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ABSTRACT Metal Additive Manufacturing processes such as Directed Energy Deposition (DED) require
process monitoring to ensure the highest part quality. Detecting and avoiding material defects to meet high
material requirements remains a challenge due to the complexity of the process. To address this challenge,
this study presents a novel approach that combines hyperspectral imagingwith convolutional neural networks
to classify process anomalies. Hyperspectral in-situ monitoring captures the light emitted from the melt pool
over the 2 spatial axis, but also over the spectral axis. The resulting hypercube image contains a lot of
information over the thermal state of the melt pool but is very high-dimensional, which is not a problem
for Convolutional Neural Networks. The proposed classification model reaches an accuracy in excess of
94% over the validation set. The classification mechanism of the proposed model is investigated thanks
to the Guided GradCAM visualization method and links with the melt pool temperature distribution are
formulated. The inference speed of the optimized model is measured and shown to be compatible with real-
time applications. This study is a stepping stone towards smart control of the DED process based on the
identified thermal state of the melt pool, with the goal of improving the part quality.

INDEX TERMS Directed energy deposition, convolutional neural network, anomaly classification, In-situ
monitoring, hyperspectral imaging.

I. INTRODUCTION
A. DIRECTED ENERGY DEPOSITION AND
IN-SITU MONITORING
Laser-based Directed Energy Deposition (DED) is a complex
manufacturing process to 3D print metal parts. A powerful
laser heats and melts a metal workpiece, and fine metallic
powder is blown into the melt pool through a nozzle. As the
nozzle and the laser move, the melted metal solidifies,
building up layers to create the final part [1]. This process
gives a high freedom of design and enables the production of
complex shapes, for example rocket nozzles with integrated
cooling channels or rocket combustion chambers [2], [3].
As in other metal Additive Manufacturing (AM) techniques,
there is a complex interplay of several simultaneous physical
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phenomena happening on the melt pool scale: radiative heat
exchange between the laser and metal workpiece, liquid flow
in the melt pool, phase changes, powder and gas dynamics,
etc. [1], [4], [5], [6]. On the part scale, the intricate features of
the printed designs and the layer-by-layer construction create
a complex thermal history. As a result, the several kind of
defects can be created during the process, i.e. flaws that do
not meet the application requirements. Given the difference in
scale between the melt pool and the part geometry, simulating
both the melt pool dynamics and the thermal history together
to cover as many sources of defects as possible, is currently a
challenge [7], [8].
To capture the full complexity of the DED process and

avoid defects, there has been a lot of effort to monitor in-situ
the melt pool infrared (IR) signature [9], [10], [11]. IR melt
pool measurements allow the estimation of the temperature
distribution in and around the melt pool by using Planck’s law
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FIGURE 1. Visualization of the steps to debayer a raw hyperspectral image and obtain a hyperspectral data cube. Each slice of the
cubic structure in the spectral axis can be seen as a 2D image at one spectral band. The resulting cubic structure is high-dimensional.

and an estimation of the material emissivity. The temperature
signal can then be used for condition monitoring or closed
loop control [12], [13]. However, estimating temperature
from IR data requires a model the emissivity, which is
another challenge on its own since in all generality emissivity
is a function of wavelength, temperature, phase, surface
roughness and material composition [10]. The approximation
of emissivity is therefore a limiting factor for the use of
the temperature signal. In this regard, hyperspectral IR
cameras are superior to monospectral IR cameras because
they measure the light emitted by the melt pool at several
wavelength bands. Hyperspectral data can be used to estimate
the relationship between emissivity and wavelength. But
there is still a debate onwhich temperature estimationmethod
yields the most accurate results [14]. Moreover, hyperspectral
images are essentially cubic structures of data: they contain
information organised along two spatial dimensions, x and
y, and one spectral dimension, λ. The high-dimensionality
of those images is therefore a burden to process, especially
for real-time applications. Fig. 1 shows the steps to obtain
a hyperspectral data cube with a discrete amount of spectral
bands. The data along each spectral band of the cube can be
seen as a conventional 2D image, but the cube is actually
captured as a whole during the exposure time of the camera.

Other in-situ monitoring techniques are being used and
studied for DED, such as acoustic emission and radiography.
The advantages and limitations of those techniques have
been discussed and compared in detail in several review
articles [15], [16], [17].

To summarize, monitoring the melt pool IR signature gives
a lot of information on the state of the process, but analysing
high-dimensional hyperspectral IR data with temperature
estimation methods is challenging and time-consuming.

B. DATA-DRIVEN ALGORITHMS FOR ANOMALY
CLASSIFICATION
To overcome the limitations of temperature estimation
algorithms and physics-based models, a direct correlation
between the presence of defects and the melt pool IR
signature is desirable. Data-driven algorithms are well

adapted to interpret raw experimental data without making
inherent hypothesis on the melt pool dynamics or material
properties.

Shallow Learning methods have been applied successfully
to features extracted from melt pool IR images [24], [27],
but the curse of dimensionality prevents them from using raw
high-dimensional images as direct inputs [28]. Modern Deep
Learning (DL) techniques such as Convolutional Neural Net-
works (CNN) allow the classification such high-dimensional
image datasets [29], [30]. Those algorithms have more
trainable parameters than shallow methods and therefore
require larger datasets to generalize well. They also enable
fast predictions despite having many parameters thanks to
parallel computing on Graphical Processing Units (GPUs).

Modern CNN models have been historically developed for
the classification of natural RGB images, but they have also
recently been applied to melt pool IR signatures. Table 1 lists
past studies that have used data-driven models to link in-situ
melt pool images to the presence of defects or anomalies in
three laser-based metal processes. From this body of work,
it is clear that in-situ melt pool images can be successfully
correlated with the presence of defects or anomalies. We can
see that many authors achieved to build binary classification
models with accuracies above 90% regardless of the type
of melt pool image used [18], [20], [23], [31]. Researchers
that attempted multiclass classification with monochrome
melt pool images in DED and LPBF achieved a lower
accuracy, between 80 and 90% [22], [24]. Only Cai et al.
achieved an accuracy over 90% for multiclass classification
of monochrome melt pool images in laser welding [26].

From the literature, it seems clear that spectral IR mea-
surements offer an advantage overmonochrome ormonoband
measurements. Knaak et al. [25] combined data from one
Near-Infrared (NIR) camera and one Middle-Wavelength-
Infrared (MWIR) camera to predict the presence of defects
in laser welding. It was demonstrated in this work that the
combination of NIR and MWIR ranges resulted in a higher
classification accuracy than either of the two ranges alone.
Gerdes et al. [32] used melt pool images captured with a
hyperspectral camera sensitive to 25 different bands in the
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TABLE 1. Literature review of past work on anomaly classification of melt pool (MP) images and features in DED, LPBF and laser welding. A gap in
literature exists regarding the use of raw hyperspectral data with a CNN to predict anomalies in DED.

NIR range to predict the surface roughness and showed that
hyperspectral data provided crucial information about the
Laser-baser Powder Bed Fusion (LPBF) process. A simple
CNNwas applied to the very high-dimensional data and could
successfully correlate it with roughness despite the additional
channels compared to a natural image. To the best of the
authors’ knowledge, DED hyperspectral data have not yet
been used in conjunction with CNNs to detect defects.

To classify labelled samples, a source of ground truth
must be chosen to detect defects. In some studies, a ex-
situ sensor is used: Computed Tomography (CT) to locate
porosities [18], [19], [20], [23] or a confocal microscope
to measure roughness [32]. And in others, images are
labelled manually by experts [25], [26]. Detecting defects
in such a way is usually accurate but either expensive or
time-consuming with regard to the amound of data required
to train CNNs. In this regard, Abranovic et al. took an
unsupervised learning approach to avoid the ground truth
problem, but with a simpler binary anomaly detection model.

Controlling process parameters is straightforward and
the link between DED process parameters, defects and
unfavourable mechanical properties is well described in
literature for simple geometries [33], [34]. Therefore, this
paper uses variation of process parameters to create several
types of thermal conditions similar to those of known
defects [35]. In this work, the thermal conditions that deviate
from a chosen baseline, are called thermal anomalies.

This work is structured as follows: section II describes the
experimental set-up, the dataset and the model structure, and
section III analyses and discusses the model performance.
The novel aspects of this study are:

• An efficient data labelling method for several classes of
anomalies that allows the creation of a large dataset of
in-situ melt pool images.

• The development of an anomaly classification model
based on high-dimensional hyperspectral melt pool
images and a CNN architecture.

• The investigation of the classification model’s potential
for real time applications.

• The use of saliency methods to investigate the classifi-
cation mechanism over the spatial and spectral axes.

II. MATERIAL AND METHODS
A. DED MACHINE AND HYPERSPECTRAL MONITORING
In this section, the experimental set-up, process parameters
and the samples are described.

The experimental setup that is used to print samples and
produce the raw in situ monitoring data is the MiCLAD
research platform, a DED machine designed and built at the
Vrije Universiteit Brussel (VUB) [37]. It is equipped with
several in-situ sensors and cameras. The main hardware parts
of this machine are listed in table 2. A view of the laser
processing head and build plate is shown in fig. 2.

FIGURE 2. MiCLAD research platform: view of the laser processing head
and build plate. The hyperspectral camera is attached to the top of the
laser processing head (outside of the image).

The DED process creates a metal melt pool by locally
heating the workpiece with a laser. The light emitted by
the melt pool gives information on the melt pool shape and
state, as the emitted spectral radiance depends on the melt
pool temperature following Planck’s law [38]. It has been

178850 VOLUME 12, 2024



C. Snyers et al.: Hyperspectral In-Situ Monitoring for DL-Based Anomaly Classification

TABLE 2. Hardware, printing and acquisition parameters used to produce
the experimental data.

shown in literature that the typical DED melt pool has an
elliptical shape with a thin, high temperature front edge and
an elongated, lower temperature tail edge [2], [5], [39].

The MiCLAD machine is equipped with the hyperspectral
3D-One Avior AX-M25NIR camera, installed coaxially to
the nozzle. This camera was selected and used due to
its availability during the course of the study. It uses a
hyperspectral sensor that is active in the near infrared region
(NIR) to capture the melt pool spectral signature. A Fabry-
Perot filter is deposited on each pixel in a 5×5mosaic pattern.
Thanks to the Fabry-Perot filter, each pixel of the 5×5mosaic
pattern is sensitive to a different band, which allows the
camera to observe the 25 bands at the same exposure time.
The raw image recorded by the camera has a resolution of
250 × 250 pixels. This 2D image can be reconstructed into
a 3D structure, a 25 × 49 × 49 cube (see fig. 1) by first
grouping together all pixels that are sensitive to the same
band and arranging the spectral bands by increasing order
of wavelength. This operation is known as debayering. The
difference in pixel count between the raw image and the cubic
structure is due to a misalignment between the edges of the
macropixels located on the border and the edges of the raw
250×250 hyperspectral image. Those macropixels located at
the edge of the region-of-interest captured by the camera are
incomplete because a portion of their 5× 5 pixels are located
outside of the region-of-interest. Those macropixels therefore
cannot be debayered and are discarded during the debayering
step. As a result there are less pixels in the cubic structure.
The main characteristics and the peaks of the 25 bands of
the hyperspectral camera are listed in table 2. The MiCLAD
machine has also the capability to monitor and record its
position every time an image is recorded by the hyperspectral

FIGURE 3. Single NIR band of a DED melt pool, extracted from a
hyperspectral cube (at the peak wavelength λ = 784 nm) captured on the
MiCLAD machine with the 3D-One Avior AX-M25NIR. This image shows
the typical front edge of the melt pool.

camera. Therefore, each image is associated with the position
of the nozzle when the image was recorded.

Fig. 3 shows a single band image of a typical DED melt
pool, extracted from a hyperspectral cubic structure. This
image showcases the front edge of the melt pool. The shape
and temperature of the melt pool front and tail edges depend
on the laser power and scanning speed, among other process
parameters.

The experiment consisted in printing 4 thin wall samples
(samples 587, 588, 589 and 590) of 80 mm long and 20 mm
high with 316L steel powder. These samples were made by
depositing a track back and forth, incrementing the Z position
by a fixed value after every pass. The parameters used to print
the samples are in table 2. The nozzle scanning speed was
varied during the print, as explained in the following section.

B. THERMAL ANOMALIES AND LABELLING METHOD
In this section, the method used to produce thermal anomalies
and label the dataset images accordingly, is described [35].

FIGURE 4. Scheme illustrating the zones linked to melt pool classes and
the associated local scanning speed (sample 590).

As the laser and the associated heat flux move during
printing, the melt pool also moves and is affected by local
geometry conditions, the laser scanning path and the thermal
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history of the part. This can cause the melt pool shape and
temperature distribution to vary and it can ultimately lead to
undesired melt pools regimes such as keyhole, lack-of-fusion
or the formation of gas porosities [2], [5].

The energy density Ed is a simplified approach to represent
the energy deposition into the build plate and the part, that has
been correlated to melt pool thermal conditions, mechanical
properties and the presence of defects in DED [2], [5].

Ed =
P
v · d

(1)

where P is the laser power, v is the scanning speed and d is
the laser diameter.

In order to produce representative data of undesired melt
pool behaviours, it was decided to vary the scanning speed
of the nozzle to change the deposited energy density Ed and
induce significant differences in the thermal conditions of
the process. Each thin wall sample was subdivided in several
zones, depending on the local process parameters and thermal
conditions (see fig. 4):

• Speed variation zone: The central zone of the thin
wall is where the scanning speed deviate from the
baseline. This is one way to create a thermal anomaly.
4 different speeds were considered for this zone, one
for each sample, and each speed was associated with a
anomaly class (see table 3). The melt pool behaviour in
these zones is labelled depending on the scanning speed
deviation (see table 3).

• Baseline zones: In the two zones to left and the right
of the central zone, the scanning speed is kept at the
baseline value and the scanning path is unidirectional.
As a result, the behaviour of the melt pool in these two
zones is considered as baseline. Themelt pool behaviour
in these zones is labelled as baseline.

• Edge zones: At the edges of the samples, the scanning
speed is kept at the baseline value but the laser does a
back-and-forth motion to finish a layer and start the next
one. Because of this, the deposited heat is locally higher
and therefore the thermal condition is different. Themelt
pool behaviour in these zones is labelled as edge.

• Unlabelledmelt pools:Between the three zones defined
above, the scanning speed is kept at the baseline
value but the melt pool behaviour is assumed to be
transient because of the change in the scanning speed.
Additionally, the first layers are subjected to the heat
sink effect of the thick build plate, which influence
the melt pool thermal behaviour. Therefore those melt
pools are kept unlabelled to avoid training the model on
ambiguous examples.

The three main mechanisms that form defects are (1)
keyholes, which come up due to high energy density; (2)
gas porosities, which arise from a selective evaporation of an
alloy element; and (3) lack of fusion, which are due to a low
energy density which prevents the melt pool from reaching
the substrate [2]. Hosseini et al. reported that variations of
+15% and−15% of energy density around an optimal Ed led

to the apparition of keyholes in the case of the higher energy
density and lack of fusion in the case of the lower energy
density [40].

The anomaly scanning speeds that were therefore chosen,
induce differences in energy densities larger than 15% around
the baseline parameters (Ed = 15.69 J/mm2), which insure
that they will lead to thermal conditions that are similar to
those of defects. The chosen speeds and associated energy
densities are listed in table 3. A height difference between
the anomaly zone and the baseline zones could be noticed in
the 4 samples: the underheat and strong underheat anomaly
zones were lower and the overheat and strong overheat zones
were higher. This indicates that the local powder efficiency
was altered by the speed change and this confirms that
the anomaly scanning speed did lead to different thermal
conditions.

TABLE 3. Melt pool classes with associated printing parameters and
samples.

Since the machine position is recorded along with each
image, a melt pool class can be linked with each image.
Relying on process parameters and the machine position
to label the samples instead of material analysis or expert
identification, allows to produce a substantial dataset in
a limited time and without ex-situ testing costs. This is
important to meet the dataset size requirements of DLmodels
and the performance and predictions of DL models can be
analysed to iterate on the labelling zones.

C. INFLUENCE OF ENERGY DENSITY ON
MICROSTRUCTURE
In order to validate qualitatively the choice of parameters
that induce thermal anomalies, micrographs were captured
on a selection of samples cut from the printed thin walls
described in section II-B.Micrographs allow us to observe the
microstructure for the range of energy densities considered
for this dataset.

FIGURE 5. Cutting orientation to extract samples from a printed thin wall.
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FIGURE 6. Micrographs of thin wall samples for a range of energy densities. The comparison of the micrographs reveal a strong influence link
between the local energy density and the shape and orientation of the grains.

Before capturing micrographs, samples were cut from the
printed thin walls in the YZ plane at 20, 40 and 60 mm
along the length of the thin wall (see fig. 5). Each cut
sample was numbered and associated to the local process
parameters of the baseline, speed variation or edge zones.
The cut samples were then embedded, polished and etched as
follows [41]:

1) Embedding: The samples were placed in silicon
moulds and embedded in a mix of 2/3 Spectrographic
black epoxy casting compound and 1/3 hardening
agent, following the manufacturer’s recommendations.
The hardening phase took place in a oven at 50◦C for
3 hours.

2) Polishing: The samples were attached to a cir-
cular support frame and placed in a Buehler
MOTOPOL 2000 Semiautomatic grinding machine.
They were polished in steps of 3 × 3 min periods
with increasingly finer grain paper (P180, P320, P600,
P1200) and diamond suspension impregnated on a
cloth (6 µm, 3 µm and 1 µm). After each 3 min
period, the rotational direction of the paper or diamond
suspension cloth was reversed with respect to the
rotational direction of the samples. After polishing, the
samples were cleaned with de-mineralized water.

3) Etching: The samples were etched for 10 min
with Villela reagent (95 ml of ethyl alcohol, 5 ml
of hydrochloric acid, and 1 g of picric acid),
known to reveal grain boundaries of 316L stainless
steel [42]. After etching, the samples were cleaned with
de-mineralized water.

Micrographs of the polished samples were captured by
Leica DMC2900 USB camera attached to a Leica DMI8-A
inverted microscope. Each image was captured in the middle
of the sample along the Z axis. The resulting micrographs can
be seen in fig. 6, the scale of each image is indicated by a bar
in the bottom of each micrograph. Each micrograph reveals
the shape and orientation of the grain boundaries associated
with the energy density that was used locally.

As can be seen in fig. 6, the lower energy density
Ed = 10.83 J/mm2 leads to round, small and homogenous
grains. On the contrary, the higher energy density Ed =

28.24 J/mm2 generates bigger, more elongated grains. The
intermediate energy density Ed = 15.69 J/mm2 produces a
median microstructure, bigger and slightly more elongated
than the lower energy density. As reported by DebRoy et al.,
the size and morphology of the DED microstructure is
determined by the combined effects of the temperature
gradient and the solidification rate during the successive
layers [5]. In our case, the micrographs demonstrate that the
chosen range of energy densities has a large effect on the
microstructure. The observed microstructures of Ed = 10.83
J/mm2 and Ed = 28.24 J/mm2 are typical of conditions
where lack-of-fusion and keyhole defects are respectively
likely, as reported by literature [33], [43]. This observation
does not guarantee the presence of defects but it indicates that
the melt pool signatures for those parameters are typical of
undesirable thermal conditions.

D. DATASET AND PRE-PROCESSING
The raw dataset consists of 561 861 hyperspectral images
coming from four thin wall samples and distributed among
6 classes [36]. Each image is associated with the position of
the machine when the image was recorded and therefore with
a melt pool class depending on the local printing parameters
and thermal conditions, as explained in the last section. The
distribution of images among the classes can be seen in fig.
7. The dataset is clearly unbalanced. All four samples contain
baseline and edge zones and therefore there are more images
belonging to those classes than the anomaly classes. This
datasetmust undergo three separate steps before it can be used
by DL models: a step that separates training and validation
data, a step that balance classes and a step that pre-processes
images.

First, to avoid the risk of over-fitting a model to the
particular set of available data, the dataset is randomly split in
two parts: one part for the training set (70%, 393 303 images)
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FIGURE 7. Histogram of the raw dataset showing a clear class imbalance.
The minority classes are oversampled before the data is fed to DL models
to counteract the imbalance.

and one part for the validation set (30%, 168 558 images). The
images are randomly selected across the four samples and the
6 classes during this step. At this stage, the two parts are still
unbalanced.

Then, to avoid a bias towards the majority class of this
unbalanced dataset (in this case predicting a baseline melt
pool too often), weighted sampling is used to produce
balanced training and validation sets. This method consists
in assigning a probability weight to each image and then
images are randomly drawn from each set depending on their
weights. Typically, images from minority classes are given
higher weights, meaning they are more likely to be selected
during the sampling process. As a result, even though the
initial dataset is unbalanced, weighted sampling compensates
by selecting samples from minority classes more frequently
and samples from the majority class less frequently, thus
creating balanced training and validation sets to use to
train the DL model. This technique is applied separately
to the training and validation set to keep the training and
validation data separated. In order to keep training times
reasonable under the computational constraints that were
faced, 100 000 images were drawn for the balanced training
set and 10 000 images for the balanced validation set.

Finally, the hyperspectral images are preprocessed to
promote optimal learning by the DL models. The image
pre-processing operations are illustrated in fig. 8. First,
raw hyperspectral images are debayered, as described in
section II-A. Practically, each 250 × 250 raw hyperspectral
image is reshaped into a 25 × 49 × 49 cubic structure.
The pixel values in themselves are not modified, only the
data structure is changed. For illustration purposes, a single
49× 49 slice is shown in fig. 8, but the entire cubic structure
is used as input for the DL model. A misalignment exists
between the macropixels at the edge of the raw image and
the borders of the raw image, incomplete macropixels are
therefore discarded during the debayering operation. This is
the reason why there are a few less pixels in the debayered
cubic structure than in the raw hyperspectral image. After
the debayering operation, the images are randomly rotated.
The angle of rotation of the image is chosen at random

FIGURE 8. Pre-processing operations applied to hyperspectral images
before feeding them to DL models. The debayered band used for this
figure is centred at the peak wavelength λ = 784 nm.

between −180 and 180 degrees at the code execution. The
objective of this second operation is to avoid a bias towards
the orientation of the melt pool images in the thin wall
samples (unidirectional). It is a standard practice in DL.

E. STRUCTURE OF THE CLASSIFICATION MODEL
In this section, the structure of the classification model is
described and the training parameters are detailed.

To build a model of the relationship between the melt pool
NIR signature (hyperspectral image) and the categorical melt
pool class, a Supervised Learning classification algorithm is
used. As explained in the introduction, Convolutional Neural
Networks (CNN) are well adapted to image classification
tasks thanks to their translation invariance through weight
sharing of the convolutional filters and local connectivity
that takes the spatial structure of images into account [29].
In addition, CNN are able to accommodate andmake efficient
use of the large number of input channels (camera wavelength
bands) of debayered hyperspectral images [35].
Three different CNN structures are considered: a baseline

CNN architecture and two ResNet architectures, ResNet-18
and ResNet-50 [30]. The convolutional operation used in
this work is the well-known 2D spatial convolution [29],
[30]. For all 3 architectures, the first convolutional layer
takes the 25 wavelength bands of the hyperspectral image
as input into 25 channels and the last fully connected layer
outputs logits for 6 classes. The baseline architecture is
only made of convolutional, pooling, activation and fully
connected layers (see table 4). The ResNet architecture uses
batch normalization and residual layers in addition to avoid
vanishing gradients and to allow the convergence of a deeper
network. This architecture is well regarded and has been used
in many recent metal AM applications [44], [45], even though
more modern evolutions such as Inception-ResNet have been

178854 VOLUME 12, 2024



C. Snyers et al.: Hyperspectral In-Situ Monitoring for DL-Based Anomaly Classification

reported [46]. The ResNet-18 and ResNet-50 architectures
respectively make use of 18 and 50 convolutional and
fully connected layers in total. The depth and number of
parameters of the three architectures are compared in table 6.
The main differences between the ResNets and the baseline
CNN are the absence of residual layers and a lower capacity
for the baseline CNN.

TABLE 4. Baseline CNN architecture showing the depth and width of the
feature extraction and classification layers.

TABLE 5. Hyperparameters used to train the CNN models.

The three architectures are implemented with PyTorch
2.0.1 and are trained on the described dataset with the
hyperparameters listed in table 5. Weight initialization is
random. Early stopping was implemented to avoid training
the model for more epochs than necessary: if the loss does
not decrease for more than an amount of epochs, the training
is stopped. The criterium for the number of epochs without
loss improvement is called patience.

III. RESULTS AND DISCUSSION
A. MODEL CAPACITY AND PERFORMANCE METRICS
In this section, the performance of the various structures
described in section II-E is discussed.

The training curves can be seen in fig. 9. In this plot,
the training accuracy and loss are plotted with solid lines
and validation accuracy and loss are plotted with lines
with periodic triangular markers (

a
). At the plot scale,

the training and validation curves are overlapping, which
indicates that the training process is successfully progressing
towards generalization. Table 6 shows the accuracies on the
test set obtained after training each architecture. The ResNet-
18 and ResNet-50 have similar accuracy above 94%, clearly
outperforming the CNN baseline which is at 81%. The higher
capacity of the ResNet architecture led to a lower bias without
overfitting. The ResNet-18 and ResNet-50 have a nearly
identical performance, despite the ResNet-50 architecture

having many more trainable parameters. This is probably due
to the inherent learning task contained in the data and not
due to a capacity limitation. Compared to the state-of-the-
art defect classification models using monochrome images
in DED and LPBF (see table 1), the multiclass classification
architectures proposed in this work achieve a similar accuracy
to binary models and a higher accuracy than other multiclass
models. It should be noted that learning tasks involving
hyperspectral data with a larger number of bands required
a more modern architecture such as Inception-ResNet [47],
[48]. While the ResNet architecture is sufficient for the
learning task presented in this work, the Inception-ResNet
architecture might be of interest for future, more complex
learning tasks in DED.

FIGURE 9. Training curves: training accuracy and loss are plotted with
solid lines and validation accuracy and loss are plotted with lines with
periodic markers. At the plot scale, the training and validation curves are
overlapping, which indicates that the training process is successfully
progressing towards generalization. The ResNet-18 and ResNet-50 obtain
the best performance over the validation set.

TABLE 6. Performance metrics and characteristics of the three CNN
architectures. The ResNet-18 architecture shows the best balance
between accuracy and inference time.

Additionally, the inference time (time to make a prediction
on a hyperspectral image) is proportional to the number of
parameters of the CNN models (table 6), as expected. The
ResNet-18 architecture is able to achieve almost the same
accuracy as the ResNet-50 while taking only 5ms to make a
prediction. All inference times were computed on a Intel Core
i7-9850H and a NVIDIAQuadro RTX 3000. For comparison,
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Snyers et al. reported a computational time of 32 s to estimate
the temperature distribution of a 300 × 300 hyperspectral
image using the multicolor pyrometry method on a modern
6-core CPU [27]. This highlights the efficiency and potential
of the proposed model in handling complex and large-scale
hyperspectral data in real-time.

The dynamic model of the DED melt pool width may be
approximated by a first-order transfer function G(s) with a
time constant τ [49]:

G(s) =
K

1 + τ s
(2)

Akbari et al. estimated the time constant of this dynamic
model between 100 and 250 ms for a range of process
conditions [49]. Controlling the DED process would require
a sampling time an order of magnitude lower than the process
time constant, which corresponds to an sampling time of
10ms in the worst case. The inference time of the anomaly
classification model proposed in this work is compatible
with such a constraint and should allow its integration in
a closed loop control framework with reasonable hardware
requirements.

In addition to the three architectures with randomly initial-
ized weights, a second ResNet-50 CNN is considered with
pre-trained IMAGENET1K-V1 weights for all inner layers.
The goal of using pretrained weights is to re-use knowledge
learned from a task to boost performance on a related task.
In this case, the pretrained weights result from training
a ResNet-50 CNN on the ImageNet 2012 dataset [30].
This dataset contains 1.28 million images distributed in
1000 classes.

The inner layers use pre-trained and frozen weights and the
first and last layers are modified as described in section II-E.
As a result, training the CNN only has an effect on the first
and last layers. The learning rate is reduced to 1 × 10−5 to
avoid oscillations in training. As can be seen in fig. 9, the
accuracy of the pre-trained network tops at 69% and after
88 epochs the training stopped because the early stopping
criterium is reached. The lack of improvement over random
initialization could indicate that the domain gap between the
original dataset (ImageNet) and the melt pool hyperspectral
signatures is too big. Knaak et al. made the same observation
when trying to re-train a ResNet-50model with LPBF powder
bed images [50].

To conclude, the ResNet-18 architecture with randomly
initialized weights reaches an accuracy of over 94%, which
is equivalent to the ResNet-50 accuracy while having a lower
inference time. This accuracy exceeds the performance of
other multiclass anomaly detection models applied to DED
or LPBF data. The ResNet-18 architecture is therefore chosen
as the proposed model for the rest of this work.

B. CONFUSION MATRIX
In this section, the performance of the proposed classification
model is evaluated and analysed per-class on the validation
subset of the described dataset.

FIGURE 10. Normalized and cumulative confusion matrix for the
proposed model applied on a 10 000 samples subset of the validation
set. The matrix is normalized per row (dividing by the number of true
instances per class). This figure helps localize the classes that cause the
most misclassifications.

The normalized and cumulative confusion matrix is
depicted in fig. 10 and shows the correct and incorrect
classifications per class for the validation set. The numbers
between brackets are the absolute numbers of instances and
the normalized values are obtained by dividing the number
of instances in each square by the number of true instances
per class. The rates on the matrix main diagonal are the
class recall rates since the matrix is normalized per row.
The recall rate for the baseline class is 86.3% and above
90% for the other classes. The main source of error comes
from overheat-baseline misclassification which impacts the
baseline recall rate and which will be investigated in the
sample 589 prediction plot in section III-C. The overall
accuracy of the classification model reaches a satisfactory
performance and confirms that the anomaly dataset labelled
with process anomalies contain differentiable melt pool
signatures.

C. 2D PREDICTION PLOTS
Beyond the accuracy of a single image classification, the
model predictions should be viewed in the physical context
of the thin wall sample and compared to the ground truth.

Fig. 11 shows the ground truth and model predictions
of sample 590, which was printed with a strong over-
heat anomaly. The upper plot depicts the location of the
labelled and unlabelled zones as described in section II-B.
As explained previously, scanning speed changes happen
at two precise locations along the X axis, but melt pool
close to the change of speed are kept unlabelled because
they are suspected to be in a transient state. The lower
plot depicts the model predictions, which are plotted with
their respective machine positions in the XZ plane. Such
plots allow to analyse the distribution of correct and wrong
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FIGURE 11. Sample 590 ground truth and prediction plot. The predictions
are plotted with their respective machine positions in the XZ plane. This
figure shows clustered predictions that are in good agreement with the
ground truth.

predictions in the zones with labelled data and compare the
model predictions for the unlabelled sample areas with our
expectations from a physical point of view.

We can see in the lower plot of fig. 11 that the classification
model correctly identifies the edge, baseline and strong
overheat regions. This shows practically that the proposed
model behaves as expected. The classifications errors are
mainly located in the baseline zones and are small clusters
of overheat or underheat melt pools. They are composed of
only a few images. The time constant of the melt pool under
similar process parameters is approximately 200 ms [49] and
indicates if there was a change of melt pool behaviour, the
camera functioning at 500 Hz would record the transition
in approximately 100 images. Therefore, error clusters of
a couple of images in fig. 11 are probably coming from
the classification model and not a physical change in melt
pool behaviour. Such small error clusters could be removed
by using a moving average over the class predictions.
Additionally, it should be noted that the model classifies the
full first layer as ‘‘underheat’’. This makes sense physically
because at the first layer the laser shines a stainless steel build
plate of several centimetres. This big object comparatively to
the thin wall acts as a heat sink and reduces the size of themelt
pool. In the unlabelled regions between edge and baseline
and between baseline and the speed anomaly zone, we can
see a rather smooth transition from one class prediction to
the other, which confirms the transient assumption made in
section II-B.
Fig. 12 shows the prediction plot of sample 589, which

was printed with a overheat anomaly. We can see similar
small error clusters as in fig. 11, but also longer lines of

FIGURE 12. Sample 589 ground truth and prediction plot. The predictions
are plotted with their respective machine positions in the XZ plane. The
figure shows localized errors, mainly in the overheat and baseline
regions.

overheat melt pool in the baseline zones. The length of those
overheat classifications is sufficient to indicate a physical
change in the melt pool behaviour. Those misclassifications
with respect to the ground truth explain the high error
rate in the overheat-baseline case of the confusion matrix,
as noted in section III-B. This high error rate combined with
the long ‘‘line’’ clusters could indicate that this anomaly
actually occurs spontaneously in the sample and might
be triggered by either the edge or the speed anomaly
transients.

The high accuracy of the model described in section III-B,
coupled with its successful identification of anomaly zones as
demonstrated in fig. 11 and fig. 12, underscores the effective-
ness of the CNN-based approach in detecting and classifying
DED anomalies using high-dimensional hyperspectral data.
In contrast to existing data-driven DED anomaly classifi-
cation models discussed in section I (see table 1), which
are limited to binary classification, the model presented in
this work represents a significant advancement. It not only
differentiates among multiple DED anomaly classes but also
establishes a direct link between hyperspectral data and these
classes. Concretely, this means that such a model is able to
detect a specific kind of defect during printing by measuring
the IR signature of the melt pool independently from the
printed shape. Appropriate action could be taken to correct
the defect as it is detected, depending on the type of defect.

To summarize, the proposed model is able to detect overall
ground truth regions accurately and the predictions in the
unlabelled zones are linked to physical phenomena. This
model exceeds the capabilities of state-of-the-art models
identified in section I.
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D. PRELIMINARY INSPECTION WITH SALIENCY MAPS
1) CLASS ACTIVATION MAPS
In this section, the model classification mechanism is
investigated with the help of visualization methods.

Although a Deep Learning model is usually considered
as a black box, there has been significant effort in the
field of Explainable AI to understand how CNN reach their
predictions. Gradient-weighted Class Activation Mapping
(GradCAM) and guided backpropagation are two visualiza-
tion methods that produce a heat-map that shows which part
of an image is used by a network to make a prediction [51],
[52]. Guided backpropagation is able to highlight individual
pixels based on their contribution to the output through
the network, but is not class discriminative. In contrast,
GradCAM is class discriminative but produces a coarser
localization map by only highlighting convolutional feature
maps (7 × 7 for the last layer of a ResNet-50 CNN [30])
and not single pixels. To obtain a localization map that is
both fine-grained and class discriminative, Selvaraju et al.
proposed to combine the two methods into the Guided
GradCAMmethod [51]. This is the method used in this work.

Fig. 13 shows 6 melt pool images (only a single band
is shown per melt pool hyperspectral image for clarity, i.e.
one slice from the 3D structure presented in fig. 1), each
belonging to a different class, and their associated Guided
GradCAM localization maps. The laser is moving in the
same direction (upwards on the plot) in all melt pool images
to facilitate the analysis and the proposed model correctly
predicts each of the classes for those 6 images. All melt
pool images and localization maps are normalized to [0,1] for
better readability. The localizationmaps showwhich pixels in
the original image make the most contribution for the model
to make its (correct) prediction. GradCAM-based maps are
known to often be noisy and visually-sharp. Smilkov et al.
identified noise in GradCAM maps as meaningless, noisy
variations in gradients [53]. Based on this, the localization
maps presented in this work have been post-treated with a
simple 2D Gaussian filter (σ = 3) to improve readability and
interpretability. The standard deviation (or width) of the filter
was used as a tuning parameter and was optimized visually.

We can see in fig. 13 that each class has a different
fingerprint in its localization map. The 6 classes can be
divided in three groups based on their localization map and
their energy input. A potential link between the fingerprints
and the physical temperature distribution in the melt pool can
be proposed:

• For the baseline and edges classes, the model focuses
on the melt pool front edge, where the pixel values are
higher because of the higher temperature than in the tail.
A broad leading edge could be a specific characteristic
of those two classes. The model additionally looks at the
unstable features happening in the edge image, caused
by the change of direction.

• For the underheat and strong underheat classes, the
model looks at the centre of the melt pool. The melt pool

FIGURE 13. Melt pool NIR signature (794 nm band) and associated CAM
for each class of the classification model. Each class shows a specific
signature on its CAM.

visible left side is thinner for those classes because of the
lower energy input and this could be a discriminative
factor for the model. We can also see that the model
looks outside of the melt pool area to the left. The model
could probably be looking for bright spots caused by
spatter or powder particles, which are visible on the
strong underheat image for example.

• For the overheat and strong overheat, the model looks
very specifically at the left-side edge of the melt pool.
The pixel values are more likely to be high over those
2 locations for those classes because of the higher energy
input. A well-defined and wide left-side edge could
therefore be a discriminative factor for higher energy
inputs. Additionally, the model looks at the melt pool
centre only for the strong overheat class. In addition to
the first criterion, higher values in the centre could be
the discriminative factor between overheat and strong
overheat.

It should be noted that the GradCAM maps are only
valid for the 6 images shown and that the link between
the discriminative regions and the temperature distributions
has not been validated. Future work should be conducted
to validate the link between physical features and black-box
model predictions.

To summarize, the Guided GradCAM method showed
different discriminative regions for each of the melt pool
classes, equivalent to a different signature for each class.
Melt pools that are thermally close have a similar signature
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FIGURE 14. Feature importance per spectral band and per class of the test set melt pool images. This plot shows that many
bands are significant for the classification model regardless of the class, demonstrating the interest of hyperspectral data.

and a potential link between melt pool signatures and the
temperature distributions is proposed.

2) SPECTRAL BAND ANALYSIS
In addition to the analysis of the significance of spatial
regions with Class Activation Maps, it is of interest to study
the importance of the spectral bands to the classification
model given the necessary overhead to process them.
A spectral feature importance metric FI (λ, c) is computed for
each spectral band λ and class c. It was obtained by generating
GradCAM maps LcGradCAM for all test set images, averaging
each map over the spatial pixels (i, j) and sum the averages
for all images nc belonging to the same class c:

FI (λ, c) =

∑
nc

(∑
i
∑

j L
c
GradCAM (i, j, λ)

N

)
(3)

with LcGradCAM (i, j, λ) the GradCAM value at pixel (i, j) and
spectral band λ for class c and N the number of pixels per
spectral band.

The spectral feature importance vector is then rescaled to
the [0, 1] interval to easily compare the relative importance
of each spectral band from one class to another. The resulting
metric is shown in fig. 14. The plot shows clearly that many
bands are significant for the classification model regardless
of the class, demonstrating the interest of hyperspectral data
for the anomaly classification task presented in this work.
Additionally, it can be seen that the bands centered around
wavelengths over 820 nm have a higher feature importance
than the bands centerend around wavelengths under this
length. Retrain a smaller network with only spectral bands
above 820 nm could lead to a similar performance to the
model presented in section III-Awith a faster inference speed.
Finally, we can observe that, while the significant spectral
bands are mostly the same for each class, the relative value
of each band varies per class, leading to a different spectral
fingerprint for each class.

To summarize, the spectral metric proposed in this
section shows that several bands appear to be meaningful
to the classification model, which proves the benefit of

hyperspectral IR data for this application. In future work,
a smaller model which only takes themost significant spectral
bands as input, could be trained and compared to the model
proposed in this work.

IV. CONCLUSION
The main contributions of this work are:

• Dataset and labelling method: An experimental
anomaly dataset of over 500 000 hyperspectral melt
pool NIR signatures and a labelling method relying
on process parameters were presented. A qualitative
analysis of the microstructure was performed over the
range of considered energy densities, indicating that
the chosen parameters result in typical undesirable
thermal conditions. The main advantage of the proposed
labelling method is meeting the data requirements of
DL methods without costly material analysis or expert
identification on every sample.

• Anomaly classification model: A classification model
using hyperspectral data and a CNN architecture is
proposed. It was able to reach an accuracy of over 94%
on the validation set, an improvement over state-of-the-
art models. The error rate of the model was analysed
per class and potential paths for improvements were
identified.

• Real-Time application feasibility: The inference speed
of the model was measured under 5 ms, making it suit-
able for real-time applications. This performance signif-
icantly outperforms conventional multicolor pyrometry
in computational efficiency.

• Preliminary inspection with Guided GradCAM:
The Guided GradCAM method was used to visualize
relevant regions in melt pool images, revealing that
the model considers different regions for each class.
Additionally, an spectral feature importance metric was
computed by averaging GradCAMmaps over the spatial
dimensions. This metric demonstrated the benefit of
hyperspectral data for melt pool anomaly classification.

For future work, more complex anomaly samples should
be printed to assess further the performance of the model
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and anomaly classification should be integrated in a real-time
closed loop framework to apply a corrective action to the
detected process anomalies. Additionally, the link between
temperature distribution and the melt pool discriminative
regions for classification should be investigated to better
explain how the model classify melt pools. A smaller model
which only takes the most significant spectral bands as input,
could be trained and compared to the model proposed in this
work.
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available on Zenodo at https://doi.org/10.5281/zenodo.
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