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ABSTRACT Accurate segmentation of organ and pathological tissue images is of great significance
to the diagnosis and treatment of various diseases. However, it still faces great challenges due to the
inherent complexity, diversity, noise and occlusion of medical image data. To solve these problems, based
on the U-Net framework, we propose a medical image segmentation algorithm named MDE-Net, which
combines multi-layer deep feature extraction module and attention mechanism. Firstly, in the encoding part,
we introduce the hybrid convolutional feature extraction (HCFE) module as a replacement for traditional
convolutional blocks to allow for a more robust extraction of features at multiple scales and help expand the
receptive field. Subsequently, we design the multi-layer pooling and channel-spatial squeeze & excitation
(MPcsSE) module, which extracts more image context information by multi-layer pooling connection
of the coding part and introducing csSE module in the middle connection part. Finally, in the decoder
part, we design the SE-MultiResConv that combines multi-scale residual convolution with SE attention
mechanism to improve segmentation accuracy and prevent the loss of detail information during up-sampling.
In extensive experiments, we conducted detailed tests on two publicly available medical image datasets
to rigorously evaluate the performance of our proposed MDE-Net. For the ISIC-2018 dataset, MDE-
Net achieved remarkable metrics with Accuracy of 91.59%, Matthews correlation coefficient (Mcc) of
81.78%, Dice of 86.63%, and Jaccard of 76.98%. Similarly, on the COVID-19 dataset, MDE-Net exhibited
outstanding performance, achieving Accuracy of 95.53%, Mcc of 79.92%, Dice of 83.43%, and Jaccard of
70.93%. The excellent performance of MDE-Net on these datasets proves its effectiveness and generalization
in medical image segmentation tasks. By delivering precise and dependable segmentation outputs, MDE-Net
demonstrates a transformative potential for the diagnosis and treatment of diverse medical conditions. MDE-
Net’s contribution can significantly streamline diagnostic processes, minimize human error, and optimize
resource allocation in clinical settings, making it a valuable tool in advancing healthcare.

INDEX TERMS Medical image segmentation, multi-layer depth extraction, attention mechanism, squeeze-
and-excitation, multi-layer pooling, multi-scale residual convolution, U-Net.

I. INTRODUCTION
Since the birth of digital medical imaging, the application
of image processing techniques in the field of medical
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image analysis has attracted much attention, and it has
become an important tool for doctors to analyze patho-
logical tissues. Traditionally, the task of identifying and
delineating pathological tissues has relied entirely on the
expertise of clinicians. This manual approach presents
several challenges, including the complexity of the task, the
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extensive time required for processing, and the variability
in judgments among different observers. To address these
multifaceted challenges, interdisciplinary researchers have
been diligently working on developing automated diagnostic
systems leveraging advanced technologies such as machine
learning and deep learning. By integrating sophisticated
image processing algorithms and powerful computational
techniques, these automated diagnostic systems not only
speed up the diagnostic process, but also provide clinicians
with precise and detailed insights into pathological conditions
and they significantly improve the efficiency and accuracy of
pathological tissue analysis.

In the early days of medical image segmentation, tradi-
tional image processing methods such as edge detection,
template matching techniques, statistical shape models, and
active contours were primarily used. However, due to
the complexity of medical images and the difficulty of
representing their features, these methods still face significant
limitations. With the improvement of computer performance
and digital image processing technology, the scope and
depth of medical image segmentation research are expanding,
especially the emergence of deep learning algorithms [1], [2],
[3]. These algorithms brought remarkable advancements with
their superior feature extraction capabilities, highly flexible
adaptability, and robust generalization ability. Currently, the
most widely discussed are the fully convolutional networks
(FCN) [4] and U-Net [5], both of which can achieve shallow
and deep feature extraction with high accuracy and efficiency.
However, due to the complexity and diversity of image
segmentation data, these methods often struggle to extract
comprehensive global information from feature images,
which is crucial for the accurate analysis of pathological
tissues.

In recent years, more and more structure optimization
methods have been proposed, including multi-scale feature
extraction [6], [7], attention mechanism [8], [9], and residual
connection [10], [11]. Among them, Selvaraj et al. [12],
[13] proposed a CRPU-Net to speed up colonoscopy, reduce
unnecessary biopsies, improve patient care, and optimize
medical resource allocation. Singh et al. [14] proposed a
method of de-noising medical images to achieve accurate
detection and classification, and studied how to use high
performance computing to process massive image data to
classify the effects of fluid accumulation and cartilage
erosion in MRI images of knee joints with osteoarthritis.
Khan and Singh [15] implemented semantic segmentation by
modifying the feature space in the basic U-Net architecture
to achieve the geometric features required for nonlinear
road extraction, while striving to maintain appropriate edges
and boundaries. Zhang et al. [16] suggested a medical
image segmentation method based on convolutional attention
blocks, which reduces the interference of invalid targets and
achieves more comprehensive and effective feature extrac-
tion. Yinetal. [17] introduced the AMSUnet framework,
a novel approach designed to enhance the segmentation of
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various medical targets. This framework employs a combi-
nation of subscale and multi-scale convolution reconstruc-
tion subsampling encoders, which work synergistically to
improve segmentation accuracy and robustness. Zhang et al.
[18] utilized the strengths of ConvNeXt and U-Net to
propose an innovative approach named BCU-Net, designed
to effectively handle a wide range of medical images with
varying resolutions. Li et al. [19] fully capitalized on the
strengths of CNNs and Transformer to introduce a dual-codec
structure of X-Net. This synergistic integration allows X-Net
to excel in capturing both local details and long-range
dependencies, which are essential for accurately segmenting
complex medical images. Zheng et al. [20] introduced a
novel network called CASF-Net, which adeptly integrates
both coarse-grained and fine-grained feature representations.
This innovative architecture leverages cross-attention and
cross-scale fusion mechanisms to effectively capture and
fuse features from different levels of abstraction. Xie et al.
[21] developed an advanced architecture incorporating a
two-stream pyramid module alongside a context-aware
encoder-decoder module. The design goal is to enhance the
learning of local detail features across multiple scales, which
is essential for effectively distinguishing between intricate
medical images and their complex backgrounds. Despite the
continuous development of various innovative algorithms,
how to accurately segment lesion areas of medical images
remains a major challenge for researchers. For example, the
ISIC-18 dataset covers a variety of skin lesion types, but
each lesion may be significantly different in shape, color,
texture, and the boundary of some skin lesions has a transition
zone and a mixed area of other normal skin, which increases
the difficulty of segmentation. Similarly, in the context of
the COVID-19 datasets, the infection areas are scattered and
contain many disjointed boundaries, which often makes it
difficult for traditional segmentation algorithms to produce
clear and distinct boundaries, resulting in fuzzy segmentation
results. Given these multifaceted challenges, it becomes
critical that researchers develop new techniques to address the
diversity and complexity of image segmentation in modern
medicine.

Inspired by the aforementioned methodologies, we pro-
posed a multi-layer deep feature extraction network with
attention mechanism for medical image segmentation, termed
MDE-Net. Specifically, in the encoding stage, we have
replaced traditional convolutional blocks with a hybrid
convolutional feature extraction module. At the juncture
between the encoder and decoder, we have introduced a
csSE attention mechanism that combines with multi-layer
pooling. In the decoding phase, we have incorporated a
SE attention mechanism alongside a multi-scale residual
convolution module. Our extensive experiments on the
ISIC-2018 dataset and COVID-19 dataset demonstrated
that the proposed MDE-Net had significant segmentation
performance. The principal contributions of our work are as
follows:
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(1) By capturing fine-grained patterns alongside larger
contextual cues, the HCFE blocks ensure a more compre-
hensive and robust feature extraction process. This design
collaboratively combines standard and extended convolution
techniques to improve the feature representation capability of
the network, especially in complex segmentation tasks.

(2) The MPcsSE block uses a refined feature processing
strategy to effectively suppress noise and redundant informa-
tion in images through multi-level and multi-scale pooling
operations. This novel integration effectively extracts and
emphasizes contextual information, and it ensures that the
network maintains a high level of accuracy in identifying
and segmentation key features at different scales and spatial
locations.

(3) The SE-MultiResConv module can capture feature
information of different scales by adding multi-scale residual
convolution, and effectively alleviate the problem of gradient
disappearance through residual connection. This combination
not only improves the segmentation accuracy, but also
prevents the loss of detail information in the up-sampling
process.

The overall composition of this paper is as follows:
In the second section, we present a detailed explanation of
the proposed MDE-Net method, including its architecture
and core components. In the third section, we describe the
performance of MDE-Net compared to the most advanced
methods. Finally, the last section briefly summarizes the
results of the study.

il. METHODS

In this section, we propose a method that combines
multi-scale feature extraction with attention mechanisms to
segment medical images. Our method is composed of three
parts: encoder module, intermediate connection module and
decoder module. In the following subsection, we will explore
these modules in depth.

A. FRAMEWORK OF MDE-Net

s In the field of medical image segmentation, the
encoder-decoder structure in the U-Net architecture is
particularly effective in capturing semantic information. Its
skip connection is able to combine the low-level features
of the encoder with the high-level features of the decoder.
However, as a relatively simple network, U-Net may struggle
to handle complex scenes or capture finer semantic details.
To address these limitations, we have developed a new
module based on the U-Net architecture specifically designed
to optimize segmentation performance for more challenging
tasks and finer image detail extraction, as shown in Fig. 1.
Specifically, to ensure the efficient extraction of fundamental
features, our approach employs hybrid convolutional feature
extraction modules within the first four layers of the encoder.
Then, through a series of down-sampling operations with
step size of 2, the input features are divided into four
different convolution blocks layer by layer. For the input
image I € R3>*#*W each convolutional block of extracted
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HCEFE features is represented as R xhixwi where the channel
number c;values followed by {16, 32, 64, 128}, h; =
H/2', and w;, = W/2'. In the final layer, we retain the
original 3 x 3 convolutional block. To efficiently capture
a wider context and ensure reliable extraction of image
features, we developed the MPcsSE module. The module
is designed to integrate feature information extracted from
the first to fourth layers of the encoder, and it leverages both
low-level and high-level features to create a comprehensive
representation of the input image. In each step of the
expansion path, the process involves up-sampling the feature
map, followed by a connection to the corresponding cropped
feature map from the shrink path. Unlike the standard
approach, where a 3 x 3 convolution is applied, we substitute
it with an SE-MultiResConv module. This modification
serves to reduce the number of feature channels by half while
simultaneously enhancing feature representation. Finally,
we output the final feature image througha 1 x 1 convolution
operation. In the subsequent sections, we will delve deeper
into each of these modules, illustrating how they integrate
and contribute to the overall network.

B. HYBRID CONVOLUTIONAL FEATURE EXTRACTION
BLOCK

In our proposed MDE-Net, we designed a hybrid con-
volutional feature extraction block that enhances feature
extraction by integrating multiple convolutional operations.
As illustrated in Fig. 2, the input feature map undergoes
several parallel processing paths to capture diverse and
comprehensive features. Firstly, the input feature is divided
into three branches, with the first two branches working
in parallel and independently processing the input feature
maps. Each of the two branches first carries out convolution
operation through a standard 3 x 3 convolution kernel,
extracting local details of input features from different
perspectives, and providing a rich information basis for the
subsequent feature fusion. After the local feature extraction
is completed, the feature maps of these two branches are
combined. The combined feature map is processed through
a 1 x 1 convolution layer for dimensionality reduction
while preserving the most important essential features. The
third branch adopts dilated convolution, which increases the
receptive field by inserting “holes” between the elements
of the standard convolution kernel without the need for
additional parameters or computational complexity. This
feature enables the network to capture a wider range of
contextual information without losing image resolution.
Finally, the feature maps of different scales from the
three branches are combined to enable the network to
simultaneously obtain local details and global contextual
information, thereby enhancing the characterization ability
of the network. In short, feature maps of different scales
complement each other during the fusion process, enabling
the network to more accurately understand complex medical
image structures and improve the performance of tasks such
as segmentation and detection.
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FIGURE 1. Network architecture of MDE-Net.
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FIGURE 2. Structure of hybrid convolutional feature extraction block.

C. MULTI-LAYER POOLING AND CHANNEL-SPATIAL
SQUEEZE & EXCITATION

In order to more effectively address the challenge of scarce
and diverse lesion area samples in medical image analysis,
we designed a multi-layer pooling module, as illustrated
in Fig. 3. This module aims to effectively reduce image
noise and redundant information through refined feature
processing strategies, while enhancing the ability to extract
global features. In MPcsSE block, we carefully planned four
parallel processing paths, each of which performs pooling
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operations at different scales for feature images at different
levels. First of all, the first path applies the max-pooling
directly to the first convolution feature image output by the
encoder, rapidly reducing the resolution of the feature map to
1/8 of the original size. The network can quickly capture the
significant features in the image and initially reduce the data
dimension, reducing the burden for subsequent processing.
The second path applies max-pooling again to the feature
image after the second convolution, reducing the resolution to
1/4 of the original size to preserve more details. The third path
continues to perform max-pooling on the feature image after
the third convolution, but the pooling step size is reduced,
and the resolution is only reduced to 1/2 of the original
size. The feature map of this path achieves a good balance
between global and local information, which helps the model
to understand the image content more comprehensively.
The fourth path keeps the feature image output from
the fourth convolution unchanged without any additional
pooling operations. This path preserves the highest resolution
feature map and is essential for capturing subtle lesion
changes. Upon completing the multi-layer pooling operations
across these four paths, we integrate the resulting feature
maps. To further enhance the model’s adaptive capacity
and feature filtering capability, we introduce the csSE
attention mechanism. This attention mechanism recalibrates
the fused feature map, selectively enhancing useful features
while suppressing irrelevant ones. In summary, the MPcsSE
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module substantially enhances the model’s ability to acquire
comprehensive contextual information, thereby providing
robust support for the accurate analysis and diagnosis of
medical images. This innovative design not only boosts the
overall segmentation performance but also ensures that the
network remains efficient and resilient.

The csSE attention mechanism, as shown in Fig. 4,
is to deform the SE attention module [22], [23]. The csSE
mechanism achieves this by decomposing the SE module into
two distinct components: the channel-wise SE (cSE) module
and the spatial-wise SE (sSE) module. Each component
processes the input feature maps independently to produce
calibrated feature maps, which are subsequently combined to
form the final enhanced feature map. Specifically, the cSE
module first passes the input feature map through the global
averaging pooling layer, changing the dimension from [C, H,
W] to [C, 1, 1], where C is the number of channels, H and
W are the height and width of the feature map respectively.
Following this, the reduced feature map undergoes a trans-
formation through two 1 x 1 convolutional layers. The first
convolutional layer reduces the number of channels to 1/r of
the original size, where r is a reduction ratio parameter that
controls the extent of dimensionality reduction. The second
convolutional layer then restores the number of channels back
to the original size. The result of these convolutions is then
passed through a sigmoid activation function, normalizing
the values to produce a channel-wise weight vector. This
weight vector is subsequently multiplied with the original
feature map in a channel-wise manner, resulting in a feature
map that has been calibrated according to the importance
of each channel. In parallel, the SSE module processes the
input feature map by applying a 1 x 1 convolutional layer
directly to it. This layer sets the number of output channels to
one and uses a convolution kernel of size 1 x 1, effectively
compressing the channel dimension while retaining the
spatial structure of the feature map. The resulting spatial
dimension weight map is then normalized using a sigmoid
activation function, producing a spatial-wise weight map.
In addition, this weight map is multiplied element-wise with
the original feature map, calibrating the spatial information
by emphasizing the most relevant spatial features. The final
step in the csSE attention mechanism involves combining
the outputs of the cSE and sSE modules. This combined
approach allows the csSE module to leverage both spatial and
channel-wise information, providing a more comprehensive
and nuanced representation of the input feature map. The
specific calculation formula of ¢SE and sSE are as follows:

1 H W
%= ZZuk (i, )) (1
i

Uese = Fese (U) = [0 (21) w1, 0 (22) ua, -+, o (3e) uc)
2

Usse = Fsse (U)
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D. MULTI-SCALE RESIDUAL CONVOLUTION WITH SE
ATTENTION MECHANISM

In the process of deepening and optimizing the U-Net
architecture, the decoder part plays a key role in decoding the
highly compressed encoder feature vector and reconstructing
it into the original image size and content. However, the
traditional decoding strategy mainly relies on simple decon-
volution and upsampling operations, which often result in the
loss of image details while increasing the spatial resolution
of feature maps, leading to problems such as image blurring,
unclear edges, and even information distortion. To overcome
this limitation, we propose a SE-MultiResConv module,
which combines multi-scale residual convolution with SE
attention mechanism, as shown in Fig. 5, aiming to signif-
icantly improve the retention and enhancement of feature
information during decoding. The innovation of this module
comes from the dual pursuit of efficiency and effectiveness of
feature extraction. By processing two feature extraction paths
in parallel, the module realizes comprehensive and precise
analysis of input features. The first path focuses on using
SE attention mechanism to improve the feature representation
ability of the model. The SE attention mechanism, as shown
in Fig. 6, automatically learns the importance of each
feature channel through two key operations: squeeze and
excitation. Based on these two operations, the feature channel
is re-labeled to enhance the important features and suppress
the unimportant ones. The second path focuses on capturing
multilevel features in images through the combination of
multi-scale convolution and residual connection. In this
path, the input images are first processed by 1 x 1, 3 x
3and 5 x 5 convolutions respectively to capture local features
of different scales. This multi-scale convolution strategy
not only enriches the diversity of features, but also helps
models better understand and represent complex structures
in images. Then, the output of different convolutional layers
is fused by residual connection, which not only preserves
the details of shallow features, but also takes advantage
of the abstract representation ability of deep features. The
residual connection also effectively alleviates the problem of
gradient disappearance or explosion in deep network training,
accelerates the training process, and improves the scalability
of the network. Finally, SE-MultiResConv block fuses the
output of the two paths, and achieves the complementary
and enhanced feature information through the superposition
operation of feature graphs. This fusion process makes full
use of the advantages of SE attention mechanism in feature
re-calibration, and combines the richness and robustness of
multi-scale convolution residual module in feature extraction.
Therefore, it can extract multi-layer detailed features from
complex data more effectively, and provide more abundant
and accurate feature representation for subsequent image
reconstruction tasks.
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FIGURE 6. Structure of SE attention module.

E. LOSS FUNCTION between foreground and background in the medical images,
Due to the limitations of small datasets, coupled with  the problem of category imbalance becomes particularly
the complexity of lesion size and the uneven distribution prominent. Compared with the traditional cross entropy loss
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function, Dice loss [24], [25] is widely used because of its
unique advantages that it can handle the class imbalance
problem well and still produce accurate segmentation effect
in the case of limited labeled data. Therefore, the Dice loss
function is chosen in this paper, and its specific calculation
method is described as follows:

N
2> v
i=1
N N
S+

i=1 i=1

“

Lpice = 1-

IIl. RESULTS

A. DATASET

In this section, we evaluate the performance of MDE-Net
on both the ISIC-18 dataset and the COVID-19 dataset.
Recognizing the importance of standardization in the data
preprocessing phase, we put each image through a rigorous
adjustment procedure, with a size of 256 x 256 pixels. The
details of these data sets are as follows.

1) ISIC-2018 DATASET

ISIC-2018 is currently the world’s largest skin lesion image
dataset with professionally annotated information attached
to digital skin lesion images. The dataset contains 3,694
images, of which 2,594 for training, 100 for validation,
and 1,000 for rigorous testing to assess the general-
ization and feature extraction capabilities of our model.
The dataset can be downloaded at: https://challenge.isic-
archive.com/data/#2019. Fig. 7(a-b) provides some original
images of the ISIC-18 dataset and their corresponding
annotated images.

2) COVID-19 DATASET

The medical image acquisition process is complex and
requires high standards of accuracy and trust in the marks.
However, due to the scarcity of training samples, the
challenge of over-fitting is often faced in the training
process, which weakens the prediction accuracy of the
algorithm. In order to mitigate the risk of training data
scarcity and overfitting, we used the COVID-19 dataset
in addition to the ISIC-2018 dataset, so that the training
data can be diversified on the basis of ensuring semantic
integrity and lossless. In order to more accurately understand
the generalization ability and robustness of the model on
different pathological features and data sets. The COVID-19
dataset contains 2,913 COVID-19 images, 1,864 of which
were used for training, 466 for validation, and 583 images
were processed for testing. The dataset can be obtained
from: https://www.kaggle.com/datasets/anasmohammedtahir
/covidqu. Fig. 7(c-d) provides some original images of the
COVID-19 dataset and their corresponding labeled images.

B. THE TRAINING AND VERIFICATION OF MDE-Net
The network architecture is deployed on a 64-bit Windows
operating system and relies on the Python 3.7.0 library for

VOLUME 12, 2024

development. To speed up the calculation process, the system
is equipped with an NVIDIA Quadro RTX 6000 high-end
graphics processing unit (GPU) with 24GB of extended
memory capacity. During the training process, we adopted the
following key hyper-parameter configuration: the number of
samples per batch is 16, the entire training process will be
repeated for 200 iterations. The initial value of the learning
rate is set to 0.001 to optimize the convergence rate and per-
formance of the model. The selection of this value is the result
of in-depth understanding of the model training dynamics and
many experiments, and ensures that it can converge smoothly
to the optimal solution in the late training period. In the
selection of optimizer, we deeply analyzed the mainstream
optimization algorithms in the current deep learning field, and
finally decided to use Adam optimizer [26], [27]. With its
unique advantages, Adam optimizer can adjust the learning
rate adaptively in the process of parameter updating, which
significantly speeds up the training speed and improves the
convergence efficiency of the model. To mitigate the negative
effects of model overfitting, we implemented a well-designed
early termination mechanism. When the performance on
the validation set is no longer increasing, it interrupts the
training process to prevent the model from falling into the
overfitting region, thus ensuring good generalization ability
of the model. Fig. 8 shows the accuracy and loss curves of
the proposed MDE-Net on ISIC-2018 dataset and COVID-19
dataset, where blue represents the training curve and orange
represents the validation curve. It can be seen from the
graphical data that MDE-Net has outstanding performance in
the whole training and verification stage, and the convergence
speed is also extremely efficient, perfectly avoiding the
influence of overfitting or under-fitting.

C. EVALUATION METRICS

In this paper, four key indicators, Dice [28], [29], Mcc [30],
[31], Accuracy [32], [33] and Jaccard [34], [35], are used to
evaluate the performance of each model. Specific calculations
are as follows:

) 2TP
Dice = ———— (5)
2TP + FN + FP
M. TP -TN—FP -FN
cc =
(TP+FN) (TP+FP) (TN +FP) (TN +FN)
(6)
TP + TN
Accuracy = @)
TP + TN+FP + FN
TP
Jaccard = ————— (8)
TP + FN + FP

where TP and FP represent true positive and false positive
respectively, TN and FN represent true negative and false
negative respectively.

D. COMPARISON WITH OTHER METHODS
To emphasize the superiority of our approach, the proposed
MDE-Net was conducted in-depth comparative analysis with
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FIGURE 7. Some original images and their corresponding labels. (a-b) images from ISIC-18 dataset and their corresponding annotated. (c-d) images from

COVID-19 dataset and their corresponding labeled.
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FIGURE 8. Accuracy and loss curve of the proposed MDE-Net on I1SIC-2018 dataset and COVID-19 dataset. (a-b) accuracy and loss curves on ISIC-18

dataset. (c-d) accuracy and loss curves on COVID-19 dataset.

multiple frameworks such as U-Net, AttUNet, R2UNet,
HRNet, CLNet, Connected_UNet, ODsegmatiton, SEUNet,
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(b)

(d)

EENet, and ASFNet on the ISIC-2018 dataset. These models
represent the vanguard of image segmentation techniques.
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TABLE 1. Comparison experiment on the ISIC-18 dataset.

Method Dice(%) Mcce(%) Accuracy(%) Jaccard(%)
U-Net [5] 82.77 76.71 90.67 71.24
AttUNet [36] 84.25 78.41 90.56 73.38
R2UNet [37] 83.10 77.13 90.31 71.68
HRNet [38] 83.95 77.99 90.89 72.87
CLNet [39] 81.38 74.80 89.97 69.25
Connected_UNet [40] 85.43 80.00 90.63 75.21
ODsegmatiton [41] 81.82 75.61 91.30 69.94
SEUNet [42] 82.28 75.86 90.79 70.50
EENet [43] 84.55 78.84 90.78 73.68
ASFNet [44] 86.21 81.26 91.28 76.47
SCTV-UNet [45] 83.32 77.16 90.73 72.03
SSA-UNet [46] 85.12 79.46 91.56 74.67
RMAU-Net [47] 85.04 79.53 90.95 74.53
MDE-Net 86.63 81.78 91.59 76.98

After evaluation, its performance is detailed in Table. 1.
It is necessary to note that although models such as U-
Net, CLNet, ODsegmentation, SEUNet, SCTV-UNet and
RMAU-Net have shown impressive performance in their
respective fields, they appear inadequate and perform rela-
tively poorly when facing the rich details, varied textures,
and complex pathological features in skin cancer images.
This is mainly due to the limitations of these models in
feature extraction and analysis, which make it difficult to
fully capture and understand subtle changes in images. Using
channel attention and self-attention mechanisms, SSA-UNet
can automatically weight different feature mappings, and it
shows strong performance, particularly in accuracy metrics.
Instead, ASFNet deepens the spatial upsampling block and
proposes a multi-scale convolutional block that improves
its adaptability and ability to recognize complex details.
However, even so, it still fails to achieve optimal performance
on all evaluation indicators. Among these networks, our
MDE-Net has the most outstanding performance, with
Dice, Mcc, Accuracy and Jaccard scoring 86.63%, 81.78%,
91.59% and 76.98% respectively. Compared with U-Net,
these indicators have improved significantly, with profit
margins of 3.86%, 5.07%, 0.92% and 5.47%, respectively.
The experimental results show that the HCFE block, MPcsSE
block and SE-MultiResConv block proposed in this paper are
effective, which can realize the extraction of global network
feature information and improve the segmentation accuracy.

To visually evaluate and compare segmentation perfor-
mance, the visualized results of our model and various typical
models are shown in Fig. 9. As can be seen from the
figure, U-Net showed obvious inaccuracy in the segmentation
of skin cancer lesion images, resulting in discontinuous
segmentation (the third row of Fig. 9). CLNet, R2UNet,
ODsegmatition, and SEUNet were inspired by the “pruning”’
module, residual connection, and attention mechanism. These
models achieved similar performance to U-Net (row 7, 5, 9,
and 10 of Fig. 9), but limited by insufficient sensitivity field
and high segmentation complexity for small images. There
are still gaps. To address these challenges, AttUNet is seen as
a variant of U-Net, with attention gates and skip connections,
to improve segmentation accuracy and efficiency, as shown
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in the fourth row of Fig. 9. More recently, HRNet has further
guided network segmentation by introducing multi-branch
parallelism and multi-scale fusion in U-Net (row 6 of Fig. 9).
To further precise segmentation of skin cancer lesions, EENet
incorporates multi-layered residual network connections to
widen the acceptance field and mitigate gradient disappear-
ance. However, as can be seen from the eleventh row of Fig. 9,
the segmentation results of EENet still have discontinuity and
wrong segmentation, which is caused by incomplete global
information extraction during the encoding and decoding
connection. In the eighth row of Fig. 9, Connected_UNet
improves the accuracy of fine segmentation by leveraging
tighter connections. In the twelfth row of Fig. 9, ASFNet
achieves the second best result by combining adaptive
structure and feature fusion techniques. SCTV-UNet, SSA-
UNet, and RMAU-Net demonstrate noticeable challenges in
segmentation accuracy, as evidenced by a significant number
of missegmentations in their outputs (row 13, 14, and 15 of
Fig. 9). In contrast, our approach enhances the coverage
of receptive fields and integrates multi-scale feature maps
effectively, which is mainly due to our proposed HCFE
block and MPcsSE block. In this way, both local and global
information can be obtained through multi-scale fusion,
and the adaptive ability of the model can be improved.
In addition, SE-MultiResConv blocks can accurately segment
fine features and extract multiple layers of detailed features.
The resulting segmentation results are more accurate than the
other methods, as shown in the last row of Fig. 9.

In addition, we further demonstrated the performance
of our proposed MDE-Net method by conducting a large
number of experiments on COVID-19 dataset. Qualitative
visualization is shown in Fig. 10, and quantitative analysis
is listed in Table. 2. It can be easily seen that COVID-19
datasets have more complex backgrounds, which brings
higher challenges to image segmentation, making it difficult
to avoid varying degrees of errors in the segmentation
process of various models. As a result, the Dice, Mcc,
Accuracy and Jaccard values were significantly reduced.
Despite these challenges, our proposed approach outperforms
all competing models on all evaluation metrics, with an
impressive Dice score of 83.43%, Mcc score of 79.92%,
Accuracy score of 95.53%, and Jaccard score of 70.93%.
This superior performance underscores the robustness and
generalization ability of the MDE-Net method and highlights
its accuracy in efficiently handling the complexity of
the COVID-19 dataset. Therefore, in COVID-19 image
segmentation, it shows advantages in accurate segmentation
of small features and extraction of global feature information.

E. COMPUTATIONAL EFFICIENCY

In Table. 3, we conducted a comprehensive analysis of
the relevant parameters and computational efficiency of
each segmentation method on the ISIC-18 dataset. Notably,
models such as U-Net, ASFNet, SCTV-UNet, SSA-UNet,
RMAU-Net, and Connected_Net show clear advantages
in requiring fewer parameters. However, this reduction in
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FIGURE 9. Visual segmentation results of different methods on the ISIC-18 dataset. First and second rows: the original images and their
corresponding ground truth. The third to last rows are the result of U-Net, AttUNet, R2UNet, HRNet, CLNet, Connected_UNet,
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TABLE 2. Comparison experiment on the COVID-19 dataset.

Method Dice(%) Mcce(%) Accuracy(%) Jaccard(%)
U-Net [5] 81.20 78.34 95.48 68.55
AttUNet [36] 82.50 79.83 95.40 70.42
R2UNet [37] 81.11 78.27 95.20 68.46
HRNet [38] 80.65 77.90 94.71 67.82
CLNet [39] 81.89 79.27 95.20 69.59
Connected_UNet [40]  81.79 79.05 95.48 69.39
ODsegmatiton [41] 76.28 72.77 95.53 61.89
SEUNet [42] 77.18 73.86 95.25 63.13
EENet [43] 80.58 77.62 95.12 67.67
ASFNet [44] 81.94 79.20 95.47 69.65
SCTV-UNet [45] 81.10 78.19 94.76 68.39
SSA-UNet [46] 81.08 78.18 94.69 68.36
RMAU-Net [47] 80.80 77.86 95.29 68.00
MDE-Net 83.43 79.92 95.53 70.93

TABLE 3. Parameters and computational efficiency of different methods
on the ISIC-18 dataset.

Method Parameter(M) Time(ms/step)
U-Net [5] 2.06 269
AttUNet [36] 8.49 452
R2UNet [37] 16.83 620
HRNet [38] 27.28 610
CLNet [39] 7.72 292
Connected_UNet [40] 3.17 382
ODsegmatiton [41] 19.82 365
SEUNet [42] 1.87 255
EENet [43] 29.98 339
ASFNet [44] 5.63 298
SCTV-UNet [45] 1.13 233
SSA-UNet [46] 2.33 290
RMAU-Net [47] 1.14 246
MDE-Net 5.96 687

complexity comes with a performance sacrifice, as these
models tend to achieve lower accuracy in lesion detection.
In contrast, models like AttUNet and R2UNet benefit from
the integration of residual modules, which enhance feature
representation but also result in increased training time and
parameter requirements. Similarly, HRNet leverages repeated
multi-scale fusion to increase its powerful performance at
the expense of computing resources. Despite requiring more
training time, our model stands out by providing higher
detection accuracy. This finding highlights the need for a bal-
anced approach in model selection, weighing computational
requirements with the ultimate goal of achieving accurate and
reliable segmentation results.

F. ABLATION STUDIES

To gain a deeper understanding of HCFE block, MPcsSE
block and SE-MultiResConv block, we wused ablation
experiments to analyze the respective contributions of these
modules. First, build the original U-Net architecture as
our base framework. Then integrate the above modules
one by one. Finally, Dice, Mcc, Accuracy and Jaccard
were used to evaluate the performance. Table. 4 and
Fig. 11 give quantitative and visual results on the ISIC2018
dataset, providing a comprehensive overview of our
findings.
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1) EFFICACY OF HCFE BLOCK

First, we integrated HCFE block into the base framework, and
the third rows of Fig. 11 show a comprehensive visualization.
This HCFE block significantly improves the segmentation
accuracy of the underlying U-Net framework, which is able
to capture a wider range of global feature images. It can
be confirmed from Table. 4 that the integration of HCFE
block into the Baseline framework (Baseline + HCFE)
has shown some improvement in all assessment indicators.
It is worth noting that compared with Baseline, Dice,
Mcc, Accuracy and Jaccard scores improved from 82.77%,
76.71%,90.67%, 71.24 to 84.27%, 78.93%,91.02%, 73.61%,
increased by 1.50%, 2.22%, 0.35% and 2.37% respectively.
The main reason is the introduction of HCFE block as an
encoder, which not only adaptively adjusts convolution kernel
parameters according to the characteristics of input data,
S0 as to capture complex patterns and structures in images
more accurately, but also allows the model to capture local
details while taking into account global context information
by expanding the receptive field.

2) EFFICACY OF MPcsSE BLOCK

In the second phase, we incorporated MPcsSE block into
the encoder and decoder connection process to improve
the model’s adaptive ability to filter out more important
information. As shown in Table. 4, the segmentation per-
formance is basically equal to that of U-Net. In addition,
a more detailed evaluation of the segmentation results is
provided through the visual representation in the fourth line of
Fig. 11.

3) EFFICACY OF SE-MultiResConv BLOCK

Third, we introduce SE-MultiResConv block into the
U-Net basic architecture, expressed as (Baseline + SE-
MultiResConv), in order to evaluate its effectiveness.
Because the decoder of the basic network uses simple
deconvolution and upsampling to capture local information,
it cannot accurately mine the small information of the feature
image. As shown in the fifth row of Fig. 11 and the com-
prehensive analysis shown in Table. 4, with the enhancement
of SE-MultiResConv block, the network can show greater
efficiency and accuracy in processing complex images. The
SE attention mechanism is used to dynamically recalibrate
the channel importance in the feature map, allowing the
model to focus on the features that are most critical to the
segmentation task, while ignoring unimportant background
noise. The multi-scale convolutional residual module helps
the network to better capture the subtle structural changes
in the image by fusing the feature information of different
scales, and further improves the richness and accuracy of
feature extraction.

4) EFFICACY OF FUSION MODULE
Finally, in order to effectively convey context informa-
tion, we combined HCFE block, MPcsSE block and
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FIGURE 11. Visualization results of ablation studies. (a-b) original images and their corresponding ground truth. (c) Baseline + HCFE. (d) Baseline +
MPcsSE. (e) Baseline + SE-MultiResConv. (f) Baseline + HCFE + MPcsSE. (g) Baseline + MPcsSE + SE-MultiResConv. (h) Baseline + HCFE +

SE-MultiResConv. (i) Baseline + HCFE + MPcsSE + SE-MultiResConv.

TABLE 4. Ablation experiments on the ISIC-18 dataset.

Method Dice(%) Mcc(%) Accuracy(%) Jaccard(%)
Baseline 82.77 76.71 90.67 71.24
Baseline+HCFE 84.27 78.93 91.02 73.61
Baseline+MPcsSE 82.75 76.50 90.73 71.23
Baseline+
SE-MultiResConv 85.22 79.80 90.98 75.03
Baseline+
HCFE+MPcsSE 85.03 79.41 90.71 74.52
Baseline+MPcsSE+
SE-MultiResConv 85.65 80,64 91.08 75.70
Baseline+HCFE+
SE-MultiResConv 85.35 80.37 91.01 75.24
Baseline+HCFE+
MPcsSE+SE-MultiResConv ~ 86.63 81.78 91.59 76.98

SE-MultiResConv block to design a fusion module (Baseline
+ HCFE + MPcsSE + SE-MultiResConv). The combination
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of the three can better capture the multi-scale information of
the image and effectively integrate the feature information
of different levels, which can help the model identify
the target boundary, small structure and occlusion more
accurately. As you can see from the last row of Fig. 11,
our approach captures relatively complete global information
and finely segmented results compared to the Baseline
network. As shown in Table. 4, our approach shows dramatic
improvements in Dice, Mcc, Accuracy, and Jaccard scores,
with improvements of 3.86%, 5.07%, 0.92%, and 5.47%,
respectively, compared to Baseline networks. As can be seen
from the images and statistical results, each component in our
model exhibits a unique performance, and combining these
components together can obtain the optimal segmentation
results.
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G. LIMITATION

The proposed method offers significant performance bene-
fits, particularly in improving the accuracy of image and data
segmentation tasks. However, there remain certain limitations
that need be addressed for broader appicability. A major
challenge lies in the method’s computational efficiency,
as it requires substantial processing time, especially when
handling large datasets or in scenarios that demand real-
time responses. To overcome this obstacle, we will reduce
processing time and increase overall computing speed in
several ways, including algorithmic optimization, parallel
computing techniques, and leveraging hardware accelera-
tion. Moreover, we intend to explore new segmentation
algorithms and innovative architectures to further enhance
the method’s capabilities. By striking a balance between
improving computational performance and maintaining high
segmentation accuracy, we seek to broaden the method’s
scope of application, making it more practical and impactful
across diverse scenarios.

IV. CONCLUSION

In order to solve the long-standing problems in the field of
medical image processing, the limitations of global feature
extraction and the problems of fuzzy and incomplete image
details. We develop a novel multi-scale feature extraction
and attention mechanism combined network. The elaborate
design of this network architecture not only shows the fusion
application of cutting-edge technologies, but also opens up
a new path for the accurate diagnosis of diseases such
as skin cancer. As the entrance of MDE-Net, the encoder
module is responsible for the initial processing of the input
medical image, and gradually abstracts the low-level to
high-level features of the image through the multi-layer
convolutional neural network structure. In this process,
we introduced HCFE. This structure allows the convolution
layer to see a wider range of image regions by increasing
the “receptive field” of the convolution kernel, that is,
while keeping the number of parameters unchanged, so as to
effectively capture the context information in the image. The
intermediate connection extraction module is one of the cores
of MDE-Net, which cleverly connects encoder and decoder
to realize the deep transmission and fusion of features.
In this module, the proposal of MPcsSE is a highlight.
By dynamically adjusting the importance between different
channels, MPcsSE effectively reduces the interference of
noise and redundant information, while enhancing the
representation of key features. This adaptive feature selection
mechanism enables the model to extract global features more
accurately in the complex and changeable medical image
environment, which lays a solid foundation for subsequent
analysis and diagnosis. The decoder module is responsible
for decoding the advanced features extracted by the encoder
and the intermediate connection extraction module step by
step, and restoring the segmentation map with similar size
to the original image. To ensure global consistency while
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finely restoring image detail, MDE-Net has designed an
innovative fusion structure that combines the SE attention
mechanism with a multi-scale convolutional residual module.
The SE attention mechanism enhances the representation
of useful features and suppresses unimportant features by
explicitly modeling the interdependencies between channels.
The multi-scale convolutional residuals module captures
multi-level details in images through convolution kernel of
different scales, and relieves the training problem of deep
networks through residuals connection. The combination
of the two makes MDE-Net able to recover the tiny
structure in the image and improve the segmentation accuracy
while maintaining the consistency of the global feature.
Through a comprehensive evaluation of ISIC18 datasets
and COVID-19 datasets, MDE-Net demonstrated significant
performance benefits. Compared with other contemporary
state-of-the-art segmentation technologies, MDE-Net has
achieved significant improvements in several evaluation
indicators. It not only improves the accuracy of segmentation,
but also enhances the model’s ability to capture image details
and complex structures. This result validates the rationality
and effectiveness of MDE-Net design. It also provides a new
idea and direction for the development of medical image
processing.

In future research, our team will aim to further advance
the field of medical image segmentation and collaborate
with some leading hospitals. It mainly includes the auto-
matic recognition and analysis of colorectal images and
the detection and evaluation of pituitary tumor lesions.
At present, we have systematically built a high-quality, large-
scale medical image database, which not only covers a wealth
of medical image samples, but also lays a solid foundation
for the subsequent algorithm development and validation.
Meanwhile, we are deeply aware of the limitations of current
models in terms of computational efficiency, which directly
affects the immediate application potential of the algorithm
in real-world clinical Settings. Therefore, optimizing and
improving computing efficiency has become one of the
indispensable core directions of our future research.
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