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Abstract: The transformers have achieved significant accomplishments in the natural  language processing as

its outstanding parallel processing capabilities and highly flexible attention mechanism. In addition, increasing

studies  based  on  transformers  have  been  proposed  to  model  single-cell  data.  In  this  review,  we  attempt  to

systematically  summarize  the  single-cell  language  models  and  applications  based  on  transformers.  First,  we

provide a detailed introduction about the structures and principles of transformers. Then, we review the single-

cell  language  models  and  large  language  models  for  single-cell  data  analysis.  Moreover,  we  explore  the

datasets and applications of  single-cell  language models in  downstream tasks,  such as batch correction,  cell

clustering,  cell  type  annotation,  gene  regulatory  network  inference,  and  perturbation  response.  Further,  we

discuss the challenges of single-cell language models and provide promising research directions. We hope this

review will  serve as  an up-to-date  reference for  researchers  who are  interested in  the direction  of  single-cell

language models.
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1　Introduction

Single-cell  research  has  shown  tremendous  potential
across  a  variety  of  fields,  including  genetics,
immunology,  and  oncology.  By  utilizing  single-cell
RNA  sequencing  data  for  cluster  analysis  and  the

identification  of  cell  subtypes,  it  is  possible  to
accurately  categorize  cell  populations  and  reveal
crucial  information  about  cell  interactions  and  the
structure  of  tissues[1].  Exploring  the  gene  expression,
gene  function  and  gene-gene  interaction  at  the  single-
cell  level  help  to  unveil  the  deep  mechanisms  of
cellular  heterogeneity  within  tissues[2, 3].  Single-cell
research  is  critically  important  for  understanding
fundamental  biological  processes  and  provides
significant  insights  for  the  diagnosis  of  diseases[4].
Single-cell  data  usually  consist  of  large  amounts  of
high-dimensional  data  which  contain  complex
information.  There  is  heterogeneity  among  single-cell
data originating from the same tissue.

In  the  early  stages,  traditional  machine  learning
methods, such as n-gram[5] and Hidden Markov Models
(HMM)[6],  were  widely  used  for  cell  annotation  and
protein  prediction.  With  the  development  of  machine
learning technology, more sophisticated algorithms are
applied  to  single-cell  research[7].  Subsequently,  deep
learning models, including Recurrent Neural Networks
(RNN)[8] and  Convolutional  Neural  Networks
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(CNN)[9],  are  used  for  the  analysis  of  single-cell  data.
Currently,  the  transformers  developed  by  Google  has
become  the  most  popular  language  model[10].  The
transformers  can  process  an  entire  sentence  at  once
during  training  and  effectively  captures  long-distance
dependencies  within  sequences  through  the  self-
attention  mechanism[11].  This  capability  enables
transformers  to  effectively  explore  various  types  of
single-cell  data.  It  leads  to  an  increasing  number  of
researchers  applying  transformer  technology  in  the
field of single-cell research[12].

This  review  will  introduce  the  main  modules  of  the
transformers  in  Section  2.  Then,  we  provide  an
overview and  analysis  of  existing  single-cell  language
models  in  Section  3  and  showcase  some  downstream
tasks  accomplished  by  single-cell  language  models  in
Section  4.  Final,  we  discuss  the  challenges  and
opportunities  of  transformers-based  single-cell
language  models  in  Section  5.  We  hope  to  offer
assistance  to  individuals  who  are  interested  in
understanding single-cell language models.

2　Transformer

The  transformers  requires  extensive  training  on
numerous  texts.  It  usually  employs  a  self-supervised
approach during training, enabling language models to

perform classification  and  generation[13].  For  instance,
the  transformers-based  language  models  can
automatically extract key information of text,  generate
new  text  and  answer  user  queries  in  question-
answering. These achievement is credited to the ability
of transformers for learning long-term dependencies of
language and allowing parallel training across multiple
language  units.  This  enhances  the  parallelism  in
processing  sentences  and  capability  to  extract  overall
sequence correlations of transformers. The structure of
transformers is depicted in Fig. 1.

The  transformers  have  demonstrated  excellent
performance  in  both  training  tasks  from  scratch  and
pre-training  tasks.  Transformer-XL[14] introduces  the
recursive  mechanism  and  positional  encoding.  It
captures longer-term dependencies by learning beyond
fixed-length  dependencies  while  maintaining  temporal
continuity  to  address  context  fragmentation.
Reformer[15] reduces  attention  calculation  complexity
and  uses  reversible  residual  layers  instead  of  standard
residual  layers  to  achieve  higher  memory  efficiency
and  alleviate  pressure  on  computing  resources.  In
addition,  pre-training  tasks  can  reduce  dependence  on
annotated  data,  thus  lowering  the  training  cost  of  the
transformers[16].  The  Generative  Pre-trained
Transformer  (GPT)[17] employs  multiple  layers  of  the
transformers  encoders  and  performs  unsupervised
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Fig. 1    Structure of transformers.
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language  modeling  tasks  during  pre-training  to  learn
semantic  and  syntactic  knowledge  from  the  text.  The
Bidirectional  Encoder  Representations  from
Transformers (BERT)[18] is a model that pre-trained on
large  datasets.  It  uses  bi-directional  transformers  and
mask  mechanism  to  consider  the  context  information
from both the left and right sides of the input sequence
simultaneously.  Due  to  the  success  of  these  models,
many  models  based  on  them  have  started  to  emerge.
XLNet[19] is a pre-training model base on Transformer-
XL  that  achieves  bidirectional  learning  of  context.  It
uses  the  self-regressive  strategy  to  helps  the  model
avoid  the  inconsistency  issue  in  pre-training  fine-
tuning.  RoBERTa[20] is  a  model  based  on  BERT  and
achieves  enhanced  training  performance  by  utilizing
dynamic masking.

2.1　Encoder and decoder

The  transformers  is  primarily  composed  of  encoders
and  decoders,  which  uses  residual  connections  and
layer  normalization.  The  layer  normalization  and
residual connection are defined as follows:
 

LayerNorm (X+MultiHead (X)) (1)
 

LayerNorm (X+FFN (X)) (2)

where X in Formula (1) denotes the input embedding. It
is  processed  through  multi-head  self-attention
mechanism (MultiHead). After processing X, the result
is  added  to  the  original X to  obtain X in  Formula  (2).
Then X in  Formula  (2)  is  processed  through  Feed-
Forward  Neural  network  (FFN).  The  layer
normalization computes the mean and variance of each
input  sequence  to  provide  more  accurate  training
results[21].  The  encoder  gradually  extracts  semantic
information  from  the  input  sequence  and  encodes  it
into  a  series  of  hidden  vectors  by  stacking  multiple
identical  layers.  The  decoder  is  responsible  for
transforming  the  hidden  representations  generated  by
the  encoder  into  an  output  sequence.  It  adopts  an
autoregressive training approach. The decoder acquires
information about the entire sequence of tokens during
training,  which  would  lead  to  a  decrease  in  prediction
accuracy.  To  address  this  issue,  the  decoder  uses
masked  self-attention  mechanism  in  the  first  layer.
After  obtaining  vector  information  based  on  the
masked  self-attention  mechanism,  it  needs  to  be
combined  with  the  hidden  vectors  provided  by  the
encoder  before  entering  the  next  layer.  Then,  the

decoder  gradually  generates  vectors  of  the  sequence
and  transforms  them  into  the  final  output  sequence
based on linear transformation and Softmax function.

2.2　Multi-head self-attention mechanism

The multi-head self-attention mechanism is  comprised
of  multiple  self-attention  mechanisms.  It  can  help  the
model  to  determine  the  important  parameters  during
the training process.  In addition, it  adjusts the weights
at  different  positions  by  calculating  the  correlations
between each input position and other positions.

The self-attention mechanism is defined as follows:
 

Attention (Q, K, V) = softmax (
Q ·KT
√

dk
)V (3)

dk

Q K V KT

K
Q KT

√
dk

where  represents  the  dimensionality  of  the  key
vector, , ,  and  are  three  matrices,  and 
represents  the  transpose  of  the  matrix.  The  dot
product  of  and  denotes  the  similarity  between
the  current  word  vector  and  other  word  vectors.  After
dividing  this  value  by  and  applying  the  softmax
function,  the  coefficient  of  weight  is  obtained.  The
weight coefficient is then multiplied by V to ultimately
obtain  the  attention  value.  The  multi-head  attention
mechanism is defined as follows:
 

M (Q, K, V) =C (head1, head2, . . . , headh)WO (4)
 

headi = Attention (QWQ
i , KWK

i , VWV
i ) (5)

WO

headi

i WO headi

WQ WK WV

Q K V

WQ WK WV
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where  is  a  matrix  containing  the  weights  for
each attention value，  M ( ) represents  the  multi-head
attention  function, C ( ) denotes  the  concat  function,

 represents  the  self-attention  mechanism  module
of -th  head,  contains  the  weights  of  each ,
and , ,  and  denote  the  weight  matrices.
Each  input  embedding  vector  is  multiplied  with  them
to  obtain  the  corresponding  matrices , ,  and .
They  are  updated  with  each  backward  propagation
during  training.  Each  self-attention  module  has
different , ,  and .  The  multi-head  attention
value  is  calculated  by  weighting  each  attention  value
with .

2.3　Position encoding

The position encoding is obtained by adding positional
information to the embedding vectors of input words in
transformers. It is defined as follows:
 

PE(pos, 2i) = sin (pos/100002i/dmodel) (6)
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PE(pos, 2i+1) = cos (pos/100002i/dmodel) (7)

dmodel

where  pos  is  the  position  index, i is  the  dimension
index,  and  is  the  size  of  the  hidden  layer.  The
sine and cosine values for each pos and i are calculated
separately using the PE function, then they are merged
into  a  position  encoding  vector.  This  ensures  that  the
embedding  vectors  for  each  token  not  only  contain
semantic  information,  but  also  position  information of
input  sequence.  In  addition,  the  relative  position
encoding  is  proposed  in  Ref.  [22],  to  make
transformers  to  better  understand  the  positional
information  of  the  input  sequence,  thereby  enhancing
the  performance  and  generalization  capability  of
model.

2.4　Position-wise feed-forward networks

The  position-wise  feed-forward  networks  acts  as  a
multi-layer  perceptron,  which  is  equivalent  to  use  a
linear  layer  in  each  encoder  and  decoder[23].  It  is
defined as follows:
 

FFN (x) =max(0, xW1+b1)W2+b2 (8)

W1 b1 W2 b2where , , ,  and  are  parameters  that  can  be
learned  during  training.  The  FFN  initially  performs  a
linear  operation on the  input  to  increase  its  dimension
and applies the ReLU activation function to learn more
complex feature information. In final, the FFN reduces
the  dimension  to  the  original  dimension  based  on  a
linear  operation  to  enhance  the  generalization
capability of features.

3　Application of Transformer in Single-Cell

We  categorize  the  application  of  single-cell  data
analysis  based  on  transformers  into  single-cell
language models and single-cell large language models
depended on whether it uses pre-training or not. These
models  effectively  analyze  single-cell  omics  data  by
utilizing  the  unique  feature  representation  of
transformers.

3.1　Single-cell language model

This  section  introduces  the  current  structural  design
and optimization of single-cell language models. These
models  are  developed  based  on  the  transformers’
framework.  They  have  been  utilized  for  analyzing
various  types  of  single-cell  datasets,  including  single-
cell  transcriptomics,  spatial  transcriptomics,  and
epigenomics.

3.1.1　Single-cell  language  model  based  on  single-
cell transcriptomics

The  transCluster[24] is  a  model  based  on  transformers
for  analyzing  scRNA-Seq  data.  It  demonstrates  that
transformers  can  be  used  for  scRNA-seq  analysis.  It
utilizes  Linear  Discriminant  Analysis  (LDA)[25] to
obtain  input  embeddings  for  the  transformers.  Then,
CNN  is  employed  to  train  the  output  of  transformers
for predicting cell types. In addition, scTransSort[26] is
also a model that  combines of transformers and CNN.
It  uses  CNN  to  transfer  the  gene  embeddings  of  each
cell into multiple two-dimensional matrix blocks. Each
matrix  block  represents  a  token  and  these  tokens  are
trained  through  12  layers  of  transformers.  Finally,  a
linear  classifier  utilizes  the  output  features  of
transformers to predict cell type. CIForm[27] is a model
inspired by the application of transformers in Computer
Vision  (CV).  It  divides  equally  sized  sub-vectors
within the gene embedding module. These sub-vectors
combined  with  positional  embeddings  are  fed  into  the
transformers for training. The output of the transformer
is  composed  of  sub-vectors  and  the  average  pooling
layer  is  used  to  train  the  average  values  of  these  sub-
vectors  to  obtain  the  final  result.  STGRNS[28] is  an
interpretable model base on transformers. It proposes a
Gene  Expression  Motif  (GEM)  data  processing
technique  to  process  scRNA-seq.  The  combination  of
GEM  and  transformers  in  STGRNS  provides  stonger
interpretability.  In  contrast  to  STGRNS,  T-GEM[29]

enhances  model  interpretability  by  replacing  the
weights  in the transformers with gene-related weights.
It  obtains attention values for  different  genes.  Then,  it
utilizes these attention values for the classification task.
3.1.2　Single-cell  language  model  based  on  single-

cell spatial omics and epigenomics
The  PROTRAIT[30] is  a  model  based  on  transformers
for  analyzing  scATAC-Seq  data.  It  utilizes  one-hot
encoding  to  map  input  sequences  into  a  latent  space.
When  the  sequence  length  is  less  than  a  predefined
threshold,  the  one-hot  encoding  is  transformed  into
motif  embedding  through  convolutional  layers.  If
sequence  length  is  longer  than  the  predefined
threshold,  an  alternating  combination  of  convolutional
and pooling layers  is  used to  obtain motif  embedding.
Then,  the  embeddings  with  absolute  positional
information  are  subsequently  passed  into  the
transformers for further processing. The output features
from  the  transformers  are  used  to  conduct  cell
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classification.  TransformerST[31] constructs  a
variational-transformers  framework  for  data
representation  and  employs  CNN  as  both  the  decoder
and encoder. It introduces a graph transformer between
the  decoder  and  encoder  to  analyze  spatial
transcriptomics  data.  By  constructing  an  undirected
graph,  the graph transformer is  able to learn nonlinear
mappings  and  aggregate  neighbor  relationships.  It
makes  high-resolution  reconstruction  of  gene
expression possible.
3.1.3　Single-cell  language  model  based  on  single-

cell multi-omics
The  SCMVP[32] is  a  deep  generative  model  based  on
transformers specifically designed for the simultaneous
analysis  of  scRNA-seq  and  scATAC-seq  data.  The
model  establishes  two  independent  channels  at  the
encoder and decoder layers for processing scRNA data
and scATAC data.  In the scRNA channel,  the masked
attention mechanism is  adopted,  while in the scATAC
channel,  the  self-attention  mechanism  is  employed.
Subsequently,  the  outputs  of  the  two  channels  are
combined,  and  the  mean  and  variance  of  the  common
latent  variables  are  obtained  through  a  shared  linear
layer. scMoFormer[33] is a multimodal model based on
transformers that uses a heterogeneous graph to model
single-cell  data.  It  constructs  a  multimodal
heterogeneous  graph  containing  three  types  of  nodes:
cells,  genes,  and  proteins.  In  the  training  framework,
three  transformers  are  used,  each  dedicated  to
extracting the data representation of the corresponding
modality.  Finally,  a  multi-layer  fully  connected
network  is  utilized  to  predict  the  target  protein
expression level of each cell. DeepMAPS[34] is a model
that  introduces  the  Heterogeneous  Graph  Transformer
(HGT) framework. It constructs a heterogeneous graph
using  a  cell-gene  matrix.  Then,  the  entire
heterogeneous graph is divided into multiple subgraphs
and  HGT  is  applied  on  these  subgraphs.  Subgraph
sampling  is  performed  through  a  sparse-based  feature
selection  method.  During  training  process,  the
information  of  nodes  is  updated  through  multiple
iterations  of  training  and  the  training  on  different
subgraphs  shares  the  same  set  of  parameters.  After
training on all subgraphs is completed, HGT is applied
to  the  entire  heterogeneous  graph  to  obtain  data
features.  MarsGT[35] is  an  extended  model  based  on
DeepMAPS.  The  heterogeneous  graph  of  MarsGT  is
constructed  base  on  cell-gene  matrix,  gene-peak

matrix,  and  cell-peak  matrix.  Compared  to
DeepMAPS, it is better to obtain features of single-cell
data  from  the  perspective  of  regulatory  networks  by
increasing  the  peak.  During  the  subgraph  sampling
stage, a probability-based subgraph sampling method is
employed  to  select  genes  and  regulatory  regions
associated with rare cells. Then, the model is trained on
the  subgraph  using  transformers.  After  obtaining  the
trained weights, the pre-trained model is applied to the
entire graph for training.

3.2　Single-cell large language model

Currently,  large  language  models  are  also  being
applied  to  single-cell  domains.  The  GPT  and  BERT
have  emerged  as  leading  representatives.  This  section
provides an introduction of the current single-cell large
language models.
3.2.1　Single-cell  large  language  model  based  on

single-cell transcriptomics
The  scBERT[36] is  the  first  single-cell  pre-training
model  constructed  based  on  the  BERT  architecture.
The structure of scBERT is shown in Fig. 2. During the
training  process,  scBERT  has  been  optimized  to
eliminate  of  artificial  biases  and  overfitting  for
enhancing  the  generalization  capability  of  model.  To
capture  the  similarity  between  genes,  the  scBERT
employs the gene2vec[37] to obtain gene embedding for
each  gene.  The  input  embedding  information  is
obtained  to  capture  relationships  between  genes  by
combining expression embedding and gene embedding.
The  embedding  design  allows  scBERT  to  more
effectively transform gene expression information into
the  input  for  the  transformers  to  generate  cell-specific
embedding.  Considering  that  most  scRNA-seq  data
dimensions  exceed  the  512-limitation  of  transformers,
scBERT utilizes the performer to reduce computational
complexity  through  approximate  self-attention
calculations,  which  employs  a  linear  attention
mechanism  based  on  low-rank  random  feature
mapping.  It  enables  scBERT  to  input  over 16 000
genes when processing long sequence data. In addition,
the scBERT also provides the interpretability by using
Enrichr  to  visual  attention  weight  to  reflect  the
contribution of genes.

The  scFoundation[38] is  a  large  pre-trained  model
based  on  transformers  with  100  million  parameter
scale.  The  embedding  module  of  scFoundation  is
employed  to  get  final  embeddings  with  positional
information.  In  addition,  scFoundation  adopts  an
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asymmetric  encoder-decoder  architecture.  During  the
encode  phase,  it  exclusively  conducts  the  training  on
non-zero  and  non-masked  expressed  genes  to  reduce
computational  costs.  In  the  decode  phase,  it  restores
zero and masked expressed genes to learn relationships
among all genes. The read-depth-aware task is utilized
as training strategy to train a pre-trained model, which
is illustrated in Fig. 3. It successfully harmonizes read-
depth  differences  across  different  cells  to  prove  more
coordinated  and  precise  when  dealing  with  cells  with
varying sequencing depths.

3.2.2　Single-cell  large  language  model  based  on
single-cell multi-omics

The scGPT[39] is  the first  single-cell  foundation model
based  on  transformers  that  undergone  generative  pre-
training  on  over  33  million  cells.  The  model  draws
inspiration  from  GPT.  The  structure  of  scGPT  is
depicted  in Fig.  4.  scGPT  treats  genes  as  tokens  and
uses  a  condition  token  to  represent  the  positional
information  of  genes.  In  addition,  it  employs  value
binning  to  address  differences  between  different
sequencing  batches.  scGPT uses  stacked  transformers,
layers  and  flash-attention[40] to  handle  single-cell
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multi-omics  data.  Flash-attention  can  effectively
address  the  sequence  length  limitation  and  reduce
computational cost. In terms of interpretability, scGPT
focuses  on  key  genes  through  pre-training  on  a  good
deal  of  single-cell  data.  Therefore,  it  has  more
comprehensive  interpretability.  While  scGPT
demonstrates impressive performance, It still has some
shortcomings.  It  proves  competitive  in  low-data
settings,  but  it  requires  careful  consideration  of
experimental  conditions  in  zero-shot  settings.
Moreover,  the  current  pre-training  methods  may  lack
universal applicability.

The  CellPLM[41] is  the  first  single-cell  pre-trained
model  based  on  transformers  that  considers  the
relationship between cells. The structure of CellPLM is
depicted  in Fig.  5.  It  establishes  a  gene  expression
embedder  for  processing  input  data.  The  embedder
initializes  an  embedding  vector  for  each  type  of  gene
and filters out unmeasured genes and randomly masked
genes. The gene expression embedder aggregates gene
embedding  based  on  their  expression  levels  in  each

cell,  and then transforms them into  a  suitable  input  of
the  transformers.  These  expression  embeddings  are
then  input  into  a  structure  of  an  encoder-decoder  by
utilizing  a  latent  space  between  the  encoder  and
decoder.  The  encoder  part  comprises N transformers
blocks.  However,  the  computational  complexity  of
transformers exhibits quadratic growth which results in
significant  computational  costs[42].  CellPLM  replaces
the transformers with a variant called Flowformer[43] to
resolve  the  input  constraints  and  computational
complexity problems associated with the transformers.
To  more  effectively  capture  cell-cell  relationships  and
spatial  positional  information  of  individual  cells,
CellPLM  incorporates  Spatial  Resolution
Transcriptome (SRT) data into the encoder for training.
SRT data contain position embedding information. The
position  embedding  are  combined  with  expression
embedding to obtain the final  input embedding.  In the
latent  space,  a  Gaussian  mixture  model  is  employed.
The  decoder  employs  several  feedforward  layers
(FFLayers)  to  train  latent  space  vectors  and  acquires
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the  batch  label  of  each  cell  by  learning  from  the
learnable lookup table.
3.2.3　Single-cell  large  language  model  based  on

gene expression ranking
The tGPT[44] is an autoregressive unsupervised training
model based on transformers. It utilizes the ranking of
gene  expression  to  predict  the  index  of  the  next  gene.
Gene expression ranking provides the relative position
of  genes  and  is  more  suitable  for  large-scale  gene
screening  and  comparative  analysis.  However,  this
strategy  may  only  consider  genes  with  higher
expression  levels  and  neglect  the  specific  information
contained  in  low-expression  genes.  The  structure  of
tGPT  is  depicted  in Fig.  6.  The  tGPT  predefines  a
length limit of input sequence and any part of the input
sequence  exceeding  this  limit  is  truncated,  while  the
sections  not  reaching the  limit  are  padded as  0.  In  the
training  process,  it  combines  gene  token  embedding

with positional  encoding embedding.  Final  embedding
undergoes  8  transformers,  modules  to  extract  features
from single-cell sequences.

The  Cell2Sentence  (C2S)[45] is  a  pretrained  model
fine-tuned  on  GPT-2,  focusing  on  handling  text
sequences  containing  gene  names.  Through  fine-
tuning, C2S is capable of generating new cell sentences
and  reversely  converting  them  back  into  gene
expression  vectors,  retaining  most  of  the  information.
The  order  of  gene  names  is  determined  by  the
expression  ranking  of  each  gene  and  C2S  uses  these
gene  name  sequences  as  its  input.  By  converting  cell
text  sequences  back  into  gene  expressions,  C2S
minimizes information loss and retains key information
from  the  original  data  in  most  cases.  This  method
enables  transformers  to  acquire  information  about
single-cell data, but the sequence conversion operation
often results in higher computational costs.

4　Downstream Task Analysis

The single-cell language models based on transformers
have  conducted  on  various  downstream  tasks,
including  batch  correction,  cell  clustering,  cell  type
annotation,  gene  network  inference,  and  perturbation
responses.  The  datasets  used  for  these  downstream
tasks are primarily obtained through databases, such as
TCGA[46] and GEO[47].  The details of them are shown
in Table 1.

4.1　Batch correction

With  the  increasing  quantity  of  single-cell  data,  the
variability  between  different  batches  has  become  an
increasingly significant interference in data analysis. It
becomes  an  urgent  challenge  to  improve  the
effectiveness of batch correction. Three key metrics are
used to evaluation of batch correction effects including
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k-nearest  neighbor  Batch  Effect  Test  (kBET)[78],
Average  Silhouette  Width  for  batch  correction
(ASWbatch)[79],  and Graph Connectivity  measurement
(GraphConn)[80].  The  kBET  assesses  the  effectiveness
of  correction  by  comparing  the  distribution  of  cells
within and between batches. Its acceptance rate reflects
the  uniformity  of  cell  distribution  after  correction.  A
higher  acceptance  rate  indicates  the  preservation  of
biological  heterogeneity  and  a  reduction  in  technical
batch  effects.  The  ASWbatch  originates  from  the
concept  of  silhouette  width  in  cluster  analysis.  It  is
used  to  measure  the  clustering  effect  after  removing
batch  effects.  The  GraphConn  is  a  method  for
evaluating the connectivity between cells in the dataset
after  batch  correction.  It  aims  to  quantify  the
enhancement  of  cell-to-cell  connectivity  post-
correction for reflecting the reduction of batch effects.

The  tGPT[44] adopts  the  ranking  of  gene  expression
to void the interference of actual expressions of Highly
Variable  Genes  (HVGs)  and  batch  information  during
training.  It  is  trained  on  the  HCA  dataset[48],  utilizing
the  kBET  acceptance  rate  to  reflect  the  magnitude  of
differences  between  different  batches.  In  addition,
tGPT conducts an Immune Checkpoint Blockade (ICB)

ASWbatch

clinical trial. By quantifying the expression features of
different  attention  heads,  it  is  demonstrated  that  these
attention  heads  have  prognostic  significance  in  this
clinical  trial.  scGPT[39] conducts  batch  effect
experiments  by  fine-tuning  on  pre-trained  models.  To
quantify  batch  correction  performance,  scGPT
calculates  the  Average  Silhouette  Width  ( )
and  GraphConn[81].  It  computes  the  AvgBATCH  (i.e,
average  of  ASWbatch  and  GraphConn),  to
comprehensively  represent  batch  performance.  scGPT
evaluates  batch  correction  performance  on  three
datasets,  including  COVID-19[49],  PBMC  10[50],  and
Perirhinal  Cortex[51].  The  evaluation  is  conducted
against  three  methods  including  Seurat[82],
Harmony[83],  and  scVI[84].  scGPT  achieves  a  best
performance  AvgBATCH  value  on  the  three  datasets.
However,  scGPT  does  not  achieve  excellent  batch
effect correction in zero-shot settings[85].

4.2　Cell clustering

The  goal  of  cell  clustering  analysis  is  to  group  cells
based  on  their  gene  expression  patterns.  When
evaluating  the  accuracy  of  clustering  results,
commonly  used  metrics  include  Adjusted  Rand  Index
(ARI)[86],  Average  Silhouette  Width  (ASW)[79],  and

 

Table 1    Details of downstream multi-task (single-cell large language models are marked with an asterisk).
Downstream task Model Metric Dataset

Batch correction
tGPT* kBET HCA[48]

scGPT* ASWbatch, GraphConn
COVID-19[49], PBMC 10[50], Perirhinal

Cortex[51]

Cell clustering

scMVP ARI
Paired-seq cell line data[52], SNARE-seq cell

line data[53]

tGPT* ARI, NMI, FMI
HCA[48], HCL[54], TCGA[55], Macaque
Retina[56], GTEx[57], Tabula Muris[58]

CellPLM* ARI, NMI public dataset[59]

DeepMAPS ASW, ARI
PBMC[50], lung tumor leukocytes CITE-seq

dataset[60]

Cell type annotation

TransCluster F1-score, Precision, Recall, MCC Shao[61], Baron[62]

PROTRAIT ARI, AMI sci-ATAC human atlas[63]

scBERT* Accuracy, ARI, F1-score Baron[62], Muraro[64], Segerstolpe[65], Xin[66]

scGPT* Accuracy, Precision, Recall, F1-score
hPancreas[67], multiple sclerosis[68], tumor-

infiltrating myeloid[69]

CellPLM* Precision, F1-score hPancreas[67], multiple sclerosis[68]

Gene network
inference

DeepMAPS Closeness centrality, Eigenvector centrality,
Functional enrichment analysis

Reactome[70], DoRothEA[71], TRRUST v2[72]

scGPT* Pathway enrichment analysis
Immune Human[73], ChIP-994Atlas database[74],

Adamson[75]

Perturbation
prediction

scFoundation* MSE Dixit[76], Adamson[75], Norman[77]

scGPT* PCC Adamson[75], Norman[77]

CellPLM* RMSE Adamson[75], Norman[77]

  Wei Lan et al.:  Transformer-Based Single-Cell Language Model: A Survey 1177

 



Normalized Mutual Information (NMI)[87]. ARI adjusts
the  rand  index  by  comparing  the  observed  pair-wise
concordance to the expected random concordance, and
yields  a  measure  of  clustering  consistency.  ASW
measures  the  difference  in  similarity  between  samples
and  different  clusters  by  calculating  the  silhouette
width  for  each  sample.  It  offers  a  intuitive  evaluation
of  clustering  results.  NMI  utilizes  normalized  mutual
information to eliminate the influence of the number of
clusters and the total number of samples, which makes
it  useful  for  comparing  clustering  results  under
different parameter settings.

The scMVP[32] employs a joint  deep learning model
to  learn  features  from  both  scATAC  data  and  scRNA
data.  It  is  trained  on  Paired-seq  cell  line  data[52] and
SNARE-seq cell  line data[53].  Then it  utilizes Uniform
Manifold  Approximation  and  Projection  (UMAP)
visualization to perform cell clustering analysis on cell
clusters.  It  successfully identifies  different  numbers of
cell  subpopulations  and  effectively  separates  the
integration  data  of  scRNA-seq  and  scATAC-seq.  It
confirms  its  effectiveness  in  cell  clustering  analysis.
tGPT[44] is  applicable  to  large-scale  tissue  samples
through pre-training.  It  partitions  samples  into  distinct
clusters that correspond to different organs. It is trained
on six datasets, including HCA[48], HCL[54], TCGA[55],
Macaque  Retina[56],  GTEx[57],  and  Tabula  Muris[58].
The  experimental  results  demonstrate  that  it  achieves
excellent  performance  in  cell  clustering  tasks.
CellPLM[41] conducts  unsupervised  clustering  analysis
by  extracting  cell  embedding  vectors  from the  dataset
without  fine-tuning.  CellPLM  achieves  zero-shot
clustering  experiments  on  a  public  dataset[59].  It
compares  with  PCA,  Geneformer,  and  scGPT.  In  the
experiments,  it  achieves  the  highest  ARI  and  NMI.
DeepMAPS[34] validates  cell  clustering  on  ten  single-
cell  multi-omics  datasets.  It  trains  with  36  parameter
combinations  and  compares  with  Seurat,  MOFA+[88],
TotalVI[89],  and  Harmony.  In  all  experiments,
DeepMAPS  achieves  the  best  ARI  and  ASW.
Furthermore,  DeepMAPS  performs  single-cell  multi-
omics integration analysis on the PBMC dataset[50] and
the  CITE-seq  dataset  of  lung  tumor  leukocytes[60].  It
successfully  identifies  13  cell  types  and  validates  its
effectiveness.

4.3　Cell type annotation

Cell  type  annotation  refers  to  assigning  known  cell
type  labels  to  each  cell  or  cell  cluster,  which  aids  in

gaining  a  deeper  understanding  of  the  biological
significance  of  the  cells[90].  When  evaluating  the
performance  of  cell  annotation,  commonly  used
metrics  include  precision,  recall,  accuracy,  and
F1-score[91].  Precision  represents  the  proportion  of
correctly  predicted  samples  of  a  specific  category
among  all  samples  predicted  as  that  category  by  the
model.  Accuracy  denotes  the  ratio  of  correctly
classified  samples  to  the  total  number  of  samples.
Recall  indicates  the  proportion  of  true  samples  of  a
specific  category that  the model  correctly  identifies  as
that  category.  The  F1-score  is  the  harmonic  mean  of
precision  and  recall.  It  offers  a  comprehensive
evaluation of model performance.

The  TransCluster[24] is  the  first  model  to  apply
transformers to cell type annotation. It is trained on the
Shao  dataset[61] and  the  Baron  dataset[62],  and
demonstrates  efficient  performance  in  cell  type
prediction  tasks.  PROTRAIT[30] is  trained  on  the  sci-
ATAC  human  atlas[63] and  generates  cell  embeddings
that  reflect  the  distribution  of  the  scATAC-seq  data.
Then,  it  uses  the k-Nearest  Neighbors  (KNN)  for  cell
type  annotation.  scBERT[36] is  pre-trained  on  9
scRNA-seq  datasets,  then  fine-tuning  is  performed  on
the trained model. Final, it uses the K-means algorithm
to  annotate  cell  types.  scBERT  performs  cell
annotation  tasks  on  the  Baron  dataset[62],  the  Muraro
dataset[64],  the  Segerstolpe  dataset[65],  and  the  Xin
dataset[66].  Both scGPT[39] and CellPLM[41] are trained
on  the  hPancreas[67] dataset  and  Multiple  Sclerosis
(MS)[68] dataset to perform cell annotation task. scGPT
performs  normalization,  log  transformation  and
binning operations on gene expression values, then cell
type  annotation  is  achieved  through  fine-tuning.  In
addition,  scGPT  is  trained  on  the  tumor-infiltrating
myeloid  dataset  (Mye.)[69] and  evaluated  on  query
partitions of three previously unseen cancer types. The
results  indicate  that  scGPT  has  high  accuracy  in
distinguishing  immune  cell  subtypes.  CellPLM adds  a
feedforward  layer  during  the  fine-tuning  process  and
utilizes  standard  cross-entropy  loss  function  for  the
fine-tuning  process.  Fine-tuned  CellPLM  exhibits  a
significant  improvement  in  F1-score  and  precision
metrics on the hPancreas dataset and Multiple Sclerosis
(MS) dataset compared to the from-scratch CellPLM.

4.4　Gene network inference

Gene  network  inference  analysis  reveals  regulatory
associations  between  genes  by  comparing  gene
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expression  patterns  under  different  conditions.
Currently,  single-cell  language  models  based  on
transformers  have  introduced  innovative  perspectives
to the study of gene regulatory networks[92]. Centrality
score metrics, including Closeness Centrality (CC) and
Eigenvector  Centrality  (EC)[93],  are  used  to  the
experiment  of  single-cell  language  models.  The  CC
assesses the average distance of a gene node relative to
other gene nodes in the network. EC considers not only
the number of connections of a gene node but also the
importance of the other gene nodes that it is connected
to.  In  addition,  functional  enrichment  analysis[94] and
pathway  enrichment  analysis[95] are  employed  in
experimental  analysis.  Functional  enrichment  analysis
aims  to  identify  biological  functions  or  processes  that
are  significantly  enriched  in  a  set  of  genes.  Pathway
enrichment analysis is similar to functional enrichment
analysis  but  focuses  more  on  known  biochemical
pathways[96].  It  aims  to  deeply  understand  how  genes
function  through  synergistic  interactions  within
specific biological pathways.

The  DeepMAPS[34] uses  the  Steiner  Forest  Problem
(SFP)  to  identify  genes  contributing  significantly  to
cell  cluster  features  and  constructs  a  gene  correlation
network. It defines sets of genes regulated by the same
Transcription  Factor  (TF)  as  regulons  and  compares
regulon activities between cell clusters. Then, it selects
regulons  with  significantly  higher  activity  scores  as
cell-type-specific  regulons  and  constructs  Gene
Regulatory  Networks  (GRNs)  based  on  cell  cluster
regulons.  After  constructing  GRNs,  DeepMAPS
conducts  functional  enrichment  analysis.  Specifically,
it  employs  hypergeometric  tests  to  compare  the
intersection  of  GRN  results  with  regulons  in  the
database and evaluates  whether  the  predicted regulons
in  the  GRN  are  enriched  for  the  same  functions  or
pathways as known regulons. DeepMAPS is trained on
single-cell multi-omics datasets from the 10X database.
The  experiment  of  DeepMAPS  demonstrates  that  the
GRNs  exhibit  a  greater  number  of  distinct  TFs  and
cell-type-specific  regulons,  and  they  are  enriched  in
specific  functions  or  pathways.  In  addition,  scGPT[39]

demonstrates  high  interpretability  in  gene  regulatory
network  experiments.  Pre-training  enables  scGPT  to
emphasize  genes  with  intricate  relationships.  It
improves  the  interpretability  of  scGPT.  In  the  Human
Leukocyte  Antigen  (HLA)  dataset,  scGPT  forms  an
HLA gene network through zero-shot learning. On the
Immune  Human  dataset[73],  fine-tuned  scGPT

generates  CD  gene  networks  through  zero-shot
learning  and  visualization  of  the  gene  information.
scGPT  performs  pathway  enrichment  analysis  on  the
Reactome  database[70].  It  successfully  validates  the
extracted  gene  program  and  identifies  22  additional
pathways. These experiments demonstrate the ability of
scGPT to capture complex gene relationships. Through
pre-training  and  fine-tuning,  scGPT  achieves  stronger
generalization capabilities.

4.5　Perturbation responses

Single-cell  perturbation  prediction  experiments  aim  to
predict and analyze the biological responses of cells to
external  stimuli  or  changes  introduced  into  single
cells[97].  Mean  Squared  Error  (MSE)  and  Root  Mean
Squared  Error  (RMSE)  have  become  two  important
metrics  for  evaluating  the  performance  of  model  in
predicting  how  cells  respond  to  specific
perturbations[3].  MSE is  used  to  measure  the  accuracy
of  the  model  in  predicting the  response of  single  cells
to specific perturbations. A lower MSE value indicates
that  the predictions of  model  are more consistent  with
the actual observed values. RMSE is the square root of
MSE and provides  an error  measure  in  the  same units
as the original data. It directly reflects the magnitude of
the prediction error.

In  perturbation  responses  prediction  experiments,
scFoundation[38] is  combined  with  the  GEARS[98] to
construct  personalized  gene  co-expression  graphs  for
each  cell.  It  significantly  improves  the  accuracy  of
gene  perturbation  predictions.  It  is  evaluated  on  three
datasets,  including  the  Dixit  dataset[76],  the  Adamson
dataset[75], and the Norman dataset[77]. It obtains lower
MSE values. In addition, scGPT[39] uses the pre-trained
parameters  of  embedding  and  transformer  layers  to
initialize  fine-tuning.  The  fine-tuning  process  uses
genes  with  zero  and  non-zero  expression.  scGPT  is
compared  with  GEARS  and  CPA[99] on  the  Adamson
dataset  and  the  Norman  dataset.  It  accurately  predicts
the  expression  changes  of  the  top  20  Differentially
Expressed (DE) genes in the datasets. During the fine-
tuning  process,  CellPLM[41] initializes  other
components  except  the  decoder  with  pre-trained
weights.  CellPLM  is  compared  with  GEARS  and
scGen[100] on  the  Adamson  dataset  and  the  Norman
dataset.  It  conducts  two  types  of  experiments  (single-
gene perturbation and double-gene perturbation) on the
Norman  dataset  and  only  single-gene  perturbation  on
the  Adamson  dataset.  In  each  experiment,  CellPLM
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exhibites lower RMSE than GEARS and scGen.

5　Challenge and Prospect

In  the  field  of  single-cell  research,  transformers
contribute to a  deeper  understanding of  these vast  and
complex  datasets.  It  enhances  the  simulation  and
comprehension of cellular processes. In this section, we
discuss  the  challenges  encountered  by  transformers-
based  single-cell  models.  We  focus  primarily  on
limitations  in  the  transformer-based  single-cell
language  model,  including  handling  long  sequence
data,  overfitting  risks  in  pre-training,  and
computational  requirement  and  interpretability.  In
addition,  we  also  analyze  some  potential  future
research directions.

5.1　Sequence data processing

The  transformers-based  single-cell  language  models
have  strong  representational  capabilities  on  single-cell
sequence  data.  However,  single-cell  sequence  data
often contains excessively long sequences[101].  It  leads
to  an  exponential  increase  in  the  computational
complexity  of  these  models.  In  addition,  single-cell
data  with  long  sequences  may  contain  more  complex
gene  relationships.  Nevertheless,  the  self-attention
mechanism  of  the  transformers  tends  to  capture
dependencies  between  adjacent  positions  in  the
sequence. It may causes the model to ignore some key
gene  information.  scBERT[36] adopts  a  variant  of
transformers, called “Performer”, to solve the problem.
scBERT  uses  the  low-rank  attention  mechanism  of
Performer  to  avoid  over-focusing  on  dependencies
between  adjacent  positions.  When  dealing  with  sparse
DNA sequences, the attention mechanism of Performer
may  exhibit  better  robustness.  Although  Performer
achieves  good  results,  there  are  certain  challenges  in
terms  of  data  precision  and  sensitivity  to  model
parameters  due  to  the  low-rank  attention  mechanism.
In  addition,  the  effectiveness  of  Performer  is  not
always  superior  to  that  of  the  traditional  transformers
for  different  datasets  and  tasks.  However,  it  is
undeniable that using some variants of the transformers
has brought  new insights  to the research of  single-cell
language models.

5.2　Overfitting risks in pre-training

Although  transformers-based  single-cell  language
models  are  increasingly  inclined  to  adopt  pre-training
techniques,  the analysis  of  these pre-trained models in
terms  of  overfitting  issues  is  relatively  limited.  The

characteristic  of  single-cell  data  lies  in  its  diversity  of
types  and  different  types  of  single-cell  data  may  vary
significantly. It may lead to an imbalanced distribution
of pre-train samples, and potentially causing overfitting
on  smaller  datasets.  To  address  this  issue,  data
augmentation  techniques  can  be  introduced  into  the
pre-training.  Currently,  Generative  Adversarial
Networks (GAN) have shown promising results  in  the
field  of  single-cell  data  augmentation[102].  By  using
GAN  to  generate  synthetic  data  samples  that  are
similar to the original data, the diversity of the dataset
can  be  effectively  increased.  It  can  mitigate  the
overfitting  problems  caused  by  data  imbalance.  In
addition,  interpolating  and  extrapolating  between
original  single-cell  data  samples  can  also  be
considered.  By  using  methods,  such  as  linear
interpolation,  polynomial  interpolation,  or  deep
learning models, to generate new samples, the quantity
and  diversity  of  the  data  can  be  increased.  It  further
enhances  the  generalization  capability  and  robustness
of  models.  We  believe  that  incorporating  these
methods  into  the  pre-training  process  of  single-cell
language  models  may  help  address  the  issue  of
overfitting in the models.

5.3　Computing requirement

Currently,  transformers-based  single-cell  language
models  for  single-cell  multi-omics research are  still  in
their  early  stages.  Future  work  may  involve
incorporating more omics data in the pre-training phase
to  study  single-cell  multimodal  tasks.  However,  the
incorporation  of  omics  data  has  led  to  an  even  larger
scale  of  data.  It  causes  challenges  related  to
computational  costs.  Recently,  the  combination  of
recurrent neural networks and transformers has reduced
computational  costs  by  speeding  up  the  training  of
transformers[103]. This method could be considered as a
possibility  for  application  in  single-cell  language
models. In addition, the parallel computing capabilities
of  transformers  still  face  challenges.  In  the  self-
attention  mechanism,  the  attention  weights  for  each
position  need to  be  calculated  sequentially  and cannot
be  directly  parallelized.  When  processing  batch  data,
the  sequence  lengths  of  different  single-cell  samples
may  vary,  increasing  the  complexity  of  parallel
computing.  In  the  future,  solving  the  parallel
computing  capabilities  of  single-cell  language  models
may become increasingly critical.
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5.4　Interpretability

Transformers-based  single-cell  language  models  offer
significant advantages in terms of interpretability. They
are capable of assigning different gene weights during
the processing of sequence data to identify key features
in  the  representation  process.  In  single-cell  research,
the  capability  is  crucial  for  understanding  complex
biological  processes,  such  as  gene  expression,  protein
interactions,  and  gene  regulation[104].  In  addition,
single-cell  data  are  highly  complex  and  diverse.  Each
cell  potentially  exhibits  unique  gene  expression
pattern[105].  Through  the  self-attention  mechanism,
transformers  have  successfully  provided
interpretability  for  the  predictions  of  the  key  features.
This  helps  biologists  understand  how  models  assign
weights  to  different  genes  or  cells,  and  gain  insights
into  gene  expression  patterns.  Although  transformers-
based single-cell language models have achieved good
results,  these  models  still  employ a  black-box training
approach.  It  inevitably  affects  the  application  of
models  in  clinical  settings.  Therefore,  improving  the
interpretability of  single-cell  language models remains
a challenging research problem.

5.5　Validation analysis

The  single-cell  language  models  and  single-cell  large
language  models  mentioned  in  this  paper  have
demonstrated  promising  results  in  experiments.
Currently, some of these models have been subjected to
benchmark  experiments[106–108],  which  have  revealed

that  different  models  exhibit  varying  performance
across different tasks. These models have been proven
to have the capability to integrate representations from
diverse single-cell omics data. In particular, pre-trained
models  like  scGPT  have  shown  remarkable
performance  in  gene  function  prediction  tasks  and
achieve  good  results  even  without  fine-tuning.
However,  the  application  of  single-cell  language
models and single-cell large language models is still in
its  early  stages  and  their  generalizability  faces  certain
challenges.  In  addition,  comparing  with  some  of  the
latest methods, such as Sccross[109] and ctpredictor[110],
will also help to promote research progress. Therefore,
we provide an accessible link to the experimental code
of  the  single-cell  language  model,  please  refer  to
Table  2 for  details.  We  hope  these  resources  can
provide  some  assistance  to  researchers  who  are
interested in this field.

6　Conclusion

The  transformer-based  single-cell  language  model  has
shown promising results in single-cell data analysis. In
this  review,  we provide a  detailed overview of  single-
cell  language  models  and  single-cell  large  language
models. We summarize the methods of these models as
well  as  their  applications  in  downstream  tasks.  While
these models  may not  achieve optimal  performance in
certain  evaluation  metrics,  they  hold  potential
contributions  and  applications  in  single-cell  research.
They  open  new  possibilities  for  research  and

 

Table 2    Link to the code of the models.
Model Input data type Data repositories address

TransCluster scRNA-seq https://github.com/Danica123/TransCluster.git
scTransSort scRNA-seq https://github.com/jiaojiao-123/scTransSort

CIForm scRNA-seq https://github.com/zhanglab-wbgcas/CIForm
STGRNS scRNA-seq https://github.com/zhanglab-wbgcas/STGRNS
T-GEM scRNA-seq, transcriptomics (the pan-cancer RNA-Seq) https://github.com/TingheZhang/TGEM

PROTRAIT scATAC-seq https://github.com/ZhangLab312/PROTRAIT
scMVP scRNA-seq, scATAC-seq https://github.com/bm2-lab/scMVP

scMoFormer scRNA-seq, Proteomics https://github.com/OmicsML/scMoFormer
DeepMAPS scRNA-seq, scATAC-seq, CITE-seq https://github.com/OSU-BMBL/deepmaps

MarsGT scRNA-seq, scATAC-seq https://github.com/mtduan/marsgt
scBERT scRNA-seq https://github.com/TencentAILabHealthcare/scBERT

scFoundation scRNA-seq https://github.com/biomapresearch/scFoundation
scGPT scRNA-seq https://github.com/bowang-lab/scGPT

CellPLM scRNA-seq, spatial transcriptomics, Perturb-seq https://github.com/OmicsML/CellPLM
tGPT scRNA-seq https://github.com/deeplearningplus/tGPT

Cell2Sentenc scRNA-seq https://github.com/vandijklab/cell2sentence-ft
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applications in the field and present significant avenues
for  further  development.  We  think  that  the  potential
areas  for  improvement  may  include  refining  data
preprocessing  methods,  reducing  computational  costs,
enhancing  model  interpretability,  and  optimizing  the
transfer  learning  process.  In-depth  investigations  into
these directions will facilitate more effective utilization
of various types of single-cell data. This review aims to
provide  an  overview  of  single-cell  language  models
and hope promoting progress in the field of single-cell
research.
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