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ABSTRACT Micro-expressions refer to brief, subtle facial movements often concealing genuine human
emotions. However, the advancement of Micro-Expression Recognition (MER) is hindered by the low
frame rates of frame-based cameras. Although the successor event camera has a high frame rate, there are
currently difficulties in obtaining and unstable performance issues. Drawing inspiration from the operational
principles of event camera, we introduces two event features. Beyond spatial information, these features
encode temporal and polarity information of event. Following local normalization, we employ the temporal
polar pixel-wise interaction module to extract local feature. Additionally, we construct a temporal polar
dynamic network, merging local feature with dense global optical flow to map deeper features. Experimental
results demonstrate the superiority of the proposed method across multiple datasets compared to state-
of-the-art approaches. This work enriches the encoding of event features, enhancing their performance in
micro-expression recognition tasks and contributing to the future proliferation of event camera technology.

INDEX TERMS Event feature, micro-expression, polarity, temporal information.

I. INTRODUCTION
In recent years, the realm of human face analysis, specifically
within the domain of facial expression recognition with
a focal point on micro-expressions, has garnered substan-
tial attention. Micro-expressions denote fleeting, nuanced
facial movements that authentically convey an individual’s
emotions, often concealed in high-risk situations. The
potential applications of micro-expressions span criminal
investigations, clinical diagnoses, and business negotiations,
underscoring the pivotal importance of unveiling concealed
emotions.

Nevertheless, the precise detection of micro-expressions
faces challenges stemming from a deficiency in diverse
datasets, potentially leading to overfitting. The construction
of models that strike a balance between recognition accuracy
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and computational efficiency poses an additional obsta-
cle in this field. Initially, researchers relied on manual
feature engineering and traditional machine learning for
micro-expression recognition tasks. The subsequent integra-
tion of deep learning marked a noteworthy advancement.
However, the intricate task of constructing models capable
of extracting distinctive features persists.

Historically, datasets were amassed using conventional
frame-based cameras, often capturing restricted information
due to their low frame rates. In contrast, event-based cameras
emerge as a promising solution. These cameras generate
pixel-level events when intensity changes surpass specified
thresholds, resulting in ultra-high frame rates, minimal
latency, and a wide dynamic range. This renders them
well-suited for capturingmicro-expression data. Nonetheless,
the domain of event-based cameras is still in its early
stages and grapples with diverse technical challenges that
necessitate further exploration, including high cost, poor
stability, and difficulty in obtaining.
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Motivated by the underlying principles of event-based
cameras, we have presented a Global-Local Event Feature
Fusion Network (GLEFFN) for MER task [10]. This work
marks the first successful attempt to solve the MER task from
an event feature perspective. However, both temporal and
polarity information were deprecated, which play important
role in MER task [39], thus restricting the performance of the
model. In addition, this work did not fully integrate global
and local features, which can further optimize the strategy of
feature fusion.

To address the aforementioned challenges, we introduced
the Temporal-Polar Dynamic Network (TePaDi). The model
adopted the global-local design philosophy of GLEFFN and
continued to utilize Optical Flow (OF) and a global feature
computationmodule for global feature computation. For local
information features, we proposed two novel event features,
encoding temporal and polarity information, and designed
the Temporal Polar Pixel-wise Interaction module (TPPI)
for local feature fusion. Finally, global-local feature fusion
was performed to output recognition results. Our primary
contributions are as follows:

i) We introduce two event features, which encode temporal
and polarity information of event together with spatial
information, contributing to the precision of the MER task.

ii) We propose a new designed global-local feature
fusion network, named TePaDi, which enhances the feature
interaction efficiency and effectiveness.

iii) Our approach showcases remarkable performance
across a variety of datasets, with experiments emphasizing
the capability of the event feature to effectively capture rapid
movements.

II. RELATED WORKS
In the ever-evolving landscape of micro-expression recogni-
tion, this comprehensive examination delves into a myriad of
methodologies, guided by a nuanced understanding of diverse
approaches and the datasets they engage. Over the recent
temporal interval, a multitude of empirical investigations
has unfolded strategically, aiming to address potential biases
within individual datasets. A fascinating journey that initially
revolved around manually crafted features has gradually
transitioned into the intricate realm of deep learning,
unearthing latent insights. This evolutionary trajectory has
culminated in a discernible shift towards the investigation of
composite datasets, heralding a paradigmatic advancement in
current research methodologies.

A. HAND-CRAFTED FEATURES
The pivotal role of manually crafted features unfolds as a
compelling narrative in recent endeavors, showcasing their
resilience and efficacy in extracting nuanced information
from datasets of modest proportions. Shreve et al. [29]
innovatively employed the central difference method to
dense optical flow fields, revealing strain magnitude for
subsequent deployment in micro-expression recognition.
A symphony of methods, including LBP-TOP [35], extended

Local Binary Patterns to three orthogonal planes, achieving
commendable success in deciphering spontaneous facial
micro-expressions. Wang et al. [30] elevated LBP-TOP by
introducing intersection points, sculpting a more compact
and lightweight representation. This symphony continued
with Huang et al. [13], fashioning Local Quantized Patterns
into CLQP, a mosaic of sign-based, magnitude-based, and
orientation-based distinctions. Chavali et al. [6] orchestrated
a harmonious blend, combining Histogram of Oriented Gra-
dient with Eulerian video magnification for micro-expression
recognition, yielding promising outcomes. Temporally and
spatially, Huang et al. [12] crafted an opus, extracting local
binary pattern information, embracing integral projection
technology. Despite their tenacity, thesemanually crafted fea-
tures encounter challenges in plumbing the profound depths
of information, constraining their evolutionary journey.

B. LEARNING-BASED STRATEGIES
The crescendo of deep learning, harmonizing with the
availability of expansive datasets, has ushered in an era
of learning-based feature extraction techniques in micro-
expression recognition. Kim et al. [17] orchestrated amelodic
convergence, employing Convolutional Neural Networks
(CNNs) to weave spatial tales, entwined with the rhythmic
beats of a Long Short-Term Memory (LSTM) recurrent
neural network for temporal nuances. Khor et al. [16]
conducted a dual-stream symphony, fusing convolutional
features into a harmonious representation. Li et al. [19]
unveiled a spatial-temporal composition, sculpting a 3D
neural network to navigate the micro-expression recognition
task. Zhi et al. [37] composed a sonnet, introducing
supervised contrastive learning as the key to unlocking
representation intricacies in micro-expressions, painting a
canvas of effectiveness through competitive results.

While learning-based methods dance to the rhythm of
data dependency, the existing repertoire of datasets often
falls short for the grandeur of deep learning performances.
In response, researchers have orchestrated a concerto, fusing
manually crafted features with learning-based techniques.
Chan et al. [5] curated a performance, leveraging the
synergy of both realms—manually crafted features and deep
networks—in the PCANet for micro-expression recognition,
a crescendo that echoed promises.

C. COMPOSITED DATASET ANALYSIS
The inception of composite datasets emerges as an enthralling
chapter, a coveted elixir sought by researchers to transcend
the confines inherent in individual datasets. These datasets,
akin to alchemists’ concoctions, proffer a dual potion:
expediting model training while fortifying defenses against
the seductive whispers of overfitting. Woven from samples
spanning diverse races and ages, their tapestry breathes
vitality into dataset diversity, giving birth to the phenomenon
of cross-dataset validation—an acid test for the wings of
model transferability.
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The epic of deep networks in micro-expression recognition
draws inspiration from the realm of composite datasets.
Liu et al. [23] painted an optical masterpiece, employing
part-based average pooling to distill discriminative repre-
sentation, clinching a podium finish in the 2nd Micro-
Expression Grand Challenge. Xia et al. [31] composed a
symphony, introducing a recurrent convolutional network
(RCN) adorned with parameter-free modules—a ballet of
wide expansion, shortcut connection, and attention units—
garnering applause on the MEGC2019 stage. Li et al. [20]
sculpted a magnum opus, the multi-scale joint feature net-
work, intricately weaving optical flow images into the fabric
ofmicro-expression recognition. The validation, a triumphant
odyssey through the landscapes of three benchmark datasets
(SMIC, CASME II, and SAMM) and a composite dataset
(3DB), etched a testament to its efficacy. This multifaceted
exploration vividly encapsulates the cutting edge in the
captivating realm of micro-expression research.

D. EVENT BASED CAMERA APPLICATION
Event cameras, also known as neuromorphic vision sensors,
represent a significant advancement in imaging technology.
Unlike traditional cameras, which capture frames at regular
intervals, event cameras detect changes in brightness asyn-
chronously at a per-pixel level. This unique feature allows
them to achieve high temporal resolution, even in challenging
conditions such as low light and high-speed motion.

These cameras have found applications across various
domains, including autonomous driving [28], [33], facial
recognition [3], [24], and lip reading [4]. In autonomous
vehicles, event cameras enable real-time perception of the
environment, enhancing safety and efficiency [4]. Addition-
ally, in facial recognition systems, they offer advantages in
terms of speed and accuracy. Similarly, event cameras have
shown promise in lip reading applications, where they excel
in capturing rapid and subtle movements of the lips.

However, one of the most intriguing applications of
event cameras lies in micro-expression recognition [1],
[2]. Micro-expressions are fleeting facial expressions that
reveal underlying emotions, often lasting just a fraction
of a second. Traditional cameras struggle to capture these
subtle cues effectively. Event cameras, with their high
temporal resolution, excel in detecting and analyzing micro-
expressions, providing valuable insights into human emotions
and behavior.

Despite their effectiveness in micro-expression recogni-
tion, event cameras present challenges in terms of acquisition
and stability. At present, there are only a few manufacturers
capable of producing event cameras, but the cost is high,
and the current selling price is dozens of times higher
than ordinary cameras, making it difficult to obtain. The
technology is still relatively nascent, and the spatial resolution
of the camera is also relatively low. Furthermore, its stability
is still poor, that the performance may be affected by
environmental factors, such as lighting conditions andmotion
artifacts.

III. FEATURE EXTRACTION
In this section, we will provide a detailed explanation of
our data pre-processing and the process of event. Two event
features encoding temporal and polarity information will also
be introduced.

A. TEMPORAL UP-SAMPLING
Standard frame-based cameras typically operate at a frame
rate of around 60 frames per second (fps), with high-speed
cameras reaching rates exceeding 200 fps. Despite this,
micro-expressions persist for an extremely brief duration,
spanning from 0.04 seconds to half a second, usually
around 0.2 seconds. Consequently, even high-speed cameras
capturing 200 fps can only provide 40 frames for a single
micro-expression event. This limited frame count poses
challenges for effective feature acquisition. To surmount
this limitation, we employed a video temporal up-sampling
method to enhance the frame rate.

Video temporal up-sampling methods encompass four
categories: frame blending, frame sampling, motion esti-
mation and motion compensation, and optical flow-based
approaches. In our investigation, we embraced an optical
flow-based method known as Super SLoMo, introduced
by NVIDIA [15]. Super SLoMo utilizes a U-Net to com-
pute bidirectional optical flow between consecutive output
images. To refine the approximate optical flow and predict
soft visibility maps at stationary boundaries, another U-Net is
employed. The final step involves transforming and linearly
blending the two output images to generate the intermediate
frame.

We applied Super SLoMo to up-sample the dataset; for
instance, up-sampling the CASME II dataset from 200 fps
to 1000 fps, resulting in approximately 200 frames per
micro-expression, as depicted in Figure. 1. Leveraging the
Super SLoMo technique effectively increased the temporal
resolution of the original video, enabling a higher frame
rate. This enhancement facilitated the capture and analysis
of micro-expressions in finer detail, significantly improving
the feature acquisition process. This, in turn, played a pivotal
role in the success of our proposed global-local event feature
fusion network in micro-expression recognition tasks.

B. EVENT FEATURE CALCULATION
We will first generate event from video, and then extract
temporal image feature and polar image feature, respectively.
Both of these two feature will be further normalized at a local
manner to change into local features.

1) FROM VIDEO TO EVENT
The event camera, being a bio-inspired visual sensor, operates
differently from conventional cameras. Instead of generating
intensity image frames at a constant rate, it provides informa-
tion about the changes in local pixel-level log photocurrent
intensity (L). When these changes in intensity surpass a
predetermined threshold (C), the event camera records the
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FIGURE 1. Temporal up-sampling with super SLoMo. These frame were
carefully extracted and cut from the raw video based on the landmark of
face to reduce the background disturbing and reduce the computational
cost. All the videos were finally up-sampled to 1000 fps for fairness.

timestamp with microsecond resolution and generates an
asynchronous event stream, referred to as an ‘event’. The
polarity (p) of an event is determined by the D-value,
1L(x, y, t), representing the difference in log photocurrent of
a pixel between time (t−1t) and time t . This process can be
mathematically described by Equation (1) and Equation (2).

1L(x, y, t) = L(x, y, t) − L(x, y, t − 1t) (1)

p(x, y, t) =


1 , 1L(x, y, t) > C
0 , −C < 1L(x, y, t) < C
−1 , 1L(x, y, t) < −C

(2)

By employing this mechanism, a video can be transformed
into an event stream data with an extremely long length in one
dimension but containing sparse data in the other dimension.
To facilitate further utilization, we recorded the pixels that
generated the event and organized them into the same set, the
E (p)
t . Here, t means the time stamp and p is the polarity, which

can be positive (+) or negtive (−).

2) TEMPORAL IMAGE
The concept behind temporal image encoding takes into
consideration both the rate and spatial frequency of events.
Suppose that at some truncated timestamp T , a pixel (x1, y1)
generates event A over a duration of t1 time units, while
another pixel (x2, y2) generates event B over a duration of
t2 time units. If t1 is less than t2, indicating that the timestamp
of event B is earlier than that of event A, and the pixel
(x1,2, y1,2) does not generate new events after producing event
A or event B until the specified timestamp, then the pixel
(x1, y1) is considered to have a higher frequency to generate
an event.

Follow this hypothesis, firstly, let F indicates the whole
image sequence. Then, cut F into M pieces, the mth one can

be represented as F[1T × (m − 1), 1T × m],m ∈ [1,M ).
Here, the1T×m is the truncated timestamp. In each segment,
we calculated the timestamp of the last time when the event
of each pixel was generated, denoted as t (x,y)m . Then we
can calculate temporal image for each segment, as shown
in Equation (3), where δ is used to prevent divisor from
being 0, and is set 0.5 here.

TI (x,y)m =
1

1T − t (x,y)m + δ
, (3)

Finally, we can get the temporal image by simply calculate
the average of each segment, as shown in Equation (4)

TI =
1
M

M∑
m=1

TIm (4)

3) POLAR IMAGE
For leveraging polarity information, we designed the polar
image. Building upon the count image [10], we assign
different weights γ to the statistics for each type of event.
When finishing calculation of all N frames’ polar image,
calculate their average, as shown in Equation (5).

PI x,y =
1
N

N∑
i=1

γ (x,y)
n . (5)

Initially, we calculate events generated between two frames
using frame differencing. We then determine the event types
produced at that moment and, based on the Algorithm. 1,
assess the weight assigned to each pixel during the statistics.
Taking the most common scenario as an example, through
frame differencing, we compute several events between two
frames, including positive and negative events, as well as
some pixels that do not generate events. For pixels generating
positive events during calculation, γ

(x,y)
n = 1, while pixels

not generating events correspond to γ
(x,y)
n = −1. Through

this approach, we can effectively utilize the polarity of events.
Although the features generated by this method may have
lower interpretability, they contain more information and are
suitable for in-depth exploration by computers.

4) LOCAL NORMALIZATION
In order to capture finer details of the local regions, it is
essential to normalize the temporal image feature and polar
image feature from a local region perspective rather than a
global view. As depicted in Figure. 2a, we have meticulously
designed nine distinct local regions. These regions exhibit
overlaps and are interconnected, facilitating a more concise
representation for each region. This thoughtful design aids in
reducing the distance between representations of individual
regions, thereby simplifying the process of feature mapping
and model fitting.

After determining the local regions, a local region normal-
ization was applied to the previous feature, as depicted in
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Algorithm 1 Polar Information Encoding
1: for (n, x, y)in range((0,N ), (0,width), (0, height)) do
2: if ∀pn ∈ E (+)

n then
3: γ

(x,y)
n = 1 if (x, y) ∈ E (+)

n , else γ
(x,y)
n = −1

4: else if ∀pn ∈ E (−)
i then

5: γ
(x,y)
n = 0 if (x, y) ∈ E (−)

n , else γ
(x,y)
n = −1

6: else
7: if then(x, y) ∈ E (+)

n

8: γ
(x,y)
n = 1

9: else if then(x, y) ∈ E (−)
n

10: γ
(x,y)
n = 0

11: else
12: γ

(x,y)
n = −1

13: end if
14: end if
15: end for

Equation (6) and Equation (7), where [k] represents region k .

TI (x,y) =
TI (x,y) − min(TI [k])

max(TI [k]) − min(TI [k])
, (x, y) ∈ [k], (6)

PI (x,y) =
PI (x,y) − min(PI [k])

max(PI [k]) − min(PI [k])
, (x, y) ∈ [k], (7)

Finally, we resize and rearrange the nine part of feature
according to the regions, as shown in Figure. 2b and Figure.
2c. The resulting feature is referred to as the Local Temporal
Image (LTI) and Local Polar Image (LPI), representing the
calculated local event feature.

FIGURE 2. Local features.

IV. MODEL ARCHITECTURE
By comprehensively considering global perspective, local
perspective, and the fusion of multi-modal features, we pro-
pose TePaDi to performMER in this section. Next, the overall
architecture and core modules of TePaDi are separately
explained in detail.

A. OVERVIEW OF NETWORK ARCHITECTURE
Concerning the model design, we embrace the concept of
global-local feature fusion, and the overall framework of
the model is illustrated in the diagram. TePaDi consists
of three main components: the global branch, the local
branch, and the Global-Local Fusion Module (GLFM). The
global branch primarily focuses on further extracting features

from the global optical flow, providing the model with
a comprehensive understanding from a global perspective.
The local branch employs the Temporal Polar Pixel-wise
Interaction module to fuse features from local polar image
and local time image, achieving information fusion across
spatial, temporal, and polarity dimensions in event features.
The resulting global and local features are fed into a
cross-attention module for feature fusion, ultimately yielding
the MER results.

FIGURE 3. Overview of network architecture.

B. GLOBAL FEATURE CALCULATION BRANCH
The primary goal of the global feature branch is to provide
a holistic representation of the subject’s motion information
from a global perspective. Given the swift pace and subtle
motion amplitude ofmicro-expressions, attempting to discern
a micro-expression solely from a static picture is nearly
insurmountable. Moreover, processing the entire recorded
video incurs substantial computational costs. To tackle these
challenges, we opted for the dense Optical Flow method
proposed by Farneb’’ack in 2003 for the global feature
branch.

The fundamental concept of the OF method involves
employing polynomial expansion to approximate the neigh-
borhood of each pixel, expressing the optical flow as [u, v].
To obtain more discriminative representations, we trans-
formed these vectors into [mag, ang] by converting Cartesian
coordinates to polar coordinates.

The deep feature mapping involved in the computation
of optical flow output comprises two convolution layers
with a kernel size of 3, designed to capture intricate infor-
mation while preserving computational efficiency. These
convolution layers employ a progressively set stride of 2,
with a strategically placed max-pooling layer between them
to enhance speed and resource efficiency. To mitigate the
risk of overfitting, a batch normalization layer follows the
max-pooling operation. These sequential operations lead to
a gradual reduction in the mapping feature size of each
channel while compensating for the loss of feature capture
ability by increasing the number of channels. To model
channel dependencies and dynamically adjust response
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values, we incorporate a squeeze-and-excitation attention
mechanism.

The process of computing the global feature is articulated
in Equation (8), whereGF signifies the global feature derived
from optical flow, F encompasses a series of convolution
operations, and O denotes the dense optical flow operation.

GF = SE(F(O(x))) (8)

C. LOCAL FEATURE CALCULATION BRANCH
In the preceding sections, we employed local normalization
to transform the temporal image and polar image into local
features, namely LTI and LPI. Now, we will use them as
inputs for local feature calculation. To ensure comprehensive
fusion of temporal information and polarity information,
we have designed a temporal polar pixel-wise interaction
module, as depicted in the Figure. 4.

FIGURE 4. Temporal polar pixel-wise interaction module.

As our LTI and LPI features undergo the same local
region normalization, we consider them to be aligned at the
pixel-wise level. Therefore, in the TPPI module, our primary
objective is to align and integrate temporal information and
polar information. Initially, we utilize pixel-wise convolution
for feature extraction, and the computed features undergo
cross-multiplication to calculate their similarity matrix,
as illustrated in Equation (9), whereS stands for the similarity
matrix, fpc represents the pixel-wise convolution operation,
and ⊙ means the matrix multiply.

S = fpc(LTI ) ⊙ fpc(LPI ), (9)

Subsequently, based on the calculated similarity, we refine
the two features separately. Finally, we adopt a residual
connection method to avoid issues like gradient vanishing
or exploding during the model training process. The specific
calculation process is illustrated in Equation (10).

LTI = LTI + fpc(S ⊙ fpc(LTI ))

LPI = LPI + fpc(S ⊙ fpc(LPI )). (10)

Finally, we intergrate these two features together in channel
dimension to form the local feature LF .

LF = [LTI ,LPI ] (11)

D. GLOBAL-LOCAL FEATURE FUSION MODULE
Facial expression control often involves a series of muscle
movements, which, when combined, shape the overall
expression. To this end, we explore facial features from both
local and global perspectives, aiming to comprehend both
subtle local variations and broader overall changes, thereby
facilitating better micro-expression recognition. Once global
and local features are obtained, we designed the Global-Local
Feature Fusion Module (GLFM) to mix them for deep
information acquisition, as shown in Figure. 3. Firstly,
we applied two convolutional operations to compress the
features into 3 channels each, and then flattened them to
form global and local queries (Q), keys (K ), and values (V ),
denoted by subscripts g for global and l for local.
Subsequently, we exchangedQg andQl , and independently

used attention mechanisms for feature extraction, as shown
in the Equation (12). The exchange of features not only
facilitates the fusion of global and local information but also
guides the feature extraction process through the generation
of fusion attention. Finally, we concatenated the features
and used fully connected layers for information aggregation,
resulting in the final recognition outcome.

GA = (Ql ⊙ Kg) ⊙ Vg
LA = (Qg ⊙ Kl) ⊙ Vl
Out = fc([GA,LA]). (12)

V. EXPERIMENT DETAILS
n this section, we shall furnish comprehensive particulars of
our experiments, encompassing dataset processing, experi-
mental configurations, and the introduction of a random data
augmentation strategy to enhance data diversity.

We opted for the evaluation of our method’s performance
using three datasets, namely the CASME II dataset [32],
SMIC dataset [7], and SAMM dataset [8]. To ensure a robust
evaluation, the leave one subject out cross-validation strategy
was employed to partition the datasets into training and
validation sets. It is noteworthy that the modest scale of the
adopted datasets may give rise to model overfitting, posing
a challenge, particularly in the training of large models.
To mitigate this issue, we formulated five data augmentation
methods and devised two distinct application strategies. The
five data augmentation methods include random moving,
noise addition, random flipping, random erasing, and grid
mask, as depicted in Figure. 5.

To optimize the utilization of the suggested five data
augmentation methods, we incorporated two distinct strate-
gies: the fixed augmentation strategy and the random
augmentation strategy. The fixed strategy employed all five
methods collectively in a predefined sequence, whereas the
random strategy involved the random selection of a number
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FIGURE 5. Random data augmentation method. A is the original image,
and from B to E is image with random moving, noise adding, random
flipping, random erasing and grid mask, respectively.

(ranging from 1 to 5) to specify the count of augmentation
methods to be applied. With each selection, a single aug-
mentation method was randomly chosen for implementation.
The random augmentation strategy provides enhanced data
augmentation capabilities, introducing a broader array of
feature variations in the images, and has proven effective in
mitigating and overcoming challenges associated with model
overfitting.

A. EXPERIMENT CONFIGURATION AND EVALUATION
METRICS
Adhering to the guidelines of the 2nd Micro-Expression
Grand Challenge [27], our experiments consisted of two
types: Holdout-Database Evaluation (HDE) and Composite
Database Evaluation (CDE). In the CDE experiment, all
three datasets were amalgamated into a single dataset for
3-class classification. In contrast, HDE involved 3-class
classification experiments conducted separately for each of
the three datasets. Notably, the CASME II and SAMMdataset
were also utilized for a 5-class classification experiment.

To ensure fairness and avoid ambiguity stemming from
facial features of different individuals, we adhered to the
leave one subject out cross-validation principle. Each round
of the experiment comprised 300 epochs, with an early
stop strategy employed to prevent overfitting and conserve
computational resources. The batch size, set to 250 for
each epoch, utilized the maximum capacity of our GPU.
Stochastic gradient descent was our optimizer of choice,
with an initial learning rate of 0.01 and weight decay of
0.01. The learning rate underwent a 5% reduction every
three epochs. Additionally, we fine-tuned the event threshold
through experiments and set it to 1.0.

Importantly, the random data augmentation strategy was
applied to the extracted features rather than the raw images.
This precautionary measure aimed to prevent augmentation
interference with the event and optical flow feature extraction

processes. For model evaluation, we adopted metrics such
as Unweighted Average Recall (UAR) and Unweighted
F1-score (F1), following the MEGC 2019 guidelines [27]
and Accuracy (Acc), as shown in the Equation (13), where
C means the number of categories, N means the number of
samples and the subscript c stands for each category.

UAR = (
∑C

c=1

TPc
Nc

)/C

F1 = (
∑C

c=1

2TPc
2TPc + FPc + FNc

)/C

Acc = (
∑C

c=1
TPc)/(

∑C

c=1
Nc)

(13)

B. EXPERIMENT RESULTS
resented in Table 1 are the results of the 3-class classifi-
cation experiments, encapsulating both the HDE and CDE
experiments. Our proposed method demonstrated superior
performance in the composite database evaluation experi-
ment, surpassing previous works with elevated unweighted
average recall scores and F1 score. A comparative analysis
with GLEFFN unmistakably highlights TePaDi’s substantial
performance improvement across multiple datasets, thereby
affirming the efficacy of the two features we introduced.

From Table 2, in the multi-class classification recognition
of independent datasets, our model also achieved good
results. Among the total of 6 indicators, 3 indicators reached
the state-of-the-art level, and the other 3 indicators were also
at a relatively advanced level.

C. ABLATION STUDY
We chose to conduct ablation experiments on CASME II
because this task is more challenging relative to others,
providing a better opportunity to distinguish the strengths and
weaknesses of different methods.

1) ABLATION STUDIES FOR EVENT FEATURE.
The ablation studies for LTI and LPI feature were carried
out on 5-class classification task on CASME II dataset.
The experiment result was shown as Table 3. When neither
local feature was utilized, relying solely on optical flow as
a global feature for micro-expression recognition yielded
poor results. This highlights the strong dependence of MER
tasks on local information. After separately incorporating
LTI and LPI features, there was a noticeable improvement
in the model’s performance, suggesting that both temporal
information and polarity information contribute positively to
the model’s effectiveness. Finally, when both LTI and LPI
were simultaneously applied, the model achieved optimal
results.

2) ABLATION STUDIES FOR DATA AUGMENTATION AND
TEMPORAL UP-SAMPLING
We conducted ablation experiments focusing on data aug-
mentation and temporal up-sampling, specifically in the
five-class classification task of CASME II. The experimental
results are summarized in the Table 4.
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TABLE 1. Result of 3-class classification experiments.

TABLE 2. Result of multi-class classification experiments.

TABLE 3. Ablation studies for event feature.

By comparing the first six experimental outcomes,
it becomes evident that employing data augmentation with
a random strategy leads to better model fitting results. This
is because the random strategy introduces a more diverse
range of augmentations to the features, effectively enriching
the dataset and thereby enhancing model performance.
Conversely, using a fixed strategy for data augmentation not
only limits the forms of augmentation but also predisposes
the model to data bias, ultimately hindering performance
improvements.

Furthermore, through the comparison of temporal
up-sampling at different scales, we observed that increasing
the up-sampling frame rate effectively enhances experimental
outcomes. However, after reaching a frame rate of 1000fps,
the rate of improvement slows down significantly and even
turns negative. Concurrently, the events required for event
feature extraction also increase substantially. Balancing
between performance and efficiency, we ultimately chose

1000 fps as the target for temporal up-sampling. The primary
reason for this phenomenon is that at lower frame rates, event
information is sparse and lacks sufficient information con-
tent. As the frame rate increases, the augmented information
significantly improves model performance. However, once
the frame rate reaches a certain threshold, further increases
become less effective in providing additional meaningful
information and may even introduce noise, resulting in model
performance saturation and limited further improvements.

TABLE 4. Ablation studies for data augmentation and temporal
up-sampling.

VI. DISCUSSION
As trailblazers in the application of event features to
micro-expression recognition tasks, we have achieved com-
mendable results with remarkably low computing costs,
paving the way for new possibilities in subsequent event
camera applications. Nonetheless, several critical issues
demand attention and merit further investigation:

i. Temporal and Polarity Information Encoding: While
we successfully encoded temporal and polarity information
separately, achieving a certain level of effectiveness, there
is still considerable room for improvement in terms of
computational efficiency. Future endeavors may explore the
potential benefits of simultaneously encoding both types of
information into the same feature.

ii. Artificial Intelligence Generated Content (AIGC): The
rise in popularity of AIGC presents a valuable opportunity.
Leveraging AIGC to expand the dataset can prove highly
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advantageous. By utilizing AIGC to generate synthetic data,
pre-training the model becomes feasible, allowing it to learn
rich facial expressions and muscle features. Subsequently,
manually collected data can be employed for fine-tuning,
effectively addressing the challenge of data scarcity.

iii. Micro-Expression Recognition in Streaming Video: A
notable gap currently exists between the proposed approach
and real-world applications. Developing a Micro-Expression
recognitionmethod based on streaming video is of paramount
importance to achieve real-time and accurate detection, bridg-
ing the divide between research and practical applications.

VII. CONCLUSION
In conclusion, our study addresses the challenges in
micro-expression recognition posed by the limitations of
frame-based cameras with low frame rates. We have
introduced two innovative event features inspired by the oper-
ational principles of event cameras, encoding not only spatial
information but also temporal and polarity information of
events. The incorporation of these features has significantly
contributed to the precision of MER tasks. Furthermore, our
proposed global-local feature fusion network enhances the
efficiency and effectiveness of feature interaction, providing
a robust framework for micro-expression analysis. Experi-
mental results across multiple datasets have demonstrated
the remarkable performance of our approach, surpassing
state-of-the-art methods. This work enriches the encoding
of event features, showcasing their potential in enhancing
micro-expression recognition and contributing to the future
advancement of event camera technology.
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