
 

A Fall Detection Device Based on Single Sensor
Combined with Joint Features

Li Zhang*, Yu-An Liu*, Qiuyu Wang, Huilin Chen, Jingao Xu, and Danyang Li

Abstract: Accidental  falls  pose a  significant  threat  to  the well-being of  the elderly,  thus facilitating  a  quantum

leap in the field of  fall  detection technology. For fall  detection,  accurate identification of  fall  behavior is  a key

priority. Our study proposes an innovative methodology to detect falls during activities of daily living (ADL), with

the objective of preventing further harm. Our design aims to achieve precise identification of falls by extracting

a variety of features obtained from the simultaneous acquisition of acceleration and angular velocity data using

a single sensor. To enhance detection accuracy and reduce false alarms, we establish a classifier based on the

joint  acceleration  and  Euler  angle  feature  (JAEF)  analysis.  With  the  aid  of  a  support  vector  machine  (SVM)

classifier,  human  activities  are  classified  into  eight  categories:  going  upstairs,  going  downstairs,  running,

walking,  falling  forward,  falling  backward,  falling  left,  and  falling  right.  In  particular,  we  introduce  a  novel

approach  to  enhance  the  accuracy  of  fall  detection  algorithms  by  introducing  the  Equal  Signal  Amplitude

Difference  method.  Through  experimental  demonstration,  the  proposed  method  exhibits  a  remarkable

sensitivity  of  99.25%,  precision  of  98.75%,  and  excels  in  classification  accuracy.  It  is  noteworthy  that  the

utilization  of  multiple  features  proves  more  effective  than  relying  solely  on  a  single  aspect.  The  preliminary

findings highlight the promising applications of our study in the field of fall injury systems.
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1　Introduction

The  phenomenon  of  falls  represents  a  momentous
threat  to  the  elderly  and  disabled  population,  often
acknowledged as  the “fatal  killer”[1].  Recent  empirical
evidence  from  the  Centers  for  Disease  Control  and
Prevention reveals that no less than 25% of individuals
aged 65 and above encounter incidents of falling on an

annual  basis[2].  It  is  pertinent  to  note  that  falls  can  be
classified  into  four  fundamental  types,  comprising
falling  forward,  falling  backward,  falling  left,  and
falling  right[3].  Clinical  studies  underscore  the
importance  of  precise,  rapid,  and  robust  multi-
directional  fall  detection.  This  aids  clinicians  in
promptly  identifying  the  injured  joint  and  minimizing
fall-related  damage.  Multi-directional  data  can  shed
light  on  the  most  likely  site  of  the  initial  head  hit,
especially  in  cases  of  cerebral  hemorrhage  and  brain
damage.

Therefore,  the  precise  and  expeditious  identification
of falls occurring in multiple directions necessitates the
utilization  of  specific  and  efficacious  techniques.  We
studied  numerous  posture  estimation-based  or  human
motion-induced  improved  methods  in  ambient  signal-
detecting  systems  for  falls.  Currently,  most  fall
detection systems can only determine the incidence of
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a fall, usually divided into two different categories.
(1)  Environmental  device-based  systems,  like

radar[4],  microphone[5],  radio-frequency  devices[6],
cameras[7],  and  multimodal  approach[8],  detect  fall
activity  largely  by  the  deployment  of  particular
detection modules. The primary limitation of wearable
technology  resides  in  its  limited  perspective.
Additionally,  the  use  of  cameras  in  this  context  raises
concerns  about  potential  infringements  on  personal
privacy.

(2)  Wearable  technology  captures  both  translational
and  rotational  movements  on  the  body  through
miniature  sensors,  enabling  the  detection  of  falls[9–11].
Its  portability  and  ubiquitous  computing  capabilities
are notable advantages.

To  achieve  exact  fall  detection,  pose  signals  or
environmental signals are employed. Lai et al.[12] used
six  accelerometers  distributed  throughout  the  body  to
accurately  measure  various  postures  and  identify
accidental falling episodes. Nevertheless, this approach
lacks the capacity to determine the direction of descent.
Wang  et  al.[13] proposed  a  real-time  contactless  fall
detection  system  using  common  WiFi  devices.  The
limitations of vision-based posture estimation methods
lie in the constraints posed by flexibility and available
space.  Furthermore,  these  methods  often  rely  on
individual scenarios and varying conditions.

Recent  studies  have  highlighted  the  efficacy  of
wearable technology in the detection and recognition of
incidents involving falls. Lu et al.[14] created an energy-
saving barometer with a maximum specificity of 98.0%
and a maximum sensitivity of 96.1% for detecting falls.
Montanini et al.[15] and de Quadros et al.[16] used smart
shoes  with  several  sensors  and  a  wristband,
respectively,  to  detect  falls  based on the threshold fall
detection  approach.  On  the  contrary,  these  fall
detection  methods  require  the  extraction  of  intricate
data  attributes  from  a  multitude  of  sensors,
encompassing components such as accelerometers and
gyroscopes.  Moreover,  these  techniques  require
significant  allocation  of  training  and  computational
resources.

2　Related Work

In  the  current  detection  method  of  falls  before  the
collision,  Nyan  et  al.[17] discovered  falls  by  analyzing
the  angle  and  angular  velocity  of  the  thigh  in  various
falls  and  daily  activities.  Shi  et  al.[18],  and  Shan  and
Yuan[19] used support vector machine (SVM) to extract

features collected by accelerometers and gyroscopes to
discover  the  fall.  Wu and Xue[20] and Bourke et  al.[21]

used  the  vertical  velocity  characteristics  of  the  human
body  in  descending  stage  to  detect  descending,  which
requires  using  data  from  accelerometers  and
gyroscopes  to  calculate  vertical  velocity.  Gao et  al.[22]

fixed  four  sensors  to  the  waist,  thigh,  chest,  and  sides
of  the  body  to  detect  falls.  Nyan  et  al.[23] discovered
falls by evaluating data correlations between thigh and
waist. Wang et al.[24] saw and processed wireless signal
channel  state  information  (CSI)  data  and  identified
abnormal  CSI  sequences  using  local  outlier  factor
technology.  Nevertheless,  these  methods  of  fall
detection  suffer  from  the  following  limitations:  (1)
Relying  on  thresholds  to  discern  between  falls  and
activities  of  daily  living  (ADL)  poses  difficulties  in
adapting  to  dynamic  fluctuations  in  the  environment.
(2)  The  utilization  of  numerous  sensors  to  gather  data
introduces intricacy and reduces overall versatility.

Conventional  classification  methods  have  been
widely  utilized  in  the  domains  of  fall  detection  and
activity recognition[25]. A neural network was proposed
by  Ref.  [26]  to  recognize  falls  and  non-falls.  Yu
et  al.[27] developed  a  video  image  processing-based
online  SVM  algorithm  to  acknowledge  falls.  Shen
et  al.[28] developed  a  high-level  fuzzy  Petri  net-based
fall  detection  system.  They  placed  the  smartphone  in
their  thigh  pocket  for  fall  protection  while  studying.
Real-world situations can present particular challenges.
To  exemplify,  while  walking,  the  positional
relationship  of  a  smartphone  remains  variable  and
showcases a stochastic characteristic. Hence, it requires
the  utilization  of  genuine  training  data  to  construct  a
resilient  mathematical  model.  The authors suggested a
system  for  detecting  falls  based  on  several
classifiers[29].  The  algorithm  was  developed  using
artificial  neural  networks  (ANN),  k-nearest  neighbors
(KNN),  radial  basis  functions  (RBF),  probabilistic
principal  component  analyses  (PPCA),  and  linear
discriminant  analyses  (LDA).  It  is  unsuitable  for
wearable  electronics.  Regardless  of  the  positive
outcome, classification procedures are frequently time-
consuming.  Researchers  typically  favor  more
straightforward techniques for pre-impact fall detection
systems.  Tong  et  al.[30] proposed  a  hidden  Markov
model-based  fall-prediction  approach  which  can
anticipate  200−400  ms  before  impact.  Liu  and
Lockhart[31] used forecast classifier analysis to create a
fall  detection  method  before  a  crash.  The  average
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response time for the program to detect backward falls
was 255 ms.

By  reason  of  the  foregoing,  this  study  seeks  to
explore the suitability of the SVM-based fall detection
system. To achieve dependable differentiation between
fall  actions  and  ADLs,  our  focus  lies  on  the
construction  of  feature  vectors,  extraction  of  features,
and implementation of classification techniques. These
approaches  aim  to  optimize  the  accuracy  of
identification.  This  paper  is  an  extension  of  our
conference  paper  accepted  by  MWSSH2022[32].  The
following is a summary of the significant contributions:

(1)  We  present  a  robust  methodology  for  extracting
discerning  features  that  enable  differentiation  among
various  activities,  utilizing  the  SVM  to  discriminate
between falls and ADLs.

(2)  We  develop  an  innovative  signal  processing
technique  to  capture  Euler  angular  data,  which
undergoes  meticulous  filtering  to  enhance  the
resolution of the extracted features.

(3)  We  produce  abundant  investigations  to
substantiate  that  an  IMU  device  suffices  to  attain
exceptional  precision  in  discriminating  different
motion patterns

3　System Overview

The  system  architecture  is  depicted  in Fig.  1,
showcasing  the  comprehensive  framework.  The  SVM
receives  training  data  using  the  features  derived  from
the  IMU  dataset.  Concurrently,  the  user’s  IMU
captures  data  across  six  axes,  transmitting  the
processed  features  to  the  server.  Initially,  the  user
records  ADLs and fall  events  using the  inertial  sensor
embedded within the  system.  Subsequently,  the  server

receives  the  streams  of  acceleration  and  angular
velocity  data  to  establish  an  enhanced  training
framework. Based on this foundation, the data streams
are  segmented,  features  are  extracted,  and  a  fuzzy
query  is  performed  on  the  angle  feature  matrix.
Ultimately,  the  SVM  undergoes  training  with  the
obtained  results.  To  achieve  a  relatively  accurate
prediction  outcome,  the  user  examines  both  the
acceleration  and  angular  velocity  data  collected  from
the IMU within the system, transmitting them into the
SVM model. Should the system identify a fall incident,
it  promptly activates the user’s  alarm device,  ensuring
timely care or emergency treatment for the elderly.

3.1　Hardware

Figure  2 shows  the  hardware  for  the  fall  detection
system  includes  a  sensor  (MPU6050),  secured  to  the
body with a bandage. Our research focuses on the most
general  criterion  of  falls  with  backward,  forward,  left,
and  right  falls  during  ADLs.  In  the  standing  posture,
angular  velocity  and  acceleration  values  are  near  to
0  °/s  and  9.79  m/s2 after  calibration.  The  module
possesses the capability to generate real-time data in a
dynamic  environment.  A  Bluetooth  connection  is
employed  to  transfer  the  sampled  data  to  either  a
personal computer or a smartphone, ensuring seamless
communication.

3.2　Data preprocessing

For a fall detection system, the primary task of utmost
importance  is  to  extract  appropriate  features  from  the
collected data in order to accurately characterize falling
behavior.  The  distinction  from  the  majority  of  recent
studies, this paper adopts a machine learning approach.
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Fig. 1    Overview of system.
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The SVM’s training accuracy is significantly increased
in  this  paper  by  combining  accelerations  and  Euler
angles  as  training  features.  Moreover,  a  zero-velocity
updating  technique  is  used  to  obtain  Euler  angles.  An
appropriate coordinate framework should be selected to
effectively  describe  the  spatial  motion  state  of  the
carrier.  Assume  that Fig.  3 represents  both  the
navigational  coordinate  framework (the  N framework)
and the body coordinate framework (the B framework).
The  fundamental  rotations  from  the  N  framework  to
the  first  rotational  framework,  the  first  rotational
framework to the second rotational framework, and the
second  rotational  framework  to  the  B  framework,
respectively, are denoted by the letters , , and .
The  coordinate  transformation  matrix, ,  from the  N
system to the B system is thus written as
 

Cb
2 =

 1 0 0
0 cosγ sinγ
0 −sinγ cosγ

 (1)

 

C2
1 =

 cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 (2)

 

C1
n =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 (3)

An  orthogonal  matrix  is  used  to  transform  two
Cartesian coordinate frameworks. Thus, it yields
 

Cn
b =
(
Cb

n

)−1
=
(
Cb

n

)T
(4)

 

Cn
b =

 cosψcosθ C12 C13
cosθ sinψ C22 C23
−sinθ sinγcosθ cosθcosγ

 (5)

Cn
bwhere  the  matrix  is  used  to  convert  coordinates

from the B framework to the N framework, and
 

C12 = sinγ sinθcosψ− cosγ sinψ,
C13 = sinγ sinψ+ cosγ sinθcosψ,
C22 = cosψsinγ+ sinγ sinθ sinψ,
C23 = sinψsinθcosγ− sinγcosψ

(6)

Cn
b ωnb

ωnb

Using the measurement  from the IMU, the system’s
attitude  updating  process  involves  calculating  matrix

 in real-time. The symbol  represents the angular
speed of the B framework in relation to the N system.
The  parts  of  in  the  B  system  are  then  listed  as
follows:
  

ωb
nbx

ωb
nby

ωb
nbz

 =Cb
2C2

1

 0
0
−ψ

+Cb
2
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0
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 (7)

Then, the Euler angle differential equation is produced
as follows:
   γθ

ψ

 =
 1 0 −sinθ

0 cosγ sinγcosθ
0 −sinγ cosγcosθ


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 (8)

Regarding  ADLs,  the  relative  positions  of  the  three
Euler  angular  axes  exhibit  minimal  variations.
However,  during  a  falling  event,  notable  changes  in
these  positions  occur,  making  them  distinguishable.
The  Euler  angle,  therefore,  serves  as  a  discriminative
factor between falling actions and ADLs.

When  the  person  falls  four  times  during  walking,
Fig.  4 depicts  the  change  in  the  Euler  angle.  The
signals that the accelerometer and gyroscope need to be
cleaned of noise. Hence, averaging filters are employed
to attenuate noise present in the acceleration and Euler
angle  signals,  resulting  in  smoother  and  more  refined

 

 
Fig. 2    IMU device.

 

 
Fig. 3    Transformation of sensor space angle position.
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data.  The  acceleration  and  Euler  angle  values  are
transmitted over Bluetooth to a PC, and then recorded
by a recording application for analysis.

3.3　Windowing technique (Sliding window)

As  mentioned  earlier,  the  process  of  noise  filtering
involves  partitioning  the  accelerated  data  into  several
smaller  segments,  each  with  a  predetermined  size.  To
ensure minimal loss of data samples, a sliding window
approach  is  implemented,  with  a  carefully  chosen
overlapping  ratio.  This  strategy  helps  maintain  a  high
recognition  rate  for  activities.  It  is  important  to  note
that  each  action  possesses  distinct  characteristics,
necessitating  the  scaling  of  the  data  window  size  in  a
tailored  manner,  thereby  facilitating  accurate
identification  of  activity  classes. Figure  5 depicts  the
data  flow  on  acceleration  under  various  windows.
Although it is less effective in suppressing interference

points,  it  can assist  in  the  detection of  quick activities
in  shorter  windows.  For  extended  windows,  it  can
reduce  interference  more  effectively,  while  it  also
distorts the signal. Therefore, it is crucial to determine
the  appropriate  window size,  evaluate  sliding  window
parameters,  and  reliably  detect  the  impact  of  falling
behavior on recognition performance.

3.4　Features extraction algorithm

Extraction of the proper features from the gathered data
is crucial for accurate fall  recognition. Figure 6 shows
the  acceleration  waveforms  for  each  action.  As
apparent, each acceleration waveform possesses unique
characteristics.  The  time  interval  between  each  step
was  relatively  longer  for  upstairs  and  downstairs,  and
the  change  in  wave  amplitude  was  greater  for
downstairs compared to upstairs. Running and walking
exhibited the  briefest  temporal  intervals  per  step,  with
running further demonstrating a reduced inter-step time
interval.  However,  the  left,  right,  forward,  and
backward  falls  are  characterized  by  a  step  change  in
acceleration  in  at  least  one  direction  compared  to  the
other  four  movements,  in  addition  to  the  different
directions  and  magnitudes  between  the  four
movements  of  the  fall. Figure  7 shows  the  Euler
angular  waveforms  for  each  action.  The  main
differences between the waveforms for walking up and
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Fig. 4    Pedestrians experienced falls while walking.
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Fig. 5    Acceleration variation under different windows.
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down  stairs,  running  and  walking  are  frequency  and
amplitude.  However,  the  main  difference  between  the
waveforms of left, right, forward and backward falls is
the  step.  In  a  word,  the  variations  of  the  triaxial
acceleration and Euler angular amplitude of these eight
movements  exhibit  different  forms  over  time.
Therefore, we propose a feature method based on equal
signal amplitude differences.

Within  this  work,  a  novel  type  of  feature  is
introduced  with  the  primary  objective  of  enhancing
precision  during  the  training  process.  We  extract
acceleration and Euler angle features, respectively, and
then  put  them  into  an  SVM.  In  order  to  identify
appropriate  characteristics  to  distinguish  falls  from
ADL,  we  analyzed  the  characteristics  of  the  different
activities.  As  previously  mentioned,  during  normal

 

10

20

0

Ac
c 

(m
/s

2 )

−10

−20

−30

−40

−50
0 200 600

Time (0.01 s)

Upstairs

800400

X
Y
Z 10

20

0

Ac
c 

(m
/s

2 )

−10

−20

−30

−40

−50
0 200 600

Time (0.01 s)

Downstairs

800400

X
Y
Z 10

20

0

Ac
c 

(m
/s

2 )

−10

−20

−30

−40

−50
0 200 600

Time (0.01 s)

Running

800400

X
Y
Z 10

20

0

Ac
c 

(m
/s

2 )

−10

−20

−30

−40

−50
0 200 600

Time (0.01 s)

Walking

800400

X
Y
Z

15

10

20

5

0

Ac
c 

(m
/s

2 )

−5

−10

−15

−20

15

10

20

5

0

−5

−10

−15

−20

15

10

20

5

0

−5

−10

−15

−20

15

10

20

5

0

−5

−10

−15

−20
0 200 600

Time (0.01 s)

Forward fall

800400

X
Y
Z

Ac
c 

(m
/s

2 )

0 200 600
Time (0.01 s)

Backward fall

800400

X
Y
Z

Ac
c 

(m
/s

2 )

0 200 600
Time (0.01 s)

Left fall

800400

X
Y
Z

Ac
c 

(m
/s

2 )

0 200 600
Time (0.01 s)

Right fall

800400

X
Y
Z

 
Fig. 6    Acceleration variation for each axis in different actions.
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Fig. 7    Euler angle variation for each axis in different actions.
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activities  such  as  going  stairs  or  walking,  the  data
curves  are  smooth  with  small  fluctuations.  Instead,
during  fall  events,  the  data  fluctuations  are  volatile.
Therefore,  we  adopt  a  novel  features  extraction
method,  equational  signal  magnitude  variation
(ESMV),  to  reflect  the  data  fluctuations.  The  ESMV
feature is defined as follows:
 

ESMV = arctan
(yi+1− yi

∆t

)
(9)

yi i ∆twhere the sample value  is the -th sample, and  is
the sample time difference.

−90 −70 −50
−30 −10 10 30

50 70

FA

For  all  training  data  from  categories  1  to  8,  where
categories  1  to  4  are  ADLs,  and  categories  4  to  8  are
fall  activities,  acceleration  and  Euler  angles  are
extracted  as  features  for  the  SVM  classifier.  In  this
section,  we  establish  classifiers  by  using  angles.
Through  extensive  experiments,  we  find  that  the  best
experimental  results  are  obtained  by  setting  nine
classifiers,  which  are  degrees,  degrees, 
degrees,  degrees,  degrees,  degrees, 
degrees,  degrees,  degrees, and 90 degrees. Every
training  sample’s  acceleration  feature  matrix  can  be
written as :
 

FA =
(
Ax,Ay,Az

)′
= ax,1 ax,2 · · · ax,9

ay,1 ay,2 · · · ay,9
az,1 az,2 · · · az,9

 (10)

Ax Ay Az x y z
ax,i ay,i az,i

where , , and  represent the ,  , and  axes of
acceleration, respectively; , , and  indicate the
number  of  ESMVs  belonging  to  each  classifier,
respectively.

FE

Each training sample’s  Euler  angle feature matrix is
written as  :
 

FE =
(
Ex,Ey,Ez

)′
= ex,1 ex,2 · · · ex,9

ey,1 ay,2 · · · ey,9
ez,1 ez,2 · · · ez,9

 (11)

Ex Ey Ez x y z
ex,i ey,i ez,i

where , , and  represent the ,  , and  axes of
Euler angle, respectively; , , and  indicate the
number  of  ESMVs  belonging  to  each  classifier,
respectively.

After the feature selection, the feature vectors of each
training sample are expressed as follows:
 

Fsum =
(

F′A F′B
)
=(

Ax Ay Az Ex Ey Ez
) (12)

All  eight  action  samples’ feature  vectors  are
combined  into  one  feature  matrix  in  the  manner

described below:
 

F =
(
F1, sum ,F2, sum ,F3, sum , . . . ,FN, sum

)
(13)

Nwhere  represents total samples.
Prior  to  SVM training  and prediction,  we normalize

the feature vectors to ensure that all feature values fall
within the [0, 1] range. These specifics are provided:
 

y = (ymax− ymin)∗ (x− xmin)/ (xmax− xmin)+ ymin (14)
F

xmax xmin ymax ymin

where  the  values  of  each  column  vector  in  are
represented by the biggest and smallest element values,
respectively,  by  and .  Assign  and 
values of 1 and 0, respectively.

Figures  8 and 9 show  the  data  of  acceleration  and
Euler  angle  features,  respectively.  In  the  controlled
activity,  except  for  the  high  degree  of  distinction
between  the  running  and  walking  features,  a  small
portion  of  the  eigenvalues  between  similar  actions
(e.g.,  up  and  down  stairs)  are  more  distinct,  and  most
of  the  eigenvalues  are  close,  which  can  easily  lead  to
confusion. Figure  10 shows  the  data  for  the  joint
acceleration  and  Euler  angle  features  (JAEFs),  and
since there are fewer eigenvalues that differ for a single
feature, Fig.  10 combines  the  eigenvalues  of  both
features.  It  is  clear  from Fig.  10 that  there  is  a  higher
degree  of  differentiation  between  the  combined
acceleration  and  Euler  angle  features  compared  to  the
method using only a single feature, thus improving the
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classification accuracy.
When  it  comes  to  tackling  the  small  sample,

nonlinear,  and  high  dimensional  pattern  recognition
problem, the SVM classifier exhibits numerous distinct
advantages.  The  primary  principle  of  the  SVM  is  to
perform some nonlinear mapping on the input vector to
transform it into a high-dimensional feature space.

It  is  worth mentioning that  the SVM is essentially a
regularized minimization problem, as shown following:
 

min
ξ

(ω) =
1
2

l∑
i=1

ω2
i +C

l∑
i=1

ξi (15)

 

yi

 l∑
i=1

ωiϕ (xi)+b

 ⩾ 1− ξi ∀i = 1,2, . . . , l (16)

ξi Cwhere  is  the  slack  variable  and  stands  for  the
penalty component. Furthermore, in order to avoid the
explicit definition of the non-linear mapping, the kernel
function is introduced.

The Lagrange function is established as
 

L(w,b,α,ξ,µ) =
1
2
∥w∥2+C

m∑
i=1

ξi+

m∑
i=1

αi
(
1− ξi− yi

(
wTxi+b

))
−

m∑
i=1

µiξi

(17)

αi ⩾ 0 µi ⩾ 0where ,  are Lagrange multipliers.
L(w,b,α,ξ,µ)

w b α

Let  the  partial  derivative  of  with
respect to , ,  be zero, it yields
  

w =
m∑

i=1

αiyixi,

m∑
i=1

αiyi = 0,

C = αi+µi

(18)

Substituting Eq. (18) into Eq. (17), we have
 

L(w,b,α) =
m∑

i=1

αi−
1
2

m∑
i=1

m∑
j=1

αiα jyiy jxix j (19)

 

m∑
i=1

αiyi = 0, αi ⩾ 0, i = 1,2, . . . ,m (20)

α

w b
After  solving ,  according  to  Eq.  (18),  we  can

further  obtain the values of ,  and further  find ,  and
then get the following model:
 

f (x) = wTx+b =
m∑

i=1

αiyixT
i x+b (21)

The  Karush-Kuhn-Tucker  (KKT)  conditions  for  the
above process are given as
  

αi ⩾ 0,
yi f (xi) ⩾ 1− ξi,

αi (yi f (xi)−1+ ξi) = 0,
logi ⩾ 0,µiξi = 0

(22)

Moreover,  using  Lagrange  theory  and  quadratic
programming  strategies  to  solve  the  minimization
problem. To model a real-world scenario for an internet
application in the suggested architecture, we generate a
feature  matrix  from  the  processed  accelerations  and
Euler  angles,  and  put  it  into  SVM  classification  for
continuous  training,  so  as  to  obtain  a  better  training
framework.  Then,  the  frame  is  extracted  and  the  real-
time  motion  data  of  the  elderly  is  processed  and
transmitted to the model of the SVM classifier through
Bluetooth  to  judge  whether  the  elderly’s  activity  is
falling or daily life activities.

4　Expertmental Study

4.1　Experiment setup

Next,  we  will  introduce  the  experimental  process  in  a
real  scenario. Figure  11 shows  the  experimental
scenario,  which  is  on  the  17th  floor  of  Building  B  of
the Science Education Building at  Hefei  University  of
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Technology. We conducted a lot of experiments in the
laboratory, hall, and corridor. Additionally,  falling left,
falling  right,  running,  walking,  falling  ahead,  falling
backward,  and  climbing  and  descending  stairs  were
taking into account. Besides, the 15 volunteers aged 20
to  27  years  old,  with  heights  ranging  from 161  cm to
188 cm and weights ranging from 45 kg to 80 kg, carry
out various activities. They are each in great health and
do  not  have  any  physical  ailments  that  might  affect
how they move.

To imitate  activities  that  are  similar  to  those carried
out  by  seniors,  they  had  to  mimic  the  actions  older
adults take in the video clips. For the walking trials and
fall  trials,  a  subject  completed  each  type  of  trial
50 times. The walking trials consisted of a minimum of
two full gait cycles. Throughout the walking trials, the
comprehensive  sequence  of  activities,  including
running,  walking,  ascending,  and  descending  stairs,  is
meticulously  captured  in  the  experimental  data.
Throughout  the  fall  trials,  each  person  performed  50
falls  in  the  forward,  backward,  left,  and  right
directions.  At  the  same  height,  subjects  landed  on
mattresses.  Every  reliable  fall  test  result  must  have  at
least  two  complete  walking  motion  data.  Nearly  400
experimental trials were conducted overall.

A  division  was  made  within  the  experimental  trials,
creating  a  training  subset  and  a  testing  subset.  The
training  subset  consisted  of  the  complete  set  of
experimental  data  obtained  from  eight  subjects,  while
the  remaining  information  from  the  other  seven
subjects was utilized for testing purposes.

4.2　Quality criteria

As an effective way to represent classification findings,
this study focuses on indicators based on the confusion
matrix,
 

CM ≡


m11 m12 . . . m1C
m21 m22 . . . m2C
...

...
. . .

...
mC1 mC2 . . . mCC

 (23)

i
j

mi j

mi

i λi j mi j/mi

The  expression  represents  the  number  of  elements
actually  belonging  to  the -th  class  but  that  are
identified as belonging to the -th class. In the context
of  our  research,  it  is  better  to describe the term  in
terms of the total number of items  belonging to the
-th class. By denoting  as the ratio , it yields

 

CM =


λ11m1 λ12m1 · · · λ1Cm1
λ21m2 λ22m2 · · · λ2Cm2
...

...
. . .

...
λC1mC λC2mC · · · λCCmC

 (24)

which  is  the  Hadamard  (elementwise)  product  of  two
matrices with the following expression as
  

λ11 λ12 . . . λ1C
λ21 λ22 . . . λ2C
...

...
. . .

...
λC1 λC2 . . . λCC

◦


m1 m1 . . . m1
m2 m2 . . . m2
...

...
. . .

...
mC mC . . . mC

 (25)

The  confusion  matrix  can  be  expressed  as  in  the
binary case, when C = 2, the classes are present as
 

CM ≡
[

m11 m12
m21 m22

]
(26)

One  of  the  classes  is  typically  referred  to  as  the
“Positive class”, and the other as the “Negative class”.
Therefore,  using  this  new  terminology,  the  confusion
matrix can now be represented as follows:
 

CM ≡
[

mPP mPN
mNP mNN

]
(27)

mPP

mPN

mNP mNN

where  the  elements  of  this  matrix  means “True
Positive  (TP)”;  means “False  Negative  (FN)”;

 means “False  Positive  (FP)”;  and  means
“True Negative (TN)”.

D = {d1,d2, . . . ,dm} m
dk k

mP mN D

mP+mN = m
P

mPP

P mPN

mP mPP+mPN = mP

mNP+mNN = mN

Consider  a  dataset  with 
elements,  where  is  the -th  element.  The  total
number of positive  and negative  elements in 
is  equal  to  the  total  number  of  elements,  that  is,

.  Furthermore,  it  is  also  true  that  the
number  of  elements  correctly  classified  in  class 
( ), and the number of elements misclassified in that
class  ( ), adds up to the number of elements in the
positive  class  ( ),  that  is, .  Similarly,
it  can  be  stated  that .  The  confusion
matrix can therefore be written as
 

CM =
[

mPP mP−mPP
mN−mNN mNN

]
(28)

This is also formulable using the ratios as
 

CM =
[
λPPmP λPNmP
λNPmN λNNmN

]
=[

λPPmP (1−λPP)mP
(1−λNN)mN λNNmN

] (29)

eP eN

D
Additionally,  use  and  to  represent  the  total

number  of  items  in  that  are  assessed  to  be  positive
(despite  their  true  class)  and  negative,  respectively,
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shown as
 

eP = mPP+mNP = λPPmP+ (1−λNN)mN (30)
 

eN = mNN+mPN = λNNmN+ (1−λPP)mP (31)

eP+ eN = mwhich  means . Figure  12 presents  a
summary of the confusion matrix definitions.

4.3　Experiment results

We  conduct  three  comparable  experiments  utilizing
three  different  sets  of  features:  accelerations  alone,
Euler angles alone, and accelerations and Euler angles
together.  Results  showed  that  the  accuracy  of
recognition  can  be  considerably  increased  by  using
accelerations  and  Euler  angles  as  characteristics.
Figure 13 shows the confusion matrix for fall activities
and  ADLs,  employing  the  acceleration  features.
Figure 14 shows the confusion matrix for fall activities
and  ADLs,  employing  Euler  angle  features. Figure  15
shows  the  confusion  matrix  for  fall  accidents  and
ADLs,  employing  joint  the  acceleration  and  Euler
angle features. The confusion matrix demonstrates that
the  chosen  features  function  well  in  identifying  the
eight different sorts of activities.

Figures  16–18 show  the  comparison  among  equal-
signal  amplitude  difference  feature  method,  statistical
feature method (SF)[33], and threshold method (TM)[34]

in terms in precision, recall, and F1-score, respectively.
To  begin  with,  it  can  be  seen  from the  figure  that  the
traditional  threshold-based  method  is  significantly
lower  than  our  proposed  method  as  well  as  the
statistical feature-based method in precision, recall, and

 

 
Fig. 12    Confusion matrix for binary classification.
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Fig. 13    Confusion  matrix  for  fall  activities  and  ADLs
employing acceleration features.
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Fig. 14    Confusion  matrix  for  fall  activities  and  ADLs
employing Euler angle features.
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Fig. 15    Confusion  matrix  for  fall  activities  and  ADLs
employing JAEF features.
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Fig. 16    Precision of different methods.
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F1-score.  Next,  according to data results,  although the
statistical feature-based method has higher accuracy for
forward fall, backward fall, left-side fall, and right-side
fall, there is no clear distinction between up and down
stairs,  running,  and  walking.  To  summarize,  we  find
that  the  proposed  feature  method  significantly
outperforms  the  statistical  feature  method  and  the
threshold method in terms of accuracy, recall,  and F1-
scores for the same dataset.

Human  activities  can  be  divided  into  eight  groups
using the SVM classifier.  The results demonstrate that
the  approach  is  capable  of  accurately  differentiating
between  various  fall  and  ADLs  kinds. Figures  19 and
20 compare  the  multi-feature-based  method  with  two
single-feature-based  methods  in  precision  and
sensitivity. According to the results, the method using a
single  Euler  angle  feature  and  a  single  acceleration
feature  produces  unsatisfactory  results.  However,  the
multi-feature  method  clearly  outperforms  the  single-
feature methods.

Through  experimental  verification,  the  method
proposed in this paper has been proven to be effective.
We  conducted  a  series  of  experiments  to  evaluate  the
performance  of  this  method  in  detecting  falls  in  the
elderly  and  compared  it  with  other  existing  methods.

The  experimental  results  demonstrate  that  our  method
exhibits  excellent  performance  in  fall  detection.  By
extracting  multiple  features,  including  combined
acceleration  and  Euler  angle  features,  our  classifier  is
able to accurately identify fall behaviors. Compared to
traditional  methods,  our  approach  shows  significant
improvements  in  sensitivity,  precision,  and
classification  accuracy.  This  method  demonstrates
good  performance  and  has  the  potential  for  wide
application in fall  injury systems.  We believe that  this
research  will  make  important  contributions  to  the
health  and  safety  of  the  elderly  and  provide  valuable
references for future related studies.

5　Conclusion

The present study devises and assesses a fall detection
system  for  detecting  pre-impact  falls.  This  system
leverages  data  concerning  acceleration  and  angular
velocity  to  extract  relevant  features.  Following  the
selection  of  the  classifying  components,  the  SVM
classifier is employed to categorize the data accurately.
Drawing  upon  the  results  of  feature  selection,  the
incorporation of acceleration and angular velocity data
proves  to  be  pivotal  in  the  classification  of  activities.
The  experimental  findings  indicate  that  utilizing
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Fig. 17    Recall of different methods.
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Fig. 18    F1-score of different methods.
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Fig. 19    Comparison chart of detection precision.
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multiple  features  for  fall  detection  yields  an  average
sensitivity  surpassing  96%.  The  combination  of
acceleration characteristics and Euler angles effectively
reduces  the  occurrence  of  false  alarms.  The  multi-
feature-based  approach  demonstrates  superior
performance  with  an  accuracy  exceeding  98%,
surpassing  the  previous  single-feature-based
techniques.

When  considering  precision,  sensitivity,  and
specificity,  the  new  method  outperforms  the  prior
single-feature-based  approach.  Despite  certain
limitations, a unique strategy for detecting falls before
they  happen  and  reducing  potential  harm  is  proposed.
The  remarkable  accuracy  and  recall  of  this  technique
hold  great  potential  for  real-time  pre-impact  fall
detection.  Our  aim  is  to  enhance  the  flexibility  of  the
angle  classifier  algorithm within  the  feature  extraction
algorithm,  thereby  enhancing  the  accuracy  and
robustness  of  the  elderly  fall  detection  system.  In  the
future,  we  plan  to  combine  video  image  and  deep
learning  techniques  to  improve  the  accuracy  and
robustness of the system.
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