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ABSTRACT Efficiently detecting intrusions on a railway perimeter is crucial for ensuring the safety of
railway transportation. With the development of computer vision, researchers have been actively exploring
methods for detecting foreign object intrusion via image recognition technology. This article reviews
the background and importance of detecting railway perimeter intrusion, summarizes the limitations of
traditional detection methods, and emphasizes the potential of improving detection accuracy and efficiency
in image recognition with deep learning models. Further, it introduces the development of deep learning in
image recognition, focusing on the principles and progress of key technologies such as convolutional neural
networks (CNNs) and vision transformers (ViTs). In addition, the application status of semantic segmentation
and object detection algorithms based on deep learning in detecting railway perimeter intrusion is explored,
including the classification, principles, and performance of the algorithms in practical applications. Finally,
it highlights the primary challenges faced in railway perimeter intrusion detection and projects future research
directions to resolve these challenges, including multisource data fusion, large-scale dataset construction,
model compression, and end-to-end multitask learning networks. These studies support the accuracy and
real-time detection of railway perimeter intrusion, and provide technical guarantees for railway transportation
monitoring tasks.

INDEX TERMS Railway, semantic segmentation, object detection, foreign object intrusion, railway safety.

I. INTRODUCTION
The railway is a pivotal infrastructure that fulfills the
extensive requirements for passenger mobility and freight
transportation. With the continuous expansion of railway net-
works, railway perimeter intrusion has become amajor threat.
The railway perimeter [1] is the boundary of the railway line
area that needs to be physically or electronically protected
(Figure 1). Railway perimeter intrusion [2] involves the entry
of unauthorized individuals, animals, vehicles, or other for-
eign objects (such as falling rocks) into the railway perimeter
(Table 1). According to [3], more than half of railway-related
fatalities are due to such intrusions in countries such as the
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United States, Australia, Belgium, and Croatia. These intru-
sions not only cause significant train delays and operational
inefficiencies, but also result in substantial human casualties
and property damage. Therefore, railway perimeter intrusion
detection (RPID) is crucial for ensuring railway transporta-
tion safety and efficiency.

Themethods for RPID can be divided into contact and non-
contact approaches [4]. Table 2 summarizes the pros and cons
of each approach. The contact approaches rely on direct phys-
ical interaction between the sensor and an intruding object.
Popular techniques include electronic fences and vibrating
fiber optics installed on fences/walls along railways [5]. They
have a low probability of false positive rates; however, they
have a limited detection range and cannot determine the
size and type of incursions. Non-contact approaches mainly
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TABLE 1. Overview of railway intrusion types [1], [2].

TABLE 2. PROS/CONS of various railway intrusion detection methods [1].

FIGURE 1. Typical railway perimeter scenarios.

include video surveillance, radar, light detection and ranging
(LiDAR), and infrared barrier detection [6]. These methods
are characterized by massive amounts of data and extensive
coverage; however, data processing efficiency and detection
accuracy are key concerns in applications.

Images from video surveillance are widely utilized in
RPID, urban monitoring, and traffic monitoring because

of their excellent visibility and cost-effectiveness. How-
ever, traditional video processing methods, such as the
frame difference and optical flow methods, rely on frame-
by-frame analysis and manual intervention, making them
time-consuming. As the video data volume increases, there
is a growing demand for higher levels of automation in video
processing. Deep learning methods provide promising solu-
tions for learning patterns from diverse image datasets. The
trained models can automatically detect the locations and
types of intrusions in images. In recent years, deep learn-
ing methods have been applied in urban monitoring [7], [8]
and traffic monitoring scenarios [10], [11], [12]. Compared
with urban and traffic monitoring (Table 3), RPID involves
additional challenges in enhancing resilience under harsh
weather conditions, improving the detection ability of small
targets, and real-time processing capabilities. In response to
these challenges, studies have focused on improving deep
learning networks to RPID. However, a systematic review of
these research efforts remains limited. To address this gap,
this paper reviews the deep learning methods in RPID and
summarizes the challenges.
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TABLE 3. Comparisons among RPID, URBAN, and TRAFFIC monitoring systems.

The remainder of this paper is organized as follows:
Section II provides an overview of semantic segmentation
and object detection algorithms utilized in image processing.
Section II-B1 examines the applications of these algorithms
for RPID. Finally, Section III concludes the paper with a
summary and recommendations for further research.

II. CURRENT STATE OF DEEP LEARNING NETWORKS IN
IMAGE PROCESSING
This section introduces the development of deep learning
networks, and reviews semantic segmentation and object
detection networks. These methods are pivotal for the accu-
rate detection of railway perimeter intrusions.

A. THE BIRTH, DECLINE, AND RESURGENCE OF DEEP
LEARNING
Deep learning focuses on the autonomous extraction and
learning of complex data features. It employs multi-layered
neural network models to enhance classification, regression,
and clustering tasks. Originating in the 1940s [13], deep
learning models were initially designed to emulate the neural
system of the human brain via artificial neural networks [14].
With the progress of computer technology, the backpropaga-
tion algorithm [15] has facilitated distributed representations
of neural networks. However, by the mid-1990s, limited by
hardware, artificial neural networks were difficult to train and
performed ineffectively. Moreover, classic machine learning
algorithms, such as support vector machines [16], began
to take the lead owing to their short training time and
interpretability.

Deep learning was introduced in 2006. The deep belief net-
work [17] addresses the ‘‘vanishing gradient’’ issue through
pre-training and subsequent fine-tuning. Using its innovative

eight-layer convolutional neural network (CNN) architecture,
AlexNet [18] won the ImageNet Large-Scale Visual Recog-
nition Challenge. The classification accuracy and robustness
efficiency achieved by AlexNet were superior to those of
conventional techniques. AlexNet has marked the rise of deep
learning networks and has demonstrated its advantages in
various applications, such as intelligent transportation, facial
recognition, medical image analysis, and natural language
processing [19].

B. OVERVIEW OF CNNS AND VISION TRANSFORMER
1) CONVOLUTIONAL NEURAL NETWORK
A CNN is a classic architecture of image-based deep learn-
ing networks. It effectively captures detailed spatial features
and optimizes weight parameters through data training.
A standard CNN architecture (Figure 2) typically includes
convolutional layers, pooling layers, activation functions, and
fully connected layers. The convolutional layers extract local
features via a series of learnable filters. Feature maps are
generated by sliding each filter over the input image. Pooling
layers, such as max pooling, reduce the spatial dimensions of
feature maps. Activation functions such as ReLU allow the
learning of more complex features and address vanishing gra-
dient problems. The fully connected layers map the extracted
high-level features to the output, such as the target categories
in image classification tasks.

On the basis of the aforementioned CNN architecture,
several classic deep learning networks are summarized as
follows (Table 4):

• AlexNet [18]: This method achieved success in the Ima-
geNet competition by introducing deep hierarchies and
ReLU activation functions.
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TABLE 4. Summary of typical backbones based on CNN.

• VGGNet [21]: VGGNet simplifies the network archi-
tecture and enhances the representational power by
adopting uniform 3 × 3 convolutional kernels.

• InceptionNet [22]: By designing parallel convolutional
operations, this network strengthens the ability to learn
and capture multi-scale features.

• ResNet [23]: By designing residual connections,
it addresses the vanishing gradient issue during network
training, and allows a deep network architecture.

On the basis of these classic networks, current research has
focused on designing deeper/wider structures [24], attention
mechanisms [25], refined activation functions [26], and reg-
ularization algorithms [27]. Additionally, methods such as
model compression [28], knowledge distillation [29], and
pruning [30] have been explored to increase training effi-
ciency and model applicability.

The training process of the CNNbasically includes forward
propagation, loss-function calculation, backpropagation, and

parameter updating. In forward propagation, the input image
is transformed to feature maps through convolutional layers,
pooling layers, and activation functions. The loss function
evaluates the discrepancy between the network’s output and
the ground truth. The backpropagation operation calculates
the gradients of each parameter. Finally, the network param-
eters are updated by optimizing the minimum of the loss
function.

However, CNNs also have limitations, such as high com-
putational resource requirements and sensitivity to the input
size. Thus, to address these issues, lightweight CNN archi-
tectures, such as MobileNet [31] and SqueezeNet [32],
are proposed to reduce the model size and computational
demands.

2) VISION TRANSFORMER
The transformer model, which was originally designed for
natural language processing, uses a self-attention mechanism
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FIGURE 2. Visualization of convolution [20].

that effectively handles image data. This mechanism enables
the model to establish connections directly between differ-
ent positions in a sequence. By dividing the image into
16 × 16 small patches, the popular Vision Transformer
(ViT) [33] uses a self-attention mechanism and eliminates
the network’s reliance on local features. Then, a series of
improved networks, such as the Swin-transformer [34] and
CSwin-transformer [35], have subsequently emerged. They
incorporate mechanisms of local attention, hybrid local-
global features, and shifted windows between consecutive
self-attention layers. Thus, they enhance the learning ability
of long-range dependencies while retaining local detail infor-
mation. In total, both CNNs and ViTs are important structures
in semantic segmentation and object detection.

C. DEEP LEARNING-BASED SEMANTIC SEGMENTATION
ALGORITHMS
Semantic segmentation assigns category labels to each
pixel in an image. Classic semantic segmentation methods,
such as threshold-based segmentation [36] and edge detec-
tion [37], require human intervention. These methods are
more scenario-specific and lack robustness. Deep learning
networks of semantic segmentation networks can be grouped
as follows (Table 5): encoder-decoder networks, dilated
convolutions, bilateral structures, and transformer-based seg-
mentation networks.

1) ENCODER-DECODER BASED MODEL
By replacing the fully connected layers in a classic CNN
with convolutional layers, an FCN allows the input of images
of any size and generates corresponding dense pixel-level

TABLE 5. Summary of semantic segmentation networks with different
structures.

predictions [38]. It provides a feasible solution for end-
to-end training in semantic segmentation tasks. Following
this development, a series of FCN-based networks, such as
U-net [39] and SegNet [40], have been proposed to
improve the capabilities of segmentation. This type of struc-
ture achieves pixel-level predictions by extracting features
through the encoder component. The features are then
mapped back to the size of the raw image (Figure 3).

FIGURE 3. The structure of U-net [39].

The encoder-decoder structure is characterized by its
straightforward design. It facilitates flexible adjustments and
expansions to accommodate various tasks in both the encoder
and decoder stages. However, the decoder component incurs
a computational load because of the consecutive transposed
convolutions in the up-sampling stage. This limits its appli-
cability in scenarios that require real-time segmentation.

2) DEEPLAB SERIES OF NETWORKS BASED ON DILATED
CONVOLUTIONS
The DeepLab series proposed by Google is a semantic seg-
mentation method based on deep convolutional networks.
The original DeepLab [48] introduced a dilated convo-
lution [49] to replace traditional convolution operations.
By incorporating a dilation rate into the standard convolution
operation, the dilated convolution broadens the receptive field
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of the kernel without a proportional increase in the number of
parameters. Figure 4 shows the receptive field for the dilated
convolution at S = 1, 2, and 3 dilation rates. DeepLabV2
[50] subsequently introduced Conditional Random Fields to
refine segmentation boundaries. DeepLabV3 [51] adopted
multi-scale feature fusion, and DeepLabV3+ [52] optimized
the Xception backbone network.

FIGURE 4. Visual representation of the receptive field for dilated
convolution at S = 1, 2, and 3 dilation rates [49].

The training time of the DeepLab series is often longer
because of the substantial number of learnable parame-
ters. Although the dilated convolutions effectively expand
the receptive fields, they may lead to information loss
within local areas. Furthermore, inappropriate selection of
the dilation rate may induce the checkerboard phenomenon.
In applications, the optimal performance of the networks
requires more time and fine-tuning of the hyperparameters.

3) REAL-TIME SEMANTIC SEGMENTATION NETWORK WITH
A DUAL-BRANCH STRUCTURE
Scholars have focused on lightweight, real-time semantic
segmentation models. In 2016, ENet [53] was considered
a milestone in real-time semantic segmentation. It uses
dilated convolutions, lightweight encoders, and reduced
down-sampling. However, ENet encounters reduced channel
numbers and limited input sizes.

To address the issues of significant loss of spatial infor-
mation in E-Net, BiSeNetV1 [54] uses a dual-branch
structure to extract semantic and detailed features indi-
vidually. It effectively captures spatial information while
maintaining real-time performance (Figure 5). A Learning
to Down-Sample module from Fast-SCNN [55] extracted
shallow features, and then the features were shared between
semantic and detail branches. On the basis of BiSeNetV1,
STDC [56], BiSeNetV2 [57], and DDRNet [58] were devel-
oped to optimize the shallow layers of the networks and
enhance the fusion effect. Because the direct fusion of dif-
ferent feature maps may lead to imbalanced information
in dual-branch structures, PIDNet [59] uses a three-branch
structure to capture and fuse features at different levels.

Overall, the dual-branch structure effectively balances the
real-time performance and accuracy of semantic segmen-
tation. It is suitable for scenarios that demand immediate
responses. However, it is still a challenge to guarantee an
optimal balance between the performance and efficiency of
the network in practical applications.

FIGURE 5. Structure of BiSeNetV1 network [54].

4) TRANSFORMER BASED SEGMENTATION
On the basis of a transformer structure, ViT [60] pro-
poses a self-attention mechanism to capture global contextual
information in images. Using the transformer’s global self-
attention mechanism, SETR [61] and Segmenter [62] also
successfully captured global contextual information from
serialized images. They achieved satisfactory results on the
ADE20K, Pascal Context, and Cityscapes datasets. However,
these models face challenges in resource-constrained devices
owing to the large number of parameters.

With the global modeling capability of transformers,
MobileViT [63], [64] combines the local receptive field of
CNNs on semantic segmentation. Other lightweight mod-
els include Topformer [65], Seaformer [66], and DeMT
[67]. Topformer achieves high efficiency and immediate
response by adopting a global self-attention mechanism and
lightweight decoder.

Future research should focus on compressing the model
sizes, enhancing the acceleration efficiency of the hardware,
and developing more efficient attention mechanisms. More-
over, these lightweight models should be expanded to more
tasks and practical applications.

D. DEEP LEARNING-BASED OBJECT DETECTION
ALGORITHMS
Object detection involves identifying and locating objects
in one or more images. Current deep learning-based object
detection networks can be divided into classification-
based two-stage networks and regression-based one-stage
networks.

1) TWO-STAGE OBJECT DETECTION NETWORKS
The R-CNN series (Figure 6) is a typical two-stage algorithm
that divides the detection problem into two phases: region
proposal and candidate region classification. The R-CNN
algorithm proposed by Girshick et al. [68] generates object
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FIGURE 6. Development history of the R-CNN series.

candidate regions on the basis of a selective search method.
It extracts the image features from each region via a CNN.
Subsequently, it distinguishes the target classes and finally
corrects the location of the detection frame with a regressor.
Although the R-CNN algorithm has considerably improved
the accuracy of networks, many overlapping candidate frames
and redundant features obviously reduce the computational
efficiency.

In the same year, a spatial pyramid pooling network
(SPPNet) proposed by He et al. [69] avoids substantial redun-
dant computations. It requires only a single feature-mapping
computation for the entire image. Without loss of detec-
tion accuracy, the detection speed is more than 100 times
faster than that of the R-CNN. By performing classification
and regression simultaneously, the Fast-RCNN proposed by
Girshick et al. [70] integrates the one-time feature extraction
of SPPNet and changes the classifier and regressor structure
of R-CNN in parallel. However, the selective search method,
which generates candidate regions, limits the efficiency of
object detection. Therefore, the following question arises:
‘‘Can a CNN model be used to replace the selective search
method for generating region proposals?’’ Faster R-CNN [71]
subsequently addressed this issue. In Faster R-CNN, a region
proposal network (RPN) based on a CNN is applied to gener-
ate high-quality detection frames. This design improves the
detection speed and enables end-to-end implementation of
object detection for the first time.

Two-stage object detection networks achieve high accu-
racy by extracting candidate regions, and subsequently
classifying and regressing the bounding boxes for each
region. However, they struggle to meet the requirements
of real-time and end-to-end object detection. Consequently,
these networks are preferred in applications that focus on
high accuracy, not real-time performance. This means that
two-stage networks are often not optimal for intrusion detec-
tion of railway perimeters.

2) ONE-STAGE OBJECT DETECTION NETWORKS
Unlike the two-stage algorithm, which requires regional pro-
posals, the one-stage algorithm can directly predict the posi-
tion, category, and confidence of a target in a single phase.
The high efficiency You Only Look Once (YOLO) [72]
series are representative networks, because they transform the

detection task into a regression problem. YOLO divides the
image into a grid, and replaces the extraction of the candidate
region. It predicts the bounding boxes and categories for each
grid by applying a neural network to the entire image. Finally,
YOLO achieves end-to-end training by simultaneously pre-
dicting the bounding boxes, target confidence, and categories
for all the grids.

To data, nine versions of the YOLO series (Table 6 ) have
been released, and each version has contributed to refining the
network architecture and optimizing the loss functions. They
have addressed issues such as the multi-scale problem, imbal-
ance of samples, and poor detection results for small objects.
Thus, the YOLO series detects objects more accurately and
efficiently. For example, multi-scale detection and the use of
more anchor boxes contribute to better adaptation to various
object shapes and sizes. It provides a more reliable solution
for real-time object detection.

In addition to the YOLO series, single shot multibox detec-
tor (SSD ) [73], RetinaNet [74], EfficientDet [75], Center-
Net [76], CornerNet [77], and the Transformer-based DETR
(Detection Transformer) [78] are also popular one-stage
object detection networks (Table 6).

III. DEEP LEARNING NETWORKS FOR INTRUSION
DETECTING IN RAILWAY PERIMETERs FROM IMAGES
With the development of image-processing methods, RPID
can be divided into two independent tasks: track area seg-
mentation and foreign object detection.Multiple task learning
methods have been subsequently proposed to perform object
detection and track area segmentation simultaneously via a
shared feature extraction network [79], [80]. Figure 7 illus-
trates the two intrusion detection methods in the railway
perimeter, where the left image shows the two tasks, and the
right image depicts the process of multi-task learning.

A. SEMANTIC SEGMENTATION-BASED RAILWAY TRACK
AREA SEGMENTATION
1) COMMONLY USED RAILWAY TRACK SEMANTIC
SEGMENTATION NETWORKS
Generally, images captured by cameras on railways have a
large field depth and a broad area. They often include targets
outside the railway perimeter, such as pedestrians, vehicles,
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TABLE 6. Summary of popular one-stage object detection networks.

farmlands, and buildings. Thus, segmenting the track area as a
region of interest (ROI) is crucial in detecting foreign objects.

Research on railway segmentation employs classical image
processing techniques and deep learning-based methods.
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FIGURE 7. Basic intrusion detection processes on railway tracks, where the left image shows the two tasks of track area
segmentation and foreign object detection, and the multi-task learning detection process is depicted on the right image.

Classical image processing techniques such as Canny edge
detection [81], Sobel edge detection [82], morphological
operations [83], and threshold-based segmentation meth-
ods [84] are applied to extract the edges of railway tracks.
These methods are effective but are more dependent on
the choice of parameters, and may result in low efficiency.
Furthermore, their performance may be affected by environ-
mental factors such as illumination, weather conditions, and
background.

Deep learning-based approaches exhibit distinct advan-
tages in terms of automatic feature extraction. They
demonstrate high accuracy and robustness in railway track
segmentation. Through dilated cascade connections and
polygon-fitting optimization, Wang et al. [85] proposed
an efficient railway area detection method based on a
CNN. It achieves high-precision on railway area iden-
tification under various lighting conditions and complex
environments. On the basis of the DeepLab architecture,
DFNet [86] achieves a high intersection-over-union (IoU)
in a self-built dataset but with a relatively lower frame per
second (FPS). RFODLab [87] introduces a channel attention
mechanism and optimized loss function on the basis of the
DeepLabV3+. This network effectively enhances the pre-
cision and recall of foreign object detection on high-speed
railway tracks. However, the size of the network is also
large. For similar references, refer to DFA-UNet [88] and
Mask-RCNN [89]. Weng et al. [90] introduced an edge detec-
tion module and attention mechanism based on DLinkNet
with high accuracy. However, the edge detection module
increases the number of parameters and the computation time.
This limits its application to vehicle-mounted or roadside
equipment.

In total, despite the high accuracy of these networks,
they often have large parameters and long computation
times. Moreover, the processing ability of hardware is often
limited. Consequently, lightweight segmentation networks,
such as ERTNet [91] with an encoder-decoder structure and
RailSegViTNet [92] based on ViT, have been developed
to extract railway track areas. ERTNet achieves a balance
between segmentation accuracy and computational efficiency
with only 0.5M parameters and 0.92G FLOPs for floating-
point operations. RailSegViTNet integrates lightweight bot-
tleneck blocks, separable self-attention mechanisms, and
feature aggregation. It achieves an average IoU of 91.43%,
with 2.01G FLOPs and a parameter of 1.4 M. LRseg [93]
achieved 18 FPS on a Jetson TX2 and 94 FPS on a computer
equipped with an Intel Core i9-12900 CPU. Considering the
balance between real-time performance and accuracy, LRseg
is more suitable for onboard equipment.

Recent research has focused on reducing the model param-
eters and computational loads to balance time efficiency and
detection accuracy. They provide solutions for limited com-
putational resources without compromising segmentation
accuracy. Future research should use hardware acceleration
technology and explore multi-source data fusion methods to
overcome the adverse effects of varying lighting and weather
conditions.

2) SEMANTIC SEGMENTATION DATASET FOR RAILWAY
The success of deep learning relies on good-performance
networks and big data. To the best of the authors’ knowl-
edge, the public railway scenario datasets currently avail-
able are Railsem19 and MRSI. Railsem19, constructed by
Zendel et al. [94] in 2019, consists of 8500 images of railway
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scenes from different cities. The MRSI dataset [95] is col-
lected from various sensors installed on locomotives. A total
of 27,000 images of freight and subway tracks are recorded
from track scenes under different lighting and weather condi-
tions. Using the Railsem19 dataset, Table 8 shows the mean
IoU (mIoU), parameters, and FLOPs of mainstream semantic
segmentation networks.

TABLE 7. Comparisons of mainstream semantic segmentation models
using the railsem19 dataset [93].

In addition to the two public datasets, a railway simula-
tion framework namedTrainSim [96] automatically generates
realistic railway scenarios and produces labeled datasets from
simulated sensors such as LiDAR and cameras. This frame-
work is effective for data expansion. It provides effective
testing and training data for RPIDs.

Therefore, under the supervised learning paradigm, seman-
tic segmentation networks require a large amount of labeled
data for training. Alleviating the reliance on labeled data or
making full use of unlabeled data is important to alleviate data
scarcity and high annotation costs. Future research should
explore the application of few-shot, weakly supervised, and
self-supervised learning algorithms in track segmentation
scenarios.

B. OBJECT DETECTION-BASED RAILWAY TRACK
INTRUSION DETECTION METHOD
1) COMMONLY USED NETWORKS FOR OBJECT DETECTION
OF RAILWAY TRACK INTRUSIONS
With the development of computer vision, visual detec-
tion has been popularly applied to detect railway obstacles.
A multi-camera parallel monitoring system identifies the
entrance of a person or obstacle into the designated warning
area [97]. However, this system is sensitive to environmental
changes, leading to a relatively high rate of false posi-
tives. Moreover, the selection of a threshold is crucial to
guarantee the accuracy of the algorithm. Uribe et al. [98]
analyzed the trajectories of objects in consecutive frames
and tracked potential obstacles via an optical flow method.

Sriwardene et al. [99] also used the optical flow method
to detect obstacles and launch warnings to drivers when
obstacles invade dangerous areas. However, the optical flow
method has high computational requirements and may not
satisfy real-time demands. Using a background subtraction
algorithm, Li et al. [100] extracted intrusion targets from
foreground images. However, the background subtraction
algorithm is more suitable for detecting moving objects.
These methods are generally limited in their ability to extract
image features adaptively in complex railway environments.

With respect to the two-stage deep learning networks,
He et al. [101] introduced a new up-sampling parallel struc-
ture and context extraction module based on an R-CNN. The
network is trained through transfer learning to detect foreign
objects on railway tracks. The accuracy of the improved
R-CNN is achieved with a score of 90.6%, and it is 3.5%
higher than that of the R-CNN. However, the detection speed
was only 11 FPS. As discussed in Subsection II.D, two-
stage object detection networks struggle to satisfy real-time
processing requirements. Therefore, one-stage object detec-
tion networks such as SSD and YOLO are often selected as
optimal networks.

On the basis of SSD, Xu et al. [102] replaced the back-
bone network with ResNet, and rapidly detected railway
intruders with residual and feature fusion modules. Cong and
Li [103] proposed an obstacle-detection network based on
YOLOv3. This network demonstrated effectiveness in exper-
iments with various scenarios and complex environments.
However, in early studies, how to balance accuracy and speed
was challenging, and how to guarantee the detection precision
of small objects was insufficient in complex environments.
To optimize the network, a lightweight feature extraction
and adaptive feature fusion network, SEF-Net [104], is pro-
posed to integrate image and primitive features. This network
achieves good performance on detecting small targets with
high efficiency. A RailDet network [105] was use to resolve
the false positives in foreign object detection with high
speed computation. Qin et al. [106] proposed an improved
RetinaNet algorithm for efficient obstacle detection. The
algorithm uses focal and global knowledge distillation strate-
gies [107]. It enhances feature extraction and modeling
capabilities without increasing the computational burden of
deployment. It also addresses the difficulty of locating small
obstacles through side-aware boundary localization [108].
Through experimental testing, RFA-Net improved the detec-
tion accuracy of small obstacles by 18.6%. It achieves a
balance between accuracy and speed, with a detection accu-
racy of 92.7%, and a mean average precision (mAP) at an
inference speed of 40.4 FPS. Table 8 presents comparisons
of mainstream object detection algorithms on a self-built
railway dataset. The mAP and FPS are selected as metrics
to evaluate the performance of networks.

In summary, one-stage object detection networks, such as
the YOLO series, generally meet real-time requirements. For
the detection of railway track intrusions, most researchers are
focused on increasing the detection accuracy for small targets.
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In applications, low light and adverse weather conditions
severely affect image quality. Similar to tracking segmen-
tation tasks, detection from all-weather real-time images is
a challenge. Therefore, integrating multi-source sensor data
such as visible light images, infrared images, and LiDAR
point clouds is a major topic for detecting foreign intrusions
on railways.

TABLE 8. Comparisons among object detection networks [104].

2) OBJECT DETECTION DATASET FOR RAILWAY INTRUSION
The training samples of railway perimeter intrusion are
low-probability events. The solutions for obtaining samples
typically include simulating intrusion behaviors, creating
synthetic datasets, and using transfer learning to publicly
available datasets.

Guan et al. [109] obtained video sequences from six rail-
way sections. They set up cameras along tracks frommultiple
shooting positions to capture the perspective-induced varia-
tions in obstacle sizes in the same scene. The experiments
were subsequently performed to simulate different behaviors
of individuals and groups crossing and staying on the tracks.
Vehicle intrusion events were also captured at level crossings.
The COCO dataset and selected pedestrians, vehicles, and
animals are introduced as intrusion objects for training [105].
The test dataset from railway surveillance videos was com-
posed of a total duration of approximately 30 mins and an
image resolution of 1280×720. The surveillance videos con-
tained 3,030 frames with simulated pedestrian intrusion on
railway power outages. The videos included different weather
conditions: sunny, cloudy, foggy, and snowy.

With respect to railway perimeter intrusion, potential
intruders are diverse and random. Small or zero intruder
samples, such as landslides, mudslides, and falling rocks on
track lines, need to be constructed to support sufficient feature
learning of networks.

C. MULTI-TASK LEARNING FOR RAILWAY INTRUSION
DETECTION
The accuracy and real-time performance of foreign object
detection and track area segmentation tasks have improved,

however, two shortcomings exist in both tasks: (1) The pre-
processing and inference of the two kinds of networks often
consume considerable computational resources and time.
(2) The features extracted by individual tasks are not fully
shared. Therefore, multi-task learning has been investigated
to rapidly detect the intrusion of foreign objects on railway
tracks in an end-to-end manner.

1) Emulti-task learning
Multi-task learning performs well in terms of computational
efficiency by sharing an encoder to learn the feature represen-
tations of the input data [79], [80], [110], [111]. It has become
a paradigm that leverages information from multiple related
tasks. Specifically, the encoder transforms the input data into
a low-dimensional representation, and captures important
data features. These features are shared by multiple decoders,
eliminating the need for redundant feature extraction. Each
decoder is responsible for a task, such as image classification,
object detection, or semantic segmentation. By jointly train-
ing multiple decoder networks, the model simultaneously
learns multiple tasks and optimizes the loss function. The
multi-tasking learning approach enhances the generalization
ability of the model.

2) application of multi-task learning in railway foreign
object intrusion detection
For autonomous driving, Wu et al. [112] proposed a
panoramic driving perception network called YOLOP. It uses
a parallel multi-task learning network capable of perform-
ing three detection tasks simultaneously: detecting traffic
objects, detecting drivable areas, and segmenting traffic lanes.
Song et al. [113] combined semantic segmentation and depth
estimation tasks to achieve real-time detection of obsta-
cles in autonomous driving. Inspired by autonomous driving
applications, Pan et al. [79] and Pang et al. [80] designed
multi-task intrusion detection models for track area seg-
mentation and foreign object detection in railway scenarios.
Figure 8 illustrates the encoder-decoder architecture of multi-
task learning for detecting foreign objects on tracks. The
feature-sharing encoder is composed of a backbone and a
neck network. It extracts robust and universal features from
an input image. The backbone network is designed on the
basis of the enhanced CSPResStage. It incorporates an effec-
tive squeeze-excitationmodule and a dilated convolution. The
neck network consists of a feature pyramid network (FPN)
and a path aggregation network (PAN), and it effectively fuses
multiscale features from the backbone module. The decoder
is divided into two parts: one for foreign object detection and
the other for track area segmentation. Three detection heads
in the decoder stage learn multi-level features from the neck
network and predict the sizes of foreign objects with large,
medium, and small sizes. The segmentation decoder restores
the low-resolution feature map to raw image sizes and obtains
the masks of the track areas.

The backbone network of DSORnet [114], similar to
YOLOv5s, integrates the focus, SPP, and BottlenCSP
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TABLE 9. Summary of segmentation and detection networks for RPID.

FIGURE 8. Architecture of multi-task learning for detecting railway
foreign objects [80].

modules. It also uses an FPN to aggregate feature layers from
the backbone network. The branch of semantic segmenta-
tion applies the lane segmentation head from the YOLOP
network, whereas the branch of object detection adopts the

decoding head of YOLOv5s. Experiments conducted on sta-
tion throat areas confirmed that multi-task learning offers
superior efficiency and accuracy in segmenting track areas
and detecting foreign objects. However, multi-task learning
faces the challenges of label annotation and complex network
structures. More specifically, multi-task learning requires
fine-grained annotation labels of locations and categories of
foreign objects, and detailed segmentation information of
track areas. However, the design and optimization of network
structures are also limited in sharing features effectively,
resolving potential conflicts in optimization, and balancing
the requirements of different tasks. Therefore, designing
an efficient network architecture is a major challenge that
can fully utilize the advantages of shared representations
and overcome interference among multiple tasks. Intelli-
gent upgrades of annotation tools and the development of
deeper optimization strategies are expected to address this
challenge.
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IV. CONCLUSION AND FUTURE WORK
Investigating efficient, high-precision, and real-time foreign
object intrusion detection methods is crucial for ensuring
train safety under various environmental conditions. Deep
learning-based image recognition models effectively increase
the accuracy and efficiency of intrusion detection while
reducing labor costs. In recent years, deep learning-based
semantic segmentation and object detection algorithms have
provided robust technical support for detecting foreign
objects on railways (Table 9).
Beginning with the development of deep learning, the

advantages of CNNs and ViT in image processing are
introduced. Deep learning-based semantic segmentation and
object detection networks are summarized because they are
the foundation for detecting foreign objects and segmenting
track areas. The popular deep learning networks for RPID
are categorized into three groups: semantic segmentation of
railway track areas, detection of foreign objects, and multi-
task learning-based detection of foreign objects. The main
conclusions are as follows:

(1) Semantic segmentation based on deep learning net-
works achieves precise delineation of the track areas.
Currently, the track-area related segmentation algorithms
focus on reducing the number of parameters and compu-
tational loads without losing accuracy. However, semantic
segmentation tasks for railway tracks face challenges such
as data scarcity and the high cost of pixel-level annotation.
Future research should explore strategies such as few-shot,
semi-supervised, and self-supervised learning for track seg-
mentation scenarios.

(2) Deep learning-based object detection networks have
achieved rapid and accurate detection results for foreign
objects of various types and geometric sizes. The detection of
small targets is certainly improved. However, low-light condi-
tions and adverse weather severely affect image quality. The
integration of multi-source sensor data, such as visible-light
image data, infrared image data, and LiDAR point clouds,
should be considered when detecting foreign objects on rail-
way tracks.

(3) Multi-task learning frameworks provide new solu-
tions for detecting foreign objects. Sharing features extracted
by the network enhances the model’s generalization per-
formance and effectively reduces computational costs. This
enables the simultaneous processing of track area segmenta-
tion and foreign object detection. However, the applications
of multi-task learning are lacking on railways. Balancing
the optimization weights and maintaining learning efficiency
is the main issue in cases of limited labeling samples on
different tasks.

In summary, the detection and segmentation of deep
learning-based railway perimeter intrusions have developed
rapidly. Future work is needed in terms of generalizability,
acceleration of the inference process, and adaptability to
varying environments. Leveraging weakly supervised and
unsupervised learning methods can also reduce the reliance
on high-quality annotations. Investigating multi-source data

fusion and image denoising may solve the challenges of
low-light and adverse weather conditions. Further research
should also investigate how to address zero false negatives
and low false positives when detecting foreign objects in
railway scenarios.
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