImageNet dataset have been introduced into
the complete feature extraction network to speed up model
convergence and increase model accuracy.

The three modal feature dimensions C ′
× H ′

× W ′ input
to the MFF module are (B, 512, 7, 7), followed by element-
wise addition, and the output feature dimensions after passing
through the MFF module is (B, 512, 7, 7), where the hyper-
parameter γ in the GLFF module is 8. The final multi-layer
perception (MLP) structure of the model is an adaptive pooling
layer with an output dimension of (B, 512, 1, 1), followed
by two fully connected (FC) layers mapping the feature
dimensions from 512 to 2. Moreover, the two FC layers have
a ReLU activation function applied and a dropout layer to
prevent over-fitting.

The hyperparameters during model training are set as fol-
lows: learning rate (lr) is set to 0.001; weight decay (wd)
is set to 0.003; batch size (B) is 32; and the dropout layer
hyperparameter is set to 0.3. The Adam optimizer is chosen
as the optimizer for model training. A total of 100 epochs are
set up for the training process. The hyperparameter settings
in the loss function align with those in references [28] and
[29]. The hyperparameters in the loss function LAll are set
as follows: the weight wi of Lreweighted

LDAM and LFL are both
set to 0.85; Ĉ in Lreweighted

LDAM is set to 0.5; and κ in LFL is
set to 2.0. In Section IV-E, the sensitivity analysis of the
hyperparameters indicates that α and β should be set to
1 for optimal model performance. The training process for
all experiments is implemented using Pytorch-2.1.0 and is
performed on the NVIDIA RTX 4090 GPU with 24 GB of
memory.

C. Evaluation Metrics

To validate the performance of our proposed MFI-FFP
model for the prediction of colorectal cancer, the main
assessment metrics employed are the area under the receiver
operating characteristic (ROC) curve (AUC), accuracy (ACC),
and F1 score. The ROC curve is a curve with the true positive
rate (TPR) as the y-axis and the false positive rate (FPR)
as the x-axis. The AUC is the area under the ROC curve,
which indicates the model’s classification performance under
different thresholds. The larger the AUC means the better the
model’s performance.

IV. RESULTS

A. Comparison of Different Feature Extraction Branches

To evaluate the performance of different network archi-
tectures as feature extraction branches for the three modal
imaging, we extracted WLI, FI, and PCI data features using
the residual block (RB) structure, the inverted residual block
(IRB) structure, and the ViT structure, respectively. As shown
in Table I, the results of applying the same branching structure
to the three modal data are also compared. Consequently,
all comparison experiments are evaluated on the test dataset
and external validation set across 5 runs. The median of
these 5 runs of results is selected for presentation and 95%
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TABLE I
COMPARISON OF RESULTS OF DIFFERENT FEATURE EXTRACTION BRANCHES FOR EXTRACTING THREE MODAL IMAGING DATA. NUMBERS IN

BRACKETS INDICATE 95% CONFIDENCE INTERVALS USING 1000 TRIALS OF THE BOOTSTRAP METHOD

TABLE II
COMPARISON RESULTS OF SINGLE-MODAL, MULTI-MODAL IMAGING. NUMBERS IN BRACKETS INDICATE 95% CONFIDENCE INTERVALS

USING 1000 TRIALS OF THE BOOTSTRAP METHOD

confidence intervals (CI) are calculated using 1000 trials of
the Bootstrap approach.

The comparison results of the three modal imaging data
extracted by different feature extraction branches show that
extracting WLI data features using IRB structure, FI data
features using RB structure, and PCI data features using ViT

structure demonstrated the best performance, with the AUC
of 0.8294 (95% CI 0.7813-0.8431), the ACC of 0.8669 (95%
CI 0.8487-0.8967), and the F1 score of 0.4999 (95% CI
0.4612-0.5174) on the test set. Similarly, the model demon-
strates strong performance on the external validation set,
further confirming its generalization capability and robustness.
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Fig. 3. The ROC curves for comparison results of uni-modal and multi-
modal images. (a) The ROC curves for the results of the comparison
between the tri-modal and uni-modal data on the test set. (b) The ROC
curves for the results of the comparison between the tri-modal and uni-
modal data on the validation set. (c) The ROC curves for the results
of the comparison between the tri-modal and bi-modal data on the test
set. (d) The ROC curves for the results of the comparison between the
tri-modal and bi-modal data on the validation set.

Furthermore, there is relatively high efficiency in the experi-
mental results when exchanging the WLI and PCI data feature
extraction branches, which achieves the AUC of 0.8054 (95%
CI 0.7935-0.8283), the ACC of 0.8672 (95% CI 0.8462-
0.8882), and the F1 score of 0.4236 (95% CI 0.3920-0.4542)
on the test set. The ACC on the external validation set reaches
0.8296. The structure of the PCI data is similar to that of the
WLI data, but it is mixed with some background noise and
lacks some lymph node texture information after fluorescence
information mapping. As a result, the global features cannot
be effectively extracted using the IRB structure, which slightly
reduces the overall performance of the model. Additionally, the
last three rows of Table I demonstrate that even though similar
features can be extracted using the same feature extraction
structure in all three modalities, the unique features of each
modality cannot be adequately represented.

B. Comparison of Single-Modal, Multi-Modal Imaging

To assess the effectiveness of fusing feature information
from tri-modal imaging compared to fusing feature infor-
mation from bi-modal or even uni-modal imaging, some
comparative experiments using only bi-modal or uni-modal
imaging are conducted in this study. As shown in Table II, the
MFI-FFP model can more comprehensively learn the different
feature information of the current corresponding lymph node
by combining the feature information from the three modal
imaging, WLI, FI, and PCI, resulting in a more effective way
to distinguish LNM. The experimental results demonstrate that
the network learns best and the model performs optimally
when the three modal imaging data serve as inputs, obtaining
the ACC of 0.8782 (95% CI 0.8487-0.8967), the AUC of
0.8294 (95% CI 0.7813-0.8431), and the F1 score of 0.4999

Fig. 4. The ROC curves of the results of our model compared to other
classification models. (a) The ROC curves of the results of our model
compared to other classification models with features concatenated in
dimension on the test set. (b) The ROC curves of the results of our model
compared to other classification models with features concatenated in
dimension on the validation set. (c) The ROC curves of the results of our
model compared to other classification models with attention-based fea-
tures fusion method on the test set. (d) The ROC curves of the results of
our model compared to other classification models with attention-based
features fusion method on the validation set.

(95% CI 0.4612-0.5174) on the test set. In the bi-modal
imaging data feature fusion experiments, the model effect
of combining WLI and FI demonstrates better performance,
achieving an AUC of 0.7860 (95% CI 0.7678-0.8174) and the
ACC of 0.8192 (95% CI 0.8087-0.8561) on the test set, and
an AUC of 0.7862 (95% CI 0.7501-0.8218) and the ACC of
0.7889 (95% CI 0.7407-0.8133) on the validation set, which
indicates that the WLI and FI data contain minimal feature
overlap and possess distinct information. Furthermore, the
results from the unimodal imaging comparison reveal that
the model trained on WLI data alone performed significantly
better than those trained on the other two modalities. This not
only demonstrates that the WLI data contains a substantial
amount of valid lymph node feature information but also
indirectly highlights the importance of background removal.

Fig.3 illustrates the ROC curves comparing the tri-modal
imaging with the bi-modal and uni-modal imaging exper-
iments on both the test set and validation set. It can be
concluded that the classification performance of the tri-modal
model is the most superior, and the uni-modal model performs
the weakest. The results demonstrate that the characteristics of
lymph nodes can be captured as comprehensively as possible
using the information from the tri-modal imaging data, which
is much more effective than the bi-modal and uni-modal
imaging data and directly enhances the model performance
and accuracy.

C. Comparison With Various Classification Models
Comparison of other superior classification models with

our proposed MFI-FFP model on the task of intraopera-
tive fluorescence LNM prediction in CRC can visually and
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TABLE III
COMPARISON RESULTS OF VARIOUS CLASSIFICATION MODELS WITH OUR MODEL ON THE TEST SET.NUMBERS IN BRACKETS INDICATE 95%

CONFIDENCE INTERVALS USING 1000 TRIALS OF THE BOOTSTRAP METHOD

TABLE IV
COMPARISON RESULTS OF VARIOUS CLASSIFICATION MODELS WITH OUR MODEL ON THE EXTERNAL VALIDATION SET.NUMBERS IN BRACKETS

INDICATE 95% CONFIDENCE INTERVALS USING 1000 TRIALS OF THE BOOTSTRAP METHOD

efficiently illustrate the excellent performance of our model.
Since there are no multi-modal models that specifically deal
with intraoperative fluorescence data from lymph nodes in
CRC, we choose some image classification models that exhibit
superior performance on natural images as comparison models.
Several outstanding research works have been conducted on
natural image classification tasks; among these, the Resnet18
[30], the Swin-Transformer [31], the ConvNeXt [32], the
Efficientnet-v2 [33], and the Mobilenet-v3 [34] are selected
as comparison models.

All comparative models are pre-trained on the ImageNet
dataset to boost the convergence of these models. The three
modal features produced by the comparative models are fused
for each of the two fusion methods, one for concatenating in

the dimensional direction and one for attention-based fusion
(WLI features serve as the query tensors, FI features as the key
tensors, and PCI features as the value tensors). The experiment
compares these two common fusion methods to prove our
model’s performance. The loss functions for all comparison
models training are all set to a weighted cross-entropy loss
function with weights of 0.85. The five comparison models
include both the traditional convolutional network structure
and the Transformer structure, which has been quite remark-
able in recent years, and the final comparison results are
shown in Tables III and IV. The results indicate that the effect
of our model works best on the intraoperative fluorescence
tri-modal imaging dataset, followed by the training results of
the Mobilenet-v3 model with attention-based fusion, which
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TABLE V
ABLATION EXPERIMENTS FOR EACH LOSS COMPONENT IN THE LOSS FUNCTION. NUMBERS IN BRACKETS INDICATE 95% CONFIDENCE

INTERVALS USING 1000 TRIALS OF THE BOOTSTRAP METHOD

TABLE VI
ABLATION EXPERIMENTS WITH LOSS FUNCTION AND FUSION MODULE MFF. NUMBERS IN BRACKETS INDICATE 95% CONFIDENCE INTERVALS

USING 1000 TRIALS OF THE BOOTSTRAP METHOD

also demonstrated good results, achieving an AUC of 0.7712
(95% CI 0.7369-0.7915) and an ACC of 0.8266 (95% CI
0.8038-0.8559) on the test set, and an AUC of 0.7698 (95%
CI 0.7257-0.7988) and an ACC of 0.7630 (95% CI 0.7315-
0.7953) on the validation set. The floating point operations
per second (FLOPs) of our model consume less computational
resources compared to the pure Transformer structure model,
but this is slightly worse than the convolutional network struc-
ture model, which is caused by the fact that the Transformer
structure with a large number of parameters is also included in
our model. Fig. 4 shows the ROC curves comparing the results
of multiple models using different fusion methods, visually
illustrating the superior performance of our model. All the
above comparison experiments are trained on the dataset for
5 runs to avoid serendipity in the experimental results.

D. Ablation Experiments
In addition to conducting comparative experiments to val-

idate the efficient performance of our model, we also design

three ablation studies to evaluate the performance impact of the
innovative part on the MFI-FFP model. The first ablation study
is performed on each part of the losses in the designed loss
function to verify the impact of each of these loss parts on the
model training process, which is based on the presence of the
fusion module MFF. In addition, the second ablation study is
performed on the designed loss function and the fusion module
MFF to verify the impact of each component on our model.
The final ablation experiment demonstrates the effectiveness
of different components by removing the feature extraction
branch and the MFF module, confirming the significance of
each in enhancing the model’s overall performance.

1) Ablation Study for Analyzing the Loss Function: Table V
presents the general results of the ablation experiment con-
ducted on each of the three loss parts, Lreweighted

LDAM , LFL, and
LIntra in the first ablation study. The results indicated that all
three loss components of the loss function LAll applied during
model training performed the best, achieving the highest AUC
and ACC. The ablation experiment with LIntra alone as the
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TABLE VII
ABLATION EXPERIMENTS WITH FEATURE EXTRACTION BRANCHES AND FUSION MODULE MFF. NUMBERS IN BRACKETS INDICATE 95%

CONFIDENCE INTERVALS USING 1000 TRIALS OF THE BOOTSTRAP METHOD

entire loss function performs the worst, this is because the loss
is not responsible for solving the sample imbalance problem
and the problem of difficulty in distinguishing between sam-
ples. Applying only the Lreweighted

LDAM and LFL losses can reach an
AUC of 0.7576 (95% CI 0.7211-0.7841) on the test set and an
AUC of 0.8005 (95% CI 0.7707-0.8373) on the validation set,
and the result after adding the LIntra loss shows that the LIntra
loss is effective in improving the diversity of the samples,
which indirectly enhances the overall model effect. The sample
imbalance issue in the validation set is not as pronounced as
in the test set, and the model’s performance on the validation
set is superior to that on the test set. This indirectly highlights
the effectiveness of the designed loss function in addressing
sample imbalance. Additionally, the impact increase is more
noticeable when a single Lreweighted

LDAM or LFL is combined with
LIntra loss, respectively.

2) Ablation Study for the Loss Function and the MFF Module:
Table VI demonstrates the results of the second ablation study,
where the model that uses neither the newly designed loss
function (applying a cross-entropy loss function with a weight
of 0.85) nor the MFF has the worst performance, with the AUC
of only 0.6933 (95% CI 0.6503-0.7241) on the test set and
the AUC of 0.6518 (95% CI 0.6163-0.6789) on the validation
set. Moreover, it is evident from the experimental results that
the model has a significant performance improvement effect
by applying the new loss function alone and the MFF fusion
module alone. The simultaneous usage of the newly designed
loss function and the fusion module MFF enables the model
to reach its highest performance.

3) Ablation Study for the Feature Extraction Branches and
the MFF Module: Table VII presents the results of the final
ablation experiment, showing that the worst performance is

observed when the MFF module is removed, while the three
feature extraction branches maintain the same network struc-
ture. Once the MFF module was added, all models experienced
a performance improvement, demonstrating its effectiveness.
Furthermore, when our custom-designed feature extraction
branches are used as the backbone network, the overall results
surpass those of other branch designs. This validates the design
of the inverse residual network for extracting WLI features, the
residual network for FI features, and the ViT network for PCI
features.

E. Hyperparameter Sensitivity Analysis

To verify the impact of the loss function hyperparameters
on model performance, we set the values of α and β within the
range [0.01, 0.05, 0.1, 0.5, 1.0] for hyperparameter sensitivity
analysis. As shown in Fig. 6, small values for α and β

negatively affect overall model performance, resulting in an
AUC of only about 0.75 on the test set, with similar poor
performance on the validation set. In contrast, the model
performs better when α and β are close to 1, indicating
improved results when the weights of the three individual
losses in the total loss function are similar. This demonstrates
that the model is sensitive to hyperparameters α and β,
achieving optimal performance when both are set to 1.

F. Comparison With Clinical Experts

To assess the clinical value of the model, we invited five
clinicians with experience in colorectal cancer treatment to
evaluate lymph node metastasis based on multi-modal fluo-
rescence images from the external validation set. This group
included experts 1 and 4, who have less than 10 years of
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Fig. 5. The schematic GCAM heatmap of lymph node samples. The first row shows the three modal images of the sample without lymph node
metastasis, as well as the GCAM mapping heatmaps of the three modalities of the feature extraction layer and the GCAM heatmap mapping of the
WLI of the fusion layer. The second row shows the three modality images of the sample where lymph node metastasis has occurred, as well as the
GCAM mapping heatmap of the three modalities of the feature extraction layer and the GCAM heatmap mapping of the WLI of the fusion layer.

Fig. 6. Hyperparameter sensitivity analysis. (a) Results of the sensitivity
analysis of hyperparameters α and β in the loss function on the test set.
(b) Results of the sensitivity analysis of hyperparameters α and β in the
loss function on the validation set.

TABLE VIII
COMPARISON RESULTS OF CLINICAL EXPERTS WITH OUR MODEL ON

THE EXTERNAL VALIDATION SET

clinical experience, and experts 2, 3, and 5, who have more
than 10 years of clinical experience. The clinicians provided
a binary judgment on whether a lymph node is metastatic
based on its tri-modal imaging. The evaluation metrics
include sensitivity(SEN), specificity(SPE), accuracy(ACC),
precision(PREC), and F1 score. As shown in Table VIII, the
results demonstrate that our model outperforms the clinicians
in sensitivity, accuracy, precision, and F1 score. Notably,
expert 1 achieved a specificity of 0.9381, but a sensitivity of
only 0.1447, which is attributed to his tendency to classify
most lymph nodes as non-metastatic. Overall, the results
demonstrate that our model is more effective at detecting
potential features in images compared to clinical experts, mak-

ing it a more accurate and efficient approach than traditional
imaging-based clinical judgment.

G. Interpretative Visualization

To increase the interpretability of our model network,
we utilize the Gradient-weighted class activation mapping
(GCAM) method [35], known as a technology for the visual-
ization and interpretation of deep learning models, to increase
the understanding of the feature extraction and feature fusion
layers of the model. Fig. 5 displays two samples: one with
LNM and the other without. The first three columns display
the three modal images of the lymph node samples. Columns
4 to 6 display the results of GCAM heat map mapping when
the three modal imaging features are extracted on each of the
three feature extraction layers, and the final column reveals
the GCAM heat map mapped image on the WLI image on the
fusion layer.

The results reveal that the feature extraction branch of
the convolutional network structure pays more attention to
information such as the surface texture of the image, while
the feature extraction branch of the Transformer structure pays
more attention to the global location information supplement-
ing the lymph node edge feature information. Furthermore, the
fused features are combined with modifications to the region
of interest by the feature fusion layer, which highlights and
concretizes the characteristics in crucial places. For images
of lymph nodes that have metastasized, our model pays more
attention to the weird irregular texture and shape features in
the samples.

V. DISCUSSION AND CONCLUSION

In this study, we propose the MFI-FFP model for LNM
prediction in CRC using intraoperative fluorescence multi-
modal imaging. Our model first extracts three modal data
features, followed by the fusion of the extracted three modal
features, and eventually performs LNM in CRC prediction
based on the fused features. The suggested MFI-FFP model
exhibited promise for real-time LNM diagnosis in the future
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by performing satisfactorily in the task of predicting LNM in
CRC using intraoperative fluorescence multi-model imaging.

In the feature extraction part of our model, the corre-
sponding special extraction branches are set according to
the characteristics of the three modal data, respectively. Fur-
thermore, experimental results indicate it is frequently more
effective in building distinct feature extraction structures based
on various modal imaging feature information than in using
the same structure. The three modal features extracted in the
previous stage are features fused in the MFF module in the
model, which incorporates global and local features to boost
model performance. Furthermore, there is a significant sample
imbalance issue because the majority of the lymph nodes in
the data sample are benign, and relatively few of them are
malignant. According to the above problems, we design a
novel loss function, in which the LDAM loss alleviates the
sample imbalance problem, the focal loss reduces the difficulty
in distinguishing the samples, and the proposed intra-loss
increases the diversity of the samples and thus improves the
performance of the model.

To predict LNM in CRC, our work leverages intraoperative
fluorescence multi-modal imaging. By combining three modal
imaging characteristics, the model can effectively learn lymph
node feature information and exhibit outstanding prediction
ability. Since little research has combined deep learning with
intraoperative FI for identifying LNM, utilizing deep learning
to analyze intraoperative FI for various downstream tasks has
far-reaching implications and potential in the medical field.
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